
A Symmetric Modal Lambda Calculus for Distributed Computing ∗

Tom Murphy VII
Carnegie Mellon

tom7@cs.cmu.edu

Karl Crary
Carnegie Mellon

crary@cs.cmu.edu

Robert Harper
Carnegie Mellon
rwh@cs.cmu.edu

Frank Pfenning
Carnegie Mellon
fp@cs.cmu.edu

Abstract

We present a foundational language for spatially dis-
tributed programming, called Lambda 5, that addresses
both mobility of code and locality of resources.

In order to construct our system, we appeal to the pow-
erful propositions-as-typesinterpretation of logic. Specifi-
cally, we take thepossible worldsof the intuitionistic modal
logic IS5 to be nodes on a network, and the connectives2

and3 to reflect mobility and locality, respectively.
We formulate a novel system of natural deduction for IS5,

decomposing the introduction and elimination rules for2

and3, thereby allowing the corresponding programs to be
more direct. We then give an operational semantics to our
calculus that is type-safe, logically faithful, and computa-
tionally realistic.

1 Introduction

The popularity of the Internet has enabled the possi-
bility of large-scale distributed computation. Distributed
programming is especially popular for scientific computing
tasks. The goal of this paper is to present a foundational
programming language for spatially distributed computing.
Scientific computing tasks often require the physical distri-
bution of computational resources and sensing instruments.
Therefore, to be relevant, our language must address both
the mobility of code and the locality of fixed resources.

Due to aesthetic considerations, we wish to take a
propositions-as-typesinterpretation of an appropriate logic
to form the basis of our programming language. Moreover,
since the type systems of realistic languages such as ML
and Haskell come from the same source, our constructs will
smoothly integrate with such languages. To make use of
this interpretation, our requirements are as follows. First,
we must be able to give a realistic operational semantics
to our system, since we want it to be relevant to real pro-

∗The ConCert Project is supported by the National Science Foundation under
grant ITR/SY+SI 0121633: “Language Technology for Trustless Software Dissemi-
nation.”

gramming languages. Second, the corresponding logic must
be well-behaved; it must be locally sound and complete,
and equivalent to an appropriate sequent calculus. Because
of its ability to represent spatial reasoning, we argue that
intuitionistic modal logic forms an excellent basis for dis-
tributed computing. Our modal logic, called Lambda 5, has
both a realistic operational semantics and a well behaved
proof theory.

Just as propositional logic is concerned withtruth, modal
logic is concerned with truth relative to differentworlds.
The worlds are related by anaccessibility relationwhose
properties distinguish different modal logics. We will ex-
plain our choice of accessibility relation below.

Modal logic is generally concerned with two forms of
propositions:2A, meaning thatA is true in every (acces-
sible) world, and3A, meaning thatA is true in some (ac-
cessible) world. Our computational interpretation realizes
these worlds as the nodes in a network. Because our model
is a computer network where all nodes can communicate
with each other equally, we choose an accessibility relation
that is reflexive, symmetric, and transitive, which leads to
the intuitionistic modal logic IS5 [14]. A value of type2A
represents mobile code of typeA that can be executed at
any world; a value of type3A represents the address of
a remote value of typeA. To illustrate our interpretation,
we present some characteristic true propositions in IS5 and
their intuitive justifications.

2A ⊃ A – Mobile code can be executed.
2A ⊃ 22A – Mobile code is itself mobile.
A ⊃ 3A – We can create an address for any value.
33A ⊃ 3A – We can obtain a remote address.
3A ⊃ 23A – Addresses are mobile values.
32A ⊃ 2A – We can obtain a remote mobile value.
The last two provable propositions are especially rele-

vant, and are only true because our accessibility relation is
symmetric. These theorems are actually some standard ax-
ioms for a Hilbert-style presentation of IS5. We opt for a
judgmental presentation, so all of these are provable propo-
sitions in Lambda 5. In section 4.1 we look at the actual
proof terms for some of these sentences and their computa-
tional content.

On the other hand, the following are not provable:

6` A ⊃ 2A – Not all local values are mobile.

6` 3A ⊃ A – We cannot obtain all remote values.

Simpson, in his Ph.D. thesis [17], provides an account
of intuitionistic modal logic based on a generic multiple-
world semantics. Two aspects prevent us from using his
formulation directly. First, his system is generalized to sup-
port accessibility relations that are arbitrary geometricthe-
ories. For our use of IS5, there is no relevant computational
content to a proof that two worlds are related. We there-
fore dispense with judgments of the accessibility relation
(as Kanger [7]) and simply collect a list of worlds that are
mutually interaccessible.

The second issue requires a more significant change.
Simpson’s rules act non-locally in the sense that they often
use assumptions from one world to conclude facts in an-
other world. This leads to proof terms that are inefficient at
best, and at worst do not even fit our computational model.
(In section 4.4 we make this comparison concrete.) Our
solution here is to decompose the rules for the2 and 3

connectives into restricted rules that act locally, and motion
rules which extend our reasoning across world boundaries.
In doing so we nonetheless preserve the duality of the con-
nectives and the desirable logical qualities, as demonstrated
in section 3.

This work focuses onspatially distributed computing.
Many distributed applications are also concurrent, but we
deliberately do not address concurrency in order to more
clearly isolate and explain spatial distribution in a founda-
tional way. We believe that adding concurrency to the lan-
guage poses no special issues, and expect to integrate it in
an implementation of a Lambda 5-based programming lan-
guage as future work.

The remainder of the paper proceeds as follows. We be-
gin the first half by presenting our logic in judgmental style
and proving standard properties about it. We then present a
sequent calculus based on Simpson’s IS5 which admits cut
and is equivalent to our system of natural deduction. This
yields a normal form theorem for our system of natural de-
duction, validating its design. In the second half of the pa-
per we present the operational semantics of Lambda 5 based
on a network abstraction. For this semantics we show type
safety and present several examples. We conclude with a
discussion of related work and plans for the future.

