
Parametricity and variants of Girard's J

operator

Robert Harper

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15217

John C. Mitchell

Computer Science Department, Stanford University, Stanford, CA 94305

Abstract

The Girard-Reynolds polymorphic �-calculus is generally regarded as a calculus
of parametric polymorphism in which all well-formed terms are strongly normal-
izing with respect to �-reductions. Girard demonstrated that the additional of a
simple "non-parametric" operation, J , to the calculus allows the de�nition of a
non-normalizing term. Since the type of J is not inhabited by any closed term, one
might suspect that this may play a role in de�ning a non-normalizing term using it.
We demonstrate that this is not the case by giving a simple variant, J 0, of J whose
type is otherwise inhabited and which causes normalization to fail. It appears that
impredicativity is essential to the argument; predicative variants of the polymorphic
�-calculus admit non-parametric operations without sacri�cing normalization.

Key words: Formal semantics, functional programming, programming calculi,
programming languages, theory of computation.

1 This research was sponsored by the Advanced Research Projects Agency CSTO
under the title \The Fox Project: Advanced Languages for Systems Software",
ARPA Order No. C533, issued by ESC/ENS under Contract No. F19628-95-C-0050,
NSF grants CCR-9303099 and CCR-9629754, and ONR MURI Award N00014-97-
1-0505. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing o�cial policies, either ex-
pressed or implied, of the Defense Advanced Research Projects Agency or the U.S.
Government.

Preprint submitted to Elsevier Preprint 24 March 1999



1 Introduction

The impredicative polymorphic lambda calculus, or System F [4,10], is gener-
ally recognized as a calculus of parametric polymorphism [11]. Intuitively, this
means that every polymorphic function de�nable in the language must use
the same algorithm at all types. There are no non-parametric functions such
as a single multiplication function that computes an inner product on vectors,
ordinary product on natural numbers, and similar or unrelated \products" on
other types.

In his 1971 paper, Girard discusses parametricity in System F and shows that
normalization fails if a non-parametric operator, J , is added to the calculus
[4]. This example has been interpreted as a demonstration that System F is
inherently a calculus of parametric functions. Speci�cally, since adding a non-
parametric operator alters a fundamental property of the system, System F
must be intrinsically parametric. However, this argument assumes that J is
as simple a non-parametric operator as possible. Speci�cally, if it is possi-
ble to add a simpler non-parametric operator to System F in a manner that
preserves strong normalization, then Girard's example does not convincingly
demonstrate the wholly parametric nature of System F. In this short note,
we give some variants of Girard's example, hoping to more clearly identify
the kind of non-parametric operations that invalidate normalization. In the
concluding remarks, we observe that impredicativity appears essential to the
relation between parametricity and normalization.

One reason to examine Girard's J is that it combines non-parametric behavior
with a change in the typing properties of System F. More speci�cally, the
type 2 of J is 8s:8t:s! t, which is not the type of any pure closed term of
System F since it is not a provable propositional formula. The non-normalizing
term constructed using J also seems to require a term 0 : 8t:t. Again, there
is no pure closed term with type 8t:t. This led us to formulate the following
question:

Is there a simple non-parametric operator Op : � such that
(i) there exist pure closed terms of type �, and
(ii) adding Op to System F causes normalization to fail?

We settle this question a�rmatively and give a simple example, J 0. Our goal
is to dispel the possible misconception that in impredicative systems, Girard's
example is simply a \typing trick" that could not be carried out with other
non-parametric operations.

2 Notational conventions: we use universal quanti�cation for polymorphic types,
write �t e for abstraction over a type, and e [� ] for type application.

2



One consequence of replacing J by an operator whose type already contains
pure closed terms is that we can easily show that no �xed-point operator is
de�nable. More speci�cally, suppose Op : � and there exists a pure closed
term of type �. Then using the formulas-as-types analogy [7], we can show
that there exists a closed term of type � containing Op i� there exists a pure
closed term of type � not containing Op. The argument is simply that if we
add a new axiom for a formula that is already provable, we do not change
the set of provable formulas. Since 8t:(t! t)! t is not a provable formula
of intuitionistic logic, there is no pure closed term of this type. It follows
that when the type of Op contains pure closed terms, no closed term of type
8t:(t! t)! t is de�nable from Op. In particular, since a polymorphic �xed-
point operator Y has this type, Y is not de�nable from Op. In light of various
studies relating logical paradoxes and �xed-point operators [8,2,3], it does not
seem easy to establish that no �xed-point operator or \looping combinator"
(see [8,3]) is de�nable from J .

