
A Dependently Typed Assembly Language

Hongwei Xi
University of Cincinnati

hwxi@ececs.uc.edu

Robert Harper
Carnegie Mellon University

rwh@cs.cmu.edu

ABSTRACT
We present a dependently typed assembly language (DTAL)
in which the type system supports the use of a restricted
form of dependent types, reaping some bene�ts of dependent
types at the assembly level. DTAL improves upon TAL,
enabling certain important compiler optimizations such as
run-time array bound check elimination and tag check elim-
ination. Also, DTAL formally addresses the issue of rep-
resenting sum types at assembly level, making it suitable
for handling not only datatypes in ML but also dependent
datatypes in Dependent ML (DML).

1. INTRODUCTION
A compiler for a realistic programming language is often

large and complex. Though it is highly desirable to establish
the correctness of such a compiler, there seems no e�ective
approach to reaching this goal currently. Instead, the on-
going research on certifying compilers attempts to partially
address this problem from a di�erent angle.
Suppose we have a compiler that translates source pro-

gram e into target code jej; if e possesses some property P
(e.g. e is terminating) that we know jej must also possess if
the compiler is implemented correctly, we can then design
the compiler to produce a veri�able certi�cate asserting that
jej possesses the property P ; if the certi�cate is successfully
veri�ed, our con�dence in the compiler is raised; otherwise,
a compiler error needs to be located and then �xed.
In DML [18, 13], a functional programming language that

supports the use of a restricted form of dependent types, a
well-typed program is both type safe (which excludes, for ex-
amples, programs that attempt to add an integer to a
oat-
ing point number) and memory safe (which excludes stray
memory accesses). If we compile a well-typed program in
DML into some target code at assembly level, the target
code should also be both type safe and memory safe. Obvi-
ously, the immediate question is how both type safety and
memory safety can be captured at assembly level. In this
paper, we address this question by designing a dependently

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICFP’01, September 3-5, 2001, Florence, Italy.
Copyright 2001 ACM 1-58113-415-0/01/0009 ...$5.00.

typed assembly language in which the dependent types can
capture both type safety and memory safety.
Speci�c approaches to certi�cation include proof-carrying

code (PCC) (adopted in Touchstone [8]) and type systems
(adopted in TIL [11]). In PCC, both type safety and mem-
ory safety are expressed by (�rst-order) logic assertions about
program variables and are checked by a veri�cation condi-
tion generator and a theorem prover, and code is then certi-
�ed by an explicit representation of the proof. In TIL, type
safety is expressed by type annotations and is checked by
a type checker and no additional certi�cation is required.
The Touchstone approach draws on established results for
veri�cation of �rst-order imperative programs. The TIL ap-
proach draws on established methods for designing and im-
plementing type systems, making it unclear (a priori) that
it can be extended to low-level languages or to account for
memory safety.
Typed Assembly Language [7] is introduced by Morrisett

et al., where a form of type system is designed at assembly-
level suitable for compiling functional languages and a com-
pilation from System F to TAL is given. TAL provides both
type safety and memory safety, but at the cost of making
critical instructions such as array subscripting atomic to en-
sure memory safety. For instance, each array subscripting
instruction in TAL involves checking whether a given array
index is between the lower and upper bounds of the array
before fetching the data item.
We enrich TAL to allow for more �ne-grained control over

memory safety so as to support array bound check elimina-
tion, hoisting bound checks out of loops, eÆcient representa-
tion of sum types, etc. We draw on the formalism of depen-
dent types to extend TAL with such a concept. However,
we cannot rely directly on standard systems of dependent
types [4] for languages with computational e�ects. For in-
stance, it is entirely unclear what it means to say that A
is an array of length x for some mutable variable x: if we
update x with a di�erent value, this changes the type of
A but A itself is unchanged! Drawing on our experience
with a restricted form of dependent types in DML [18], we
introduce a clear separation between ordinary run-time ex-
pressions and a distinguished family of index expressions,
linked by singleton types of form int(x): every integer ex-
pression of type int(x) must have value equal to x. The
index expressions are chosen from an integer domain in this
paper. Given an expression e (in DML), checking whether
e has type int(x) (written as e : int(x)) involves non-trivial
equational reasoning about the run-time behavior of e. For
instance, e : int(3) means that e, when evaluated, must eval-

{m:nat, n:nat | m <= n}
void copy(int src[m], int dst[n]) {

var: int i, length;;
length = arraysize(src);
for (i = 0; i < length; i = i + 1) {

dst[i] = src[i];
}
return;

}

Figure 1: A copy function in Xanadu

uate to 3. Clearly, 3 : int(3), and perhaps, 1+2 : int(3), but
it is, in general, undecidable whether an arbitrary (possibly
e�ectful) e has type int(3). This is where theorem proving
and constraint satisfaction comes into the picture.
It is diÆcult to read assembly code. In the following pre-

sentation, we will occasionally use programs in Xanadu [15],
a dependently typed imperatively programming language
with C-like syntax, to facilitate the presentation of DTAL.
We could also use programs in DML for this purpose but the
great di�erence between DML and DTAL would make this
alternative less desirable. The Xanadu program in Figure 1
implements a copy function on arrays. The function header
in the program states that for all natural numbers m and
n satisfying m � n the function takes two integer arrays of
sizes m and n, respectively, and returns no value. Note that
{m:nat, n:nat | m <= n} is a universal quanti�er and

int src[m] and int dst[n]
mean that src and dst are integer arrays of sizes m and
n, respectively. We use var: to start variable declaration,
which ends with ;;. Furthermore, the function arraysize

returns the size of an array. Note that the type index m is
not available at run-time and we use arraysize here to get
an integer equal to m (or literally, an integer of type int(m)).
The DTAL code in Figure 2 corresponds to the Xanadu

program. Note that r1; : : : ; r5 are registers. The instruc-
tion arraysize r3, r1 is non-standard, which means that
we store into r3 the size of the array to which r1 points.
The branch instruction bgte r5, finish jumps to the la-
bel finish if the integer in r5 is greater than or equal to
zero. Also load r5, r1(r4) means that we store into r5
the content of the ith cell in the array to which r1 points,
where i is the integer stored in r4. The store instruction is
interpreted similarly.
Every label in the code is associated with a dependent

type. The dependent type associated with the label loop
basically means that there exist a natural number m and a
natural number n satisfying m � n and a natural number i
such that r1, r2, r3, r4 are of types int array(m), int

array(n), int(m), int(i), respectively, that is, they are
an integer array of size m, an integer array of size n, an
integer of value m and an integer of value i. This enables
us to state, for instance, that the type of r1 depends on the
value in r3. The type system of DTAL guarantees that these
properties are satis�ed when the code execution reaches the
label loop.
The DTAL code is well-typed, which guarantees that the

integer in r4 is always a natural number and its value is al-
ways less than the size of the array to which r1 (r2) points
when the load (store) instruction is executed. 1 In other

1This point should become clear if one reasons about in-

words, it can be statically veri�ed that there is no need
for run-time array bound checking in this case. Although
this is a very simple example, it is nonetheless impossible
to infer that the store instruction is safe without the depen-
dent type associated with the label loop. In DTAL, array
access is separated from array bound checks and the type
system of DTAL guarantees that the execution of well-typed
DTAL can never perform out-of-bounds array access. It is
this separation that makes array bound check elimination
possible. In the case where it is impossible to prove in the
type system of DTAL whether an array access may be out-
of-bounds, run-time array bound checks can be inserted to
ensure safety.
We also address in DTAL the issue of representing sum

types at assembly level. Furthermore, we demonstrate how
dependent datatypes in DML can be translated into DTAL,
allowing, for instance, an implementation of the list reverse
function in DTAL that uses the type system of DTAL to
guarantee this function to be length-preserving.
In a realistic setting, machine-level arithmetic is often

modulo a power of 2, say, 232. This can be readily handled
in our framework. For instance, we can assign the follow-
ing type to + for handling (unsigned) addition modulo 232,
where int32 is the sort fa : int j 0 � a < 232g.

