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Abstract
The goal of this paper is to develop a form of functional arrays
(sequences) that are as efficient as imperative arrays, can be used
in parallel, and have well defined cost-semantics. The key idea is
to consider sequences with functional value semantics but non-
functional cost semantics. Because the value semantics is func-
tional, “updating” a sequence returns a new sequence. We allow
operations on “older” sequences (called interior sequences) to be
more expensive than operations on the “most recent” sequences
(called leaf sequences).

We embed sequences in a language supporting fork-join paral-
lelism. Due to the parallelism, operations can be interleaved non-
deterministically, and, in conjunction with the different cost for in-
terior and leaf sequences, this can lead to non-deterministic costs
for a program. Consequently the costs of programs can be difficult
to analyze. The main result is the derivation of a deterministic cost
dynamics which makes analyzing the costs easier. The theorems
are not specific to sequences and can be applied to other data types
with different costs for operating on interior and leaf versions.

We present a wait-free concurrent implementation of sequences
that requires constant work for accessing and updating leaf se-
quences, and logarithmic work for accessing and linear work for
updating interior sequences. We sketch a proof of correctness for
the sequence implementation. The key advantages of the present
approach compared to current approaches is that our implementa-
tion requires no changes to existing programming languages, sup-
ports nested parallelism, and has well defined cost semantics. At the
same time, it allows for functional implementations of algorithms
such as depth-first search with the same asymptotic complexity as
imperative implementations.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages

Keywords cost semantics, concurrency, parallel, functional data
structures, persistence, arrays

1. Introduction
Supporting sequences (arrays) with efficient (constant time) ac-
cesses and updates has been a persistent problem in functional lan-
guages. It is easy to implement such sequences with constant time
access (using arrays stored as contiguous memory), or to imple-

ment with logarithmic time accesses and updates using balanced
trees, but it seems that getting both accesses and updates in con-
stant time cannot be achieved without some form of language ex-
tension. This means that algorithms for many fundamental prob-
lems are a logarithmic factor slower in functional languages than in
imperative languages. This includes algorithms for basic problems
such as generating a random permutation, and for many important
graph problems (e.g., shortest-unweighted-paths, connected com-
ponents, biconnected components, topological sort, and cycle de-
tection). Simple algorithms for these problems take linear time in
the imperative setting, but an additional logarithmic factor in time
in the functional setting, at least without extensions.

A variety of approaches have been suggested to alleviate this
problem. Many of the approaches are based on the observation that
if there is only a single reference to an array, it can be safely up-
dated in place. The most common such approach is to use mon-
ads (Moggi 1989; Wadler 1995). Monads can force code to be
single threaded and can thread mutable arrays (or other mutable
state) so the only reference to them is the current one. Haskell sup-
plies the ST monad for this purpose. King and Launchbery (1995),
for example, use STMonads with an array to implement depth first
search (DFS) in linear work. Guzman and Hudak’s single-threaded
lambda calculus also uses the idea of single threading the com-
putation (Guzmán and Hudak 1990), and they motivate the ap-
proach based on allowing for fast array updates. The problem with
these approaches is that they are basically implementing a second
single-threaded language within a functional language. Using mon-
ads means using a new syntax not just for the operations themselves
but for much of the code the operations are embedded in. Indeed
King and Launchbery have to write completely different code for
DFS, even though it is only for efficiency and not correctness (it is
trivial to implement DFS in O(m logn) time purely functionally).
Monads also do not allow keeping persistent versions of structures,
exactly because the state can be changed. More importantly, how-
ever, monads force the program itself to be single threaded, inhibit-
ing parallelism.

A second approach is to use a type system that enforces the
single-threadedness of individual arrays rather than the program
as a whole. This can be done with linear types (Girard 1987;
Wadler 1990), which can be used to ensure that references are
not duplicated. This is more flexible than monads, since it allows
the threading of the data to be distinct from the threading of the
program. However, such type systems are not available in most
languages, and can be hard to reason about.

A third approach is to support fully functional arrays in a gen-
eral functional language, and to check either statically or dynam-
ically if they happen to be used in a single threaded manner. This
can be done, for example, by using reference counting (Hudak and
Bloss 1985; Hudak 1986). The idea is to keep track of how many
references there are to an array and update in place if there is only
one. Hudak describes techniques to statically analyze code to de-
termine where the count must be one, making it safe to replace an
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update with an in place update. The problem with this approach is
that the efficiency of the code depends heavily on the effectiveness
of the compiler and the specific way the code is written, and it can
therefore be hard for the user to reason about efficiency.

The last approach is to fully support functional arrays, even
with sharing, but using more sophisticated data structures. This
is sometimes referred to as version tree arrays (Aasa et al. 1988)
or fully persistent arrays (Driscoll et al. 1989). The idea is to
maintain a version tree for an array (or more generally other data
types), such that any node of the tree can be updated to create
a new leaf below it with the modified value, without affecting
the value of other nodes. Dietz (1989) shows that arrays can be
maintained fully persistently usingO(log logn) time per operation
(access or update). Holmstrom and Hughes (Aasa et al. 1988)
suggest storing a version tree by keeping the full array at the root,
and storing the update performed at each node. A related idea is
trailer arrays (Bloss 1989), used by Haskell’s DiffArrays, which
store the full array for each leaf node, and a history of updates
that were performed. Trailer arrays support O(1) accesses and
updates to the most recent version of an array, however accessing
old versions of an array requires searching through the history
and takes unbounded work. Chuang’s approach (Chuang 1992)
improves trailer arrays so that accessing old versions takes O(n)
work. O’Neill (2000) describes various improvements.

None of the existing approaches properly support concurrent
operations on functional arrays. O’Neill (2000) suggests (in pass-
ing) having a lock for each element of the array. However, when
many threads contend for the same element, this would serialize
accesses and therefore they would not take constant time. Addi-
tionally, per-element locks add significant memory overhead.

1.1 Cost-Bounded Parallel Sequences
We present a new approach for efficiently supporting functional
arrays (sequences). It uses some ideas from previous work, but un-
like the previous approaches it supplies a well-defined cost dynam-
ics (operational semantics), and supports parallelism, without lan-
guage extensions. More specifically the approach has the following
important features.

1. (Functional) It has fully functional value dynamics—i.e., when
not considering costs, sequences act purely functionally. In
particular, it requires no changes in existing languages and no
special types, syntactic extensions, etc.

2. (Efficient) Accessing or updating the most recent versions of a
sequence is constant time. Accessing old versions of a sequence
requires at most O(logn) work and updating an old version
requires at most O(n) work, where n is the length of the
sequence.

3. (Parallel) The approach supports fork-join (nested) parallelism—
sequences can be passed to parallel calls and safely updated and
read, again with a purely functional value dynamics. Our inter-
nal data-structures are wait-free (Herlihy 1988) so no process
has to wait for another.

4. (Analysis) We supply a well defined cost dynamics, which can
be used to formally analyze the cost of any program. The dy-
namics captures both sequential and parallel costs. We describe
a cost-bounded implementation which maps costs in the model
to costs on either a sequential or parallel RAM (PRAM).

We have implemented the approach and in this paper present some
performance numbers.

We consider sequences with three functions: new, get (read),
and set (write). new(n, v) creates a new sequence of length n with
the value v at each index, get(A, i) returns the ith element of A,
and set(A, i, v) returns a “new” sequence where the ith element

30 11 140

00 0 00

A = NEW(5, 0)

B = SET(A, 0, 3)

03 0 00

C = SET(A, 2, 3)

30 0 00

30 0 140

D = SET(C, 4, 14)

E = SET(D, 1, 11)

Figure 1. Example usage of sequences

of A is replaced by v. In the following discussion n refers to the
length of a sequence. Figure 1 gives an example.

As in previous work (Aasa et al. 1988) the history of a sequence
after it is created with new can be viewed as a version tree. A
version tree has interior nodes and leaves. In Figure 1, after all
functions are applied, sequences A, C, and D are interior nodes,
and sequences B and E are leaves of the version tree. In our
cost dynamics applying get and set to sequences at the leaves
takes constant work, but applying them to interior nodes is more
expensive.

The sequential implementation of sequences is straightforward.
Each sequence has a version number and a reference to an instance
of type ArrayData. Multiple sequences can reference the same
ArrayData instance. However, exactly one of these sequences can
be a leaf sequence. The other sequences must be interior, and are
ancestors of the leaf sequence in the version tree. For example, in
Figure 1, A and B might reference an ArrayData instance, and C,
D, and E might reference another ArrayData instance.

