A Symmetric Modal Lambda Calculusfor Distributed Computing *

Tom Murphy VII Karl Crary Robert Harper Frank Pfenning
Carnegie Mellon Carnegie Mellon Carnegie Mellon Carnegie Mellon
tom7@cs.cmu.edu crary@cs.cmu.edu rwh@cs.cmu.edu fp@cs.cmu.edu

Abstract gramming languages. Second, the corresponding logic must
be well-behaved; it must be locally sound and complete,
We present a foundational language for spatially dis- and equivalent to an appropriate sequent calculus. Because
tributed programming, called Lambda 5, that addresses of its ability to represent spatial reasoning, we argue that
both mobility of code and locality of resources. intuitionistic modal logic forms an excellent basis for-dis
In order to construct our system, we appeal to the pow- tributed computing. Our modal logic, called Lambda 5, has
erful propositions-as-typeisiterpretation of logic. Specifi- both a realistic operational semantics and a well behaved
cally, we take th@ossible world®f the intuitionistic modal proof theory.
logic 1S5 to be nodes on a network, and the connectives Just as propositional logic is concerned withth, modal
and < to reflect mobility and locality, respectively. logic is concerned with truth relative to differemtorlds
We formulate a hovel system of natural deduction for IS5, The worlds are related by aaccessibility relationrwhose
decomposing the introduction and elimination rules for ~ properties distinguish different modal logics. We will ex-
and <, thereby allowing the corresponding programs to be plain our choice of accessibility relation below.
more direct. We then give an operational semantics to our Modal logic is generally concerned with two forms of
calculus that is type-safe, logically faithful, and comgput propositions:0A, meaning thatd is truein every (acces-
tionally realistic. sible) world and<© A, meaning thatd is truein some (ac-
cessible) world Our computational interpretation realizes
these worlds as the nodes in a network. Because our model
1 Introduction is a computer network where all nodes can communicate
with each other equally, we choose an accessibility refatio
that is reflexive, symmetric, and transitive, which leads to
the intuitionistic modal logic IS5 [14]. A value of type A
represents mobile code of typé that can be executed at
any world; a value of type> A represents the address of
a remote value of typel. To illustrate our interpretation,
we present some characteristic true propositions in IS5 and
their intuitive justifications.
OA D A — Mobile code can be executed.
OA D ODA — Mobile code is itself mobile.

The popularity of the Internet has enabled the possi-
bility of large-scale distributed computation. Distribdt
programming is especially popular for scientific computing
tasks. The goal of this paper is to present a foundational
programming language for spatially distributed computing
Scientific computing tasks often require the physical distr
bution of computational resources and sensing instruments
Therefore, to be relevant, our language must address both
the mobility of code and the locality of fixed resources.

Due to aesthetic considerations, we wish to take a - ©A —We can create an address for any value.
propositions-as-typeisiterpretation of an appropriate logic ©OA D ©A —We can obtain a remote address.
to form the basis of our programming language. Moreover, <A D HOCA — Addresses are mobile values.
since the type systems of realistic languages such as ML <UA D OA —We can obtain a remote mobile value.
and Haskell come from the same source, our constructs will The last two provable propositions are especially rele-
smoothly integrate with such languages. To make use ofvant, and are only true because our accessibility relagion i
this interpretation, our requirements are as follows. tFirs Symmetric. These theorems are actually some standard ax-
we must be able to give a realistic operational semanticsioms for a Hilbert-style presentation of 1IS5. We opt for a
to our system, since we want it to be relevant to real pro- judgmental presentation, so all of these are provable propo
sitions in Lambda 5. In section 4.1 we look at the actual
*The ConCert Project is supported by the National Science Foundation under proof terms for some of these sentences and their computa-

grant ITR/SY+SI 0121633: “Language Technology for Trustless Software Dissem '
nation.” tional content.

On the other hand, the following are not provable: 2 Judgmental Lambda5
A D OA — Not all local values are mobile.

¥ ©A D A —We cannot obtain all remote values. Recall that our logic expresses truth relative to worlds.
Simpson, in his Ph.D. thesis [17], provides an account F0llowing Martin-Lof [8], we employ the notion of &ypo-
of intuitionistic modal logic based on a generic multiple- thetical judgmentwhich is an assertion of judgment under
world semantics. Two aspects prevent us from using his Ceain assumptions. The judgments that capture our notion

formulation directly. First, his system is generalizedups ©f truthat a particular worldhave the form

port accessibility relations that are arbitrary geomettri- O T'- AtrueQu

ories. For our use of IS5, there is no relevant computational This judgment expresses that under the assumptions in

content to a proof that two worlds are related. We there-T" and(}, the propositiond is true at the worldv. T is a

fore dispense with judgments of the accessibility relation set of assumptions of the form : A, true @w; where all

(as Kanger [7]) and simply collect a list of worlds that are variablesz; are distinct. Reasoning about truth at worlds

mutually interaccessible. requires reasoning about worlds. For S5, the only thing
The second issue requires a more significant changewe need to know about a world is that it exists, 3ds

Simpson’s rules act non-locally in the sense that they oftena set of assumptions of the form exists where all vari-

use assumptions from one world to conclude facts in an-ablesw; must be distinct. However, we elidértie” and

other world. This leads to proof terms that are inefficient at “€xists” when writing judgments for brevity. We only con-

best, and at worst do not even fit our computational model. sider judgments that are well-formed in the following sense