�i : int32:�j : int32:int(i) � int(j)! int((i+ j) mod 232)

The reason that we do not treat modulo arithmetic in this
paper is merely for a less involved presentation.
The main contribution of the paper is a formulation of a

dependent type system for a language at assembly level that
(a) is non-trivial for reasons outlined previously, (b) gener-
alizes TAL to allow for capturing signi�cant loop-based op-
timizations, (c) yields an application of dependent types to
managing low-level representation of sum types, setting up
some machinery needed for compiling dependent datatypes
supported in DML into assembly level, and (d) provides an
approach to certi�cation based on type-checking. One trade-
o� is that we presume that the constraint solver is part of
trusted computing base in order for the recipient to verify
the code it receives. Future work might include some means
of formally representing proofs of constraints so that the
constraint solver can be moved out of the trusted comput-
ing base.
Also, it is to be studied what are the advantages and dis-

advantages of using a DTAL-like language as the target lan-
guage of a compiler. When compared with the work in DML
and Xanadu, novelties in DTAL include:

� Datatype representation at assembly level. For in-
stance, assume that a function in DML is given the
type �a : nat:(�)list(n) ! (�)list(n), that is, it is
length preserving; how can such a property be trans-
lated into low-level code?

� Control
ow at assembly level that involves dependent
types. There are simply no jumps, conditional or un-
conditional, in either DML or Xanadu, but we have to
deal with such language features in DTAL.

In general, the design of DML and Xanadu is more con-
cerned with type inference while the design of DTAL is more
concerned with type checking as the types in DTAL are to

struction 4 and 5 in the code.

00. copy: {m:nat, n:nat | m <= n} [r1: int array(m), r2: int array(n)]
01. arraysize r3, r1 // obtain the size of source array

02. mov r4, 0 // initialize the loop count to 0

03. loop: {m:nat, n:nat | m <= n, i:nat}
[r1: int array(m), r2: int array(n), r3: int(m), r4: int(i)]

04. sub r5, r4, r3 // r5 <- r4 - r3
05. bgte r5, finish // r4 >= r3

06. load r5, r1(r4) // safe load
07. store r2(r4), r5 // safe store
08. add r4, r4, 1 // increase the count by 1
09. jmp loop // loop again

10. finish: []

11. halt // it can also return to the caller if needed

Figure 2: A copy function implemented in DTAL

be generated by a compiler. For instance, some of the typ-
ing rules in DTAL are not syntax directed, and annotations
may need to be generated by a compiler in DTAL code to
direct type-checking. We consider this to be a crucial point
in the design of DTAL.
We organize the paper as follows. The syntax of DTAL

is given in Section 2. We then form evaluation and typ-
ing rules so as to assign dynamic and static semantics to
DTAL, respectively. We, however, postpone until Section 3
the treatment of constraints, which are generated during
type-checking programs in DTAL. In Section 4, we give a de-
tailed example explaining how type-checking is performed in
DTAL. The soundness of the type system of DTAL is stated
in Section 5 and an extension of DTAL to handle sum types
is given in Section 6. We then in Section 7 mention a type-
checker for DTAL and a compiler which compiles Xanadu, a
language resembling Safe C [9] and Popcorn [6] with C-like
syntax, into DTAL. The rest of the paper discusses some
closely related work and future directions.

2. DTAL
In this section we present a dependently typed assembly

language (DTAL), forming both dynamic and static seman-
tics for DTAL.

2.1 Syntax
We assume that there are a �xed number nr of regis-

ters. A register �le R is a �nite mapping from the set
f0; 1; : : : ; nr � 1g into types. The intent is to capture some
type information on registers with R. The syntax for DTAL
is given in Figure 3. Note that stacks, which are treated in
[16], are omitted here for simplicity, though we do use stacks
in some code example. One may simply think of a stack as
an in�nite list of registers. Also, we omit tuples, which can
be handled as in TAL.
Intuitively speaking, dependent types are types which de-

pend on the values of language expressions. For instance,
we may form a type (int)array(x) to mean that every heap
pointer of this type points to an integer array of size x,
where x is the expression on which this type depends. We
use the name type index expression for such an expression.
We restrict type index expressions to an integer domain.
The justi�cation for this choice is that we have used this
domain to eliminate array bound checks e�ectively [17].

We present the syntax for type index expressions in Fig-
ure 4, where we use a to range over type index variables and
i for �xed integers. Note that the language for type index
expressions is typed. We use sorts for the types in this lan-
guage in order to avoid potential confusion. We use � for the
empty index context and omit the standard sorting rules for
this language. The subset sort fa :
 j Pg stands for the sort
for those elements of sort
 satisfying the proposition P . For
example, we use nat as an abbreviation for fa : int j a � 0g.
We postpone the treatment of constraint satisfaction in

this type index language until Section 3 for simplicity of
exposition. However, we informally explain the need for
constraints through the DTAL code in Figure 2. Notice that
register r4 is assumed to be of type int(i1) for some natural
number i1 when the execution reaches the label loop. The
type of r4 changes into int(i1 + 1) after the execution of
the instruction add r4, r4, 1. Then the execution jumps
back to the label loop. This jump requires it to be veri�ed
(among many other requirements) that r4 is of type int(i2)
for some natural number i2. Therefore, we need to prove
that i1 + 1 is a natural number under the condition that i1
is a natural number. This is a constraint, though it is trivial
in this case. In general, type-checking in DTAL involves
solving a great number of constraints of this form.
We use top for the type of uninitialized registers and as-

sume that a register is initialized if it is not of type top. A
block B = ����:(R; I) roughly means that B is polymor-
phic in type variable context � and index variable context
�. We may omit �� (��) if � (�) is empty. In order to
execute the block on an abstract machine, we need to �nd
substitutions � and � for � and �, respectively, such that
the current machine state entails the state R[�][�] and then
execute I[�][�]. The entailment of R means that the type
assignment to registers in R correctly re
ects the types of
registers in the current abstract machine. For instance, if R
indicates that an integer is in a register r, then an integer
must be stored in r in the abstract machine. A state type
state(��:��:R), when associated with a label, means that
there are substitutions � and � for � and �, respectively,
such that the current abstract machine state entails R[�][�]
whenever the execution reaches the label. The explanation
here assumes that we carry types around when we evaluate
DTAL code. Of course, we do not actually need to carry
types around in practice when we evaluate DTAL code as it

type variables �
state types � ::= state(��:��:R)
reg�le types R ::= [r0 : �0; : : : ; rnr�1 : �nr�1]
types � ::= � j � j top j unit j int(x) j � array(x) j 9�:�
type erasures � ::= � j top j unit j int j � array
type variable contexts � ::= �tv j �; �
registers r ::= r0; : : : ; rnr�1

instructions ins ::= aop rd; rs; v j bop r; v j arraysize rd; rs j
mov r; v j load rd; rs(v) j store rd(v); vs j
newarray[�] r; r0; r00 j jmp v j halt

