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Abstract

We combine adaptivity and memoization to obtain an incremental computation
technique that dramatically improves performance over adaptivity and memoization
alone. The key contribution is adaptive memoization, which enables result re-use by
matching any subset of the function arguments to a previous function call and updating
the result to satisfy the unmatched arguments via adaptivity.

We study the technique in the context of a purely functional language, called IFL,
and as an ML library. The library provides an efficient implementation of our techniques
with constant overhead. As examples, we consider Quicksort and Insertion Sort. We
show that Quicksort handles insertions or deletions at random positions in the input
list in O(log n) expected time. For insertion sort, we show that insertions and deletions
anywhere in the list take O(n) time.
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1 Introduction

Memoization [14, 15, 10, 3] and adaptivity [2, 4] are techniques for making any program
incremental. Although each technique works well for certain classes of applications under
certain input changes, neither works well in general. This paper combines adaptivity and
memoization. The result is a general technique that significantly improves performance
over adaptivity and memoization alone. For many applications, however, an orthogonal
combination of memoization and adaptivity does not yield good performance. We therefore
introduce adaptive memoization that enables memo lookups based on matching any subset
of function arguments to a previous function call and updating the re-used result to satisfy
the unmatched arguments via adaptivity.

Memoization [6, 12, 11] is based on the idea of caching the results of each function call
indexed by the arguments to that call. If a function is called with the same arguments a
second time, the result from the cache is re-used and the call is skipped. Pugh [14], and Pugh
and Teitelbaum [15] were the first to apply memoization or function caching to incremental
computation. They developed techniques for implementing memoization efficiently and
studied incremental algorithms using memoization. They showed that certain divide-and-
conquer algorithms using so-called stable decompositions can be made incremental efficiently
by using memoization. Liu, Stoller, and Teitelbaum [10] presented systematic techniques for
developing incremental programs using function caching. Their techniques automatically
determine what result need to be cached and use transformations to make a standard
program incremental. In recent work [3] we presented selective memoization techniques to
provide control over the performance of memoization based on facilities for determining
precise input-output dependences, defining equality, and controlling space usage.

Adaptivity [2] is based on the idea of representing computations with dependence graphs.
Dependence graph techniques for incremental computation were first introduced by Demers,
Reps, and Teitelbaum [7, 17] and have been successfully applied to many applications [16].
Dependence graphs represent data dependences in a computation in such a way that when
an input is changed, all data that depends on that input can be updated by propagating
changes through the graph.

The key difference between adaptivity and the previously proposed dependence-graph
techniques is that in adaptivity the dependence graphs are dynamic as opposed to static.
With static dependence graphs, change propagation only updates the values of the vertices of
the dependence graph leaving the dependence structure unchanged. As Pugh points out [14]
this limits the kinds of applications that can be made incremental using static dependence
graphs. In contrast, dynamic dependence graphs enable the change propagation algorithm
to update the dependence structure by removing obsolete dependences and inserting newly
created dependences based on execution. Dynamic dependence graphs can be used to make
any purely functional program incremental, although the effectiveness will depend on the
application.

Adaptivity and memoization complement each other in the way they support result
re-use. While adaptivity pinpoints parts of a computation that are affected by some input
change, memoization identifies those parts of the computation that remain the same. As a
result, memoization handles well shallow input changes which affect function calls at the top
of the function-call tree, whereas adaptivity handles well deep changes which affect leaves of
the function call tree [3]. When given an input change that affects some call in the middle,
they can both perform poorly.
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This paper shows that a combination of adaptivity and memoization yields powerful
techniques for incremental computing by drawing on the complimentary strengths of mem-
oization and adaptivity. We present two techniques to this end: (1) an orthogonal combi-
nation that combines adaptivity and memoization by preserving their semantics, and (2) a
more sophisticated combination based on the notion of adaptive memoization.

Adaptive memoization allows an imprecise lookup of a memoized function in the func-
tion cache by matching just some of the arguments that the result depends on. Instead of
returning the result, which is in general incorrect, the lookup returns an “adaptive compu-
tation” in the form of a dynamic dependence graph. The arguments of this computation are
then adjusted to match the arguments of the current call, and the changes are propagated
to update the re-used result.

Adaptive memoization provides for flexible result re-use by permitting the re-use of
the result of a previous function call in place of a call of that function with somewhat
different arguments. This flexibility enables us to obtain asymptotically efficient incremental
algorithms from static algorithms. As examples, we consider Quicksort and Insertion Sort
on a list (Section 5). We show that Quicksort handles an insertion or deletion at a random
position in the input in expected O(log n) time. For insertion sort, we show that an insertion
or deletion anywhere in the input takes expected O(n) time. These results rely heavily
on adaptive memoization; with the orthogonal combination the bounds are O(log2 n) for
Quicksort and O(n2) for Insertion Sort. With memoization or adaptivity alone, the bounds
are Θ(n log n) for Quicksort, and Θ(n2) for insertion sort.