2
C 30 11 140

3
D

4
E

Figure 2. Simplified visualization of sequence implementation. E
is the leaf node and has the highest version number. The version
labeled change logs are shaded black.

In each ArrayData instance, we store a mutable Value array that
contains the values in the leaf sequence. get on a leaf simply reads
the appropriate index in the Value array. For each index in the Value
array, we also store a change-log of values that were previously
at that index. Entries in the change log are labeled by version
numbers. get on an interior sequence involves binary searching
the log at the appropriate index.

set on a leaf sequence involves modifying the Value array at
the desired index and appending a change-log entry to store the
value that was overwritten. set on an interior sequence involves
extracting the values at each index using get, copying the values
to a new ArrayData instance with empty logs, and overwriting the
desired index in the new Value array. Note that set on an interior
sequence leads to a new branch in the version tree.
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To ensure that change logs do not become too large, whenever
the total size summed across all change logs reaches n, the Value
array is copied. This requires O(n) work, but can be amortized
against the updates. The copying ensures that get and set on in-
terior nodes have O(logn) and O(n) work respectively. The wait-
free concurrent implementation is more involved, and we defer the
description and pseudocode to section 6.

Although our value dynamics is purely functional our cost dy-
namics is not. The cost dynamics requires passing a store and the
costs depend on the order the store is threaded. To allow for par-
allelism we allow for arbitrary interleaving of the steps in the cost
dynamics. We note that lazy languages also have a pure value dy-
namics but impure cost dynamics—call-by-name and call-by-need
only differ in their costs, and a store is required to model the differ-
ence (Ariola et al. 1995).

Throughout the paper we use work to refer to the to total number
of primitive instructions used by a computation. On a sequential
machine this is equivalent to time. We use the term span (also called
depth, or dependence depth) to refer to the number of parallel steps
assuming an unbounded number of processors. Work and span are
useful since together they can be used to bound the time on any
fixed number of processors (Brent 1974; Blumofe and Leiserson
1999; Blelloch and Greiner 1995).

1.2 Overview of Paper
We use the general approach of cost-semantics and bounded cost
implementations (Blelloch and Greiner 1995, 1996; Greiner and
Blelloch 1999; Harper 2012; Blelloch and Harper 2013). The idea
is to define a high-level cost dynamic semantics (dynamics) for a
language and then prove that for a given implementation the costs
(e.g. time or space) on the target machine can be bounded by the
costs in the semantics using some relationship. This is usually done
in two stages: first the high-level evaluation-based cost dynamics is
mapped into an intermediate single-stepping structural dynamics
(with costs), and then the structural dynamics is mapped onto a
machine model. We follow a similar framework here.

We start with a simple pure call-by-value lambda calculus ex-
tended with sequences. The high-level cost dynamics is an exten-
sion of the standard evaluation dynamics for lambda calculus, and
defines the work and span for every computation. The extension
needs to include a mutable store to keep track of whether each se-
quence is a leaf or interior, so that the costs for each case can be
properly accounted for. The tricky part is accounting for combin-
ing work at the join points of parallel calls.

We use two separate intermediate structural dynamics for the
language: the idealized parallel dynamics and the interleaved dy-
namics. The idealized parallel dynamics is a pure dynamics and
allows all parallel expressions to proceed on the same step. The
number of steps gives the span of the computation. The interleaved
dynamics defines the work of a computation. The dynamics is not
pure, requiring, as with the evaluation semantics, a store to keep
track of whether each sequence is a leaf or interior, so that dif-
ferent costs can be charged for get and set in the two cases. To
account for parallelism, the dynamics allows for non-deterministic
interleaving of steps on parallel expressions. In conjunction with
the impure cost for get and set, this means the overall work is
non-deterministic. At this level we still assume the get and set
operations are atomic. We prove a tight relationship between the
work and span given by the evaluation dynamics and the worst case
for those given by the structural dynamics (over all possible inter-
leavings).

We then map our sequence functions onto an impure target lan-
guage in which the only atomic operations are reads, writes, and
compare-and-swap instructions. We describe a wait-free concurrent
implementation of sequences that uses careful synchronization. We

assume that instructions in the target language can be interleaved
in any way–i.e., at any given step many gets and sets can be in
progress, with the individual instructions within their implementa-
tion interleaved. We show correctness with respect to any interleav-
ing, and show that specific linearization points within the imple-
mentation define the relative order of gets and sets with respect
to the structural dynamics.

By bounding the cost of the wait-free implementation we bound
the overall work and span of the computation on the target machine
based on that determined from the evaluation dynamics.

To evaluate our approach in practice we ran a variety of ex-
periments on our preliminary concrete implementation. The exper-
iments show that reads are 3% to 12% slower in leaf sequences
than in regular Java arrays, and updates are 2.4 to 3.3 times slower.
Considering the purity and additional functionality provided by our
sequence implementation, this is a small slowdown. Furthermore,
preliminary experiments back up our theoretical claim that threads
can access our sequences with a high level of concurrency.

The results on cost dynamics can likely be extended to other
data types where the cost of get and set are different for leaf
and interior versions, even if there are multiple varieties of get
and set functions. In particular, our sequence implementation can
likely be extended to functional unordered sets implemented with
hash tables, and our approach might be useful in developing more
efficient implementations of functional disjoint sets (although a
functional disjoint set implementation where all operations cost
logn is known (Italiano and Sarnak 1991)).

2. Language
The notation we use for our language and dynamics is from
(Harper 2016).

We use a standard applicative-order, call by value source lan-
guage defined as follows:

e = x | c | λ(x, y).e | e1e2 | (e1, e2) | (e1 ‖ e2) | if e1 e2 e3

The constants c contains the usual arithmetic types, such as the
natural numbers and numerical functions. The expression (e1 ‖ e2)
indicates that the two expressions can run in parallel, returning
a pair (v1, v2) when both expressions are fully evaluated, while
(e1, e2) generates a pair sequentially. Sequential and parallel pairs
only differ in the cost dynamics—the value dynamics are identical.
Our language can be augmented to add support for recursion using
LETREC or a fixed point combinator.

Definition 2.1. The terminal (fully evaluated) values are lambda
expressions, constants, and pairs of terminal values, and are de-
noted by the judgement VAL.

Our language also contains functions to work with sequences.
new(n, v) evaluates to a sequence of size n with the value v at
each index. get(A, i) evaluates to the ith element of sequence A.
set(A, i, v) evaluates to a new sequence where the ith element of
A is substituted with v.

3. Structural Dynamics
As discussed in the introduction we use two separate structural dy-
namics for the language: the idealized parallel dynamics and the in-
terleaved dynamics. The first captures the span and is deterministic,
and the second captures the work and allows for non-deterministic
interleaving. The work is measured based on the worst case inter-
leaving.

In the dynamics we use GET(A, i), SET(A, i, v) and NEW(n, v)
to indicate the pure primitive versions of the operations, and get,
set, and new as the corresponding operations in the language.
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A, a val

get(A, a)→par GET(A, a)
(get-eval)

e1 →par e
′
1 e2 →par e

′
2

e1 ‖ e2 →par e′1 ‖ e′2
(step-both)

v1 val e2 →par e
′
2

v1 ‖ e2 →par v1 ‖ e′2
(step-right)

v2 val e1 →par e
′
1

e1 ‖ v2 →par e′1 ‖ v2
(step-left)

v1, v2 val

(v1 ‖ v2)→par (v1, v2)
(join)

Figure 3. Example rules in the parallel dynamics.

3.1 Idealized Parallel Dynamics
The idealized parallel dynamics captures the evaluation steps taken
on a machine with an unbounded number of processors and is given
by the following judgement, where e is the expression and e′ is the
resulting expression:

e→par e
′

We show the rules for get and fork-join in Figure 3. As usual, the
judgement val describes terminal values. Notice that in fork-join,
both sides of the fork-join take a step at the same time if possible.
The rules for set and new are similar to the rules for get, and
the rules for function application and if-then are as in a standard
applicative order functional programming language.

The parallel structural dynamics, unlike the interleaved struc-
tural dynamics, is deterministic.

Definition 3.1. A parallel transition sequence T is a sequence
(e0, ..., en) with ei →par ei+1 for all 0 ≤ i < n. We say that
e0 →n

par en or e0 →∗par en.

Definition 3.2. The span of a parallel transition sequence T , de-
noted by SP (T ), is its length n.

3.2 Interleaved Cost Dynamics
The interleaved dynamics is a concurrent dynamics and is given by
the following judgement, where σ is the store, e is the expression,
σ′ is the resulting store, e′ is the resulting expression after a step
has been taken, and w is the work.