2 Review of Girard's J example

Girard's example adds two constants to System F, each with associated reduc-
tion rules. The �rst is a constant 0 : 8t:t which allows us to choose an element
of each type, by application. The intent is that 0 is a form of choice function
that selects elements of di�erent types \harmoniously." Perhaps the simplest
way of understanding this is to recall that in Girard's realizability-like model,
HEO2 [12,5], the natural number 0 codes the constant function 0 and therefore
provides an element of all types. This explains the use of the symbol \0" and
also the following associated reduction rules:

0 [�! � ]M �! 0 [� ]

0 [8t:�] [� ] �! 0 [f�=tg�]

While Girard's nonterminating term requires a constant with type 8t:t, the
reduction rules for 0 are not needed to construct the nonterminating term.

Intuitively, J produces a choice function by combining 0 with a given element
M : � of any particular type. The resulting choice function �t: J [t] [�]M
selects element M of type � and element 0 [� ] of any type � di�erent from �.
The constant J : 8s:8t:s! t has reduction rules

J [�] [� ]M !

8><
>:
M if � = �

0 [� ] otherwise

3



Girard does not specify whether types � and � in this reduction rule may
contain free variables. However, the system becomes inconsistent and non-
con
uent if we allow arbitrary types in both forms of reduction, as illustrated
below. We therefore restrict the reduction J [�] [� ]M ! 0 [� ] to the case where
� and � are distinct closed type expressions.

Intuitively, the problem with types that contain free variables is that these
variables may be formal parameters of some function. If � and � are not
syntactically identical, but have a common substitution instance, then appli-
cation of the enclosing function may change the applicable J-reduction rule.
For example, the term

(�t: J [s] [t] x) [s]

with x : s reduces to two normal forms, x and 0 [s]. The �rst reduction begins
with the outermost �-reduction (substituting s for t):

(�t: J [s] [t] x) [s] ! J [s] [s] x ! x

The second reduction applies J-reduction �rst, while the type arguments are
di�erent:

(�t: J [s] [t] x) [s] ! (�t: 0 [t]) [s] ! 0 [s]

Clearly this is inconsistent, since x = (�t: J [s] [t] x) [s] = 0 [s] implies that all
elements of type s (which is arbitrary) are equal to 0 [s].

Using J , we can give a form of the self-application function �x: xx an unex-
pected type. More speci�cally, let D be the term

D
def
= �x:8t:t: (x [(8t:t)!(8t:t)] x)

of type (8t:t)!(8t:t) and note that the term

X
def
= �t: J [(8t:t)!(8t:t)] [t]D

has type 8t:t. It is easy to check that Z
def
= X [(8t:t)!(8t:t)]X reduces to

itself, proving that the extension of System F with 0 and J is non-normalizing.

Although it is di�cult to characterize the \main idea" behind the term Z with
much accuracy, one explanation of the construction is that the type 8s:8t:s! t
of J allows us to hide D inside a term of type 8t:t. This unexpected type for

4



D allows us to apply D to itself. In this sense, one might wonder whether
the unusual types of 0 and J are partly responsible for the nontermination of
reduction. After all, if we add a constant c : 8t:t with reduction rule

c [(8t:t)!(8t:t)] ! D

then it is clear that c [(8t:t)!(8t:t)] c does not normalize. While c has the
essential reduction behavior of X above, c does not in any way seem to be
\nonparametric."

3 Alternative non-parametric primitives

A relatively natural non-parametric operation is an equality test on types.
This might take the form of a term

EqTest : 8s: 8t:Bool

with EqTest [�] [� ] = true if � and � are the same type, and false otherwise.
If this test is going to be useful, however, we would want to write expressions
such as

�x:s: �y:t: if EqTest [s] [t] then x else y

Intuitively this expression has type s! t! t. If types s and t are equal, then
the result x has type s = t and otherwise the result y has type t. However, we
cannot obtain this typing without using the equation s = t in typing the �rst
arm of the conditional. If we focus on the required combination of equality test
and conditional expression, we are led to consider a type-conditional operation
TypeCond with the slightly unusual typing rule

�; � = � . M : � � . N : �

� . TypeCond [�] [� ]M N : �
(TypeCond)

Intuitively, this rule says that if M has type � under the assumption that
� = � , and N has type � without this assumption, then TypeCond [�] [� ]M N
has type �. Since we will only be interested in simple examples illustrating the
main ideas, we will not need to formalize typing with equality assumptions in
contexts. We show that normalization fails with TypeCond and then give a
simpler but less intuitive primitive that does not involve type equations.