(In section 4.4 we make this comparison concrete.) Our All world variables that appear attached to assumptions or

solution here is to decompose the rules for thend ¢ in the conclusion are present(h?

connectives into restricted rules that act locally, andiomot We define the meaning of our logical connectives by

rules which extend our reasoning across world boundariesway of introduction (marked) and elimination (marked)

In doing so we nonetheless preserve the duality of the con-rules. Introduction rules state the conditions under which

nectives and the desirable logical qualities, as demaestra formula involving the connective is true. Elimination rsle

in section 3. state how we can use a formula involving the connective
This work focuses orspatially distributed computing. whose truth we know. As discussed earlier, we have in ad-

Many distributed applications are also concurrent, but we dition special rules that encapsulate the mobility of derta
deliberately do not address concurrency in order to more connectives, which also contribute to the definition of thei
clearly isolate and explain spatial distribution in a foand ~M€aning. o .

tional way. We believe that adding concurrency to the lan- _ We consider only implicatiort(), necessity(l) and pos-
guage poses no special issues, and expect to integrate it ifiPility (¢). As discussed in section 5, conjunction and truth

an implementation of a Lambda 5-based programming lan-2r€ €asy to support, while disjunction and falsehood requir
guage as future work. 1t‘_urther consideration for a satisfactory operational sema
. ics.
The remainder of the paper proceeds as follows. We be- The entire natural deduction system is given in figure 1.

gin the first half by presenting our logic in judgmental style These rules include proof terms, which will be necessary for

and proving standard propertl_es abofjt it We t'hen pre§ent athe operational semantics (section 4). They can be ignored
sequent calculus based on Simpson’s IS5 which admits cutfor the present discussion

and is equivalent to our system of natural deduction. This) . L
9 Y The hypothesis rule and rules for implication are stan-

yields a normal form theorem for our system of natural de-) .
duction, validating its design. In the second half of the pa- dard. They act locally in the sense that the waslcemains
([Pe same everywhere.

per we present the operational semantics of Lambda 5 base In order to prove that a proposition is true everywhere

on a network abstraction. For this semantics we show typeWe rove its truth at a hvpothetical world where nothin is,

safety and present several examples. We conclude with g b) . ypotr . . g
nown but its existence. This explains theintroduction

d|scu§5|on of related work a”fj plans fo.r the future. . rule. TheOd elimination rule states that iflA is true here
This paper has a companion technical report [10] With \eaningA is true everywhere) thed is true here. Note

most proofs in full detail. The relationship between natu- iz is different from Simpson’s corresponding rule and

ral deduction and sequent formulations of 1S5, as well as only strong enough in conjunction with ttietchrule ex-

the admissibility of cut and the normalization theorem have plained below.

been mechanized in the Twelf system [13] and verified us-

ing its metatheorem checker [116]_ 2We could ensure this as a theorem by adding a well-formedmess ¢
dition on I under$2 in the hypothesis rule. To simplify the discussion
we take the common shortcut of ruling out ill-formed contextsxfrthe
1They can be found dittp://www.cs.cmu.edu/"concert/ . beginning.

QTFN:AQuw

QT x: AQuE M : AQu

QGI'-M: A D AQw

weN

QT FXz.M:AD AQu

w'fresh Q,0;T'F M : AQw weN

QT F MN : AGw
Q:TF M : OAQw

OF hyp

QT z: AQw, TV F ¢ : AQw

we OTEM:CAQW
get

or

Q; T Fbox o.M : ODAQw

W' fresh TFM: CAQw
Qu;T,x: AQw' = N : BQw

OF

O:T F unbox M : Aaw °F

QTFM: AQw

QT Fget (W)M : CAQw

weQ O:I'-M:D0AQ
oI fetch

QT'Hletd w'.x=Min N:BQw

Q;T'Fhere M : CAQw

O; T+ fetch [W]M :0AQw

Figure 1. Lambda 5 natural deduction

For & we have the dual situation. 4 holds here, then
we know it is truesomewhergthis is<¢ introduction. The®
elimination rule states that if we kno®A, then we can rea-

son as ifA holds at some hypothetical world about which
nothing else is known. Both of these rules have unusual

restrictions when compared to other systems:<Cih the
premise and conclusion are at the same world9 i the

Theorem 2 (World Substitution)
If wen
and £:Quw;I'FM: AQu”
then F: [w'/w](Q;TF M : AQw”)

Here we mean the substitution to apply to the entire judg-
ment, particularly the world in the conclusion. Proof is

first and second premise (and therefore also the conclusion)”‘galn by structural induction o, omitted here.

are at the same world.

Finally, we have rules that explicitly represent the mo-

bility of O and © terms. Thefetchrule states that i1 A
holds atw, then it holds at another world’, provided that
w’ exists. In other words, il is true everywhere from the

perspective of one world, then it is true everywhere from

the perspective of any other world. Similarjgtstates that
if A is truesomewherdrom the perspective of one world,

then it is also true somewhere from the perspective of any

other existing world.
It's worth noting thagetandfetchare the source of sym-

metry in Lambda 5. They are what allow us to prove the

characteristic S5 axiomé¢OA D 0OA and<CA D OCA.

Operationally, all communication on the network will be

encapsulated in these two rules.

We also have the familiar principles of weakening and
contraction, for both world and truth assumptions.