This paper has a companion technical report [10] with
most proofs in full detail. The relationship between natu-
ral deduction and sequent formulations of IS5, as well as
the admissibility of cut and the normalization theorem have
been mechanized in the Twelf system [13] and verified us-
ing its metatheorem checker [16].1

1They can be found athttp://www.cs.cmu.edu/˜concert/ .

2 Judgmental Lambda 5

Recall that our logic expresses truth relative to worlds.
Following Martin-Löf [8], we employ the notion of ahypo-
thetical judgment, which is an assertion of judgment under
certain assumptions. The judgments that capture our notion
of truthat a particular worldhave the form

Ω;Γ ` A true @ω

This judgment expresses that under the assumptions in
Γ andΩ, the propositionA is true at the worldω. Γ is a
set of assumptions of the formxi : Ai true @ωi where all
variablesxi are distinct. Reasoning about truth at worlds
requires reasoning about worlds. For S5, the only thing
we need to know about a world is that it exists, soΩ is
a set of assumptions of the formωi exists where all vari-
ablesωi must be distinct. However, we elide “true” and
“exists” when writing judgments for brevity. We only con-
sider judgments that are well-formed in the following sense:
All world variables that appear attached to assumptions or
in the conclusion are present inΩ.2

We define the meaning of our logical connectives by
way of introduction (markedI) and elimination (markedE)
rules. Introduction rules state the conditions under whicha
formula involving the connective is true. Elimination rules
state how we can use a formula involving the connective
whose truth we know. As discussed earlier, we have in ad-
dition special rules that encapsulate the mobility of certain
connectives, which also contribute to the definition of their
meaning.

We consider only implication (⊃), necessity (2) and pos-
sibility (3). As discussed in section 5, conjunction and truth
are easy to support, while disjunction and falsehood require
further consideration for a satisfactory operational seman-
tics.

The entire natural deduction system is given in figure 1.
These rules include proof terms, which will be necessary for
the operational semantics (section 4). They can be ignored
for the present discussion.

The hypothesis rule and rules for implication are stan-
dard. They act locally in the sense that the worldω remains
the same everywhere.

In order to prove that a proposition is true everywhere,
we prove its truth at a hypothetical world where nothing is
known but its existence. This explains the2 introduction
rule. The2 elimination rule states that if2A is true here
(meaningA is true everywhere) thenA is true here. Note
that2E is different from Simpson’s corresponding rule and
only strong enough in conjunction with thefetch rule ex-
plained below.

2We could ensure this as a theorem by adding a well-formedness con-
dition on Γ underΩ in the hypothesis rule. To simplify the discussion
we take the common shortcut of ruling out ill-formed contexts from the
beginning.

Ω;Γ, x : A@ω ` M : A′@ω

Ω;Γ ` λx.M : A ⊃ A′@ω
⊃ I

Ω;Γ ` N : A′@ω
Ω;Γ ` M : A′ ⊃ A@ω

Ω;Γ ` MN : A@ω
⊃ E

ω ∈ Ω
Ω;Γ, x : A@ω,Γ′ ` x : A@ω

hyp

ω′ fresh Ω, ω′; Γ ` M : A@ω′ ω ∈ Ω

Ω;Γ ` box ω′.M : 2A@ω
2I

Ω;Γ ` M : 2A@ω

Ω;Γ ` unbox M : A@ω
2E

ω ∈ Ω Ω;Γ ` M : 3A@ω′

Ω;Γ ` get 〈ω′〉M : 3A@ω
get

ω′ fresh Ω; Γ ` M : 3A@ω
Ω, ω′; Γ, x : A@ω′ ` N : B@ω

Ω;Γ ` letd ω′.x = M in N : B@ω
3E

Ω;Γ ` M : A@ω

Ω;Γ ` here M : 3A@ω
3I

ω ∈ Ω Ω;Γ ` M : 2A@ω′

Ω;Γ ` fetch [ω′]M : 2A@ω
fetch

Figure 1. Lambda 5 natural deduction

For 3 we have the dual situation. IfA holds here, then
we know it is truesomewhere; this is3 introduction. The3
elimination rule states that if we know3A, then we can rea-
son as ifA holds at some hypothetical world about which
nothing else is known. Both of these rules have unusual
restrictions when compared to other systems: in3I the
premise and conclusion are at the same world; in3E the
first and second premise (and therefore also the conclusion)
are at the same world.

Finally, we have rules that explicitly represent the mo-
bility of 2 and3 terms. Thefetch rule states that if2A
holds atω, then it holds at another worldω′, provided that
ω′ exists. In other words, ifA is true everywhere from the
perspective of one world, then it is true everywhere from
the perspective of any other world. Similarly,getstates that
if A is truesomewherefrom the perspective of one world,
then it is also true somewhere from the perspective of any
other existing world.

It’s worth noting thatgetandfetchare the source of sym-
metry in Lambda 5. They are what allow us to prove the
characteristic S5 axioms32A ⊃ 2A and3A ⊃ 23A.
Operationally, all communication on the network will be
encapsulated in these two rules.

Because we have a hypothetical judgment, we expect to
have a substitution principle that allows us to “fill in” as-
sumptions with proofs.

Theorem 1 (Substitution)
If D :: Ω; Γ ` M : A@ω
and E :: Ω; Γ, x : A@ω ` N : B@ω′

then F :: Ω; Γ ` [M/x]N : B@ω′.

Proof is by structural induction on the derivationE , omit-
ted here.

Similarly, because we have assumptions about the ex-
istence of worlds, we have a world substitution principle,
which is also a theorem of our logic.