5



The reduction rules for TypeCond are

TypeCond [�] [�]M N ! M

TypeCond [�] [� ]M N ! N �; � distinct, closed

One way of understanding the potential utility of TypeCond is to consider writ-
ing a function that does multiplication on natural numbers and a component-
wise multiplication on pairs of natural numbers. In other words, we would like
to combine functions

multN
def
= �x:nat : �y:nat : x � y

: nat!nat! nat

multN;N

def
= �x:nat � nat : �y:nat � nat : h�1x � �1y; �2x � �2yi

: nat � nat!nat � nat!nat � nat

where �i : nat � nat!nat are the projection functions on natural number
pairs. We can do this with TypeCond by writing

mult
def
= �s: �x:s: �y:s:

TypeCond [s] [nat ] (multN x y)

TypeCond [s] [nat � nat ] (multN;N x y)

x

: 8t: t! t! t

The function mult takes arguments x and y of the same type. If the type is
nat , the result ismultNxy, else if the type is nat�nat , the result is multN;Nxy,
else the result is x. Since we obtain a result of the right type in any case, it is
semantically sensible to give mult type 8t: t! t! t. We cannot seem to de�ne
mult using J instead. The problem is that TypeCond provides an \if-then-else"
test for type equality, while J is only an \if-then" test, with the \else" case
defaulting to 0.

Using a variant of Girard's example, we can show that TypeCond destroys
strong normalization. Consider the term

X
def
= �s: �x:s: TypeCond [�] [s] (x [�] x) x

6



where � = 8t: t! t. It should be clear from the basic properties of TypeCond
that X : �. Using the �rst reduction associated with TypeCond, we have

X [�]X �! TypeCond [�] [�] (X [�]X)X �! X [�]X

This shows that strong normalization fails with this form of type conditional
operation. A technical point is that in constructing X, we only need to vary
the second type argument to TypeCond. Therefore, it would su�ce to have a
weaker primitive TypeCond� : 8t: �! t! t for the speci�c type � identi�ed
above.

Intuitively, TypeCond seems to give us the expressive power of J , without
requiring a \universal choice function" 0. We justify this intuition by showing
that using polymorphic constant 0 : 8t:t, we can de�ne Girard's J operator
from TypeCond as follows:

J
def
= �s: �t: �x:s: TypeCond [s] [t] x (0 [t])

A remaining reservation that one might have about TypeCond is the unusual
typing rule using type equations. We therefore conclude with a variant, J 0, of J
that does not require 0 or type equations. Essentially, J 0 is a restriction of J to
function types, using the polymorphic identity in place of 0. More concretely,
let J 0 : 8s:8t:(s! s)!(t! t) be a constant. We base the reduction rules for
J 0 on the term

�s: �t: TypeCond [s] [t] (�x:s! s: x) (�x:s! s: �y:t: y)

which could be taken as the de�nition of J 0 from TypeCond . We can under-
stand the type of J 0 by noting that if s = t, then �x:s! s: x : (s! s)!(t! t).
Since we have �x:s! s: �y:t: y : (s! s)!(t! t) in any case, J 0 has the spec-
i�ed type.

The reduction rules for J 0 are

J 0 [�] [�]M ! M

J 0 [�] [� ]M ! Id [� ] �; � distinct, closed

where Id
def
= �t: �y:t: y. We can carry out Girard's example by letting �

def
=

8t: t! t and letting X : � be the term

X
def
= �t: J 0 [�] [t] (�x:�: x [�] x)

7



Note that �x:�: x [�] x has type �! � and hence X has type �. Finally, X�X
has type � and reduces to X�X. Therefore J 0 causes normalization to fail.