As per our criteria, Lambda 5 natural deduction is lo-
cally sound and complete. We omit the proofs for space
(they appear in the technical report); moreover, theseieond
tions are weaker than normal because of our motion rules.
Local soundness, for instance, ensures that our elimimatio
rules are not too strong—if we introduce a connective and
then immediately eliminate it, we can find justification for
our conclusion. Because this property speaks only of intro-
duction and elimination rules (which traditionally expla
connective completely), it is unable to tell us anythingabo
the motion rules.

A much stronger condition comes by way of equivalence
to an appropriate sequent calculus. Because sequent calcu-
lus proofs have a particular form, this gives us immediate

Because we have a hypothetical judgment, we expect O gpretical and philosophical results that subsume the lo-

have a substitution principle that allows us to “fill in” as-

sumptions with proofs.

Theorem 1 (Substitution)
If D:Q;T'FM: AQw
and & : QT z: AQuwk N : BQw
then F: Q;T'F [M/z]N : BQuw'

Proof is by structural induction on the derivati&nomit-
ted here.

cal properties above. The following section proves this cor
respondence and describes some of the results that follow.
The operational interpretation (section 4) does not depend
onit.

3 Sequent Calculus

We establish a (cut-free) sequent calculus SS5 with the
following basic judgment:
QT — AQuw

Similarly, because we have assumptions about the €XThis judgment states that with truth assumptidhsand

istence of worlds, we have a world substitution principle

which is also a theorem of our logic.

' world assumption$?, the propositionA is true atw. The

rules of the sequent calculus SS5 are given in figure 2. Note
that this calculus admits non-local reasoning intheand

;T A D BQw — AQuw
Q;T, A D BQuw, BQw — CQw’

O, T, AQw — BQuw

I, A D BQw — CQuw’

w' fresh Q,u"; T, 0AQw, AQw — CQw"”

Q' — AD BQuw

SR Qw; T, AQw — AQuw Init

Qw;I' — AQu’

QI 0AQw — CQw”

Q0,0 T, 04Quw, AQw — CQw”

Quw; I — CAQuw OR

W' fresh Q,w,w’;T — AQuw’

Q,u; T, 04AQw — CQw"

0w T — OAGw DR

Figure 2. Sequent calculus SS5

<R rules, and lacks the motion rules from natural deduc- the global analogue of the local soundness property. Sec-

tion. Itis a version of Simpsonkq« (7)) specialized to the
case of interaccessible worlds (1S5).

ond, we have to show that every proposition that has a veri-
fication, has a verification where tirét rule is applied only

The sequent calculus still admits world substitution, to an atomic proposition. This is the global analogue of the
which is straightforward and therefore omitted here. It is local completeness property, ensuring that the left rules a
also immediate to prove that weakening and contractionstrong enough to derive, w; I', AGw — AQw by decom-
are admissible rules which do not change the structure ofposingA all the way to its atomic constituents. We omit the

a derivation. The substitution principle for derivationgts

proof of the latter property since it is an entirely strafght

into the admissibility of cut, which states that a proof of ward induction on the structure of.

AQu licenses us to usd@uw as a hypothesis.

Theorem 3 (Admissibility of Cut (SS5))
If DT — AQw
and & : QT AQw — BQw'
then F: Q;T — BQw'.

The proof proceeds by a simple lexicographic induction

on (in order) the cut formula, the derivationD, and the

derivation&, following Pfenning [11]. To reduce extrane-

Theorem 4 (Equivalence of Lambda 5 and SS5)
Q'+ AQw iff ;T — AQu.

Each direction is proved by structural induction on the
input derivation. In the Lambda 5 to SS5 direction, we use
the cut theorem for SS5. These two proofs have also been
fully formalized and checked in Twelf.

We can exploit the computational content of this meta-
theoretic proof to translate an arbitrary natural deductio
the sequent calculus and then back. Analysis of the proofs

ous O and ¢ formulas we need world substitution. This of theorem 4 shows that the resulting natural deduction will
proof is new and has been verified using the Twelf metathe- satisfy a very restricted normal form. This normal form sat-
orem checker. It is presented in full detail in the companion isfies the subformula property and can be constructed us-

technical report [10].

ing only introduction rules bottom-up and only elimination

Each rule in the sequent calculus, when read bottom-rules top-down until an assumption matches the conclusion.
up, proceeds by decomposing the principle connective of aMoreover, thefetchrule needs to be used only immediately

proposition of the sequent in the antecedent (lgfarule)
or the succeedent (byraght rule). Unlike natural deduc-

above adF rule. Similarly, thegetrule needs to be used
only immediately before the left premise ofKaF rule or

tion, a sequent derivation therefore embodies what Martin-immediately below &1 rule. Therefore we claim that the
Lof calls averification a canonical proof of a proposition ~decomposition of the introduction and elimination rule®in
which proceeds only by analysis of the proposition to be local rules and movement rules has not destroyed the logical
proved. This gives us an important orthogonality condition reading of deductions.
we can extend or limit our logic to different sets of con- ~ The sequent calculus makes it easy to see that some
nectives without affecting the provability of propositgin- ~ propositions are not provable. Working bottom-up, we see
volving those connectives. that the propositiord D DOA is unprovable after apply-

It is now a relatively simple matter to validate the cor- Ing D Iz andOR, and being left with no rules to continue.
rectness of our natural deduction system. First, we have toSimilarly, after an application ob R and<¢L, we see that
show that every proposition that has a proof (in natural de- ¢4 > A is also unprovable. Decidability of IS5 is another

duction) has a verification (in the sequent calculus). This i €asy consequence [17].
Having justified Lambda 5 as a logic, we now switch

gears to its interpretation as a type system for a distribute

3Simpson [17] achieved the same result indirectly via natuedlidtion

programming language. between mobile code that can be transmitted to only one
location (AQw) and code that is universally mobileld).