�xed integers i ::= � � � j �1 j 0 j 1 j � � �
constants c ::= hi j i j l
values v ::= c j r
instruction sequences I ::= jmp v j halt j ins; I
blocks B ::= ��:��:(R; I)
arithmetic ops aop ::= add j sub j mul j div
branch ops bop ::= beq j bne j blt j blte j bgt j bgte
labels l
label mappings � ::= fl1 : �1; : : : ; ln : �ng
programs P ::= l1 : B1; : : : ; ln : Bn

Figure 3: Syntax for DTAL

index variables a
index expressions x; y ::= a j i j x+ y j x� y j x � y j x� y
index propositions P ::= x < y j x � y j x = y j x � y j x > y j :P j P1 ^ P2 j P1 _ P2

index sorts
 ::= int j fa :
 j Pg
index contexts � ::= � j �; a :
 j �;P

Figure 4: Syntax for type index expressions

P = (copy : B1; loop : B2; finish : B3)
�(P) = fcopy : �1; loop : �2; finish : �3g
J(P) = copy; I1; loop; I2; finish; halt
B1 = �(m : nat; n : nat;m � n):(R1; I1)
B2 = �(m : nat; n : nat;m � n; i : nat):(R2; I2)
B3 = (Rempty; halt)
�1 = state(�(m : nat; n : nat;m � n):R1)
�2 = state(�(m : nat; n : nat;m � n; i : nat):R2)
�3 = state(Rempty)

Figure 5: The representation of the program in Fig 2

is clear types play no rôle in evaluation of DTAL code. This
is precisely like the case where a well-typed ML program is
evaluated.
We use J for a general instruction sequence in the follow-

ing presentation, which consists of a sequence of instructions
or labels. Given a block B = ��:��:(R; I), we write �(B)
for state(��:��:R) and I(B) for I. Also we de�ne functions
� and J on program P = l1 : B1; : : : ; ln : Bn as follows.

�(P) = fl1 : �(B1); : : : ; ln : �(Bn)g
J(P) = l1; I(B1); : : : ; ln; I(Bn)

We refer �(P) as the label mapping of P , in which we re-
quire that all labels be distinct. For a valid program P ,
all labels in J(P) must be declared in �(P). In all the
examples of DTAL code that we present in this paper, we

attach the state type � of a label l to the label explicitly
in the program, and the label mapping of the program can
be immediately extracted from the code if necessary. We
explain these de�nitions in Figure 5, where the program P
is given in Figure 2; I1 and I2 are the sequences of instruc-
tions between the labels copy and loop and those between
labels loop and finish, respectively. R1 is a mapping which
maps 1 and 2 to (int)array(m) and (int)array(n), respec-
tively, and R1(i) = top for i 6= 1; 2; R2 maps 1; 2; 3 and 4 to
(int)array(m), (int)array(n), int(m) and int(i), respectively,
and R2(i) = top for i 6= 1; 2; 3; 4; Rempty(i) = top for i in
all its domain. Note that we write int for 9a : int:int(a),
that is, int is the sum of all singleton types int(a), where a
ranges over integers.
The following erasure function k � k transforms types into

type erasures, that is, non-dependent types.

ktopk = top kunitk = unit k�k = � kint(x)k = int
k�k = unit k� array(x)k = k�k array k9�:�k = k�k

It can be readily veri�ed after the presentation of DTAL that
DTAL becomes a TAL-like language if one erases all syntax
related to type index expressions. In this TAL-like language,
the erasure of a program is well-typed if it is well-typed in
DTAL. In this respect, DTAL generalizes TAL. We stress
the erasure property because it indicates that DTAL does
not make more programs typable than TAL but, instead,
can assign more accurate types to programs.

2.2 Dynamic Semantics

k�k = (�)array J(ic) = newarray[�] r; r0; r00 M(r0) = n � 0 h 62 dom(H)

(ic;M)!P (ic+ 1;M[h 7! (M(r00); : : : ;M(r00))][r 7! h])
(eval-newarray)

J(ic) = load rd; rs(v) H(M(rs)) = (hc0; : : : ; hcn�1) M(v) = i 0 � i < n

(ic;M)!P (ic+ 1;M[rd 7! hci])
(eval-load)

J(ic) = store rd(v); vs M(rd) 7! h M = (H;R)
H(h) = (hc0; : : : ; hcn�1) M(v) = i 0 � i < n M(vs) = hc

(ic;M)!P (ic+ 1; (H[h 7! (hc0 : : : ; hci�1; hc; hci+1; : : : ; hcn�1)];R))
(eval-store)

J(ic) = halt

(ic;M)!P HALT
(eval-halt)

Figure 6: Some evaluation rules for DTAL

We use an abstract machine for assigning operational se-
mantics to DTAL, which is a standard approach. A machine
stateM is a pair (H;R), whereH andR are �nite mappings
which stand for heap and register �le, respectively.
The domain dom(H) of H is a set of heap addresses, the

domain dom(R) of R is f0; : : : ; nr � 1g. We do not specify
how a heap address is represented, but the reader can simply
assume it to be a natural number. Given h 2 dom(H), H(h)
is a tuple (hc0; : : : ; hcn�1) such that for i = 0; : : : ; n � 1,
every hci is either a heap address or a constant. Given
i 2 dom(R), R(i) is either a heap address or a constant.
Given a program P , � = �(P) associates every label in

J = J(P) with a state type �. We use length(J) for the
length of the sequence J , counting both instructions and
labels. We use J(i) for the ith item in J , which is either
an instruction or a label. Also we write J�1(l) for i if l
is J(i). This is well-de�ned since all labels in a program
are distinct. We de�ne a P -snapshot Q as either HALT or
a pair (ic;M) such that 0 � ic < length(J). The relation
(ic;M)!P (ic0;M0) means that the current machine state
M transforms into M0 after executing the instruction J(ic)
and the instruction counter is set to ic0.
Given M = (H;R), we de�ne the following.

M(v) =

8>><
>>:

hi if v is hi;
i if v is integer i;
l if v is label l;
R(i) if v is the ith register ri.

Given a �nite mapping f and an element x in the domain of
f , we use f(x) for the value to which f maps x, and f [x 7! v]
for the mapping such that

f [x 7! v](y) =

�
f(y) if y is not x;
v if y is x.