4 Concluding remarks

Girard's choice function 0 : 8t:t and non-parametric operator J : 8s:8t:s! t
cause the strongly normalizing System F of impredicative polymorphic lambda
calculus to become non-normalizing. This provides one form of evidence that
System F is inherently parametric. In this note, we show that \weaker" forms
of non-parametricity still cause the system to be non-normalizing. A technical
di�erence between Girard's original example and our TypeCond or J 0 is that
the latter do not change the set of types that contain closed terms. A conse-
quence of this weak form of conservativity is an easy proof that no polymorphic
�xed-point or looping combinator of type 8t:(t! t)! t can be de�ned from
TypeCond or J 0. However, it is possible that a �xed-point combinator of type

(Nat!Nat)!Nat , for example, where Nat
def
= 8t:(t! t)! t! t is the type

of Church numerals, could be de�ned from TypeCond or J 0.

The non-parametric operators discussed in this short note are related to two
other non-parametric primitives in the literature. The �rst is the typecase

construct, associated with the type Dynamic [1], which provides a case analysis
on types. As pointed out by Abadi, et al. [1], a �xed point combinator of a
speci�c type such as ((Nat!Nat)!(Nat!Nat))!(Nat!Nat) is de�nable
in the simply-typed �-calculus enriched with the type Dynamic. Since we
may regard the type Dynamic as an abbreviation for the quanti�ed type 9t:t
(itself an abbreviation for a type involving only universal quanti�ers), the
existence of �xed point combinators may be traced to the combination of non-
parametric polymorphism and impredicative quanti�ed types. In particular,
the de�nition of a �xed-point operator involves embedding functions of type
Dynamic!T !U into type Dynamic, which would not be allowed if Dynamic

were considered a di�erent class of type from the types T and U where we
wish to construct a �xed point.

In a second use of non-parametricity, Harper and Morrisett [6] consider a gen-
eralization of the typecase construct, called typerec, for performing \intensional
analysis" of types at run-time and compile-time. The typerec operator general-
izes typecase to a form of primitive recursion on type expressions, rather than
simple case analysis. However, the surrounding language is limited to pred-
icative polymorphism, restricting intensional analysis to unquanti�ed types.
Consequently, the strong normalization property for pure terms holds and it
is impossible to de�ne a �xed-point operator from typerec. The restriction to
predicative polymorphism was subsequently shown to be essential by Palm-
gren [9], who demonstrated that the combination of impredicative quanti�ca-

8



tion and \universe elimination" in type theory allows for the construction of
a non-normalizable term.

References

[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically
typed language. ACM Transactions on Programming Languages and Systems,
13(2):237{268, April 1991.

[2] T. Coquand. An analysis of Girard's paradox. In Proc. IEEE Symp. on Logic

in Computer Science, pages 227{236, June 1986.

[3] T. Coquand and H. Herbelin. A-translation and looping combinators in pure
type systems. J. Functional Programming, 4(1):77{88, 1994.

[4] J.-Y. Girard. Une extension de l'interpretation de G�odel �a l'analyse, et son
application �a l'�elimination des coupures dans l'analyse et la th�eorie des types. In
J.E. Fenstad, editor, 2nd Scandinavian Logic Symposium, pages 63{92. North-
Holland, Amsterdam, 1971.

[5] J.-Y. Girard. Interpretation fonctionelle et elimination des coupures de
l'arithmetique d'ordre superieur. These D'Etat, Universite Paris VII, 1972.

[6] Robert Harper and Greg Morrisett. Compiling polymorphism using intensional
type analysis. In Twenty-Second ACM Symposium on Principles of

Programming Languages, pages 130{141, San Francisco, CA, January 1995.

[7] W. Howard. The formulas-as-types notion of construction. In To H.B. Curry:

Essays on Combinatory Logic, Lambda-Calculus and Formalism, pages 479{490.
Academic Press, 1980.

[8] A.R. Meyer and M.B. Reinhold. Type is not a type. In Proc. 13th ACM Symp.

on Principles of Programming Languages, pages 287{295, January 1986.

[9] Erik Palmgren. On universes in type theory. In Giovanni Sambin and Jan
Smith, editors, Twenty-Five Years of Constructive Type Theory, Oxford Logic
Guides. Oxford University Press, Oxford, England, 1998.

[10] J.C. Reynolds. Towards a theory of type structure. In Paris Colloq. on

Programming, pages 408{425, Berlin, 1974. Springer-Verlag LNCS 19.

[11] J.C. Reynolds. Types, abstraction, and parametric polymorphism. In
Information Processing '83, pages 513{523. North-Holland, Amsterdam, 1983.

[12] A.S. Troelstra. Mathematical Investigation of Intuitionistic Arithmetic and

Analysis. Springer LNM 344, Berlin, 1973.

9