4 Operational Interpretation In order to ground our discussion of the operational ma-
chinery, we present in the next section some examples of

. . . . Lambda 5 programs and their intended behavior.
We can associate a programming language with our logic

by viewing propositions as types and proofs of those propo-
sitions as programs.

Our operational semantics defines an abstract ma-
chine: a network and the steps of Computation of a As examples, we revisit several of the axioms informally
program distributed among its nodes. Because we fo-€Xplained in the introduction.
cus on distributed—as distinguished from concurrent— Let’s look again at the symmetry axiohOA > OA.
computation, our abstract machine is sequential and deterWWe consider this our key example, because it encapsulates
ministic. The network consists of a fixed number of hosts the notion of moving mobile code from some other location
namedw;. Each world has associated with it some state de-to our location. Here is a Lambda 5 proof term for it:
scribing its execution context (explained later) and agabl)

This table stores mappings from labélso values. These Az.letd w.y ==z in fetch [w]y

labels, when paired with the world name, form a portable i)
address that others can use to refer to this value. This term deconstructs the diamond to learn the world

Before we describe this machine in detail, we revisit &t Which the mobile code exists, and thiefcres it to the

the previously ignored proof terms from figure 1. These currentworld. _ ,
proof terms form the external language of Lambda 5. As 1heaxiom(©A > 0B) 5 0(A D B)is provable inany
remarked previously, we give the following computational Ntuitionistic modal logic based on a Kripke model, regard-
interpretation to our connectives. As usual, values of type €SS Of the accessibility relation.Here is the proof term,
A > B are functions fromA to B. Values of typedA are ~ assuming that it lives as.
pieces of quoted code that can be run anywhere to produce
a value of typeA. A value of O A takes the fornw./—a
pair of a world name and label. This is an address of a table
entry atw containing a value of typd.

The proof term foiQ7 is box «’.M. It binds the world
variablew’ within M, which must be well-typed at’. We
do not evaluate under thx —doing so is unsound in the
presence of effects. Straightforwardly,unbox instanti-
ates the hypothetical world with the actual current world

4.1 Examples

Af.box W' Ay.
unbox (fetch [w](f(get (w') here y)))

This proof is a bit surprising. We takg, which lives
atw. The boxed code takes: A, which lives atw’. We
then switchbackto w in order to applyf; to do so wegeta
OA from w’. This back-and-forth is inevitable because we
cannot applyf until G A is true, and> A is only true once
we begin to prove the boxed conclusion.

and then evaluates the contents of thex . The term Let's take a look at the “shortcut” axiomid A > O A.
fetch [w'|M performs a remote procedure call (RPC), ex-
ecuting the codé// atw’ and then retrieving the resulting Ardetd W'z =r in get (W')x
value, which must have type.
The introduction form for> is here M. Operationally, The program simply follows>< A to the place where

we will evaluate the termd/ and insert the value in a table O A is true, and retrieves that address ng

at the current world. It will be given a new label, and the The other symmetry axiom» A > 0 A has two differ-

address will bew.Z. The elimination formletd w.z = ent proofs that are each interesting. These proof terms are
Min N, evaluates M to one of these pairs, and then binds ye||-typed atw:

variables for the label and world for the purposes of evalu-

ating N. World-label pairs make sense globally, so we are 1. Az.letd J'y==x
able to retrieve them witlget (w’)M, which behaves as in box w”.get (w')(here y)
fetch but returns a value of type. 2. Az.box «'.get (w) x
Note that in both RPC forms we must send the téinto
the remote host. Though this term Hasr ¢ type, itis an In the first proof, we deconstruct the diamond and repub-
arbitrary expression, not yettmx orw.¢. In this sense all lish it atw’ each time the box is opened. This keepsut
code must be “mobile;” however, we are able to distinguish of the loop at the expense of redundant table entries. In the
4The here construct is effectful, because it modifies the local table, SHowever, it is not provable in some other computational modgitko
and we also want our language to scale to traditional effeath as refer- such as the judgmental S4 due to Pfenning and Davies [12] wieerssity

ences. is taken to mean provability witho assumptions.

second proof, we do not republish the address but simply Now we can discuss network configurations. A configu-

getit from w. rationW is a mapping from world constants to their current
In section 4.4 we justify our decomposition by com- continuation stacks and tables. The configuration changes

paring some of these proof terms to a hypothetical systemas a program is executed; the continuation stacks grow and

where the rules act non-locally. shrink, and the table monotonically accumulates new val-
ues. However, the domain & remains constant.
4.2 Type System A network stateN is a configuration paired with a cursor.

The cursor is of the formw : [k, M] and represents the cur-

The syntax of our type system and operational semantics€Nt focus of computation. The expressibhis currently
is given in figure 3. As mentioned, we give specific names, Pending evaluation, the continuatiénis the currently ac-
w, to hosts in our network. Because we still have hypotheti- Ve continuation, and the world is where the computa-

cal worldsw (for the introduction of1 or elimination of<), tion is taking place. The world must of course be in the
we have world expressions (written as a Romgrwhich configuration, but the continuatidgndoesnot appear in that
range over bottu andw. world’s continuation stack.