Theorem 2 (World Substitution)
If ω′ ∈ Ω
and E :: Ω, ω; Γ ` M : A@ω′′

then F :: [ω′/ω](Ω; Γ ` M : A@ω′′)

Here we mean the substitution to apply to the entire judg-
ment, particularly the world in the conclusion. Proof is
again by structural induction onE , omitted here.

We also have the familiar principles of weakening and
contraction, for both world and truth assumptions.

As per our criteria, Lambda 5 natural deduction is lo-
cally sound and complete. We omit the proofs for space
(they appear in the technical report); moreover, these condi-
tions are weaker than normal because of our motion rules.
Local soundness, for instance, ensures that our elimination
rules are not too strong—if we introduce a connective and
then immediately eliminate it, we can find justification for
our conclusion. Because this property speaks only of intro-
duction and elimination rules (which traditionally explain a
connective completely), it is unable to tell us anything about
the motion rules.

A much stronger condition comes by way of equivalence
to an appropriate sequent calculus. Because sequent calcu-
lus proofs have a particular form, this gives us immediate
theoretical and philosophical results that subsume the lo-
cal properties above. The following section proves this cor-
respondence and describes some of the results that follow.
The operational interpretation (section 4) does not depend
on it.

3 Sequent Calculus

We establish a (cut-free) sequent calculus SS5 with the
following basic judgment:

Ω;Γ −→ A@ω

This judgment states that with truth assumptionsΓ and
world assumptionsΩ, the propositionA is true atω. The
rules of the sequent calculus SS5 are given in figure 2. Note
that this calculus admits non-local reasoning in the2L and

Ω;Γ, A ⊃ B@ω −→ A@ω
Ω;Γ, A ⊃ B@ω,B@ω −→ C@ω′

Ω;Γ, A ⊃ B@ω −→ C@ω′
⊃ L

Ω;Γ, A@ω −→ B@ω

Ω;Γ −→ A ⊃ B@ω
⊃ R

Ω, ω; Γ, A@ω −→ A@ω
init

ω′ fresh Ω, ω′; Γ,3A@ω,A@ω′ −→ C@ω′′

Ω;Γ,3A@ω −→ C@ω′′
3L

Ω, ω; Γ −→ A@ω′

Ω, ω; Γ −→ 3A@ω
3R

Ω, ω′; Γ,2A@ω,A@ω′ −→ C@ω′′

Ω, ω′; Γ,2A@ω −→ C@ω′′
2L

ω′ fresh Ω, ω, ω′; Γ −→ A@ω′

Ω, ω; Γ −→ 2A@ω
2R

Figure 2. Sequent calculus SS5

3R rules, and lacks the motion rules from natural deduc-
tion. It is a version of Simpson’sL23(T) specialized to the
case of interaccessible worlds (IS5).

The sequent calculus still admits world substitution,
which is straightforward and therefore omitted here. It is
also immediate to prove that weakening and contraction
are admissible rules which do not change the structure of
a derivation. The substitution principle for derivations turns
into the admissibility of cut, which states that a proof of
A@ω licenses us to useA@ω as a hypothesis.

Theorem 3 (Admissibility of Cut (SS5))
If D :: Ω; Γ −→ A@ω
and E :: Ω; Γ, A@ω −→ B@ω′

then F :: Ω; Γ −→ B@ω′.

The proof proceeds by a simple lexicographic induction
on (in order) the cut formulaA, the derivationD, and the
derivationE , following Pfenning [11]. To reduce extrane-
ous 2 and 3 formulas we need world substitution. This
proof is new3 and has been verified using the Twelf metathe-
orem checker. It is presented in full detail in the companion
technical report [10].

Each rule in the sequent calculus, when read bottom-
up, proceeds by decomposing the principle connective of a
proposition of the sequent in the antecedent (by aleft rule)
or the succeedent (by aright rule). Unlike natural deduc-
tion, a sequent derivation therefore embodies what Martin-
Löf calls averification: a canonical proof of a proposition
which proceeds only by analysis of the proposition to be
proved. This gives us an important orthogonality condition:
we can extend or limit our logic to different sets of con-
nectives without affecting the provability of propositions in-
volving those connectives.

It is now a relatively simple matter to validate the cor-
rectness of our natural deduction system. First, we have to
show that every proposition that has a proof (in natural de-
duction) has a verification (in the sequent calculus). This is

3Simpson [17] achieved the same result indirectly via natural deduction

the global analogue of the local soundness property. Sec-
ond, we have to show that every proposition that has a veri-
fication, has a verification where theinit rule is applied only
to an atomic proposition. This is the global analogue of the
local completeness property, ensuring that the left rules are
strong enough to deriveΩ, ω; Γ, A@ω −→ A@ω by decom-
posingA all the way to its atomic constituents. We omit the
proof of the latter property since it is an entirely straightfor-
ward induction on the structure ofA.

Theorem 4 (Equivalence of Lambda 5 and SS5)
Ω;Γ ` A@ω iff Ω;Γ −→ A@ω.

Each direction is proved by structural induction on the
input derivation. In the Lambda 5 to SS5 direction, we use
the cut theorem for SS5. These two proofs have also been
fully formalized and checked in Twelf.

We can exploit the computational content of this meta-
theoretic proof to translate an arbitrary natural deduction to
the sequent calculus and then back. Analysis of the proofs
of theorem 4 shows that the resulting natural deduction will
satisfy a very restricted normal form. This normal form sat-
isfies the subformula property and can be constructed us-
ing only introduction rules bottom-up and only elimination
rules top-down until an assumption matches the conclusion.
Moreover, thefetchrule needs to be used only immediately
above a2E rule. Similarly, theget rule needs to be used
only immediately before the left premise of a3E rule or
immediately below a3I rule. Therefore we claim that the
decomposition of the introduction and elimination rules into
local rules and movement rules has not destroyed the logical
reading of deductions.