Challenges to combining adaptivity and memoization and supporting adaptive mem-
oization stem from complexities of the interaction between adaptivity and memoization.
One issue is the maintenance of the topological ordering of a dynamic dependence graph
while allowing parts of the graph to be re-used. We show that the topological ordering
can be maintained with constant overhead by restricting the memo lookups to the part of
the dependence graph being discarded by change propagation. Another issue is supporting
adaptive memoization efficiently. Adaptive memoization relies on encapsulating selected
sub-computations as stand alone adaptive computations. This requires techniques to iso-
late and update the inputs of sub-computations efficiently. We describe a copy-on-read
technique for supporting adaptive memoization with constant overhead.

A key property of our approach is that it accepts a simple and asymptotically efficient im-
plementation. The implementation extends our previous implementations for adaptivity [2]
and selective memoization [3]. The overhead of the implementation—slowdown caused by
our techniques with respect to a non-incremental semantics—is constant.

2 Overview

We present an overview of previous work on memoization and adaptivity and describe how
they can be combined. Section 4 formalizes the techniques presented here. Examples for
motivating the need for combining adaptivity and memoization are given in Section 2.3.

2.1 Adaptivity and Dynamic Dependence Graphs

Adaptivity [2] is based on the notion of a modifiable reference or a modifiable for short.
Modifiable references hold values that can change as a result of the user’s revisions to the
input. What distinguishes a modifiable reference from an ordinary reference is that the
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system keeps track of the readers of the modifiable and when the value is changed, all
values that depend on that modifiable can be updated by a change propagation algorithm.

Language support for adaptivity requires constructs for creating, reading, and writing
modifiables. Each read of a modifiable specifies a reader function that computes a value
based on the value of the modifiable read, called the source. Since values that are computed
by reading modifiables can change due to an input change, a reader must write its result
to a modifiable. In this paper, we require that each reader writes to exactly one modifiable
called the target.

As an adaptive program executes, it builds a dynamic dependence graph or DDG that
represents the data and control dependences in the execution. Creating a modifiable adds
a vertex for that modifiable to the dependence graph. Reading a modifiable inserts an edge
from the source to the target of the read and tags the edge with the reader function. Writing
a modifiable tags the vertex for that modifiable with the value written. To represent the
control dependences, a containment hierarchy of reads is maintained. A read r is contained
in some other read r′ if r is created during the execution of r′. The containment hierarchy
represent the nesting of the reads of a computation. In the implementation, the containment
hierarchy is represented using time stamps instead of containment edges (see Section 3).

When the input to an adaptive computation is changed, the output and the dependence
graph can be updated by propagating changes through the dependence graph. Change
propagation maintains a set of affected readers, readers whose sources have been changed,
and re-executes them in sequential-execution order. Re-executing a reader re-establishes
the relationship between its source and target by updating the value of the target, which
can make affected the readers of the target. Re-executing a reader removes the dependences
and the modifiables that was created by that reader in the previous execution, and inserts
the dependences and modifiables created by re-execution. Note that due to conditionals,
the dependences and size of the graph can change radically after an input change.

Adaptivity yields efficient incremental or dynamic algorithms for certain classes of al-
gorithms and input changes. For example, in our original paper, we showed that Quicksort
on a list updates its output in expected O(log n) time when its input is changed by in-
serting or deleting one key at the end. In recent work, we developed analytical techniques
based on trace-stability for measuring the efficiency of algorithms made incremental using
adaptivity [4]. As an example, we showed that the tree contraction algorithm of Miller and
Reif yields a data structure for the dynamic-trees problem of Sleator and Tarjan [19]. Our
experimental evaluation of the dynamic-trees data structure obtained by adaptivity shows
that it is efficient in practice [5].

2.2 Memoization

Memoization caches results of all or selected function calls so that when a call is performed
for a second time, the cached result is re-used instead of executing the call. Although
memoization can improve performance dramatically, obtaining good performance in gen-
eral requires control over certain aspects of memoization. These aspects include the type
of equality tests that determine cache hits and the identification of precise dependences
between input and output.