The class of expressions is the same as proof terms in our_ The final point of the syntax is the configuration type
logic except for the appearance of labélswWe have seen 1 Nis simply describes the “type” of the network by mapping
labels as a component of an address of tgpe These val- ~ World constants to table types.
ues of diamond type are well-typed at any world. In com- ~ The natural deduction system given in section 2, with
parison, “disembodied” labelsare well-typed only in the ~ proof terms, can be thought of as the type system foexhe
world where their table lives. For example, suppose there isternal languageof Lambda 5 programs. However, we must
a resource of typel in the table at worldv; . If the label? extend this type system to talk about networks, tables, and
refers to that resource, then it will have tyg@w;. On the continuations in order to state properties about our atistra
other hand, the address ./ can have type> AQw,—at a machine. To do this, we need a number of new judgments.
different world. The typing judgmen®; Q;T" - M : AQw simply ex-

As a result, a term that is physically present at one nodetends the natural deduction judgment to incorporate config
may nonetheless contain components that are only welltypes and world expressions. The definition of the well-
typed at other worlds. One consequence of our safety theformedness conditio®; 2 - w is omitted for space. It is
orem is that these subterms will only be evaluated in the straightforward: world variables are well-formed whenythe
appropriate worlds! are in{2 and world names are well-formed when they are in

The tables at each world)(are just mappings from la- the domain of the configuration type. We also omit the
bels to values. The type of these tables,ia mapping from definition of ¥ - £ : A@Qw, which simply ensures that's

labels to types. entry in¥X maps/ to A. The last omitted definition is of table
Our abstract machine is continuation based. For in- well-formednessy - b@w. A table is well-formed when
stance, an attempt to evaluate an applicadibV will result it contains exactly the same labels as its table type claims,

in ao N frame being pushed onto the continuation. This and each of the values has the correct type ubidét/e will
continuation expects a lambda value, at which point it will define the continuation typing judgmext- W: k : AQw,
begin evaluatingV. New in our system is the idea that Which says that the continuation(and configuratioriv)
continuations can span multiple worlds. This arises from €xpects values of typé at worldw.

the RPC mechanisms. For instance, suppose we evaluate All of these judgments are used to conclude well-
fetch [w/|M atw. To do so, we suspend our current work formedness for an entire network state, which is wrilen

at w and begin a new continuation aw to evaluateM. N. The type system reuses the rules from Lambda 5 natural
The bottom of this continuation will beeturn ~ w, which deduction (figure 1) with the following changes. First, we
awaits a value to return to our old continuatiowat systematically change each judgmentof” - M : AQw

Because RPCs can be reentrant in the sense that cod® X; ;T = M : AQw, except in theDI rule, where
we invoke in one world may in turn invoke code back in the premise must still be concluded at the new hypotheti-
the original world, we may have multiple outstanding con- cal worldw’. Second, world existence conditioase
tinuations. However, because the computation is serial, aare replaced by the world expression well-formedness con-
stack of pending continuations suffices. So, a continuationdition 3; Q = w. Finally, we add a number of new rules

k is a stack of frameg with eitherreturn ~ w or finish from figures 4 and 5, including new typing rules far/
at its bottom. A continuation stack is simply a list of ~ and disembodied, calleddia andlab.
pending continuationsfinish is the very bottom of the Typing of continuations is fairly straightforward. Recall

entire network-wide continuation, and when reached repre-that the judgment records the typepectediy the contin-
sents the final answer of our program. uation, not the type it produces. The most interesting rule

types A,B == OA|ADB| OB

! values v m= Az.M | box w.M | w.¢
CoangS \W = {Wl : <017 b1>a T } contstacks C P ‘ C::]L |
net:/;/‘g: Ib\l = YV"\I;VE [f”M] conts k == return w| finish [k<f
) B = frames f = o N |v o | here o| unbox o
configtypes X = {wy:Tg, Wi T} | letd wa=oin N
\t/\?:r'lztg’fess TooEE ;V‘ff H4 exps M,N == o|MN |z|¢] fetch [w]M
S w == | here M| get (w)M
worldvars w world names w | unbox M | letd w.a = Min N
labels ¢ value vars z,y T

Figure 3. Syntax of Lambda 5 type system

YEW;k: CAQwW SEW;k:AQw X - N AQw
S+ W;finish : Aaw X+ W;k <here o: AQw SEW;k<o N: AD A'Qw

Sk AQw Z;Q}—Wd_ YEW;k: AQw SEW:k:BAQw Y;w;x: AQw F N : BQw
ST Fwl:oAaw 9 STEW.k<unbox o: 0AGw S F W:k<letd wx—oin N :OAQW
S/ AQw lab YFW;k:BAQw X;--Fv:AD Baw Y HEAW {(C;b); ws}; K AQw/