Clearly, f [x 7! v] is also meaningful when x is not already in
the domain of f . In this case, we simply extend the domain
of f with x.
We use the notation R[r 7! hc] to mean that we update

the content of register r with hc, that is, R[r 7! hc] is really
R[i 7! hc], where i is the numbering of register r. Also we
use M[r 7! hc] for (H;R[r 7! hc]) given M = (H;R).
We present some evaluation rules for DTAL in Figure 6.

We do not consider garbage collection in this abstract ma-
chine, and therefore the typing of the heap can only be af-
fected by the memory allocation instructions newarray. No-
tice that the rules (eval-load) and (eval-store) imply that

an out-of-bounds array access stalls the abstract machine.
These rules also indicate that the length of the tuple H(h)
can always be determined for every h 2 dom(H) at run-
time. We will soon design a type system for DTAL and prove
that 0 � i < n in both rules (eval-load) and (eval-store)
always holds when these rules are applied during the eval-
uation of a well-typed DTAL program. Therefore, there is
no need for determining the length of the tuple H(h) for ev-
ery h 2 dom(H) if we only evaluate well-typed DTAL pro-
grams. In the case where it cannot be determined in the type
system of DTAL whether a subscript is within the bounds
of an array, the array subscripting instruction is ill-typed
and thus rejected. This sounds like a severe restriction, but
it is not because we can always insert run-time array bound
checks to make the instruction typable in DTAL (we give
such an example at the end of Section 2.3).
The rule (eval-newarray) is non-standard. If k�k is

of form (�)array, then newarray[�]r; r0; r00 allocates n new
word-sized memory on heap, where n is the integer stored in
r0, and initializes each word with the content in r00 and then
stores a point in r which points to the allocated memory. We
emphasize that hmust be new in the rule (eval-newarray),
that is, h is not already in the domain of H. The typing con-
sequences of this memory allocation instructions is explained
in the next section, where the typing rule (type-newarray)
is introduced.
Let us call a program well-structured if its evaluation halts

normally (when the rule (eval-halt) is applied) or continues
forever. In other words, the evaluation of a well-structured
program can never be stuck. Certainly it is undecidable to
determine precisely whether a program is well-structured,
but this is also less relevant. We intend to �nd a conser-
vative approach to examining whether a program is well-
structured. Such an approach must be sound, that is, it
can only accept well-structured programs. For instance, a
straightforward approach is to adopt a method based on
TAL for type-safety and then insert run-time checks for all
array operations. Unfortunately, this approach seems too
conservative, making it impossible to eliminate array bound
checks. Notice that this is essentially the case in all JVML
veri�ers. In the next section, we present a less conservative
approach based on a dependent type system.

2.3 Static Semantics
We present the typing rules for DTAL in this section. Note

that we use an array representation for a register �le R. We

�; �;R `� hi : unit
(type-unit)

�;�;R `� i : int(i)
(type-int)

�(l) = �

�; �;R `� l : �
(type-label)

0 � i < nr

�; �;R `� ri : R(i)
(type-reg)

�; �;R `� v : �1 �; � j= �1 � �2

�; �;R `� v : �2
(type-sub)

Figure 7: Typing rules for integers, labels, registers

omit the standard rules for forming legal types and assume
that all types are well-formed in the following presentation.
We use a judgment of form �; �;R `� v : � to mean that

value v is assigned type � under the context �; �;R and
the label mapping �. The label mapping � is always �xed
when we type-check a program, and therefore we will omit
it if this causes no confusion. The rules in Figure 7 are for
typing unit, integers, labels and registers.
We present some typing rules for DTAL in Figure 8. We

use � and � for index and type variable substitutions, re-
spectively, which are de�ned as usual. Given a term � such
as a type or a register �le, we write �[�] (�[�]) for the result
of applying � (�) to �. A judgment of form �; �;R ` I
means that the instruction sequence I is well-typed under
context �; �;R. The notation R[r : �] means that we up-
date the type of register r to � in R, that is, if r is the ith
register, then we update the value of R(i) with � . We use
the rule (type-newarray) for typing arrays allocated on
heap. We have explained in the previous section how mem-
ory allocation is performed. Also we require that the index
variables declared in �0 in the rule (type-open-reg) have
no free occurrence in the conclusion of the rule.
The typing rule (type-add) indicates that the type of reg-

ister rd become int(x+y) after the instruction add rd; rs; v is
executed, where we assume that rs and v have types int(x)
and int(y), respectively. If arithmetic over
ow is to be con-
sidered, we may require the instruction to be followed by
an instruction that traps over
ow; if an over
ow occurs, we
jump to a subroutine to handle it; otherwise, we know rd
indeed has type int(x+ y).
We give some explanation on the rule (type-beq). We

use � ` � : �0 to mean that � is a substitution for �0 under
�, that is, for every a :
 declared in �0, � ` �(a) :
 is
derivable and for every P in �0, � j= P [�] is satis�able.
The explanation for �;� ` � : �0 is similar. Suppose that
we type-check beq; r; v; I under �; �;R; we �rst check that
r has type int(x) for some x; we then type-check I under
�; x 6= 0;�;R (x 6= 0 is added into � since the jump is not
taken in this case); we also verify that v has a state type
and �; x = 0;�;R entails the state type (x = 0 is added to
� since the jump is taken in this case). The typing rules for
other conditional jumps are similar.
We sketch a case where a DTAL program that does not

type-check can be modi�ed to type-check with the insertion
of a run-time array bound check. Assume that we want
to type-check load rd; rs(v); I under �; �;R, and we have
veri�ed that rs and v have types � array(x) and int(y), re-

spectively, and we can prove � j= 0 � y but not � j= y < x;
we can then insert the following (where subscript is the en-
try to some routine that handles errors) in front of the load
instruction, and this insertion guarantees that x�y > 0 is al-
ready added to � when the load instruction is type-checked,
making sure that y < x is provable.

arraysize r; rs; sub r; r; v; blte r; subscript;

A dual case is to remove a redundant array bound check. For
instance, we want to type-check blt r; subscript; I under
�; �;R; suppose that r has type int(x) for some x and � j=
x � 0 can be proven; this implies that blt r; subscript can
never branch and thus this instruction can be removed.
We use ` P [well-typed] to mean that a program P = (l1 :

B1; : : : ; ln : Bn) is well-typed and the following rule is for
typing a program, where � is the label mapping of P .

`� B1[well-typed] � � � `� Bn[well-typed]

` P [well-typed]

Given a block B = ��:��:(R; I), the rule for deriving `�
B[well-typed] is given as follows.