In his thesis [14], Pugh developed techniques for implementing memoization efficiently
and presented techniques for constant-time equality checks and space-management [13].
Based on static program analysis and transformations, Liu and Teitelbaum [10] developed
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fun map l =

case l of
nil => nil

| cons(h,t) => cons(h+5,map t)

fun amap l =
tar = new modifiable
read l with reader (fun vl =
case vl of

nil => write(tar,nil)
| cons(h,t) => write(tar,cons(h+5,amap t)))

return tar

Figure 1: The code for standard and adaptive map.

techniques for determining what results to cache and how to use them. Since in general the
result of a function call may not depend on all its arguments, it is important to cache result
based on precise input-output dependences. Abadi, Lampson, and Levy [1], and Heydon,
Levin, and Yu [9] investigated techniques for this purpose based on labeled lambda calculus.
In recent work, we presented selective memoization techniques that provide programmer
control over the issues of precise dependences, equality tests, and some control over space
management [3]. Selective memoization enables performance of memoized applications to
be analyzed using conventional techniques. As an example, we showed that a memoized
version of Quicksort handles an insertion or deletion anywhere in the list in expected O(n)
time.

In the context of incremental computation, memoization yields efficient incremental
algorithms for certain classes of algorithms and input changes. Pugh [14], and Pugh and
Teitelbaum [15] show that divide-and-conquer algorithms that are based on the so-called
stable decompositions can be made incremental efficiently using memoization.

2.3 Examples: Map and Insertion Sort.

We apply adaptivity and memoization to “map” and insertion sort and motivate the need for
combining them. The insertion sort example motivates adaptive memoization by showing
that an orthogonal combination of memoization and adaptivity does not suffice for efficient
incremental computing in general.

Example I: map. Figure 1 shows the code for a simple map function (left) that maps a
list to another list by adding five to each element. The pseudo-code for the adaptive version
amap is shown on the right. Figure 2 shows an example dynamic dependence graph for amap
with input list [1, 3, 4]. The input to amap is a modifiable list, a list where all tails are inside
modifiables, and so is the output. In Figure 2, the vertices are modifiables, straight edges
are reads, and dashed edges are the containment edges. Values of modifiables are shown
in green (or gray). The value of each modifiable is either a cons cell or nil. The readers of
the edges are all the same function as shown in the code in Figure 1. Containment edges
originate at a reader and end at the reader for the caller—containment edges essentially
represent the function call tree of the computation. An edge is contained in all the edges
to its left.

Figure 3 shows an example of how the input to amap can be changed and the output
can be updated. The value two is inserted to the input by creating a new modifiable c and
changing the modifiable b. Change propagation involves re-executing the only read of b,
which recursively calls amap on the new modifiable c. The recursive call recomputes the
result for the tail of the input list starting at c. This creates modifiables c′, f and g and

6



a d

d’ e’

e

a’

b

b’

6 8 9

431

NIL

NIL

 

 

Figure 2: DDG of amap on input [1,3,4].
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Figure 3: Input change and change propagation.

the edges (c, c′), (d, f) and (e, g). Since the edges (d, d′) and (e, e′) are contained in the
re-executed edge (b, b′) they are removed from the dependence graph along with vertices d′

and e′. The removed elements are shown with thinner, dashed lines.
As the example demonstrates, when a new key is inserted to the input, the adaptive

map function amap will re-compute the result for the tail of new cons cell. Thus an insertion
at the end of the input list will be handled in constant time—such an insertion is a deep
change, because it affects a leaf of the call tree. In general amap will take linear time to
update its output.

As an alternative consider a memoized version of map where each call to map is cached
in a memo table. Since inserting a new key into the input re-creates the prefix of the input
list up to new key, a memo match will not occur until after the tail of the new key. Thus,
an insertion at the head of the list will be handled in constant time–such an insertion is a
shallow change because it affects the root of the call tree. In general general memoized map

will take linear time to update its output.
Since adaptivity handles deep changes well and memoization handles shallow changes

well, we can expect that their combination would work well for all changes. Indeed, consider
caching the result of calls for amap based on the input argument. When the input is changed
by an insertion, the reader of the changed modifiable will be re-executed and the second
recursive call that the reader performs will find its result in the memo. In our example,
inserting three will re-execute the edge (b, b′) and the result will be found in the memo when
amap is called with the modifiable d. Thus a combination of memoization and adaptivity
will yield a constant time incremental map for insertions or deletions anywhere in the input
list.
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fun insert (p,l) =
case l of
nil => cons (p,nil)

| cons(h,t) => if (p < h) then cons(p,l)
else cons(h,insert(p,t))

fun iSort (l,a) =
case l of
nil => a

| cons(h,t) => iSort (t,insert(h,a))

Figure 4: Standard insertion sort.