0T /7 AQw a YEW;k<vo: AQw S EAW : (C::k;b); ws s return - w': AQw

Figure 4. Extended expression and continuation typing rules

is the rule forreturn w. This rule ensures that the con- tributed programs. Our dynamic semantics takes the form
tinuation stack atv is non-empty, and that its outermost of a stepping relatior- that relates pairs of network states.
continuation expects the same type as rieirn . Via Its definition is given in figure 6.
this rule the continuation typing conditiamwindsthe en- Much of the dynamic semantics is standard for a
tire network-wide continuation. Also worth noting is that - continuation-based abstract machine. The reductionoule f
thefinish continuation is well-formed regardless of any ynhox (10) instantiates the mobile code with the current
junk that may remain in the continuation stacks in the rest\yorig. When we encounter a label (11), we look it up in
of the network. (This is an arbitrary choice and does not the current world's table and proceed with that value. To
affect type safety.) publish a value (9), we generate a new label and add the
mapping to our table. The resulting address is our current

@i {m :_%- y >W : ﬂ’\};v . <1CS bJ ﬁ ‘ world paired with the label.
SEbaw, . SEbaw, The reduction fotetd ~ (13) substitutes both that world
S5 b M AGw; ZZ %ZW; k: Aaw, constant and the disembodied label into the body of the

letd . Note that our substitution must work on expressions,
namely labels. We can't evaluafeyet because we are not
necessarily in the correct world.

Finally, the RPC rules are interesting. Evaluating a

Finally, we have the network typing judgment (figure 5). fetch [w']A/ atw (7) means saving the current continu-
The networkW;w; : [k, M] is well formed under some ation atw, and beginning a new continuation to evaluate
config typeY: if several conditions hold. BothV andy A atw’ with return w at its bottom. The rule foget
must have the same domain, ang must be in that do- ~ (8) is essentially the same. Reducregurn w (6) simply
main. Each of the tables i must be well-formed, and Moves the value tw, resuming with its outermost continu-
there must exist a mediating typé such that the current ~ ation. Only boxes and addresses can be moved.
expressionV has that type and the current continuation A programming language is only sensible if it is type
expects it. safe, that is, if a well-typed program has a defined mean-

With the typing rules in hand, we can give a dynamic se- ing in terms of evaluation on the abstract machine. In the
mantics to network states that explains the evaluationssf di next section we give the type safety theorem. We then give

EFWw; [k, M]

Figure 5. Network typing

(1) Wiw: [k, MN] — W;w:[k<o N;M]|

(2) Wyw:[k<o N;v] — W;w:[k<vo,N]|

(3) Wyw: [k < (Az.M)o,v] — Wiw: [k, [v/x]M]

(4) W;w: [k,here M] — W;w: [k < here o, M]

(5) W;w : [k,unbox M] — W;w : [k < unbox o, M]

(6) {w:{(C:k,b);wsh;W :[return w,v]
{w:(C,by;ws};w: [k,v] (v=Dbox w.M orw'l)

(7) {w: {(C,b);ws};w: [k; fetch [w'|M] —
{w: (C::k,b); we ;W : [return w, M]

(8) {w: {(C,b);ws};w: [k, get (W)M] —
{w: (C::k,b); web; W : [return w, M]

(9) {w:{(C,b);ws};w: [k <there o,v] —
{w: (C;b,0 =v);ws};w: [k,w.f] (¢ fresh)

(10) W;w : [k < unbox o,box w.M] —
Wiw : [k, [w/w]M]

(11) {w : (C,b); ws}; W : [k, £] —
{w: (C,b);ws ;W : [k, v] (b(0) =)

(12) W;w : [k,letd w.z = Min N] —
W;w: [k <letd w.z=oin N, M|

(13) Wyw: [k <letd w.x=oin N,w.{ —
Wiw s [k, [£/x][w/w]N]

Figure 6. Dynamic Semantics

a comparison to a hypothetical system where the rules act

non-locally.

4.3 Type Safety

Proof of progress is by induction on the derivatiftn
Proof of preservation is by induction on the derivatifn
with inversions orD. These proofs are fairly standard and
appear in the companion report.

Therefore, a well typed program can make a step (or is
done), and steps to another well-typed program. By iterat-
ing these two theorems it is easy to see that a well-typed
program can never become stuék.

4.4 Comparison

To justify our decomposition, we compare the proof
terms from section 4.1 to a hypothetical system “H5” where
the rules act non-locally (closely modeled after Simpson’s
systemNge [17]). It shares features with calculi discussed
in section 6.

H5 has noget or fetch ; instead it replacebere ,
unbox , andletd with three new terms:

e there (w)M, which computesV of type A atw and
then returns its address of tyged;

e unboxfrom [w]M, which computes\/ (of type O A) at
w, and then returns its value of typg

e letdfrom (w) w'y = Min N, whichis likeletd ex-
cept that it computed/ (of type< A) atw instead of locally.

In H5, the proof term of>0A D OAQw would be:

Az.letdfrom () W'y ==

(H5) in box w”.unboxfrom [w] y

Note that this term is not moving the code at all! Instead,
it creates a new box that, when opened, will unbox the code
from the original world into the target world. This hardly
fits our model of mobile code. Moreover, tkeelimination
letdfrom allows its source to be an arbitrary world, so we

Type safety is the conjunction of two properties, progress may end up calling ourselves remotely. An implementation
(theorem 5) and type preservation (theorem 6). Progresscould optimize local RPC, but it is better to enable purely

states that any well-formed network state is eitieeminal

(meaning it has successfully finished computation) or can

local reasoning in the semantics itself.
The H5 proof term of0OC A O G AQu is:

make a step to a new network state. Preservation states that

any step we make from a well-formed network results in a

state that is also well-formed. A network is terminal if it is
of the formW; w : [finish | v]. We say that store types are
related ass O X' if they have the same world constants in
their domains, and for each world the table types >(w;)
andr’ = X' (w;) agree on the domain of

Theorem 5 (Progress)
If D:YFN

then eithelNisterminal or 3IN'.N — N,

Theorem 6 (Preservation)
If D:YXFNand€ :N— N
then IX FX' DY and F:Y FN.