The sequent calculus makes it easy to see that some
propositions are not provable. Working bottom-up, we see
that the propositionA ⊃ 2A is unprovable after apply-
ing ⊃ R and2R, and being left with no rules to continue.
Similarly, after an application of⊃ R and3L, we see that
3A ⊃ A is also unprovable. Decidability of IS5 is another
easy consequence [17].

Having justified Lambda 5 as a logic, we now switch
gears to its interpretation as a type system for a distributed

programming language.

4 Operational Interpretation

We can associate a programming language with our logic
by viewing propositions as types and proofs of those propo-
sitions as programs.

Our operational semantics defines an abstract ma-
chine: a network and the steps of computation of a
program distributed among its nodes. Because we fo-
cus on distributed—as distinguished from concurrent—
computation, our abstract machine is sequential and deter-
ministic. The network consists of a fixed number of hosts
namedwi. Each world has associated with it some state de-
scribing its execution context (explained later) and a table.
This table stores mappings from labels` to values. These
labels, when paired with the world name, form a portable
address that others can use to refer to this value.

Before we describe this machine in detail, we revisit
the previously ignored proof terms from figure 1. These
proof terms form the external language of Lambda 5. As
remarked previously, we give the following computational
interpretation to our connectives. As usual, values of type
A ⊃ B are functions fromA to B. Values of type2A are
pieces of quoted code that can be run anywhere to produce
a value of typeA. A value of3A takes the formw.`—a
pair of a world name and label. This is an address of a table
entry atw containing a value of typeA.

The proof term for2I is box ω′.M. It binds the world
variableω′ within M , which must be well-typed atω′. We
do not evaluate under thebox —doing so is unsound in the
presence of effects.4 Straightforwardly,unbox instanti-
ates the hypothetical world with the actual current world
and then evaluates the contents of thebox . The term
fetch [ω′]M performs a remote procedure call (RPC), ex-
ecuting the codeM at ω′ and then retrieving the resulting
value, which must have2 type.

The introduction form for3 is here M . Operationally,
we will evaluate the termM and insert the value in a table
at the current world. It will be given a new label, and the
address will bew.`. The elimination form,letd ω.x =
M in N , evaluates M to one of these pairs, and then binds
variables for the label and world for the purposes of evalu-
atingN . World-label pairs make sense globally, so we are
able to retrieve them withget 〈ω′〉M , which behaves as
fetch but returns a value of3 type.

Note that in both RPC forms we must send the termM to
the remote host. Though this term has2 or 3 type, it is an
arbitrary expression, not yet abox or w.`. In this sense all
code must be “mobile;” however, we are able to distinguish

4The here construct is effectful, because it modifies the local table,
and we also want our language to scale to traditional effectssuch as refer-
ences.

between mobile code that can be transmitted to only one
location (A@ω) and code that is universally mobile (2A).

In order to ground our discussion of the operational ma-
chinery, we present in the next section some examples of
Lambda 5 programs and their intended behavior.

4.1 Examples

As examples, we revisit several of the axioms informally
explained in the introduction.

Let’s look again at the symmetry axiom32A ⊃ 2A.
We consider this our key example, because it encapsulates
the notion of moving mobile code from some other location
to our location. Here is a Lambda 5 proof term for it:

λx. letd ω.y = x in fetch [ω] y

This term deconstructs the diamond to learn the world
at which the mobile code exists, and thenfetches it to the
current world.

The axiom(3A ⊃ 2B) ⊃ 2(A ⊃ B) is provable in any
intuitionistic modal logic based on a Kripke model, regard-
less of the accessibility relation.5 Here is the proof term,
assuming that it lives atω.

λf. box ω′.λy.
unbox (fetch [ω](f(get 〈ω′〉here y)))

This proof is a bit surprising. We takef , which lives
at ω. The boxed code takesy : A, which lives atω′. We
then switchbackto ω in order to applyf ; to do so wegeta
3A from ω′. This back-and-forth is inevitable because we
cannot applyf until 3A is true, and3A is only true once
we begin to prove the boxed conclusion.

Let’s take a look at the “shortcut” axiom33A ⊃ 3A.

λr. letd ω′.x = r in get 〈ω′〉x

The program simply follows33A to the place where
3A is true, and retrieves that address withget.

The other symmetry axiom3A ⊃ 23A has two differ-
ent proofs that are each interesting. These proof terms are
well-typed atω:

1. λx. letd ω′.y = x
in box ω′′. get 〈ω′〉(here y)

2. λx. box ω′. get 〈ω〉 x

In the first proof, we deconstruct the diamond and repub-
lish it at ω′ each time the box is opened. This keepsω out
of the loop at the expense of redundant table entries. In the

5However, it is not provable in some other computational modal logics
such as the judgmental S4 due to Pfenning and Davies [12] wherenecessity
is taken to mean provability withnoassumptions.

second proof, we do not republish the address but simply
get it from ω.

In section 4.4 we justify our decomposition by com-
paring some of these proof terms to a hypothetical system
where the rules act non-locally.

4.2 Type System

The syntax of our type system and operational semantics
is given in figure 3. As mentioned, we give specific names,
w, to hosts in our network. Because we still have hypotheti-
cal worldsω (for the introduction of2 or elimination of3),
we have world expressions (written as a Romanw) which
range over bothω andw.

The class of expressions is the same as proof terms in our
logic except for the appearance of labels`. We have seen
labels as a component of an address of type3A. These val-
ues of diamond type are well-typed at any world. In com-
parison, “disembodied” labels̀are well-typed only in the
world where their table lives. For example, suppose there is
a resource of typeA in the table at worldw1. If the label`
refers to that resource, then it will have typeA@w1. On the
other hand, the addressw1.` can have type3A@w2—at a
different world.