Example II: Insertion Sort. As an example where the orthogonal combination of adap-
tivity and memoization does not yield good performance we consider insertion sort. We show
that insertion sort requires worst-case Θ(n2) time for an insertion in the middle of the list
when using the orthogonal combination. When using adaptive memoization, we show that
this reduces to O(n).

Figure 4 shows the code for insertion sort that builds the result by inserting keys to
a sorted accumulator list (a). Suppose we would like to make insertion sort incremental
under a single insertion into the input list (l). Consider using adaptivity. As with the map
example, when a new key is inserted into the input, the adaptive version will completely
re-sort the tail of the list starting at the new key. Thus, although an insertion at the very
end of the input will take linear time, an insertion at the head or the middle of the list
will take Θ(n2) time in the worst case. As an alternative consider the memoized version of
insertion sort. Inserting a key at the head or middle of the list will change the accumulator
for all the following recursive calls, because they will now contain the new key. Thus no
results will be found in the memo after that point. Therefore with both memoization and
adaptivity insertion at the head or middle will require Θ(n2) time.1 Combining them will
not help.

As a concrete example, Figure 5 shows the the accumulators built by the standard inser-
tion sort algorithm (Figure 4) with input l = [6, 5, 4, 8, 7, 0] (left) and l′ = [6, 5, 4,9, 8, 7, 0]
(right)—l′ is obtained from l by inserting the key 9. Each column corresponds to an inser-
tion to the accumulator; the time advances from left to right. Since each call to insert

re-creates the accumulator list up to the position where the key is placed and re-uses the
tail, some tails are shared—curved arrows show such sharing. Each computation is di-
vided into two boxes, A, B, and A’, B’, corresponding to the parts before and after the
call to iSort where the newly inserted key 9 is inserted to the accumulator. In particular,
box B corresponds to the call iSort([8, 7, 0], [4, 5, 6]), and box B’ corresponds to the call
iSort([9, 8, 7, 0], [4, 5, 6]).

The goal is to create the computation pictured on the right from the computation on
the left. When using the adaptivity and memoization in combination, the result in box
A will be re-used because of adaptivity, i.e., A’=A. But box B will not be re-used when
constructing box B’, because the insertion of 9 into the accumulator will create a entirely
new accumulator and no call to iSort will find its results in the memo. The issue is that
memoization permits result re-use only when the arguments to the function match exactly.

1The bound is the same for the variant of insertion sort that inserts on the way up the recursion of isort

instead of on the way down.
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Figure 5: The accumulators for insertion sort with inputs [6, 5, 4, 8, 7, 0] and [6, 5, 4,9, 8, 7, 0]

As motivation for an O(n)-time solution note that the accumulators in boxes B and B’
are very similar—the only difference is the key 9. Thus, if we encapsulate the computation
pictured in box B as a stand-alone adaptive computation with accumulator [4, 5, 6] and
input list [8, 7, 0] we can create the computation in box B’ by re-using B, changing its
accumulator to [4, 5, 6,9] and propagating this change.

2.4 Adaptive Memoization.

Continuing on the insertion sort example, suppose that the results for the function iSort

(Figure 4) are memoized based on just the input list and not on the accumulator. With this
memoization policy, the result will be found in the memo when the call iSort([8, 7, 0], [4, 5, 6,9])
is performed. The returned result, [0, 4, 5, 6, 7, 8], however, will be the result from before
the input change, i.e., that of the call iSort([8, 7, 0], [4, 5, 6]) and will be incorrect. The key
idea is that with adaptivity this is not a problem because the accumulator can be changed
to [4, 5, 6,9] and the result can be updated with change propagation (see Section 5).

Adaptive memoization enables the result of a function call to be re-used by matching
any subset of the arguments. When a result is re-used, the non-matched arguments will
be changed and the result will be updated by change propagation. For this to work, the
non-matched arguments must be stored inside modifiables.

Insertion sort demonstrates a general problem: the orthogonal adaptivity and memo-
ization combination will generally be ineffective for algorithms that operate on some core
data structure threaded through the computation. In such algorithms, an incremental input
change can make some deep but small change to the core data structure forcing re-execution
of a large number operations. In insertion sort, the core data structure is the accumulator
list. Adaptive memoization will therefore be essential for making many interesting algo-
rithms incremental.

3 Implementation

Building on our implementations of adaptivity [2] and selective memoization [3], we imple-
mented the combination of adaptivity and memoization. We present an overview of this
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Figure 6: DDGs of amap with inputs [1, 3, 4].

implementation and apply it to the map and insertion sort examples in Section 2. The dy-
namic semantics given in Section 4 presents a more precise definition of an implementation.
Section 5 presents a more detailed treatment of insertion sort and Quicksort.