Ar.letdfrom (W) W'z =7
(H5) in letdfrom (') W'y =
in there (w")y

In addition to the self-RPC seen in the last term, the H5
program is forced to deconstruct both diamonds and reintro-
duce a direct address. This has the effect of publisHimng
the table atv”, where it already must have been published!

SHowever, as stated our type safety theorem does not guartiratithe
type of the final value sent finish does not change through the course
of execution. To prove this we can index the network welkfedness
judgment with the “final answer” type and modify the continaattyping
rule forfinish without any change in the preservation proof, observing
that none of the transitions modify this type.

5 FutureWork 6 Reated Work

Others have also used modal logic for distributed com-
uting. For example, Borghuis and Feijs's Modal Type Sys-
em for Networks [1] provides a logic and operational se-
manticg for network tasks with stationary services and mo-
%ile data. They usél, annotated with a location, to repre-
sent services. For example’(A > B) means a function
tfrom A to B at the locatiorv. With no way of internalizing
mobility as a proposition, the calculus limits mobile daia t
base types. Services are similarly restricted to depthaone

With the minimal set of connectives presented here, our
system has the same consequence relation as Simpson’s IS
This is because the accessibility relation in S5 is that of
equivalence classes. Although there may be more than on
equivalence class of worlds, disjoint classes cannot taffec
each other. Now, Lambda 5 only supports reasoning abou
a single class; the list of worlds if?. Each IS5 theorem
is proved at some world, and so we can focus our attention

on that world’s class and repeat the proof in Lambda 5, dis- row types. By using? for mobile code ane> for stationary

carding any assumptions from other classes. . . . X
g y _ b) _ resources, we believe our resulting calculus is both simple
The addition of some other standard connectives Ake and more general.

and T poses no problem. When introducing disjunctive Cardelli and Gordon [4] provide an early example of

connectives likel. and v, however, we must be careful. sing modal logic for reasoning about programs spatially,
Compare the elimination rule far with the elimination for later refined by Caires and Cardelli [2, 3]. They do not take

L in Simpson’s IS5: a propositions-as-types view of their logic; instead, they
. start from a process calculus, mobile ambients, and develop
0AQw wRW 45 LQw | o a classical logic for reasoning about their behaviors. &her
!/ !/ B ope -
AQw CQuw fore, their modal logic is very different from intuitionist

S5 and includes connectives for stating temporal prosertie

Here,w R «' if w’ is accessible fromw. In order to un- Security properties, and properties of parallel composgti
box from one world into another they must be in the same In contrast, Lambda 5 may be seen as a pure study of mo-
equivalence class. However, if is true at some world bility and locality in a fully interconnected network.
then any proposition is true ainy other world irrespec- Hennessy et al. [5] develop a distributed version of the
tive of their mutual (in)accessibility. Now our argument w-calculus and impose a complex static type system in or-
above does not hold, because disjoint equivalence classeger to constrain and describe behavior. Similarly, Schmitt
may affect each other. In the presencelobr V we must and Stefani [15] develop a distributed, higher-order warsi
make the slightly weaker claim that IS5 and Lambda 5 have of the Join Calculus with a complex behavioral type sys-
the same consequence relation under assumptions about M. In comparison, our system is much simpler, elimi-
single class only. This includes all relations of the form nating the complexities of concurrency, access contra, an
w;- F AQuw because all worlds introduced in the proof of related considerations. By basing our system on the Curry-
A@uw will be interaccessible with. Howard correspondence, we have a purely logical analysis

Becausel andV reason non-locally, we require special and, furthermorg, we expect straightforyvqrd integratito i
considerations in the operational semantics. Falsehood i full-scale functional language for realistic programs.
simple: since there is no value of type, we can initiate a Moody [9] gives a system based on the constructive
remote procedure call which is known never to return. For modal logic S4 due to Pfenning and Davies [12]. This lan-
v, the value analyzed is not generally portable to our world. 9Uage is based on judgmentsrue (here), A poss (some-
We conjecture that a remote procedure call mechanism carVhere), andAvalid (everywhere) rather than truth at par-

distinguish cases remotely and send back only a label and dicular worlds. The operational semantics of his system
bit indicating whether the left of right case applies. takes the form of a process calculus with nondeterminism,

By design, our operational semantics is sequential. How- concurrency and synchronization; a significantly differen

o : . approach from our sequential abstract machine. From the
ever, many distributed computing tasks rely essentially on . . : L
: . .. standpoint of a multiple world semantics, the accessjbilit
concurrency. In order to develop Lambda 5 into a realistic) - - S
. : relation of S4 satisfies only reflexivity and transitivityptn

programming language, we intend to add support for con-) : .

; L . symmetry. From the computational point of view, acces-
currency. We believe this will be an orthogonal extension.