�;�;R `� I

`� B[well-typed]
(type-block)

3. TYPE EQUALITY AND COERCION
As we have mentioned before, a novelty in DML is the

separation between language expressions and type index ex-
pressions. This notion of separation seems indispensable
when we intend to form a dependent type system for an
imperative language such as DTAL. For instance, it is com-
pletely unclear at the moment how a register can be used as
a type index expression, since it is mutable. The separation
allows us to simply avoid such a problematic issue. Another
advantage is that the separation enables us to choose a rel-
atively simple domain for type index expressions so that
constraints (on type index expressions) generated during
type-checking can be eÆciently solved. This is crucial to
the design of a practical type-checking algorithm. In this
section, we present type equality and coercion, which lead
to constraint generation in type-checking.
In the presence of dependent types, it is no longer trivial

to check whether two types are equivalent. For instance,
we have to prove that the constraint 1 + 1 = 2 in order to
claim int(1+ 1) is equivalent to int(2). In other words, type
equality is modulo constraint satisfaction. Similarly, type
coercion also involves constraint satisfaction.
We use � for index constraints,

� ::= > j P j P � � j 8a :
:�

and � j= P for a satis�ability relation, stating that (�)P is
satis�able in the domain of integers, where (�)P is de�ned
below.

(�)� = � (�; a : int)� = (�)8a : int:�
(�; a : fa :
 j Pg)� = (�; a :
)(P � �)

(�; P)� = (�)(P � �)

For instance, the satis�ability relation a : nat; b : int; a+1 =
b j= b > 0 holds since the following formula is true in the
integer domain.

8a : int:a � 0 � 8b : int:a+ 1 = b � b > 0

�; �0; �;R[r : �] ` I

�; �;R[r : 9�0:�] ` I
(type-open-reg)

�; �;R ` r0 : int(x) � j= x � 0 �; �;R ` r00 : � �; �; (R[r : � array(x)]) ` I

�;�;R ` newarray[�] r; r0; r00; I
(type-newarray)

�; �;R ` rs : int(x) �; �;R ` v : int(y) �; �; (R[rd : int(x+ y)]) ` I

�; �;R ` add rd; rs; v; I
(type-add)

�; �;R ` rs : � array(x) �; �;R ` v : int(y) � j= 0 � y < x �;�;R[rd : �] ` I

�; �;R ` load rd; rs(v); I
(type-load-array)

�; �;R ` rd : � array(x) �; �;R ` v : int(y) � j= 0 � y < x �; �;R ` vs : � �; �;R ` I

�; �;R ` store rd(v); vs; I
(type-store-array)

�; �;R ` v : state(��0:��0:R0) � ` � : �0 �; � ` � : �0 �; �;R j=c R
0[�][�]

�; �;R ` jmp v; I
(type-jmp)

�; �;R ` r : int(x) �; x 6= 0;�;R ` I �; �;R ` v : state(��0:��0:R0)
�; x = 0 ` � : �0 �; x = 0;� ` � : �0 �; x = 0;�;R j=c R

0[�][�]

�; �;R ` beq r; v; I
(type-beq)

Figure 8: The typing rules for DTAL

�; � ` � : �

�; � j= � � top
(coerce-top)

� 2 �

�; � j= � � �
(coerce-type-var)

� j= x = y

�; � j= int(x) � int(y)
(coerce-int)

�; �0; � j= �1 � �2

�;� j= 9�0:�1 � �2
(coerce-exi-ivar-l)

� ` � : �0 �; � j= �1 � �2[�]

�; � j= �1 � 9�0:�2
(coerce-exi-ivar-r)

�; � j= �1 � �2 � j= x = y

�; � j= �1 array(x) � �2 array(y)
(coerce-array)

�; � j= R(i) � R0(i) for 0 � i < nr

�; �;R j=c R
0

(coerce-reg)

Figure 9: Some type coercion rules for DTAL

We currently only accept linear constraints, using linear in-
teger programming to solve them. Though the constraint
satisfaction is NP-complete, most constraints in practice are
eÆciently solved.
We write �; � j= �1 � �2 to mean that types �1 and �2 are

equal under context �; �. Similarly, we write �; � j= �1 � �2
to mean that type �1 coerces into type �2 under context
�; �. Note that type coercion can simply be view as a form
subtyping here. Some rules for type coercion are presented
in Figure 9. Notice that for the rule (coerce-exi-ivar-l),
there is an obvious side condition requiring that the type
�2 does not contain free occurrences of the index variables
declared in �0.
The rules for type equality are similar and thus omitted.
For instance, the following derivation shows that the type

9a : nat:int(a) coerces into the type 9b : int:int(b), where the
the top applied rule is (coerce-exi-ivar-r) and the other is
(coerce-exi-ivar-l).

a : nat j= a : int a : nat; � j= int(a) � int(a)

a : nat; � j= int(a) � 9b : int:int(b)

�; � j= 9a : nat:int(a) � 9b : int:int(b)

We have so far �nished the presentation of the type system
of DTAL, which is rather involved. We will use a concrete
example in the next section to provide some explanation on
type-checking before proceeding to establish the soundness

of the type system.

4. AN EXAMPLE
We demonstrate some key steps involved in type-checking

the DTAL code in Figure 2. We stick to the notations
given in Figure 5. Let insi be the ith instruction and I2;i
be insi; : : : ; ins9 for 4 � i � 9. In order to derive `
B2[well-typed], that is, to type block B2, we need to derive
the following.

m : nat; n : nat;m � n; i : nat; �;R2 ` I2

Then there must be derivations Di with a conclusion of form
�i; �i;Ri ` I2;i for i = 4; : : : ; 9. We list these contexts
�i; �i;Ri in Figure 10. In the derivation of �6; �6;R6 ` I6,
the last rule is (type-load-array), where we need to prove
�6 j= 0 � i < m. This is trivial since i : nat and i < m are
assumed in �6. Similarly, we need to prove �7 j= 0 � i < n
when deriving �7; �7;R7 ` I7. This is also trivial since
m � n; i : nat; i < m are assumed in �7.

5. SOUNDNESS
By the type soundness of DTAL, we essentially mean that

the evaluation of well-typed DTAL code either halts nor-
mally (when the instruction halt is executed) or goes on
inde�nitely. The main ingredient in the proof of the type

No. � � R
04 m : nat; n : nat;m � n; i : nat � R2

05 m : nat; n : nat;m � n; i : nat � R2[r5 : int(i�m)]
06 m : nat; n : nat;m � n; i : nat; i�m < 0 � R2[r5 : int(i�m)]
07 m : nat; n : nat;m � n; i : nat; i�m < 0 � R2[r5 : int]
08 m : nat; n : nat;m � n; i : nat; i�m < 0 � R2[r5 : int]
09 m : nat; n : nat;m � n; i : nat; i�m < 0 � R2[r5 : int][r4 : int(i+ 1)]

Figure 10: Contexts �k; �k;Rk for k = 4; : : : ; 9

�; x = 0;� j= �0 � � � � � �; x = n� 1;� j= �n�1 � �

�; � j= choose(x; �0; : : : ; �n�1) � �
(coerce-choose-l)

�; � j= � � �i � j= x = i

�; � j= � � choose(x; �0; : : : ; �n�1)
(coerce-choose-r)

Figure 11: Additional type coercion rules for sum types

soundness of DTAL is an entailment relation, for which we
present a brief explanation.
Given a program P , we use J for the list consisting of

labels and instructions in P and J [ic] for the suÆx of J
starting with the icth item in J . Assume �;�;R ` J [ic]
is derivable and there are substitutions � and � for � and
�, respectively, such that M j= R[�][�] holds, that is, M
entails R[�][�]. We use H j= hc : � to mean that hc has
type � under the heap mapping H. For instance, we have
H j= i : int(i). The following rule (heap-array) is for
assigning array types.