We study the orthogonal combination and adaptive memoization separately. To achieve
constant-time overhead, our implementation relies on the representation of containment
hierarchy of dynamic dependence graphs based on time-stamps, which we review first.

Dynamic dependence graphs and time stamps. To represent the containment hier-
archy and a topological ordering of the dependence edges, the implementation uses time-
stamps respecting the sequential execution order. Each read is assigned the time-interval
of its execution and containment between reads is checked in constant time: a read r is
contained in some other read r′ if the time interval of r is contained in that of r′.

Since change propagation modifies the dependence structure of dynamic dependence
graphs, the order of time-stamps must be maintained dynamically. The implementa-
tion therefore maintains the time stamps using the constant time Dietz-Sleator order-
maintenance data structure that supports, creation, deletion, and comparison of time
stamps in constant time [8].

Figure 6 shows the dynamic dependence graph for adaptive map, amap, using time-
stamps instead of the explicit control edges as in Figure 2 (Figure 1 shows the code for
amap). Each read (downward arrows between circular nodes) is contained in all the reads
to its left. Time-intervals of the reads are shown as pairs. For example, the time-interval of
the read (b, b′) is 〈2, 7〉 and that of (d, d′) is 〈3, 6〉 and indeed the interval 〈3, 6〉 is contained
in the interval 〈2, 7〉.

3.1 The Orthogonal Combination

To combine adaptivity and memoization, we extend conventional memoization to support
re-use of dependence graphs by remembering the dependence graph of a function call in
addition to the result. We refer to this combination as the orthogonal combination because
it does not change the semantics of memoization or adaptivity.

For correctness, the implementation must ensure that (1) no dependence graph (or
result) is used more than once, and (2) the containment hierarchy is updated properly
when a dependence graph is re-used. The first restriction is necessary because adaptivity
requires that any two calls of a function have disjoint dynamic dependence graphs.

The implementation satisfies these two properties efficiently by (1) only allowing re-use
of result that would otherwise be deleted by change propagation and (2) requiring that
re-used dependence graphs do not conflict with the containment hierarchy of the current
dependence graph. More concretely, change propagation maintains a re-use interval (rs, re)
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Figure 7: DDGs of amap with input [1,2, 3, 4].

that is initialized to the time-interval of the read currently being re-executed. A dependence
graph with time interval (ds, de) can only be re-used if its interval falls within the re-use
interval, i.e., rs < ds and de < re (a dependence graph has the given time interval if all
of its reads are in that time interval). When the dependence graph is re-used, the re-use
interval is moved past the dependence graph by setting rs := de and deleting all reads whose
time-intervals fall within (rs, ds). When re-execution of a read completes, the remaining
reads within the re-use interval are deleted.

The implementation remembers the dependence graph of a memoized result by storing
the time-interval of the dependence graph for that result in the memo table. For example,
the memo table of the computation in Figure 6 maps input a to the result [6, 8, 9] consisting
of the modifiables a′, b′, d′, e′, and the time interval 〈1, 8〉. The time interval identifies the
sub-graph of the current dynamic dependence graph that corresponds to the memoized call.
Since a result can only be re-used if it is a subgraph of the dependence graph and if it falls
within the current re-use interval, remembering the time-interval suffices.

To implement the orthogonal combination efficiently, we combine the implementations
adaptivity [2] and selective memoization [3] and extend memo tables for storing time-
intervals. Since the memo tables store time-intervals along with results, a result can be
cached multiple times with different intervals. In this paper, we only consider applications
that computes and caches any result no more a constant times. With this restriction, the
overhead of the orthogonal combination is expected constant.

As an example of how the orthogonal combination works, execute the call amap([1, 3, 4])
and change the input by inserting the new key 2 by changing the modifiable b (the change
is shown in Figure 3). Performing change propagation with this change on the dependence
graph of Figure 6 will build the dependence graph in Figure 7 in expected constant time.
Change propagation algorithm will re-execute the read (b, b′) of Figure 6 after initializing
the re-use interval to 〈2, 7〉. Re-execution of this read will recursively call amap on c. The
call will create the modifiable c’, read c, and call amap on d. The read of c will be time-
stamped with 〈2.5, 6.5〉 to fit between the intervals 〈2, 7〉 and 〈3, 6〉. Since the call amap(d)
falls inside the re-use interval, it will be re-used. Since there are no more changes, change
propagation will terminate updating the result in expected constant time. Note the only
modifiable created during re-execution is c’—in contrast conventional change propagation
re-creates the whole tail of the result as shown in Figure 3.