As a result, a term that is physically present at one node
may nonetheless contain components that are only well
typed at other worlds. One consequence of our safety the-
orem is that these subterms will only be evaluated in the
appropriate worlds!

The tables at each world (b) are just mappings from la-
bels to values. The type of these tables isτ , a mapping from
labels to types.

Our abstract machine is continuation based. For in-
stance, an attempt to evaluate an applicationMN will result
in a ◦ N frame being pushed onto the continuation. This
continuation expects a lambda value, at which point it will
begin evaluatingN . New in our system is the idea that
continuations can span multiple worlds. This arises from
the RPC mechanisms. For instance, suppose we evaluate
fetch [w′]M at w. To do so, we suspend our current work
at w and begin a new continuation onw′ to evaluateM .
The bottom of this continuation will bereturn w, which
awaits a value to return to our old continuation atw.

Because RPCs can be reentrant in the sense that code
we invoke in one world may in turn invoke code back in
the original world, we may have multiple outstanding con-
tinuations. However, because the computation is serial, a
stack of pending continuations suffices. So, a continuation
k is a stack of framesf with eitherreturn w or finish
at its bottom. A continuation stackC is simply a list of
pending continuations.finish is the very bottom of the
entire network-wide continuation, and when reached repre-
sents the final answer of our program.

Now we can discuss network configurations. A configu-
rationW is a mapping from world constants to their current
continuation stacks and tables. The configuration changes
as a program is executed; the continuation stacks grow and
shrink, and the table monotonically accumulates new val-
ues. However, the domain ofW remains constant.

A network stateN is a configuration paired with a cursor.
The cursor is of the formw : [k,M] and represents the cur-
rent focus of computation. The expressionM is currently
pending evaluation, the continuationk is the currently ac-
tive continuation, and the worldw is where the computa-
tion is taking place. The worldw must of course be in the
configuration, but the continuationk doesnotappear in that
world’s continuation stack.

The final point of the syntax is the configuration typeΣ.
This simply describes the “type” of the network by mapping
world constants to table types.

The natural deduction system given in section 2, with
proof terms, can be thought of as the type system for theex-
ternal languageof Lambda 5 programs. However, we must
extend this type system to talk about networks, tables, and
continuations in order to state properties about our abstract
machine. To do this, we need a number of new judgments.

The typing judgmentΣ;Ω; Γ ` M : A@w simply ex-
tends the natural deduction judgment to incorporate config
types and world expressions. The definition of the well-
formedness conditionΣ;Ω ` w is omitted for space. It is
straightforward: world variables are well-formed when they
are inΩ and world names are well-formed when they are in
the domain of the configuration typeΣ. We also omit the
definition ofΣ ` ` : A@w, which simply ensures thatw’s
entry inΣ maps̀ toA. The last omitted definition is of table
well-formedness,Σ ` b@w. A table is well-formed when
it contains exactly the same labels as its table type claims,
and each of the values has the correct type underΣ. We will
define the continuation typing judgmentΣ ` W; k : A@w,
which says that the continuationk (and configurationW)
expects values of typeA at worldw.

All of these judgments are used to conclude well-
formedness for an entire network state, which is writtenΣ `
N. The type system reuses the rules from Lambda 5 natural
deduction (figure 1) with the following changes. First, we
systematically change each judgment ofΩ;Γ ` M : A@ω
to Σ;Ω; Γ ` M : A@w, except in the2I rule, where
the premise must still be concluded at the new hypotheti-
cal world ω′. Second, world existence conditionsω ∈ Ω
are replaced by the world expression well-formedness con-
dition Σ;Ω ` w. Finally, we add a number of new rules
from figures 4 and 5, including new typing rules forw.`
and disembodied̀, calleddia andlab.

Typing of continuations is fairly straightforward. Recall
that the judgment records the typeexpectedby the contin-
uation, not the type it produces. The most interesting rule

types A,B ::= 2A | A ⊃ B | 3B
configs W ::= {w1 : 〈C1, b1〉, · · · }

networks N ::= W; w : [k,M]
tables b ::= • | b, ` = v

config types Σ ::= {w1 : τ1, · · · , wi : τi}
table types τ ::= • | τ, ` : A
world exps w ::= w | ω
world vars ω world names w

labels ` value vars x, y

values v ::= λx.M | box ω.M | w.`
cont stacks C ::= ? | C::k

conts k ::= return w | finish | k ¢ f
frames f ::= ◦ N | v ◦ | here ◦ | unbox ◦

| letd ω.x = ◦ in N
exps M,N ::= v | MN | x | ` | fetch [w]M

| here M | get 〈w〉M
| unbox M | letd ω.x = M in N

Figure 3. Syntax of Lambda 5 type system

Σ ` W; finish : A@w
Σ ` W; k : 3A@w

Σ ` W; k ¢ here ◦ : A@w
Σ ` W; k : A′@w Σ; ·; · ` N : A@w

Σ ` W; k ¢ ◦ N : A ⊃ A′@w

Σ ` ` : A@w Σ;Ω ` w

Σ;Ω; Γ ` w.` : 3A@w
dia

Σ ` W; k : A@w
Σ ` W; k ¢ unbox ◦ : 2A@w

Σ ` W; k : B@w Σ;ω;x : A@ω ` N : B@w
Σ ` W; k ¢ letd ω.x = ◦ in N : 3A@w

Σ ` ` : A@w
Σ;Ω; Γ ` ` : A@w lab

Σ ` W; k : B@w Σ; ·; · ` v : A ⊃ B@w
Σ ` W; k ¢ v ◦ : A@w

Σ ` {w′ : 〈C; b〉; ws}; k : A@w′

Σ ` {w′ : 〈C::k; b〉; ws}; return w′ : A@w

Figure 4. Extended expression and continuation typing rules

is the rule forreturn w. This rule ensures that the con-
tinuation stack atw is non-empty, and that its outermost
continuation expects the same type as thereturn . Via
this rule the continuation typing conditionunwindsthe en-
tire network-wide continuation. Also worth noting is that
the finish continuation is well-formed regardless of any
junk that may remain in the continuation stacks in the rest
of the network. (This is an arbitrary choice and does not
affect type safety.)