H(h) = (hc0; : : : ; hcn�1) H j= hc0 : � � � � H j= hcn�1 : �

H j= h : (�)array(n)

We write (H;R) j= R, that is, (H;R) entails R, if H j=
R(i) : R(i) holds for every i 2 dom(R). In other word,
(H;R) j= R means that the content in each register does
have the type assigned by R.
We state the type soundness theorem for DTAL below.

Theorem 5.1. Let P = (l1 : B1; : : : ; ln : Bn) be a pro-
gram and � = �(P). Assume ` P [well-typed] is derivable
and �(l1) = Rempty, where Rempty maps each register to
type top. For every machine state M0, If (0;M0) !�

P

(ic;M) then either (ic;M)!P HALT, or (ic;M)!P (ic0;M0)
for some ic0 and M0. In other words, the execution of a
well-typed program in DTAL either halts normally or runs
forever.

The proof of this theorem is involved. We have to deal with
a subtle issue involving shared pointers and impose some
regularity condition on the heap mapping H in a machine
state in order to establish the result. We give some brief
explanation on this issue.
SupposeH(h) = (0) for some h, R(0) = R(1) = h, R(0) =

(int)array(1) and R(1) = (nat)array(1), where we write nat
for 9a : nat:int(a). We can now derive (H;R) j= R since
(0) can be viewed as both an integer array of size 1 and a
natural number array of size 1. Clearly, if we store a negative
integer into the array pointed by r1, then the type of r2 is
invalidated because it no longer points to a natural number
array.

Assume �; �;R ` J [ic] is derivable, M entails R[�][�] for
some � and � and (M; ic)!P (M0; ic0), what we essentially
need to prove is that �0; �0;R0 ` J [ic0] is derivable for some
�0 and �0 such that M0 entails R0[�0][�0]. Unfortunately,
the above example shows that this is not provable as it is
simply false. In order to overcome the problem, we impose a
regularity condition on the derivation of M j= R. Roughly
speaking, we associate type � with heap address h whenever
the rule (heap-array) is applied and a derivation is regular
if a heap address is associated with at most one type. This
notion of regularity is essentially the same as the notion of
store typing in [2], which was used to address the circularity
of references in ML. Clearly, there is no regular derivation
for the above example: in order to derive M j= R, we have
to associate h with at least two distinct types int (when we
derive H j= R(0) : R(0)) and nat (when we derive H j=
R(1) : R(1)).
In essence, by a regular derivation of (H;R) j= R, we

mean that there is a heap typing that maps each heap ad-
dress h 2 dom(H) to a �xed type and under this typing
R(i) can be assigned the type R(i), that is, the value in each
register has the type that is delcared for the register. As a
heap typing can never be altered (but it may be extended
by the execution of newarray), We can then prove that if
M j= R[�][�] has a regular derivation then M0 j= R0[�0][�0]
also has a regular derivation, where we use the notation in
the above paragraph. The proof bears a great deal of simi-
larity to the soundness proof in [2].
In summary, if we start with an entailment that has a reg-

ular derivation, then all entailments in the proof of the type
soundness of DTAL have regular derivations. Therefore, the
scenario of shared pointers mentioned previously can never
occur. This allows us to establish Theorem 5.1. Note the
issue here, which we think is rather subtle to recognize, does
not occur in either DML or TAL. Please see [16] for details.

6. EXTENSION WITH SUM TYPES
The programmer can declare in Xanadu a polymorphic

union type as in Figure 12 for representing lists and then im-
plement the length function. The concrete syntax <'a> list

is for the type of lists in which all elements are of type 'a

('a) union list with nat =
{Nil(0); {n:nat} Cons(n+1) of 'a * <'a>list(n)}

('a){n:nat} int(n) length (xs: <'a> list(n)) {
var: int x = 0;;
invariant:
[i:nat,j:nat | i+j=n] (xs:<'a>list(i), x:int(j))
while (true) {

switch(xs) {
case Nil: return x;
case Cons(_, xs): x = x + 1;

}
}
exit; /* can never be reached */

}

Figure 12: A list length function in Xanadu

(we use 'a for a type variable). Note that the union types
in Xanadu correspond to datatypes in ML and the values
of union types are decomposed through pattern matching.
We informally explain the meaning of the switch statement
in Figure 12; if xs matches the pattern Nil, the value of
x is returned; if xs matches the pattern Cons(_, xs) (_ is
a wildcard), then we update xs with its tail and increase
x by 1. The type following the keyword invariant states
an invariant at the program point: xs is a list of length i
and x is an integer of value j for some integers i; j satisfying
i+ j = n, where n is the length of the function argument.
A union type is internally represented as a sum type. In

the case above, a tag is used to indicate whether the out-
most constructor of a list is Nil or Cons. We can compile the
length function essentially in the following manner; we ini-
tialize x with 0 and start the following loop; given a list xs,
we perform a tag check to see whether it is Nil; if it is, we
return x; otherwise, we know that the outmost constructor
of xs must be Cons and it is unnecessary to perform another
tag check; we can simply update xs with its tail, increase x
by 1 and loop again.
We now extend the system of DTAL to handle sum types.

In an implementation, we can use a pair on heap to represent
a sum type sum(�0; : : : ; �n�1), which is often written as �0+
� � �+ �n�1 in the literature. The �rst element of the pair is
an integer i such that 0 � i < n and the second element
is of type �i. We can use choose(x; �0; : : : ; �n�1) to stand
for a type which must be one of �0; : : : ; �n�1, determined
by the value of x: the type is �i if x = i. Also we present
some additional rules in Figure 11 for handling type coercion
involving sum types (rules for type equality are omitted).
Now we can de�ne sum(�0; : : : ; �n�1) as:

9a : natn:int(a) � choose(a; �0; : : : ; �n�1);

that is, a value of type sum(�0; : : : ; �n�1) is represented as
a pair in which the �rst part is a tag determining the type
of the second part. We present an example to illustrate the
use of sum types.
In Figure 12, we declare a dependent datatype in Xanadu

for lists; Nil is given the type <'a> list(0), that is, it is a
list of length 0; Cons is assigned the type

fn:natg 'a * <'a> list(n) -> <'a> list(n+1);

indicating that Cons takes an element and a list of length n
and yields a list of length n+ 1. This leads us to represent

the type constructor list as follows,

�t:��:�n : nat:(9�0:unit) + (9�1:� � (�)t(a));

where � is the �xed point operator and �0 is n = 0 and �1
is a : nat; a + 1 = n. If we unfold (�)list(n), we obtain the
type (9�0:unit) + (9�1:� � (�)list(a)), which can be folded
into (�)list(n). It is straightforward to apply this strategy
to a general case of dependent datatypes. We provide two
auxiliary instructions fold[�] r and unfold r to indicate the
need for folding the type of r into � and unfolding the type
of r, respectively.
The DTAL code in Figure 13 corresponds to the Xanadu

program in Figure 12. The state type following the label
length indicates that the top element on the stack is a list
and the second one is a label; the list is the argument of
the function and the label is the return address (pushed
onto the stack by the caller); the type of the label states
that the top element of the stack is an integer, which is
to be the return value of the function, and the rest of the
stack is the same as the current stack excluding the top
two elements. The state type following the label length
precisely indicates that this is a function that accepts a list
of length n and return an integer of value n. We regard the
representation of dependent datatypes at assembly level as a
signi�cant contribution, which makes it possible to perform
compilation with dependent types for programs in DML and
thus certify more program properties.
The DTAL code in Figure 13 is unsatisfactory for the

following reason. In practice, the list constructors are usu-
ally represented without tags for both eÆciency and mem-
ory concern. In other words, we can interpret (�)list as
9a : nat2:choose(a;unit ; � � (�)list). The reason is that
it can be readily tested in practice whether a value equals
hi (which is commonly represented as a null pointer), and
therefore there is no need for a tag. This optimized list rep-
resentation can also be handled in DTAL. Please see [16] for
details.
The treatment of sum types extends the one in [3]. There

indexed sums �1 +i �2 (i = 1; 2) are introduced for types �1
and �2 in addition to the standard sum �1 + �2. The typing
rules for indexed sums essentially state that for i = 1; 2,
ini(e) : �1 +i �2 is derivable if e : �i is, where ini is used
to indicate which rule is applied. To relate indexed sums to
sum, there are subtyping rules for making �1+i �2 a subtype
of �1 + �2 for i = 1; 2. In DTAL, �1 +i �2 can be interpreted
as int(i� 1) � choose(i� 1; �1; �2) and the subtyping relation
can be derived with the use of type coercion rules.

7. IMPLEMENTATION
We have prototyped a type-checker and an interpreter for

DTAL and veri�ed many examples, providing a proof of
concept. The implementation and examples are available
on-line [14].
We have also prototyped a compiler which produces DTAL

code from source programs in Xanadu, a language with C-
like syntax in which only top level functions are supported
and no pointers are allowed. Xanadu shares many common
features with languages like Safe C [9] and Popcorn [6]. The
most signi�cant feature of Xanadu is its type system, which
supports a restricted form of dependent types that are sim-
ilar to those in DTAL, though registers are replaced with
local variables in a program. Please see [15] for more de-
tails.

length: ('r, 'a){n:nat} [sp: 'a list(n) :: [sp: int(n) :: 'r] :: 'r]
// [sp: int(n) :: 'r] represents the state type of the return

// address (label) which is pushed on the stack by the caller.
// Note that 'a list is represented as a dependent type internally
pop r1 // pop the list argument into r1
mov r2, 0 // initialize r2

loop: ('r, 'a){i:nat, j:nat | i+j=n} [r1: 'a list(i), r2: int(j), sp: [sp: int(n) :: 'r] :: 'r]

unfold r1 //
load r3, r1(0) // load list tag into r3 (r3 = 0 or 1)
beq r3, finish // goto finish if r1 is empty (r3 = 0)
load r1, r1(1) // r1: 'a * 'a list(i-1) (r3 = 1 since r3 is not 0)
load r1, r1(1) // move list tail into r1
add r2, r2, 1 // r2: int(j+1)

jmp loop // loop again

finish: ('r){n:nat} [r2: int(n), sp: [sp: int(n) :: 'r] :: 'r]
pop r1 // return address pops into r1
push r2 // result pushes onto the stack
jmp r1 // return

Figure 13: An implementation of the length function on lists in DTAL

The compilation is like compiling C into a typical untyped
assembly language except that here we need to construct
state types for labels. We have compiled all the examples in
this paper.2

In Xanadu, we allow the programmer to provide loop in-
variants in the form of dependent types so that signi�cantly
more array bound checks can be eliminated in practice. In
Figure 14, the top part is a program in Xanadu, which ini-
tializes an array with zeros, and the rest is the DTAL code
compiled from the program. The function header:

fn:natg unit initialize(int vec[n])

indicates that for every natural number n, initialize takes
an integer array of size n and returns no value. The type
following the keyword invariant essentially states that i
and l are of types int(a) and int(b), respectively, where a
and b are natural numbers satisfying a + b = n. Note that
n is the size of array vec.
The Xanadu program can be compiled into the DTAL

code excluding the state types for labels in a standard man-
ner. This part is exactly like compiling a corresponding C
program. We brie
y mention the construction of the state
types in Figure 14. Notice that the state type attached
to loop is essentially translated from the type annotation in
the source program. We simply modify the annotation to in-
clude the types of variables not mentioned and then replace
the variables with the registers to which these variables are
mapped. We expect to formalize such a compilation strat-
egy in future and show that a well-typed Xanadu program
can always be thus compiled into well-typed DTAL code.
At present, we may merely view the type annotations in
Xanadu as compilation hints to generating well-typed DTAL
code.

8. RELATED WORK
2We currently do not have a pretty printer for the generated
DTAL code, and therefore we took the liberty to prettify the
DTAL code presented in this paper.

There is a great deal of ongoing research on certifying com-
pilers. Examples of certifying compilers for type and mem-
ory safety include various ones compiling Java into Java vir-
tual machine language (JVML), Touchstone compiling Safe
C into a form of proof-carrying code (which we call TPCC)
[9], TIL [11] and its successor TILT and FLINT/ML [10]
compiling SML [5] into a typed intermediate language [11],
and ROML [12] compiling a restricted set of ML into a por-
tion of C that is type safe.
DTAL is an extension of TAL with dependent types, and

it can be readily transformed into a TAL-like language if
one erases all syntax related to type index expressions. In
this respect, DTAL generalizes TAL. In DTAL, initializa-
tion is treated di�erently from in TAL. A type in TAL can
be annotated with a
ag to indicate the initialization sta-
tus of a value with this type, but the type top is used in
DTAL to represent the type of all uninitialized values. This
strategy works because every array (and tuple if presented)
is initialized upon allocation in DTAL.
The notion of proof-carrying code introduced in [8] can

address the memory safety issue in mobile code as follows.
The essential idea is to generate a proof asserting the mem-
ory safety property of code and then attach it to the code.
The proof carried by the code can then be veri�ed before
execution. This is an attractive approach but a challenging
question remains, that is, how to generate a proof to as-
sert memory safety property of a (large and complex) pro-
gram. The Touchstone compiler [9], which compiles pro-
grams written in a type-safe subset of C into proof-carrying
code (TPCC for Touchstone's PCC), handles this question
through a general veri�cation condition generator [1], gener-
ating veri�cation conditions for both type safety and mem-
ory safety. Also TPCC performs some loop invariant syn-
thesis for eliminating array bound checks. In general, TPCC
seems more involved in handling type safety when compared
to TAL, while TAL seems less
exible than TPCC.
DML is a functional programming language that enriches