σ, e→ σ′, e′, w

Sequence values are represented by the pair (l, V ) where l is a
label that indexes the store σ and V is a list of the elements in the
sequence. The store is a mapping from labels to either + (indicating
a leaf sequence) or – (indicating an interior sequence). Let L(σ)
denote the set of labels in the store σ.

Let gl(V ) and gi(V ) be the work of get applied to V if it is a
leaf or interior sequence respectively, and sl(V ) and si(V ) be the
work of set applied to V if it is a leaf or interior sequence respec-
tively. Let n(a) be the work of evaluating new(a). We assume that
gl(V ) ≤ gi(V ) and sl(V ) ≤ si(V ) (operating on leaf sequences
is cheaper that operating on interior sequences).

The dynamics is given in Figure 4. Note that set(A, a), where
A = (l, V ) and σ[l] = +, creates a new label and value, extends
the store to indicate the new value is a leaf, and updates the store at
l to indicate that A is now interior. This is the impure aspect of the
cost dynamics since there can be other references to l. Also note
that the work for get and set depends on whether the sequence is
a leaf or interior.

v1, v2 val

σ, (λ(x, y).e)(v1, v2)→ σ, [v1/x][v2/y]e, 1
(func-app)

σ, if true e2 e3 → σ, e2, 1
(if-true)

σ, if false e2 e3 → σ, e3, 1
(if-false)

a val l 6∈ L(σ)
σ, new(a)→ σ[l 7→ +], NEW(a), n(a)

(new)

A = (l, V ) σ[l] = + a val

σ, get(A, a)→ σ, GET(V, a), gl(V )
(get-leaf)

A = (l, V ) σ[l] = – a val

σ, get(A, a)→ σ, GET(V, a), gi(V )
(get-interior)

A = (l, V ) σ[l] = + l′ 6∈ L(σ) a val

σ, set(A, a)→ σ[l 7→ –, l′ 7→ +],

(l′, SET(V, a)), sl(V )

(set-leaf)

A = (l, V ) σ[l] = – l′ 6∈ L(σ) a val

σ, set(A, a)→ σ[l′ 7→ +],

(l′, SET(V, a)), si(V )

(set-interior)

σ, e1 → σ′, e′1, w

σ, e1 ‖ e2 → σ′, e′1 ‖ e2, w
(step-left)

σ, e2 → σ′, e′2, w

σ, e1 ‖ e2 → σ′, e1 ‖ e′2, w
(step-right)

v1, v2 val

σ, (v1 ‖ v2)→ σ, (v1, v2), 1
(join)

Figure 4. The interleaved dynamics. Rules for stepping the argu-
ments to get, set, new, and other language constructs are omitted.

The rules for fork-join are non-deterministic—either side of the
fork can take a step (step-left or step-right), but not both. This
allows for arbitrary interleaving of instructions on different sides
of a fork-join. After both sides of a fork-join are fully evaluated
the parallel pair is converted to a regular pair. Note that we assume
that steps are themselves atomic. We relax this assumption in the
implementation level (Section 6).

Definition 3.3. A transition sequence T is a sequence of states
[(σ0, e0), ..., (σn, en)] and per-step work [w1, ..., wn] s.t. for all
0 ≤ i < n, σi, ei → σi+1, ei+1, wi+1 . We say that T takes σ0, e0
to σn, en and has length n and denote this by σ0, e0 →n σn, en.

Definition 3.4. We say that T is maximal if there does not exist
σ′, e′, w′ s.t. σn, en → σ′, e′, w′.

Definition 3.5. A transition subsequence Ti,j of T is given by
the sequence of states [(σi, ei), ..., (σj , ej)] and per-step work
[wi+1, ..., wj ]. Note that T = T0,n.

Definition 3.6. The work of a transition sequence T is given by:

W (T ) =

n∑
i=1

wi

Different transition sequences starting and ending at the same
states may have different work—the work can depend on the order
in which the instructions are interleaved. Figure 5 shows 3 ways a
leaf sequence A might be used in two parallel calls. In particular,
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one side of the fork might call get on A while the other side calls
set (see the center panel). Calls to get on the left branch would
have work gl(A) if and only if they execute before the call to set
on the right branch, otherwise they would have work gi(A).

Figure 5. Some ways a sequence might be used in a fork join.

We cannot make any assumptions about how the instructions in
different branches of a fork are interleaved, so we need to capture
the worst case work over all possible interleavings.

Definition 3.7. Let w be the max of W (T ) over all transition
sequences starting at σ0, e0. If W (T ) is unbounded then w = ∞.
w is the work of evaluating σ0, e0.

3.3 Machine Costs
We now consider the cost of evaluating an expression on a shared
memory machine with P processors. We assume that within a
constant factor, the cost functions gl(V ), gi(V ), sl(V ), si(V ),
and n(a) are (possibly amortized) upper bounds on the number
of instructions needed by the implementation for each of the array
operations. In this case we say the cost functions have valid work
bounds. In Section 6 we describe an implementation and prove
work bounds for sequences.

The operations new, get and set can each have parallelism
in their implementation, so in addition to the work we need to
know the span for these functions (the number of time steps on
an unbounded number of processors). Here we assume the span
for new, get, and set is bounded by some f(P ) where P is the
number of processors used. It is important that the bounds on span
are not amortized.

Using the greedy scheduling theorem (Blumofe and Leiserson
1999) or Brent’s theorem (Brent 1974) knowing the total work and
total span (number of steps on an unbounded number of processors)
is sufficient to bound the time on any finite number of processors.
The analysis holds even if the work is amortized, as it is in the
present case. We assume that standard instructions such as reading
and writing to memory, arithmetic operations, etc. take constant
time (and work). This leads to the following theorem.

Theorem 3.1. Given cost functions with valid work bounds each
with maximum span f(p), then for any expression e with a constant
number of variable names if w is the work of evaluating σ, e, and
S is the span for the (unique) maximal transition sequence starting
at e, then e can be evaluated using any greedy schedule on a P
processor machine in time

T ≤ c
(w
P

+ Sf(P )
)

for some constant c that is independent of the expression e.

Proof. (outline). This follows from the greedy scheduling theorem
and previous work on bounded cost implementations. Bounding the
number of variables is needed to bound the cost of evaluating each
step of the program itself (Blelloch and Greiner 1995). It avoids
issues of non-constant cost for looking up the values of variables in
environments.

4. Cost Dynamics
The cost dynamics gives an easy, deterministic way to compute the
cost of a program without having to reason about multiple inter-
leavings. In this section, we give the rules for the cost dynamics. In
Section 5, we prove that the costs in the cost dynamics are a tight
upper bound for the costs in the structural dynamics. The results
can be easily extended for data types besides sequences (like un-
ordered sets) even if there are multiple varieties of get and set
functions.

To handle the non-determinism in fork-join, the cost dynamics
first determines the worst-case cost of each branch in the fork
independently starting at the state at the fork. Then for sequences
that are used in both forks, it adds additional work at the join point.
The semantics keeps track of the number of gets to leaf values on
each side of the fork so that it can compute this additional work. If
a value was set on one side of the fork, then the set might have
happened before gets on the other side of the fork, so additional
work needs to be charged for the gets.

The cost dynamics is defined by the following judgment, where
δ is the store, e is the expression, δ′ is the new store, v is the value
that e evaluates to, w is the work, and s is the span.

δ, e ⇓ δ′, v, w, s

As in the previous section, sequences are represented by (l, V )
where l is a label that indexes the store δ and V is a list of the
elements in the sequence. The store is a mapping from labels to
pairs (+/–, c), where c represents the number of leaf gets on the
value indexed by the label. L(δ) denotes the set of labels in the
store δ.

The rules in the cost dynamics are given in figure 6. Note
that get costs gl(V ) instead of gi(V ) on a leaf value V but we
increment the counter of leaf gets in the store.

The fork-join rule is the most interesting and requires a few
definitions. Suppose we have expression (eL ‖ eR) with

δ, eL ⇓ δL, vL, wL, sL

δ, eR ⇓ δR, vR, wR, sR
Further, suppose that (L(δL) \ L(δ)) ∩ (L(δR) \ L(δ)) = ∅

(the new labels produced on both sides of the fork-join do not
conflict). Consider a sequence A = (l, V ) with δ[l] = (s, c),
δL[l] = (sL, c + cL), δR[l] = (sR, c + cR). When multiplying
two signs or multiplying a sign with an integer, consider + to be 1
and – to be 0.