3.2 Adaptive Memoization

Adaptive memoization changes the semantics of memoization by allowing previous results
to be re-used based on matching any subset of the arguments. For correctness, arguments
that are not matched must be modifiables. For example, calls of the function f(a, b) can
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mfun m insert (!k, (!h,?t)) =
d = new modifiable
read t with reader (fn vt =>
case vt of

NIL => write (d, CONS (k,emptyModlist))
| CONS(hh,tt) => if (k < hh) then write (d,CONS(k,t))

else write (d, CONS(hh,m insert (?k,(!hh,?tt))))

Figure 8: Pseudo code for insert.

be memoized and re-used when the values of a match regardless of b, as long as b is a
modifiable.

To support adaptive memoization, the implementation encapsulates dependence graphs
as stand-alone adaptive computations by making a local copy of each unmatched argument.
The local copies of the unmatched arguments are designated as input to the memoized
computation. When a result is re-used the unmatched arguments are connected to the cor-
responding local copies, the values of the local copies are changed to those of the unmatched
arguments and change propagation is performed to update the re-used result. To implement
adaptive memoization, we extend the implementation for the orthogonal combination by
having memo tables remember the local copies for the dependence graphs.

As an example, Figure 8 shows the pseudo-code for the adaptively memoized version of
insert of the insertion sort example (Figure 4). Function m insert inserts a given key k

to the list t. The argument h is the last inspected key and used for memoization only. The
banged parameters, k,h, are matched (used for memo lookups), and the argument with the
questions mark, t, is not matched (not used for memo look ups). Thus the memo table
for m insert maps k and h to a result and an adaptive computation consisting of a time
interval and a local copy of t.

a’ b’ c’ d’ e’

ba dc

<12,13><6,15> <9,14>

<1,2> <4,5> <7,8> <10,11>

<3,16>

A B C D

 6

NIL

4 5 8

4 5  6

NIL

4 5  6

NIL

Figure 9: DDGs of m insert (8, [4, 5, 6], 0).

Figure 9 shows the dependence graph for the call minsert(8, (0, [4, 5, 6])) that inserts
8 to [4, 5, 6]. The input consists of the modifiables a,b,c,d. Since memoization does
not match on the input list, the modifiables a,b,c,d are copied before being read; the
modifiables A,B,C,D are the local copies. The reads between a,b,c,d and A,B,C,D copy
values of the input modifiables to their local copies. Since m insert reads only the local
modifiables its dependence graph can be re-used by linking the unmatched inputs of the
call to the local copies.

Adaptive memoization allows results re-use based on the content or the structure of the
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Figure 10: DDGs of m insert (8, (0, [4, 5, 6,9])).

input rather than its identity. As an example of how this is useful consider performing
the call m insert (8, (0, [4, 5, 6,9])) after the call m insert (8, (0, [4, 5, 6])). Although the
inputs [4, 5, 6] and [4, 5, 6,9] are structurally similar, they may consist of different mod-
ifiables deeming conventional memoization ineffective—indeed this is the problem with
insertion sort described in Section 2. Adaptive memoization can exploit the similarity
between the two inputs by re-using a large part of the dependence graph for the call
m insert (8, (0, [4, 5, 6])) as shown in Figure 10.

To see how adaptive memoization works, suppose the changed input consists of the new
modifiables t, u, v, y, z as shown in Figure 10. Since the result for the call m insert (8, (0, [4, 5, 6,9]))
is memoized based only on (8, 0) it will be found in the memo. The dependence graph with
interval 〈3, 16〉 will be re-used and t will be copied to A, creating a dependence from t to A.
Copying will change the value of A (its tail now points to u instead of b) and the read (A, a′)
will be re-executed. The result will again be found in the memo and u will be copied to B

and so on until the call with z, whose result will not be found in the memo because the
key 9 has never been seen before. Thus a local copy for z will be created. The update will
take linear time and will synchronize the old and the new computation so that the results
are identical except for the newly inserted key. In the context of the insertion sort, this will
suffice for synchronizing the computations before and after an insertion and updating the
result in expected O(n) time.

4 An Incremental Functional Language

We present a purely functional language, called IFL, that combines adaptivity and mem-
oization. The language extends a product of the AFL language for adaptivity [2] and the
MFL language for memoization [3] with support for adaptive memoization.

Our implementation of the IFL language closely follows the dynamic semantics of IFL.
The main difference is that instead of using traces, like the dynamic semantics does, the
implementation uses dynamic dependence graphs and memo tables. This is purely for
efficiency reasons.