ML with a restricted form of dependent types [18], allow-

{n:nat} unit initialize(int vec[n]) {
var: int i, l;;

i = 0; l = arraysize(vec);
invariant: [a:nat, b:nat | a + b = n] (i: int(a), l: int(b))
while (l > 0) { vec[i] = 0; i = i + 1; l = l - 1; }

}

init: ('r) {n:nat} [sp: int array(n) :: [sp: 'r] :: 'r]

pop r1
mov r2, 0
arraysize r3, r1

loop: ('r) {n:nat, a:nat, b:nat | a + b = n}
[r1: int array(n), r2: int(a), r3: int(b), sp: [sp: 'r] :: 'r]

blte r3, finish
store r1(r2), 0
add r2, r2, 1
sub r3, r3, 1
jmp loop

finish: ('r) [sp: [sp: 'r] :: 'r]
pop r1
jmp r1

Figure 14: Implementations of an initialization function in Xanadu and DTAL

ing the programmer to capture more program invariants
through types and thus to detect more program errors at
compile-time. In particular, the programmer can capture
more invariants in data structures by re�ning datatypes
with type index expressions. For instance, one can form
a datatype in DML that is precisely for all red/black trees
and program with such a type. The type system of DML is
also studied for array bound check elimination [17].
DTAL stands as an alternative design choice to TPCC, ex-

tending TAL with a form of dependent types that is largely
adopted from DML. The design of DTAL is partly motivated
by an attempt to build a certifying compiler for DML. Un-
like TPCC, there are no proofs attached to DTAL code. The
veri�er for DTAL code is a dependent type-checker consist-
ing of a constraint generator and a constraint solver. In
general, proof veri�cation is easier than proof search, and
therefore the TPCC startup overhead should be less than
that for DTAL code, though it seems too diÆcult at this
stage to perform a meaningful comparison. In future, we
are also interesting in constructing a proof asserting the
well-typedness of DTAL code and thus provide a means to
generating a form of proof-carrying code from programs in
Xanadu. This is appealing as Xanadu allows the program-
mer to formally supply program invariants that may be too
sophisticated to synthesize and thus facilitates the construc-
tion of proof-carrying code.
We view DTAL as a type-theoretic approach to reasoning

about memory safety at assembly level. With a stronger
type system than that of TAL, DTAL is expected to capture
program errors that can slip through the type system of
TAL. This is supported by the fact that DML can capture
program errors in practice which eludes the type system of
ML.

9. CONCLUSION

TAL is a typed assembly language with a type system at
assembly level. The type system of TAL contains some limi-
tations that prevent certain important loop-based optimiza-
tions such as array bound check elimination and tag check
elimination. We have enriched TAL with a restricted form of
dependent types and the enrichment leads to a dependently
typed assembly language (DTAL) that overcomes these lim-
itations. We have established the soundness of the type
system of DTAL and implemented a type-checking algo-
rithm. We have also constructed a prototype compiler which
compiles Xanadu programs into DTAL, where Xanadu is a
programming language with C-like syntax that supports a
dependent type system similar to that of DTAL but signi�-
cantly more involved.
In future work, we intend to study compilation with de-

pendent types, translating programs in DML into DTAL.
We feel that the presented approach to representing depen-
dent datatypes in DTAL has made a signi�cant step towards
achieving this goal. On a larger scale, we are interested
in both using types to capture more program properties in
high-level languages and constructing certifying compilers
to translate these properties into low-level languages.

10. ACKNOWLEDGMENT
We thank the anonymous referees for their detailed con-

structive comments, which have undoubtedly raised the qual-
ity of the paper.

11. REFERENCES
[1] R. W. Floyd. Assigning meanings to programs. In

J. T. Schwartz, editor, Mathematical Aspects of
Computer Science, volume 19 of Proceedings of
Symposia in Applied Mathematics, pages 19{32,
Providence, Rhode Island, 1967. American
Mathematical Society.

[2] R. Harper. A simpli�ed account of polymorphic
references. Information Processing Letters,
51:201{206, 1994.

[3] R. Harper and C. Stone. A type-theoretic
interpretation of Standard ML. In G. Plotkin,
C. Stirling, and M. Tofte, editors, Robin Milner
Festschri�t. MIT Press, 1998. (To appear).

[4] P. Martin-L�of. Intuitionistic Type Theory. Bibliopolis,
Naples, Italy, 1984.

[5] R. Milner, M. Tofte, R. W. Harper, and
D. MacQueen. The De�nition of Standard ML. MIT
Press, Cambridge, Massachusetts, 1997.

[6] G. Morrisett et al. Talx86: A realistic typed assembly
language. In Proceedings of Workshop on Compiler
Support for System Software, 1999.

[7] G. Morrisett, D. Walker, K. Crary, and N. Glew. From
system F to typed assembly language. In Proceedings
of ACM Symposium on Principles of Programming
Languages, pages 85{97, January 1998.

[8] G. Necula. Proof-carrying code. In Conference Record
of 24th Annual ACM Symposium on Principles of
Programming Languages, pages 106{119. ACM press,
1997.

[9] G. Necula and P. Lee. The design and implementation
of a certifying compiler. In ACM SIGPLAN '98
Conference on Programming Language Design and
Implementation, pages 333{344. ACM press, June
1998.

[10] Z. Shao. An Overview of the FLINT/ML compiler. In
Proceedings of ACM SIGPLAN Workshop on Types in
Compilation (TIC '97), June 1997.

[11] D. Tarditi, G. Morrisett, P. Cheng, C. Stone,
R. Harper, and P. Lee. A type-directed optimizing
compiler for ML. In Proceedings of ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 181{192, June 1996.

[12] A. Tolmach and D. P. Oliva. From ML to Ada(!?!):
Strongly-typed language interoperability via source
translation. Journal of Functional Programming,
8(4):367{412, July 1998.

[13] H. Xi. Dependent Types in Practical Programming.
PhD thesis, Carnegie Mellon University, 1998. pp.
viii+189. Available as
http://www.cs.cmu.edu/~hwxi/DML/thesis.ps.

[14] H. Xi. Implementations and Examples for Xanadu and
DTAL. Available at
http://www.ececs.uc.edu/~hwxi/Xanadu-DTAL, 1999.

[15] H. Xi. Imperative Programming with Dependent
Types. In Proceedings of 15th IEEE Symposium on
Logic in Computer Science, pages 375{387, June 2000.

[16] H. Xi and R. Harper. A Dependently Typed Assembly
Language. Technical Report CSE-99-008,
Oregon Graduate Institute, July 1999. Also available as
http://www.ececs.uc.edu/~hwxi/academic/papers/DTAL.ps.

[17] H. Xi and F. Pfenning. Eliminating array bound
checking through dependent types. In Proceedings of
ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 249{257,
Montreal, June 1998.

[18] H. Xi and F. Pfenning. Dependent types in practical
programming. In Proceedings of ACM SIGPLAN

Symposium on Principles of Programming Languages,
pages 214{227, San Antonio, January 1999.