COMBINE describes how to combine store values on both sides
of a fork-join. A sequence is a leaf iff it is a leaf on both sides of
the fork-join. Leaf gets on one side of the fork remain leaf gets iff
there were no calls to set on the other side of the fork.

COMBINE((s, c), (sL, c+ cL), (sR, c+ cR)) =

(sL sR, c+ sR cL + sL cR)

δ′ = (δL\δ) ∪ (δR\δ) ∪
⋃

l∈L(δ)

[l 7→COMBINE(δ[l], δL[l], δR[l])]

EXTRAWORK gives the additional cost incurred if a sequence was
modified on either side of a fork-join. If the value was interior
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δ, c ⇓ δ, c, 1, 1 (constants)

δ, e1 ⇓ δ′, λ(x, y).e, w1, s1

δ′, e2 ⇓ δ′′, (v1, v2), w2, s2

δ′′, [v1/x][v2/y]e ⇓ δ′′′, v′, w3, s3

δ, e1 e2 ⇓ δ′′′, v′, 1 + w1 + w2 + w3,

1 + s1 + s2 + s3

(f-app)

δ, e1 ⇓ δ′, true, w1, s1 δ′, e2 ⇓ δ′′, v, w2, s2
δ, if e1 e2 e3 ⇓ δ′′, v, 1 + w1 + w2, 1 + s1 + s2

(if-true)

δ, e1 ⇓ δ′, false, w1, s1 δ′, e3 ⇓ δ′′, v, w2, s2
δ, if e1 e2 e3 ⇓ δ′′, v, 1 + w1 + w2, 1 + s1 + s2

(if-false)

δ, e ⇓ δ′, a, w, s l 6∈ L(δ′)
δ, new(e) ⇓ δ′[l 7→ (+, 0)], NEW(a), w + n(a), s+ 1

(new)

A = (l, V ) a val δ[l 7→ (+, c)] l′ 6∈ L(δ)
δ, set(A, a) ⇓ δ[l 7→ (–, c), l′ 7→ (+, 0)],

(l′, SET(V, a)), sl(V ), 1

(set-leaf)

A = (l, V ) a val δ[l 7→ (–, c)] l′ 6∈ L(δ)
δ, set(A, a) ⇓ δ[l′ 7→ (+, 0)],

(l′, SET(V, a)), si(V ), 1

(set-int)

δ; e1 ⇓ δ1, A, w1, s1 δ1, e2 ⇓ δ2, a, w2, s2

δ2, set(A, a) ⇓ δ′, A′, w′, s′

δ, set(e1, e2) ⇓ δ′, A′, w1 + w2 + w′, s1 + s2 + s′
(set-eval)

A = (l, V ) a val δ[l 7→ (+, c)]
δ, get(A, a) ⇓ δ[l 7→ (+, c+ 1)],

GET(V, a), gl(V ), 1

(get-leaf)

A = (l, V ) a val δ[l 7→ (–, c)]
δ, get(A, a) ⇓ δ, GET(V, a), gi(V ), 1

(get-interior)

δ, e1 ⇓ δ1, A, w1, s1 δ1, e2 ⇓ δ2, a, w2, s2

δ2, get(A, a) ⇓ δ′, v′, w′, s′

δ, get(e1, e2) ⇓ δ′, v′, w1 + w2 + w′, s1 + s2 + s′
(get-eval)

δ, eL ⇓ δL, vL, wL, sL δ, eR ⇓ δR, vR, wR, sR
(L(δL) \ L(δ)) ∩ (L(δR) \ L(δ)) = ∅

δ, (eL ‖ eR) ⇓ δ′, (vL, vR), 1 + wL + wR + w′,

1 + max(sL, sR)

(fj)

Figure 6. Rules for the cost dynamics. w′ and δ′ in the fork-join
rule are defined in the text.

before the fork-join, then all functions incurred their maximal cost
and there is no additional cost. Otherwise, leaf gets on one side
of the fork are charged gi work iff the other side of the fork called
set. Additionally, if both sides of the fork called set, then one of
the sets came first and has work sL and the subsequent set has

work si. We abuse notation so that gl, gi, sl, si directly take in a
label l instead of the corresponding sequence.

EXTRAWORK(l, (s, c), (sL, c+ cL), (sR, c+ cR)) =

((¬sR) cL + (¬sL) cR)(gi(l)− gl(l)) +
(¬sR)(¬sL)(si(l)− sl(l))

w′ =
∑

l∈L(δ),δ[l7→(+,c)]

EXTRAWORK(l, δ[l], δL[l], δR[l])

Then, the fork-join cost dynamics are:

δ; (eL ‖eR) ⇓ δ′; (vL ‖vR); 1+wL+wR+w′; 1+max(sL, sR)

5. Cost Validation
We show that the work computed by the cost dynamics is a tight
upper bound for the work in the interleaved structural dynamics.
Proofs for the span bounds are omitted because they are standard
(the parallel structural dynamics is deterministic, with no interleav-
ing).

Definition 5.1. Consider a transition sequence T . We say that
Si, ei → Si+1, ei+1, wi+1 is a get on l if the step involves
evaluating the get function on structure (l, V ). We say it is a cheap
get on l if wi+1 = gl(l). The number of cheap gets on l in T is
denoted by SCl(T ).

Definition 5.2. Unlike the store in the cost dynamics, the store
in the structural dynamics only stores whether each structure is +
(leaf) or – (interior). sign(δ) takes a store that maps l 7→ (s, c) and
returns a store which maps l 7→ s.

Definition 5.3. Suppose that δ, e ⇓ δ′, e′, w′, s′. We define the
number of cheap gets in going from δ to δ′ in the cost dynamics
as follows. Suppose l 7→ (s′, c′) ∈ δ′. If l 7→ (s, c) ∈ δ then
ECl(δ, δ

′) = c′ − c and if l 6∈ L(δ) then ECl(δ, δ′) = c′. If
l 6∈ L(δ′) then ECl(δ, δ′) = 0.

Definition 5.4. A relabeling of L1 is a bijective function R from
label sets L1 → L2. R can be used to relabel stores and expres-
sions.R(δ) = {R(l) 7→e | l 7→e ∈ δ∧ l ∈ L1}∪{l 7→e | l 7→e ∈
δ ∧ l 6∈ L1}. In other words, R relabels some of the labels in δ.
Similarly, R(e) returns an expression e′ where each occurrence of
a label l ∈ L1 in e is substituted by R(l).

Lemma 5.1. Suppose that there exists a derivation of depthm that
δ, e ⇓ δ′, e′, w, s. Let R be an arbitrary labeling. Then there exists
a derivation of depth m that R(δ), R(e) ⇓ R(δ′), R(e′), w, s.

Proof. By applying the relabeling to each step of the derivation, and
noting that all rules in the cost dynamics hold under relabelings.

Lemma 5.2. If S, e → S′, e′, w and U is a store s.t. for all l ∈ e,
l ∈ U , then there exists U ′, w′ s.t. U, e→ U ′, e′, w′

Proof. By a case analysis on the structural dynamics, noting that
transitions of expressions never depend on the values in the store
(the dynamics is purely functional).

Theorem 5.3. Suppose that

δ, e0 ⇓ δE , eE , wE , sE
and consider arbitrary maximal transition sequence T taking

S0 = sign(δ), e0 →n Sn, en

The following hold:

1. For some relabeling R of L(δE) \ L(δ), Sn = sign(R(δE))
and en = R(eE).
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2. For all l ∈ δE , ECl(δ, δE) ≤ SCR(l)(T ).
3. The sum of work and cheap gets is conserved:

wE+
∑

l∈L(δE)

ECl(δ, δE)(gi(l)− gl(l)) =

W (T ) +
∑

l∈L(δE)

SCR(l)(T )(gi(R(l))− gl(R(l)))

Proof. By induction on the length of the shortest derivation in the
cost dynamics. We sketch the theorem for one of the rules in the
cost dynamics: get-leaf. The other cases follow from a similar line
of reasoning.

Case get-eval-leaf: Suppose e0 = get(eL, eR) and

δ, eL ⇓ δL, e′L, wL

δL, eR ⇓ δR, e′R, wR

δR, get(e
′
L, e
′
R) ⇓ δE , eE , gl(l′)

where e′L = (l′, V ) for some V , which gives us

δ, get(eL, eR) ⇓ δE , eE , wE
with wE = wL + wR + gl(l′).

The structural dynamics first step the left argument to get, then
the right argument, and finally evaluate the get. So there exists
m such that T0,m involves stepping the left argument, Tm,n−1 in-
volves stepping the right argument, and Tn−1,n involves evaluating
the get.