Selective memoization [3] enables the programmer to express the precise input-output
dependences of a memoized function. To support adaptive memoization, we extend selec-
tive memoization with constructs that deem an input unmatched. An unmatched input is
an input that is not used when performing a memo lookup. The IFL language supports

13



Types τ : : = int | ! τ | ? τ | τ mod | τ1 × τ2 | τ1 + τ2 |

τ1
s

→ τ2 | τ1
c

→ τ2 | τ1
ms

→ τ2 | τ1
mc

→ τ2

Values v : : = n | x | a | l | m | ! v | ? v | (v1,v2) | inlτ1+τ2
v | inrτ1+τ2

v |

s fun f(x : τ1) : τ2 is ts end | c fun (x : τ1) : τ2 is tc end |

ms funm f(a:τ1):τ2 is es end | mc funm f(a:τ1):τ2 is ec end

Operators o : : = + | - | = | < | . . .

Stable Expr es : : = return(ts) |

let a:τ be ts in es end | let !x:τ be v in es end |

let ?x:τ be v in es end | let a1:τ1×a2:τ2 be v in es end |

mcase v of inl (a1:τ1) ⇒ es | inr (a2:τ2) ⇒ es end

Changeable Expr ec : : = return(tc) |

let a:τ be ts in ec end | let !x:τ be v in ec end |

let ?x:τ be v in ec end | let a1:τ1×a2:τ2 be v in ec end |

mcase v of inl (a1:τ1) ⇒ ec | inr (a2:τ2) ⇒ e′c end

Stable Terms ts : : = v | o(v1, . . . , vn) |

ms fun f (a:τ1):τ2 is es end | mc fun f (a:τ1):τ2 is ec end |

s app(v1, v2) | ms app(v1, v2) | let x be ts in t′s end | modτ tc |

case v of inl (x1:τ1) ⇒ ts | inr (x2:τ2) ⇒ t′s end

Changeable Terms tc : : = write(v) | c app(v1, v2) | mc app(v1, v2) |

let x be ts in tc end | read v as x in tc end |

case v of inl (x1:τ1) ⇒ tc | inr (x2:τ2) ⇒ t′c end

Figure 11: The abstract syntax of IFL.

introduction and elimination forms for unmatched input using question types.
The static semantics of IFL is a combination of the static semantics AFL and MFL

extended with question types.
The dynamic semantics combines those of MFL and AFL and extends it to support

adaptive memoization. The dynamic semantics of AFL is preserved but the semantics of
MFL has been extended to support adaptive memoization and the limited form of memoiza-
tion allowed here. One critical change is the omission of memo-tables. Instead, we extend
the AFL traces with memoized computations. During change propagation, memo lookups
inspect the trace of the currently re-executed read for a possible match.

4.1 Abstract Syntax.

The abstract syntax of IFL is given in Figure 11. Meta-variables x, y, z and their variants
range over an unspecified set of variables, Meta-variables a, b, c and variants range over
an unspecified set of resources. Meta variable l and variants range over a unspecified set
of locations. Meta variable m ranges over a unspecified set of memo-function identifiers.
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Variables, resources, locations, memo-function identifiers are mutually disjoint. The syntax
of IFL is restricted to “2/3-cps” or “named form” to streamline the presentation of the
dynamic semantics.

The types of IFL includes the base type int, sums τ1 + τ2 and products τ1 × τ2, bang
! τ and question ? τ types, the stable function types, τ1

s

→ τ2, changeable function types
τ1

c

→ τ2, memoized-stable function types τ1
ms

→ τ2 , and memoized-changeable function
types τ1

mc

→ τ2. Extending IFL with recursive or polymorphic types presents no fundamental
difficulties but omitted here for the sake of brevity.

The underlying type of a bang type ! τ is required to be an indexable type. An indexable
type accepts an injective index function into integers [3]. Operationally, the index function is
used to determine equality. Any type can be made indexable by supplying an index function
based on boxing or tagging [3]. Since this is completely standard and well understood, we
do not have a separate category for indexable types to keep the language simple.

The abstract syntax is structured into terms and expression, which in turn are par-
titioned into changeable and stable. Terms evaluate independent of their contexts, as in
ordinary functional programming, whereas expression evaluate with respect to a memo ta-
ble. Terms and expression divided into two categories, the stable and the changeable. The
value of a stable expression or term is not sensitive to the modifications to the input, whereas
the the value of a changeable expression or term may be affected by them.

