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1 Introduction

The continuations type has as values reified control stacks representing the state of control at a
particular point in a program execution. On a stack machine the state of control is a stack, k,
which is reified as a value of the form cont(k). Because stacks are classified by the type τ of
values they expect, correspondingly, continuations are classified by types τ cont. From this and
the dynamics of letcc and throw it is easy to derive the statics given in PFPL.

Nevertheless, it can be quite tricky to understand how to write programs with continuations.
It takes some experience to get a feel for it; powerful as they are, coninuations can be quite subtle
to work with. To gain intuition it is useful to rely on the stack machine dynamics given in PFPL
and in the supplementary note Harper (2018).

2 Examples

Contraposition

As a first example, consider the function cp, for “contrapositive,” of type

( τ1 ⇀ τ2 )⇀ τ2 cont⇀ τ1 cont

that pre-composes a continuation with a function,

λ ( f : τ1 ⇀ τ2 ) λ ( r2 : τ2 cont ) letcc(ret. throw(ap( f ; letcc(r1. throw(r1;ret)) );r2)).

Consider the execution of the application e ≜ cp( f )( cont(k2) ) on a stack k, taking some liberties
to skip steps and perform substitutions along the way:

k ▷ e 7−→∗ k ▷ letcc(ret. throw(ap( f ; letcc(r1. throw(r1;ret)) ); cont(k2)))

7−→∗ k ▷ throw(ap( f ; letcc(r1. throw(r1; cont(k))) ); cont(k2))

7−→∗ k ; throw(−; cont(k2)) ; ap( f ; − )︸ ︷︷ ︸
k′

▷ letcc(r1. throw(r1; cont(k)))

7−→∗ k ▷ throw(cont(k′); cont(k))

7−→∗ k ◁ cont(k′)
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Now observe that

k ▷ throw(v; cont(k′)) 7−→∗ k ; throw(−; cont(k2)) ; ap( f ; − )︸ ︷︷ ︸
k′

◁ v

7−→∗ k ; throw(−; cont(k2)) ▷ ap( f ; v )

7−→∗ k ; throw(−; cont(k2)) ◁ v′

7−→∗ k2 ◁ v′

That is, if v is thrown to k′, then, assuming that f applied to v terminates with value v′, the value
v′ is thrown to k2, as desired.

Law of the Excluded Middle

For a fascinating example consider the program lemτ of type τ + τ cont,

letcc(ret.l · letcc(x. throw(r · x;ret))).

Bizarrely, for any type τ at all, this program computes either a value of type τ, or a value of type
τ cont. But how could that be? Its behavior is independent of the choice of τ, which might or
might not have any values in it. As will be seen shortly, lemτ is a pusillanimous program that
“changes its mind” to achieve this improbable description!

Consider the execution

k ▷ lemτ 7−→∗ k ▷ l · letcc(x. throw(r · x; cont(k)))

7−→∗ k ; l · −︸ ︷︷ ︸
k′

▷ letcc(x. throw(r · x; cont(k)))

7−→∗ k′ ▷ throw(r · cont(k′); cont(k))

7−→∗ k ◁ r · cont(k′)

Thus, if lemτ is executed on a stack k, then it returns r · cont(k′) to k, where k′ is as defined above.
One may say that it “bluffs” by simply returning the τ-accepting stack, k′, injected into the right
summand. It may be that execution continues from the last state above to completion, without
ever examining this returned value. In that case the bluff has succeeded, and there is nothing
more to be said. However, it is of course possible that the return value is inspected non-trivially,
which means to perform a case analysis, and take the right-hand branch:

k ◁ r · cont(k′) 7−→∗ k′′ ; case(− ; x . e1 ; y . e2 ) ◁ r · cont(k′)

7−→∗ k′′ ▷ {cont(k′)/y}e2

The bluff has been called, and the continuation provided at the outset is passed to the right-hand
branch of the case. This, too, may be considered a bluff in that evaluation might proceed from
here to completion without ever making use of cont(k′). If so, the bluff was successful, and no
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one is the wiser. But it is also possible that this value is meaningfully used by throwing a value v
to it:

k′′ ▷ {cont(k′)/y}e2 7−→∗ k′′′ ▷ throw(v; cont(k′))

7−→∗ k ; l · −︸ ︷︷ ︸
k′

◁ v

7−→∗ k ◁ l · v

Execution may proceed as it did the first time, reviving the case analysis on the returned value,
but this time taking the left-hand branch,

k ◁ l · v 7−→∗ k′′ ; case(− ; x . e1 ; y . e2 ) ◁ l · v

7−→∗ k′′′ ▷ {v/x}e1

Thus, the program has “changed its mind,” re-executing the case analysis, but this time with the
given value v, which is propaged into the left-hand branch. From there execution continues as
if nothing untoward has ever happened, because there is no record of there having been some
“backtracking” involved during the execution.

Thus, although the type of lemτ is a sum, it is never possible to say definitively in which sum-
mand lies its value. Initially it provides a continuation in the right summand that is carefully
prepared to avoid potential embarrassment. If the caller folds, lemτ evades detection, and wins
by default. If the caller performs a case analysis, then it can only call lemτ’s bluff by providing a
value of type τ to the continuation that it has prepared. But that continuation simply reminds the
caller that it need never have invoked lemτ in the first place, by re-doing the case analysis with the
caller’s own value injected into the left summand!

Putting it into logical terms, the law of the excluded middle expresses the idea “that which
is not known to be true may be regarded as false.” In a transcendent world exceeding human
capacities, everything that is true is known to be true, and so everything that is not known to be
true can only be false. But in the actual world only finitely many facts can have been verified to
be true, so there are, and always will be, open questions, statements that are neither known to be
true, nor known to be false. The proof of the law of the excluded middle uses “time travel” to
return to a previous point in a proof, taking advantage of the fact that the only way to refute the
falsehood of a proposition is to provide a proof of its truth.
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