Part 1: We show the first part of the theorem holds. Essen-
tially, we can apply the induction hypothesis to T0,m to get a
relabeling R of labels in L(δL)/δ s.t. Sm = sign(R(δL)) and
em = get(R(e′L), eR). Similarly, we can apply the inductive hy-
pothesis to Tm,n−1

1. We then note that get evaluates to the same
value, and doesn’t modify the sign of the stores, in both the inter-
leaved and cost dynamics. By composing the relabelings, the first
part of this theorem holds. Without loss of generality, suppose that
the stores and expressions were relabeled so that the first part holds.

Part 2: From lemma 5.1, the length of the shortest derivation
for the relabeled cost dynamics does not change, so we can apply
the inductive hypothesis even after the relabeling. We apply the
inductive hypothesis to T0,m and Tm,n−1. This tells us the number
of cheap gets in the structural dynamics is bounded by the number
of cheap gets in the cost dynamics.

Part 3: Apply the IH on T0,m and Tm,n−1. Then we get,
W (T ) =W (T0,m) +W (Tm,n−1) + gl(l′) = wL+wR+ gl(l′).

Theorem 5.4. (Work Bound) Given the conditions in theorem 5.3,
wE ≥W (T )

Proof. We assume that δE has been relabeled as described in part
1 of theorem 5.3. For all l ∈ δE , ECl(δ, δE) ≤ SCl(T ). This im-
plies that

∑
l∈δE

ECl(δ, δE)(gi(l)− gl(l)) ≤
∑
l∈δE

SCl(T )(gi(l)−

gl(l)). But then from the conservation of sum of work and cheap
gets, wE ≥W (T ).

Theorem 5.5. (Tightness) Suppose that δ, e0 ⇓ δE , eE , wE , sE .
Then, for some n, there exists a transition sequence T from s0 =
sign(δ), e0 →n sn, en with 2W (T ) ≥ wE .

1 Technical note: we construct projected sequences for T0,m and Tm,n−1,
and appeal to lemmas 5.1 and 5.2, before applying the inductive hypothesis.

Proof. By induction on the rules of the cost dynamics. We present
the construction for the most interesting case, fork-join.

Case fork-join: Suppose e0 = (eL ‖ eR) and

δ, eL ⇓ δL, vL, wL, sL

δ, eR ⇓ δR, vR, wR, sR
which gives us

δ, (eL ‖ eR) ⇓ δ′, (v1 ‖ v2), wL + wR + w′

From the inductive hypothesis, there exists transition sequence
TL taking sL0 , eL0 →m sLm, e

L
m with sL0 = sign(δ), eL0 = eL,

eLm = vL and 2W (TL) ≥ wL. Similarly, there exists transition
sequence TR taking sR0 , e

R
0 →n sRn , e

R
n with sR0 = sign(δ),

eR0 = eR, eRn = vR and 2W (TR) ≥ wR.
The function CHEAP-GETS computes the number of gets to a

seq on a particular side of the fork.

CHEAP-GETS((s, c), (smy, cmy), (soth, coth)) = soth(cmy − c)
cL represents the extra costs of gets on the left fork that become
expensive (because of sets on the right fork). Similarly, cR repre-
sents the extra costs of gets on the right fork that become expensive
(because of sets on the left fork).

cL =
∑

l∈L(δ),δ[l 7→(+,c)]

CHEAP-GETS(δ[l], δL[l], δR[l])(gi(l)−gl(l))

cR =
∑

l∈L(δ),δ[l7→(+,c)]

CHEAP-GETS(δ[l], δR[l], δL[l])(gi(l)−gl(l))

The function DOUBLE-SETS computes whether a seq was set on
both sides of the fork-join.

DOUBLE-SETS((sL, cL), (sR, cR)) = sLsR

ss =
∑

l∈L(δ),δ[l 7→(+,c)]

DOUBLE-SETS(δL[l], δR[l])si(l)

If cR ≥ cL then we step the left side of the fork to completion
before the right side of the fork. If cL > cR then we step the right
side of the fork to completion before the left side. We can then show
that the resulting transition sequence T satisfies 2W (T ) ≥ wE .

Without loss of generality we may assume that cR ≥ cL. In the
cost dynamics,w′ = cL+cR+ss. Because we step the left side of
the fork before the right side, and cR ≥ cL, 2W (T ) ≥ 2(W (TL)+
W (TR) + cR + ss) ≥ 2W (TL) + 2W (TR) + cR + cL + ss ≥
wL + wR + cL + cR + ss ≥ wL + wR + w′.

Theorem 5.6. (Conditional termination) Suppose that δ, e0 ⇓
δE , eE , wE , sE . Then there exists n s.t. all transition sequences
starting at sign(δ), e0 have length ≤ n.

Proof. By induction on the rules of the cost dynamics.

Suppose that we use the cost dynamics to derive that the work
of evaluating an expression e is w. When evaluating e, the stores
in the cost dynamics and structural dynamics are initially empty. In
particular, the signs of the store in the cost dynamics and structural
dynamics are the same. From the tightness theorem, we know there
exists a transition sequence T starting at e. From the conditional
termination theorem, all transition sequences starting at e have
bounded length. Then, from the work bound theorem, the work
w computed by the cost dynamics is at least the work of any
transition sequence. Since the structural dynamics captures the
(non-deterministic) execution time of the expression, this means
that the cost dynamics gives an upper bound for the execution time
of the expression.
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6. Implementation
In this section we present an implementation of functional arrays
(sequences) and prove its correctness. We show that gl(V ) =
sl(V ) = O(1) (that is, get and set on leaf sequences require
constant work), gi(V ) = O(logn), and si(V ) = O(n), where
n is the size of V (that is, get and set on interior sequences
require bounded work) are valid amortized work bounds for this
implementation. As such, we can use the cost dynamics we derived
to analyze costs of parallel programs involving sequences.

We give SML-like code for the implementation. In it we con-
struct and manipulate mutable arrays (henceforth called arrays) us-
ing three functions: tabulate(n, f) creates a new array of size n
which for all i contains f(i) at the ith index; sub(A, i) evaluates
to the ith element of array A; and update(A, i, v) mutates index i
of array A to have value v. sub and update take constant work,
and tabulate takes O(n+W ) work and O(max(logn, S)) span
where W is the sum of the work of all the function calls to f , and
S is the maximum of the span of the function calls to f .

We also use ML-style reference (ref) cells. In addition to reads
(!a) and writes (a := v) to refs we assumes an atomic compare
and swap function cmpswap(a:int ref, v:int, v′:int):bool. It
compares the value at a to v, and if and only if they are the same
sets the value at a to v′ and returns true, otherwise it returns false.

We assume a p-processor parallel machine model. For the
correctness proofs, we assume a sequentially consistent memory
model. When analyzing costs, we assume that all processors are
synchronized with respect to a global clock (not needed for correct-
ness), and a greedy schedule, such that if there are l instructions
available at a time step we will run min(p, l) of them.

As described in the introduction we use an ArrayData structure
that keeps for each index the most recent version as well as a log of
older versions. However, the concurrent version needs to be much
more careful of how the data structures are updated and accessed.

6.1 Log Implementation
We use a Log data structure to store the logs. Logs supports three
functions: new() creates a new empty log, push(l, (V, a)) inserts
a new version into the log l with version number V and value
a, and get version(l, V ) accesses the value corresponding to
smallest (earliest) version in the long that is greater than or equal
to version V . Version numbers are represented as integers. All
functions have amortized constant work. The definition for Logs
is given in Figure 7. The Log’s array stores the entries and has a
given size and capacity. The push function tries to add to the end
of the array if there is capacity, and if not, it copies all entries to
a new array that is twice as large, doubling the capacity. The copy
can be done in O(n) work and O(logn) span for capacity n using
update. Because it is only applied every n steps this gives the
amortized work bounds. The get version function searches the
log using binary search for the appropriate version. The function
can return NONE if there is no such version.

The functions on Logs can be used semi-concurrently. In partic-
ular at most one thread can execute a push at a time, but multiple
threads can call size and get version. If used in this way then
Logs are linearizable (Herlihy and Wing 1990).

6.2 Sequence Implementation
The sequence implementation keeps a Value array of the most
recent values for each index, which represents the values at a leaf
node of the version tree. For each index it also stores a change-log
that keeps track of values at interior nodes of the version tree. The
definition for sequences is given in Figure 8. Note that multiple
sequences can reference the same ArrayData. Figure 9 visualizes
a newly created sequence A, and Figure 10 visualizes sets on
interior and leaf sequences.