. . sibility describes process interdependence rather than co
Other programming constructs such as recursion, polymor- . .
. . nections between actual network locations. Programs are
phism, and other type constructs for functional program-

ming should also be easily added. On the implementationtherefore somewhat higher-level and exprestential mo-

.) . L bility instead of explicit code motion as in tfetchandget
side, we need to consider details such as distributed garbagconstructs In particular. due to the lack of symmetry it is
collection, failure recovery, as well as marshalling and ce - np ' y y
tification of mobile code. 7By way of compilation into shell scripts!

not possible to go back to a source world after a potentially [5] Matthew Hennessy, Julian Rathke, and Nobuko Yoshida.

remote procedure call except by returning a value.

Jia and Walker [6] give a judgmental account of an S5-
like system based on hybrid logics, but compare it only in-
formally to known logics. Hybrid logics internalize worlds
inside propositions by including propositionthat a value
of type A resides at worldv, “Aatw.” This leads to a
technically different logic and language though they have
similar goals. Their rules foD and < are similar to the
non-local H5 system that we compare Lambda 5 to in sec-
tion 4.4. Like Moody, they give their network semantics as
a process calculus with passive synchronization across pro

(6]

(7]

(8]

cesses as a primitive notion. In comparison, we are able [9]

to achieve active returns of values by restricting our non-
local computation to two terms, and associating remote la-
bels with entries in a table rather than with processes. We
feel that this is a more realistic and efficient semantics.

7 Conclusion

We have presented a logic and foundational program-
ming language Lambda 5 for distributed computation based
on a Curry-Howard isomorphism for the intuitionistic
modal logic S5, viewed from a multiple-world perspective.
Computationally, values of typelA are mobile code and
values of typed> A are addresses of remote values, providing
a type-theoretic analysis of mobility and locality in areint

[10]

[11]

[12]

connected network. We have shown that Lambda 5 remaing13]

faithful to the logic, via translations from natural dedoot

to and from a sequent calculus in which cut is admissible.
Moreover, by localizing introduction and elimination rsle
for mobile and remote cod&F, ¢I, andO FE) and adding
explicit rules for code motion, we achieve an efficient and
natural computational interpretation.

References

[1] Tijn Borghuis and Loe M. G. Feijs. A constructive logic for
services and information flow in computer networkhe
Computer Journal43(4):274-289, 2000.

Luis Caires and Luca Cardelli. A spatial logic for concur-
rency (part I). InTheoretical Aspects of Computer Software
(TACS) pages 1-37. Springer-Verlag LNCS 2215, October
2001.

Luis Caires and Luca Cardelli. A spatial logic for concur-
rency (part Il). InProceedings of the 13th International Con-
ference on Concurrency Theory (CONCUpRages 209-225,
Brno, Czech Republic, August 2002. Springer-Verlag LNCS
2421.

Luca Cardelli and Andrew D. Gordon. Anytime, anywhere.
modal logics for mobile ambients. IRroceedings of the
27th Symposium on Principles of Programming Languages
(POPL), pages 365-377. ACM Press, 2000.

(2]

(3]

(4]

[14]

[15]

[16]

[17]

SafeDPi: A language for controlling mobile code. Report
02/2003, Department of Computer Science, University of
Sussex, October 2003.

Limin Jia and David Walker. Modal proofs as distributed
programs. 13th European Symposium on Programming
pages 219-223, March 2004.

S. Kanger. Provability in Logic Almquist and Wiksell,
Stockholm, 1957.

Per Martin-L6f. On the meanings of the logical constants
and the justifications of the logical law&lordic Journal of
Philosophical Logic1(1):11-60, 1996.

Jonathan Moody. Modal logic as a basis for distributed com-
putation. Technical Report CMU-CS-03-194, Carnegie Mel-
lon University, Oct 2003.

Tom Murphy, VII, Karl Crary, Robert Harper, and Frank
Pfenning. A symmetric modal lambda calculus for dis-
tributed computing. Technical Report CMU-CS-04-105,
Carnegie Mellon University, Mar 2004.

Frank Pfenning. Structural cut elimination: I. intuitionistic
and classical logic.Information and Computatiqnl57(1-
2):84-141, 2000.

Frank Pfenning and Rowan Davies. A judgmental recon-
struction of modal logic.Mathematical Structures in Com-
puter Sciencel1:511-540, 2001. Notes to an invited talk
at theWorkshop on Intuitionistic Modal Logics and Applica-
tions (IMLA'99), Trento, Italy, July 1999.

Frank Pfenning and Carsten Scmann. System description:
Twelf — a meta-logical framework for deductive systems. In
Harald Ganzinger, editoRProceedings of the 16th Interna-
tional Conference on Automated Deductipages 202—-206,
Trento, Italy, July 1999. Springer-Verlag. LNAI 1632.

A. N. Prior. Time and Modality Oxford University Press,
1957.

Alan Schmitt and Jean-Bernard Stefani. The M-calculus:
A higher-order distributed process calculus. Gonference
Record of the 30th Symposium on Principles of program-
mming Languagespages 50-61, New Orleans, Louisiana,
January 2003. ACM Press.

Carsten Sctrmann and Frank Pfenning. A coverage check-
ing algorithm for LF. In D. Basin and B. Wolff, editorBro-
ceedings of the 16th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs 2003)ages 120—
135, Rome, ltaly, September 2003. Springer-Verlag LNCS
2758.

Alex Simpson. The Proof Theory and Semantics of Intu-
itionistic Modal Logic PhD thesis, University of Edinburgh,
1994.