Σ = {w1 : τ1, · · · , wi : τi} 1 ≤ j ≤ i
W = {w1 : 〈C1, b1〉, · · · , wi : 〈Ci, bi〉}
Σ ` b1@w1 · · · Σ ` bi@wi

Σ; ·; · ` M : A@wj Σ ` W; k : A@wj

Σ ` W; wj : [k,M]

Figure 5. Network typing

Finally, we have the network typing judgment (figure 5).
The networkW; wj : [k,M] is well formed under some
config typeΣ if several conditions hold. BothW andΣ
must have the same domain, andwj must be in that do-
main. Each of the tables inW must be well-formed, and
there must exist a mediating typeA such that the current
expressionM has that type and the current continuationk
expects it.

With the typing rules in hand, we can give a dynamic se-
mantics to network states that explains the evaluation of dis-

tributed programs. Our dynamic semantics takes the form
of a stepping relation7→ that relates pairs of network states.
Its definition is given in figure 6.

Much of the dynamic semantics is standard for a
continuation-based abstract machine. The reduction rule for
unbox (10) instantiates the mobile code with the current
world. When we encounter a label (11), we look it up in
the current world’s table and proceed with that value. To
publish a value (9), we generate a new label and add the
mapping to our table. The resulting address is our current
world paired with the label.

The reduction forletd (13) substitutes both that world
constant and the disembodied label into the body of the
letd . Note that our substitution must work on expressions,
namely labels. We can’t evaluate` yet because we are not
necessarily in the correct world.

Finally, the RPC rules are interesting. Evaluating a
fetch [w′]M at w (7) means saving the current continu-
ation atw, and beginning a new continuation to evaluate
M at w′ with return w at its bottom. The rule forget
(8) is essentially the same. Reducingreturn w (6) simply
moves the value tow, resuming with its outermost continu-
ation. Only boxes and addresses can be moved.

A programming language is only sensible if it is type
safe, that is, if a well-typed program has a defined mean-
ing in terms of evaluation on the abstract machine. In the
next section we give the type safety theorem. We then give

(1) W; w : [k,MN] 7→ W; w : [k ¢ ◦ N ;M]

(2) W; w : [k ¢ ◦ N ; v] 7→ W; w : [k ¢ v ◦, N]

(3) W; w : [k ¢ (λx.M)◦, v] 7→ W; w : [k, [v/x]M]

(4) W; w : [k, here M] 7→ W; w : [k ¢ here ◦,M]

(5) W; w : [k, unbox M] 7→ W; w : [k ¢ unbox ◦,M]

(6) {w : 〈C::k, b〉; ws}; w′ : [return w, v] 7→
{w : 〈C, b〉; ws}; w : [k, v] (v = box ω.M or w′′.`)

(7) {w : 〈C, b〉; ws}; w : [k, fetch [w′]M] 7→
{w : 〈C::k, b〉; ws}; w′ : [return w,M]

(8) {w : 〈C, b〉; ws}; w : [k, get 〈w′〉M] 7→
{w : 〈C::k, b〉; ws}; w′ : [return w,M]

(9) {w : 〈C, b〉; ws}; w : [k ¢ here ◦, v] 7→
{w : 〈C; b, ` = v〉; ws}; w : [k, w.`] (` fresh)

(10) W; w : [k ¢ unbox ◦, box ω.M] 7→
W; w : [k, [w/ω]M]

(11) {w : 〈C, b〉; ws}; w : [k, `] 7→
{w : 〈C, b〉; ws}; w : [k, v] (b(`) = v)

(12) W; w : [k, letd ω.x = M in N] 7→
W; w : [k ¢ letd ω.x = ◦ in N,M]

(13) W; w : [k ¢ letd ω.x = ◦ in N, w′.`] 7→
W; w : [k, [`/x][w′/ω]N]

Figure 6. Dynamic Semantics

a comparison to a hypothetical system where the rules act
non-locally.

4.3 Type Safety

Type safety is the conjunction of two properties, progress
(theorem 5) and type preservation (theorem 6). Progress
states that any well-formed network state is eitherterminal
(meaning it has successfully finished computation) or can
make a step to a new network state. Preservation states that
any step we make from a well-formed network results in a
state that is also well-formed. A network is terminal if it is
of the formW; w : [finish , v]. We say that store types are
related asΣ ⊇ Σ′ if they have the same world constants in
their domains, and for each world the table typesτ = Σ(wi)
andτ ′ = Σ′(wi) agree on the domain ofτ .

Theorem 5 (Progress)
If D :: Σ ` N

then eitherN is terminal or ∃N
′.N 7→ N

′.

Theorem 6 (Preservation)
If D :: Σ ` N andE :: N 7→ N

′

then ∃Σ′,F .Σ′ ⊇ Σ and F :: Σ′ ` N
′.

Proof of progress is by induction on the derivationD.
Proof of preservation is by induction on the derivationE
with inversions onD. These proofs are fairly standard and
appear in the companion report.

Therefore, a well typed program can make a step (or is
done), and steps to another well-typed program. By iterat-
ing these two theorems it is easy to see that a well-typed
program can never become stuck.6

4.4 Comparison

To justify our decomposition, we compare the proof
terms from section 4.1 to a hypothetical system “H5” where
the rules act non-locally (closely modeled after Simpson’s
systemN23 [17]). It shares features with calculi discussed
in section 6.