1 type capacity = int

2 type size = int

3 type version = int

4 type ’a entry = version × ’a

5 type ’a Log = (capacity × size ×
6 (’a entry) option array) ref

7 val push : ’a Log × ’a entry → unit

8 fun push(A as ref(c, s,D), v) =

9 if c = s then
10 let val c′ = 2× c

11 val D′ = Array.tabulate(c′, fn _ ⇒ NONE)

12 in copyArray(D,D′);

13 Array.update(D′, s, SOME(v));

14 l := (c′, s+ 1, D′)

15 end
16 else
17 Array.update(D, s, SOME(v));

18 l := (c, s+ 1, D)

19 val new() : unit → Log

20 fun new() = (1,0,Array.tabulate(1, fn _ ⇒ NONE))

21 val get_version : ’a Log × version → ’a option

22 fun get_version(l, V ) =

23 let val(c, s,D) = !l

24 in if s = 0 then NONE

25 else let val SOME(V ′,_) = Array.sub(D,s− 1)

26 in if V ′ < V then NONE

27 else SOME ‘binary search for smallest version

28 ≥ V , and get its value’

29 end
30 end

Figure 7. Code for Logs.

The set operation uses a compare and swap to increment the
ArrayData’s version so that only one thread can modify an Array-
Data at any point in time. If the compare and swap fails (which
means the sequence is an interior sequence), the values in the se-
quence are copied over to produce a new ArrayData, and an empty
Log is created at each index. Note that the values are not directly
copied into the new ArrayData from the Value array, instead get is
called at each index so that the correct version is used. If the com-
pare and swap is successful (which means the sequence is a leaf
sequence), a log entry is inserted and the Value array is mutated.

The ordering of the instructions in set is critical. If the Value
array is modified before the log entry is inserted then a get evalu-
ated between the 2 instructions could evaluate to the wrong value.

The get(A, i) operation first loads the value v at the ith index
of the Value array. If the sequence’s version and corresponding
ArrayData’s version match (meaning that the sequence is a leaf
sequence), then get evaluates to v. Otherwise get looks up the
value in the Log.

As in set, the ordering of the instructions in get is important.
In particular, index i of the Value array must be loaded before the
versions are compared or the logs are examined. If the versions are
compared first and a set is evaluated between the 2 instructions,
the set might modify the Value array and cause the get to evaluate
to the wrong value.
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31 type ’a logs = (’a Log) array

32 type ’a ArrayData = version ref × ’a array

33 × ’a logs

34 type ’a sequence = version × ’a ArrayData

35 val new : int × ’a → ’a sequence

36 fun new(size, init) =

37 (1, (ref 1, Array.tabulate(size, fn i ⇒ init),

38 Array.tabulate(size, fn _ ⇒ Log.new())))

39 val set : ’a sequence × int × ’a → ’a sequence

40 fun set(S as (V, (Vr, A, L)), i, v) =

41 if not(cmpswap(Vr, V, (V + 1))) orelse
42 !Vr = Array.length(A) then
43 let val n = Array.length(A)

44 val A′ = Array.tabulate(n, fn i ⇒ get(S, i))

45 val L′ = Array.tabulate(n, fn _ ⇒ Log.new())

46 in Array.update(A′, i, v); (1, (ref 1, A′, L′))

47 end
48 else
49 Log.push(Array.sub(L, i), (V, Array.sub(A, i)));

50 Array.update(A, i, v);

51 (V + 1, (Vr, A, L))

52 val get : ’a sequence × i → ’a

53 fun get((V, (Vr, A, L)), i) =

54 let val guess = Array.sub(A, i)

55 val l = Array.sub(L, i)

56 in if V = !Vr then guess

57 else case Log.get_version(l, V ) of
58 NONE ⇒ guess

59 | SOME(v) ⇒ v

60 end

Figure 8. Code for sequences.

Figure 9. A = new(5, 0)

Figure 10. B = set(A, 2, 5) changes the Value array and adds
a log entry. Then D = set(A, 0, 9) creates AD′ because A is
interior.

6.3 Target Language
For the sake of the proofs we give a formal definition of the target
language in which we implement sequences.2 The target language
extends the source language to support mutable references and
compare and swap. The structural dynamics of the target language
is given by the following judgement, where (π, µ) is a memory
store and (π′, µ′) is the memory after the step has been taken,

(π, µ), e→T (π′, µ′), e′.

For simplicity we assume all sequences and ArrayDatas are int
sequences and int ArrayDatas. To avoid dealing with overflow is-
sues, we assume that all integers in the target language are un-
bounded. Sequences are represented as &l where the label l indexes
into the store π.

The memory contains an immutable store π that maps labels to
(λ, ∗k) where λ is an integer version number and k is an index
into µ. Intuitively, π contains all the sequences created so far in the
evaluation of the expression. New key-value pairs can be inserted
into π but existing mappings cannot be modified. The memory also
contains a mutable store µ that maps labels to values of type int
ArrayData.

For concision we do not give the full dynamics of our target
language. As examples, we give the rules for creating a new Array-
Data, compare and swap, and pushing a log entry. Let an denote an
array of n as and let {} denote an empty (int ∗ int) Log.

n int val k 6∈ L(µ)
(π, µ), NEWAD(n)→T (π, µ[k 7→ (0, 0n, {}n)]), ∗k

(new-ad)

V, V ′ int val µ[k] = (V,A, L)

(π, µ), CMPSWAP(∗k, V, V ′)→T

(π, µ[k 7→ (V ′, A, L)]), true

(cas-true)

V, V ′ int val µ[k] 6= (V,A, L)

(π, µ), CMPSWAP(∗k, V, V ′)→T (π, µ), false
(cas-false)

µ[k] = (V,A, L) i, V ′, v int val

L[i] = (p1, ..., pn) L′ = L[i 7→ (p1, ..., pn, (V
′, v))]

(π, µ), PUSH(∗k, i, (V ′, v))→ (π, µ[k 7→ (V,A, L′)]), ∗k (push)

The dynamics for push given above suggests that push is
atomic, whereas in the implementation we use a compare-and-swap
at line 41 to ensure that calls to push do not overlap. In the correct-
ness proof given below we take this exclusion property as given
for the sake of concision; a complete proof would require ensuring
that exclusion is maintained by the use of compare-and-swap in the
actual implementation.

In the source language, evaluating new, get, and set involves a
single step. In the target language, new, get, and set are function
calls to our implementation. Evaluating the function calls requires
multiple steps. Let C(new), C(get), C(set) be the implementa-
tion (that is, the lambda expression) for new, get, and set respec-
tively.

The following rules show the evaluation of get and set in the
target. A source get is substituted with its implementation. For
set, we use a “wrapper,” called set’, so that the sequence resulting
from evaluation of set can be added to the store before completion.
We keep track of the sequences created so we can show invariants
on sequences in the proof of correctness.

i int val
(π, µ), get(&l, i)→T (π, µ), C(get)(&l, i)

(get)

2 The target language is a simplification of the SML-like code used in the
samples, but suffices for the proofs.
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i, v int val
(π, µ), set(&l, i, v)→T (π, µ), set′(C(set)(&l, i, v))

(start-set)

(π, µ), e→T (π′, µ′), e′

(π, µ), set′(e)→T (π′, µ′), set′(e′)
(eval-set)

l 6∈ L(π)
(π, µ), set′((V, ∗k))→T (π[l 7→ (V, ∗k)], µ), &l (end-set)

The rules for new are similar to set. As in the source structural
dynamics, either side of a fork-join expression in the target can take
a step. This makes the target structural dynamics non-deterministic.
However, because get and set involve multiple steps, the target
has a greater number of possible interleavings than the source.

Definition 6.1. A transition sequence in the target language is
a sequence of memory stores [(π0, µ0), ..., (πn, µn)] and expres-
sions [e0, ..., en] such that for all 0 ≤ i < n, (πi, µi), ei →T

(πi+1, µi+1), ei+1. We say that (π0, µ0), e0 →∗T (πn, µn), en or
(π0, µ0), e0,→n

T (πn, µn), en.

An expression e in the source language is compiled to an ex-
pression e′ in the target and then executed according to the target’s
dynamics. Since the source language is a subset of the target lan-
guage, e = e′. In other words an expression e in the source lan-
guage can be viewed as an expression in the target.

We show that our implementation of sequences in the target
correctly implements the source. The non-atomicity of set and get
means that we cannot appeal to standard parametricity theorems for
the proofs.

6.4 Correctness of the Implementation
The correctness proof proceeds along the lines of (Birkedal et al.
2012) and (Turon et al. 2013). We concentrate here on the critical
parts, involving new, get, and set. It takes the form of a rely-
guarantee argument (Jones 1983) for the correctness of the imple-
mentation integer sequences. To avoid complications we omit the
proof of atomicity of the push operation mentioned earlier. To ac-
count for would require a more elaborate invariant that tracks the
state of the interlock used by the compare-and-swap operation.

We state invariants on the memory store and constraints on the
possible ways that the memory store can evolve in a valid target
program. Given these invariants and constraints, we show that new,
get, and set behave the same way in the source and target. The
tricky part of the proof is setting up the invariants and theorems—
the proofs involve extensive but straightforward casework.

Definition 6.2. (Valid memories) Consider memory store (π, µ).
Consider arbitrary label l ∈ L(π) and suppose π[l] = (λ, k). We
say (π, µ) is valid at l if the following hold.

1. k ∈ L(µ). Assuming this is true, let µ[k] = (V,A, L).
2. 0 ≤ λ ≤ V
3. For all i and 0 ≤ j < LEN(L[i]) if L[i][j] = (V ′, v) then
V ′ < V

4. For all i and 0 ≤ j < k < LEN(L[i]), if L[i][j] = (V1, v1) and
L[i][k] = (V2, v2) then V1 < V2

We say (π, µ) valid if for all l ∈ L(π), (π, µ) is valid at l.

Theorem 6.1. Let e be an expression in the source language.
Suppose that ({}, {}), e→∗T (π, µ), e′. Then (π, µ) valid.

Proof. (Sketch) By induction on the length of the transition se-
quence taking ({}, {}), e to (π, µ), e′. For the base case, verify that
each condition holds for ({}, {}).

The inductive hypothesis is that that the theorem holds for all
transition sequences of length n. We then consider an arbitrary

transition sequence of length n + 1. From the hypothesis, the first
n steps leads to a valid memory state. We then case on all possible
modifications that the n + 1th step can make to memory. Showing
properties (1) to (3) is straightforward. To prove property (4), we
need to appeal to a lemma that different executions of lines 49
to 51 in the implementation of set on the same ArrayData cannot
overlap. The lemma holds because of property (2) and the compare
and swap.

Definition 6.3. (Memory transformations) Assume that (π, µ) and
(π′, µ′) are valid.3. Consider arbitrary label l with l ∈ L(π) and
l ∈ L(π′), and suppose that π[l] = (λ, k) and π′[l] = (λ′, k′). We
say that (π, µ) ≤ (π, µ) at l if the following conditions hold:

1. λ = λ′ and k = k′ (in other words, values in π are immutable).
Assuming this is true, let µ[k] = (V,A, L) and µ′[k] =
(V ′, A′, L′).

2. V ≤ V ′. In other words, the versions are non-decreasing.
3. For all i, len(L[i]) ≤ len(L′[i]) and for all i, j with 0 ≤ j <

len(L[i]), L[i][j] = L′[i][j]. Intuitively, this means that logs
can only be extended, existing entries cannot be overwritten.

4. If len(L[i]) < len(L′[i]) then L′[len(L[i])] = (V ′′, A[i])
where V ≤ V ′′.

5. For all i, if A[i] 6= A′[i] then λ < V ′ and exists 0 ≤ j <
len(L′[i]) with L′[i][j] = (V ′′, A[i]) and λ ≤ V ′′.

We say that (π, µ) ≤ (π′, µ′) if L(π) ⊆ L(π′) and for all l such
that l ∈ L(π) and l ∈ L(π′), (π, µ) ≤ (π′, µ′) at l.

Lemma 6.2. (Reflexivity) If (π, µ) valid then (π, µ) ≤ (π, µ).

Lemma 6.3. (Transitivity) If (π0, µ0) ≤ (π1, µ1) and (π1, µ1) ≤
(π2, µ2) then (π0, µ0) ≤ (π2, µ2).

Theorem 6.4. Let e be an expression in the source language. Sup-
pose that ({}, {}), e→∗T (π, µ), e′ and (π, µ), e′ →∗T (π′, µ′), e′′.
Then (π, µ) ≤ (π′, µ′).

Proof. (Sketch) By induction on the length of the transition se-
quence taking (π, µ), e′ to (π′, µ′), e′′. The base case is trivial. For
the inductive step case on the possible modifications the implemen-
tation can make to memory and then use transitivity of ≤.

Definition 6.4. Suppose AS , AT val. We say that σ,AS ∼
(π, µ), AT if AS , AT have the same length and for all valid i,
σ, get(AS , i) →∗ σ′, v and (π, µ), get(AT , i) →∗T (π′, µ′), v
for some v int val.

Lemma 6.5. (Monotonicity) If σ,AS ∼ (π, µ), AT and (π, µ) ≤
(π′, µ′) then σ,AS ∼ (π′, µ′), AT .

Because the target language supports concurrency, the memory
store might be modified (by other evaluations of new and set)
while new, get, and set are being evaluated. To account for this
we define concurrent transition sequences.

Definition 6.5. A concurrent transition sequence τ in the tar-
get is a left sequence of memories [(π0, µ0), ..., (πn−1, µn−1)],
right sequence of memories [(π′0, µ

′
0), ..., (π

′
n−1, µ

′
n−1)] and ex-

pressions [e0, ..., en] with (πi, µi), ei →T (π′i, µ
′
i), ei+1 for all i,

and (π′i, µ
′
i) ≤ (πi+1, µi+1) for all 0 ≤ i < n − 1. We say that τ

takes (π0, µ0), e0 to (π′n−1, µ
′
n−1), e

′
n−1.

Theorem 6.6. (new) Suppose that for some AS , AT val,
σ, new(n, v) →∗ σ′, AS and (π, µ), new(n, v) →∗T (π′, µ′), AT .
Then σ′, AS ∼ (π′, µ′), AT .

3 Note that the relation is only defined for valid memory states.
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Proof. Because the logs are empty, get on every index of AT
evaluates to 0. Similarly, get on every index of AS evaluates to
0.

Theorem 6.7. (get) Suppose that σ,AS ∼ (π, µ), AT . Fix i int
val. Suppose that σ, get(AS , i)→∗ σ, v where v int val. Let e0 =
get(AT , i) and suppose that (π, µ) ≤ (π0, µ0). Consider a con-
current transition sequence from (π0, µ0), e0 to (π′n−1, µ

′
n−1), en

with en int val. Then en = v.

Proof. (Sketch) We case on the line where the implementation of
get returns. There are 4 cases: lines 56, 24, 26, and 28. In each
case, we show that en is the same as the value (π, µ), get(AT , i)
evaluates to. Since σ,AS ∼ (π, µ), AT , this is the same value that
σ, get(AS , i) evaluates to, which implies en = v.

The first case is on line 56 in the implementation of get, where
guess is returned if the version of the sequence and ArrayData
are the same. Since sequence versions are immutable, ArrayData
versions are non-decreasing, and sequence versions are ≤ array
data versions, the sequence and ArrayData versions are also the
same on line 54. From the implementation of get, if the entire get
was evaluated atomically on line 54, it would evaluate to guess. By
lemma 6.5 this means that guess and v are the same.

The other cases on lines 24 and 26 are similar. In the last case,
get involves a binary search on the logs. The theorem follows for
the binary-search case from property (3) in memory transforma-
tions (logs can only be extended) and property (4) in valid memo-
ries (versions in a log are strictly increasing).

Theorem 6.8. (set) Suppose that σ,AS ∼ (π, µ), AT . Fix i, v
int val. Suppose that σ, set(AS , i) →∗ σ′, A′S where A′S val.
Let e0 = set(AT , i, v) and suppose that (π, µ) ≤ (π0, µ0).
Consider a concurrent transition sequence from (π0, µ0), e0 to
(π′n−1, µ

′
n−1), en with en val. Then σ′, A′S ∼ (π′n−1, µ

′
n−1), en.

Proof. (Sketch) Case on whether the compare and swap in set
evaluates to true or false.

If it evaluates to false, then the implementation calls get at
each index of AT and creates a new ArrayData in µ. In this case
σ′, A′S ∼ (π′n−1, µ

′
n−1), en follows from theorem 6.7.