H5 has noget or fetch ; instead it replaceshere ,
unbox , andletd with three new terms:

• there 〈ω〉M , which computesM of type A at ω and
then returns its address of type3A;

• unboxfrom [ω]M , which computesM (of type2A) at
ω, and then returns its value of typeA;

• letdfrom 〈ω〉 ω′.y = M in N , which is likeletd ex-
cept that it computesM (of type3A) atω instead of locally.

In H5, the proof term of32A ⊃ 2A@ω would be:

(H5)
λx. letdfrom 〈ω〉 ω′.y = x

in box ω′′. unboxfrom [ω] y

Note that this term is not moving the code at all! Instead,
it creates a new box that, when opened, will unbox the code
from the original world into the target world. This hardly
fits our model of mobile code. Moreover, the3 elimination
letdfrom allows its source to be an arbitrary world, so we
may end up calling ourselves remotely. An implementation
could optimize local RPC, but it is better to enable purely
local reasoning in the semantics itself.

The H5 proof term of33A ⊃ 3A@ω is:

(H5)
λr. letdfrom 〈ω〉 ω′.x = r

in letdfrom 〈ω′〉 ω′′.y = x
in there 〈ω′′〉y

In addition to the self-RPC seen in the last term, the H5
program is forced to deconstruct both diamonds and reintro-
duce a direct address. This has the effect of publishingA in
the table atω′′, where it already must have been published!

6However, as stated our type safety theorem does not guarantee that the
type of the final value sent tofinish does not change through the course
of execution. To prove this we can index the network well-formedness
judgment with the “final answer” type and modify the continuation typing
rule for finish without any change in the preservation proof, observing
that none of the transitions modify this type.

5 Future Work

With the minimal set of connectives presented here, our
system has the same consequence relation as Simpson’s IS5.
This is because the accessibility relation in S5 is that of
equivalence classes. Although there may be more than one
equivalence class of worlds, disjoint classes cannot affect
each other. Now, Lambda 5 only supports reasoning about
a single class; the list of worlds inΩ. Each IS5 theorem
is proved at some world, and so we can focus our attention
on that world’s class and repeat the proof in Lambda 5, dis-
carding any assumptions from other classes.

The addition of some other standard connectives like∧
and > poses no problem. When introducing disjunctive
connectives like⊥ and∨, however, we must be careful.
Compare the elimination rule for2 with the elimination for
⊥ in Simpson’s IS5:

2A@ω ω R ω′

A@ω′
2E

⊥@ω
C@ω′

⊥E

Here,ω R ω′ if ω′ is accessible fromω. In order to un-
box from one world into another they must be in the same
equivalence class. However, if⊥ is true at some world
then any proposition is true atany other world, irrespec-
tive of their mutual (in)accessibility. Now our argument
above does not hold, because disjoint equivalence classes
may affect each other. In the presence of⊥ or ∨ we must
make the slightly weaker claim that IS5 and Lambda 5 have
the same consequence relation under assumptions about a
single class only. This includes all relations of the form
ω; · ` A@ω because all worlds introduced in the proof of
A@ω will be interaccessible withω.

Because⊥ and∨ reason non-locally, we require special
considerations in the operational semantics. Falsehood is
simple: since there is no value of type⊥E we can initiate a
remote procedure call which is known never to return. For
∨, the value analyzed is not generally portable to our world.
We conjecture that a remote procedure call mechanism can
distinguish cases remotely and send back only a label and a
bit indicating whether the left of right case applies.

By design, our operational semantics is sequential. How-
ever, many distributed computing tasks rely essentially on
concurrency. In order to develop Lambda 5 into a realistic
programming language, we intend to add support for con-
currency. We believe this will be an orthogonal extension.
Other programming constructs such as recursion, polymor-
phism, and other type constructs for functional program-
ming should also be easily added. On the implementation
side, we need to consider details such as distributed garbage
collection, failure recovery, as well as marshalling and cer-
tification of mobile code.

6 Related Work

Others have also used modal logic for distributed com-
puting. For example, Borghuis and Feijs’s Modal Type Sys-
tem for Networks [1] provides a logic and operational se-
mantics7 for network tasks with stationary services and mo-
bile data. They use2, annotated with a location, to repre-
sent services. For example,2

o(A ⊃ B) means a function
from A to B at the locationo. With no way of internalizing
mobility as a proposition, the calculus limits mobile data to
base types. Services are similarly restricted to depth-onear-
row types. By using2 for mobile code and3 for stationary
resources, we believe our resulting calculus is both simpler
and more general.

Cardelli and Gordon [4] provide an early example of
using modal logic for reasoning about programs spatially,
later refined by Caires and Cardelli [2, 3]. They do not take
a propositions-as-types view of their logic; instead, they
start from a process calculus, mobile ambients, and develop
a classical logic for reasoning about their behaviors. There-
fore, their modal logic is very different from intuitionistic
S5 and includes connectives for stating temporal properties,
security properties, and properties of parallel compositions.
In contrast, Lambda 5 may be seen as a pure study of mo-
bility and locality in a fully interconnected network.

Hennessy et al. [5] develop a distributed version of the
π-calculus and impose a complex static type system in or-
der to constrain and describe behavior. Similarly, Schmitt
and Stefani [15] develop a distributed, higher-order version
of the Join Calculus with a complex behavioral type sys-
tem. In comparison, our system is much simpler, elimi-
nating the complexities of concurrency, access control, and
related considerations. By basing our system on the Curry-
Howard correspondence, we have a purely logical analysis
and, furthermore, we expect straightforward integration into
a full-scale functional language for realistic programs.