If it evaluates to true, then from lemma 6.5 AS and AT are
related when the compare and swap evaluates. In the source,
set(AS , i, v) evaluates to AS [i 7→ v]. In the target, suppose that
AT = &l, π[l] = (λ, k) and µ[k] = (V,A, L). As argued be-
fore, different executions of lines 49 to 51 in the implementation
of set on the same ArrayData cannot overlap. So in the target, the
implementation sets µ[k] = (V + 1, A[i 7→ v], L′) for some L′

and returns &l′ such that π[l′] = (V + 1, k). Going through the
definition of ∼ this gives us σ′, A′S ∼ (π′n−1, µ

′
n−1), &l

′.

A sequence implementation that never terminates would satisfy
all the theorems above, but would not correctly implement the
sequence specification. As such, the proof of correctness requires
proving that the sequence operations have bounded cost.

Theorem 6.9. (Bounded Cost) There exists k such that if a target
sequence AT has size n then there does not exist (π, µ) valid and
a concurrent transition sequence of length > kn starting at either
(π, µ), get(AT , i) or (π, µ), set(AT , i, v) for all i, v int val.

Proof. (Sketch) Because we copy the contents of a sequence after
n updates, where n is the size of the sequence, for some k indepen-
dent of n, set involves at most kn steps, and get involves at most
k logn steps.

6.5 Interleaved Cost Bounds
We want to show that work done in the interleaved structural dy-
namics is an upper bound for the work done in the implementa-
tion. We first sketch a linearizability-type result (Herlihy and Wing
1990).

Consider the execution E of a program. We assume a sequen-
tially consistent model of computation. Consider a sequential exe-
cution S of instructions in E that produces the same result as E.

Consider any get in the sequential execution S. From the pre-
vious subsection, the result that the program evaluates to does not
depend on how the instructions in the get are interleaved. Con-
sider line 56 in get where the version of the array is compared
with its ArrayData. If the versions match then get involves a con-
stant amount of work. Otherwise, in the worst case get involves a
binary search on n elements, where n is the size of the array. This
takes work proportional to logn.

So the execution S is upper bounded (in cost) by an execution
where the entire get is evaluated atomically at the instruction
where the versions of the array and ArrayData are compared, where
the get has constant work if the version check succeeds and logn
work if the check fails.

Similarly, consider any set in the sequential execution S. From
the previous subsection, the result that the program evaluates to
does not depend on how the instructions in the set are interleaved.
Consider line 41 in set which involves a compare and swap on the
ArrayData’s version. If the compare and swap is successful then
set involves a constant amount of work. Otherwise, in the worst
case set involves copying over n elements, where n is the size of
the array. This takes work proportional to n.

So the execution S is upper bounded (in cost) by an execution
where the entire set is evaluated atomically at the compare and
swap instruction. The set has constant work if the compare and
swap succeeds and n work if the compare and swap fails.

We can trivially assume that new is evaluated atomically since
none of the effects of new are observable until it finishes evaluating,
and new always takes time proportional to the size of the array
being created.

We can then define a relation between sequences in the source
and target. σ,AS in the source and (π, µ), AT in the target are
related if get evaluates to the same value at all indices, andAS is a
leaf sequence if and only if λ = V where AT = &l, π[l] = (λ, k),
and µ[k] = (V,A, L). We can show that the relation is preserved
by new and set and that costs of operations in the source are an
upper bound for operations in the target for related sequences.4

Since the execution was transformed so that new, get, and set
evaluate atomically, we can then prove and apply a parametricity
theorem to show that programs in the source and target evaluate to
the same value.

Converting this argument into a formal proof requires signifi-
cant work beyond the scope of the paper.

6.6 Parallel Cost Bounds
Next, we sketch the case where we have an unbounded number
of processors. In the worst case, get involves a binary search on
n elements, where n is the size of the array. This takes logn
time on a machine with an unbounded number of processors. In
the worst case, set involves copying n array elements and n log
entries where n is the size of the array. In a machine with an
unbounded number of processors, the copying can be done in logn
time. Similarly, new can execute in logn time on a machine with
an unbounded number of processors. Note that the implementation

4 set also copies the sequence data once every n times the version number
is increased, but the copying is amortized constant time.
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of new, get, and set are wait-free so these costs are independent
of what other threads are doing.

It follows that we can use the cost dynamics to compute the
work W and span S of evaluating an expression e in the source
language. We can then use theorem 3.1 to get that the cost of
evaluating e on a p-processor machine is ≤ c(W

P
+ S logP ) for

some constant c independent of e.

7. Test Results
Besides implementing our functional arrays in SML, we imple-
mented our arrays in Java and compared the performance of func-
tional arrays with regular Java arrays. Java has a relaxed memory
consistency model (not a sequentially consistent memory model),
so we added memory fences in suitable locations to prevent the
compiler and machine from reordering instructions.

We compared the performance of leaf functional arrays and
regular Java arrays of size 3,000,000 on a dual-core machine. The
arrays occupied 12mb of space, and the machine had 3mb of shared
L3 cache, so the entire arrays could not be cached. Since many
of our tests involved looping and accessing elements in the array,
without performing any useful computations, we disabled compiler
optimizations (which optimize away the loops).

We ran each test 5 times, and computed the average time. We
do not show standard errors because we were interested in orders
of magnitude, however all timings differed from the mean by at
most 15% of the mean time.

Regular Functional Slowdown
Seq. reading array 1.35s 1.50s 10.8%

Rand. reading array 8.88s 9.10s 3.4%
Seq. writing to array 2.78s 9.14s 3.3×

Rand. writing to array 5.57s 13.2s 2.4×

Table 1. Speed of leaf functional arrays vs. regular arrays in Java

In the sequential read test, after creating an empty array, we
sequentially get elements at indices 0, 1, 2, ..., starting over at 0
when we reach the end of the array. In the random read test, we
repeatedly generate a random number r and get the rth element of
the array. We performed 15,000,000 accesses in both of these tests.

In the sequential write test, starting from an empty array, we
sequentially set the elements at indices 0, 1, 2, ..., starting over at
0 when we reach the end of the array. In the random write test, we
repeatedly generate a random number r and set the rth element of
the array. We performed 5,000,000 writes in both of these tests.

The results suggest that operations on leaf functional arrays
are almost as efficient as regular arrays. The additional 2-3 times
slowdown in set is expected because we incur an additional cache
miss when we insert a log entry. Note that similar benchmarks
on alternative implementations of functional arrays, for example
persistent binary search trees, are likely to be slower by a much
larger factor.

Additionally, we compared the time taken to access elements
in leaf arrays and interior arrays in a specific benchmark. We
wrote 20,000,000 values into random indices of an array of size
2,100,000. We then read 5,000,000 values from random indices of
the leaf array and the interior array. Reading from the interior array
was 4.5× slower, which is not too much of a slowdown.

We also performed two simple tests to profile multi-threaded
accesses in our functional array implementation. In the first test, 2
threads simultaneously accessed 500,000 random elements in an
array. The total time taken was 1.77× less than a single thread
accessing 1,000,000 random elements in the array. In the second
test, 2 threads simultaneously accessed the same element 500,000
times. The total time taken was 1.76× less than a single thread

accessing the element 1,000,000 times. The results of the second
test are particularly good. We cannot expect a 2× speedup because
the element will keep moving between the L1 caches of the two
cores. However, the speedup of 1.76× means that the accesses are
not serialized (as they would be with a per-element lock).

8. Future Work
As mentioned, the correctness argument omits explicit proof that
push operations are never executed concurrently, which is guaran-
teed by the use of compare-and-swap to ensure exclusive access.
Extending the argument to account for the state of the exclusion
lock would require a substantial extension to the proof, in particular
enriching the invariant to account for the state of the lock. It would
be useful to extend the argument to account for exclusion, and to
mechanize the proof using verification methods such as those con-
sidered in Birkedal et al. (2012); Turon et al. (2013).

We do not at present have formal proofs for the cost bounds
of the sequence implementation. Current techniques for analyzing
concurrent data structures focus on proving correctness. Enhancing
these logics to account for cost is an important direction for future
research on the correctness of concurrent implementations of par-
allel algorithms.

The cost dynamics gives a tight upper bound on the costs in the
interleaved structural dynamics. However, the interleaved structural
dynamics does not give a tight bound for the cost of the sequence
implementation. In the implementation, accessing a value in an in-
terior version involves only constant work if there are a constant
number of log entries at that index, but the interleaved structural
dynamics charges n work. Extending the cost dynamics to situa-
tions that generalize beyond simply separate costs for interior and
leaf versions is a possible future direction.

It would also be interesting to extend our methods to consider
other data structures, such as unordered sets or disjoint sets, which
are often used in parallel programs. Preliminary investigations sug-
gest that similar methods would apply, but it remains to investigate
these cases further.
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