Moody [9] gives a system based on the constructive
modal logic S4 due to Pfenning and Davies [12]. This lan-
guage is based on judgmentsA true (here),A poss (some-
where), andA valid (everywhere) rather than truth at par-
ticular worlds. The operational semantics of his system
takes the form of a process calculus with nondeterminism,
concurrency and synchronization; a significantly different
approach from our sequential abstract machine. From the
standpoint of a multiple world semantics, the accessibility
relation of S4 satisfies only reflexivity and transitivity, not
symmetry. From the computational point of view, acces-
sibility describes process interdependence rather than con-
nections between actual network locations. Programs are
therefore somewhat higher-level and expresspotential mo-
bility instead of explicit code motion as in thefetchandget
constructs. In particular, due to the lack of symmetry it is

7By way of compilation into shell scripts!

not possible to go back to a source world after a potentially
remote procedure call except by returning a value.

Jia and Walker [6] give a judgmental account of an S5-
like system based on hybrid logics, but compare it only in-
formally to known logics. Hybrid logics internalize worlds
inside propositions by including apropositionthat a value
of type A resides at worldω, “A atω.” This leads to a
technically different logic and language though they have
similar goals. Their rules for2 and3 are similar to the
non-local H5 system that we compare Lambda 5 to in sec-
tion 4.4. Like Moody, they give their network semantics as
a process calculus with passive synchronization across pro-
cesses as a primitive notion. In comparison, we are able
to achieve active returns of values by restricting our non-
local computation to two terms, and associating remote la-
bels with entries in a table rather than with processes. We
feel that this is a more realistic and efficient semantics.

7 Conclusion

We have presented a logic and foundational program-
ming language Lambda 5 for distributed computation based
on a Curry-Howard isomorphism for the intuitionistic
modal logic S5, viewed from a multiple-world perspective.
Computationally, values of type2A are mobile code and
values of type3A are addresses of remote values, providing
a type-theoretic analysis of mobility and locality in an inter-
connected network. We have shown that Lambda 5 remains
faithful to the logic, via translations from natural deduction
to and from a sequent calculus in which cut is admissible.
Moreover, by localizing introduction and elimination rules
for mobile and remote code (2E, 3I, and3E) and adding
explicit rules for code motion, we achieve an efficient and
natural computational interpretation.

References

[1] Tijn Borghuis and Loe M. G. Feijs. A constructive logic for
services and information flow in computer networks.The
Computer Journal, 43(4):274–289, 2000.

[2] Luı́s Caires and Luca Cardelli. A spatial logic for concur-
rency (part I). InTheoretical Aspects of Computer Software
(TACS), pages 1–37. Springer-Verlag LNCS 2215, October
2001.

[3] Luı́s Caires and Luca Cardelli. A spatial logic for concur-
rency (part II). InProceedings of the 13th International Con-
ference on Concurrency Theory (CONCUR), pages 209–225,
Brno, Czech Republic, August 2002. Springer-Verlag LNCS
2421.

[4] Luca Cardelli and Andrew D. Gordon. Anytime, anywhere.
modal logics for mobile ambients. InProceedings of the
27th Symposium on Principles of Programming Languages
(POPL), pages 365–377. ACM Press, 2000.

[5] Matthew Hennessy, Julian Rathke, and Nobuko Yoshida.
SafeDPi: A language for controlling mobile code. Report
02/2003, Department of Computer Science, University of
Sussex, October 2003.

[6] Limin Jia and David Walker. Modal proofs as distributed
programs. 13th European Symposium on Programming,
pages 219–223, March 2004.

[7] S. Kanger. Provability in Logic. Almquist and Wiksell,
Stockholm, 1957.

[8] Per Martin-L̈of. On the meanings of the logical constants
and the justifications of the logical laws.Nordic Journal of
Philosophical Logic, 1(1):11–60, 1996.

[9] Jonathan Moody. Modal logic as a basis for distributed com-
putation. Technical Report CMU-CS-03-194, Carnegie Mel-
lon University, Oct 2003.

[10] Tom Murphy, VII, Karl Crary, Robert Harper, and Frank
Pfenning. A symmetric modal lambda calculus for dis-
tributed computing. Technical Report CMU-CS-04-105,
Carnegie Mellon University, Mar 2004.

[11] Frank Pfenning. Structural cut elimination: I. intuitionistic
and classical logic.Information and Computation, 157(1-
2):84–141, 2000.

[12] Frank Pfenning and Rowan Davies. A judgmental recon-
struction of modal logic.Mathematical Structures in Com-
puter Science, 11:511–540, 2001. Notes to an invited talk
at theWorkshop on Intuitionistic Modal Logics and Applica-
tions(IMLA’99), Trento, Italy, July 1999.

[13] Frank Pfenning and Carsten Schürmann. System description:
Twelf – a meta-logical framework for deductive systems. In
Harald Ganzinger, editor,Proceedings of the 16th Interna-
tional Conference on Automated Deduction, pages 202–206,
Trento, Italy, July 1999. Springer-Verlag. LNAI 1632.

[14] A. N. Prior. Time and Modality. Oxford University Press,
1957.

[15] Alan Schmitt and Jean-Bernard Stefani. The M-calculus:
A higher-order distributed process calculus. InConference
Record of the 30th Symposium on Principles of program-
mming Languages, pages 50–61, New Orleans, Louisiana,
January 2003. ACM Press.

[16] Carsten Scḧurmann and Frank Pfenning. A coverage check-
ing algorithm for LF. In D. Basin and B. Wolff, editors,Pro-
ceedings of the 16th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs 2003), pages 120–
135, Rome, Italy, September 2003. Springer-Verlag LNCS
2758.

[17] Alex Simpson. The Proof Theory and Semantics of Intu-
itionistic Modal Logic. PhD thesis, University of Edinburgh,
1994.