Stable and Changeable Terms. Familiar mechanism of functional programming are
embedded in IFL in the form of stable terms. Ordinary functions arise in IFL as stable
functions. The body of a stable function must be a stable term; the application of a stable
function is correspondingly stable. The stable term modτ tc allocates a new modifiable
reference whose value is determined by the changeable term tc. Note that the modifiable
itself is stable, even though its contents is subject to change.

Changeable terms are written in destination-passing style with an implicit target. The
changeable term write(v) writes the value v into the target. The changeable term read v as x in tc end
binds the contents of the modifiable v to the variable x, then continues evaluation of tc. A
read is considered changeable because the contents of the modifiable on which it depends
is subject to change. A changeable function itself is stable, but its body is changeable; cor-
respondingly, the application of a changeable function is a changeable term. The sequential
let construct allows for the inclusion of stable sub-computations in changeable mode. Case
expressions with changeable branches are changeable.

Memoized stable and changeable functions are function whose bodies are stable or
changeable expressions. As with stable and changeable functions, memoized functions are
stable terms. Applications of memoized stable functions are stable and applications of
memoized changeable functions are changeable.

Stable and Changeable Expression. Expression are evaluated in the context of a
memo table and are divided into stable and changeable. Stable and changeable expressions
are symmetric except for the body of the return construct. Stable terms are included
in stable expressions, and changeable terms are included in changeable expressions via a
return. As with the MFL language [3], the constructs let*, let!, let?, mcase express de-
pendences between the input and the result of a memoized function. The return computes
the result based on the the dependences expressed by these constructs.
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4.2 Static Semantics

The static semantics of the language combines the static semantics of AFL and MFL and
extends them with question types. Typing judgments take place with respect to three
contexes: ∆ for resources, Λ for locations, and Γ for ordinary variables. We distinguish two
modes, stable and changeable. Stable terms and expressions are typed in the stable mode
and changeable terms are typed in the changeable mode.

The judgment ∆; Λ; Γ ° t : τ states that t is a well formed stable term of type τ relative
to ∆, Λ and Γ. The judgment ∆; Λ; Γ ° e : τ states that e is a well formed stable expression
of type τ relative to ∆, Λ and Γ.

The judgment ∆; Λ; Γ ² t : τ states that t is a well formed changeable term of type τ
relative to ∆, Λ and Γ. The judgment ∆; Λ; Γ ² e : τ states that e is a well formed changeable
expression of type τ relative to ∆, Λ and Γ.

To support adaptive memoization we use the question types ? (τ mod). The ? construct
introduces a question type and let? construct eliminates it. One non-orthogonal require-
ment about question types is that their underlying type must be a modifiable type—this is
the result of the interaction between memoization and adaptivity. The typing rules for the
bang types and the ? types are otherwise symmetric.

The typing rules distinguish between terms and expressions and a stable and changeable
context. The stable and changeable expression are similar. Figure 12 shows the typing rules
for values, Figure 13 shows the typing rules for terms, and Figure 14 shows the typing rules
for expressions.
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∆;Λ; Γ ° n : int
(integer)

(∆(a) = τ)

∆;Λ; Γ ° a : τ
(resource)

(Λ(l) = τ)

∆;Λ; Γ ° l : τ mod
(location)

(Γ(x) = τ)

∆;Λ; Γ ° x : τ
(variable)

∅; Λ; Γ ° t : τ

∆;Λ; Γ ° ! t : ! τ
(bang)

∅; Λ; Γ ° t : τ mod

∆;Λ; Γ ° ? t : ? (τ mod)
(question)

∆;Λ; Γ ° v1 : τ1 ∆;Λ; Γ ° v2 : τ2

∆;Λ; Γ ° (v1,v2) : τ1 × τ2
(product)

∆;Λ; Γ ° v : τ1

∆;Λ; Γ ° inlτ1+τ2
v : τ1 + τ2

(sum/l)
∆;Λ; Γ ° v : τ2

∆;Λ; Γ ° inrτ1+τ2
v : τ1 + τ2

(sum/r)

∆;Λ; Γ, f : τ1
s

→ τ2, x : τ1 ° ts : τ2

∆;Λ; Γ ° s fun f(x : τ1) : τ2 is ts end : (τ1
s

→ τ2)
(stable fun)

∆;Λ; Γ, f : τ1
c

→ τ2, x : τ1 ² tc : τ2

∆;Λ; Γ ° c fun (x : τ1) : τ2 is tc end : (τ1
c

→ τ2)
(changeable fun)

∆, a:τ1; Λ; Γ, f :τ1
ms

→ τ2;° es : τ2

∆;Λ; Γ ° ms funm f(a:τ1):τ2 is es end : τ1
ms

→ τ2

(memoized stable fun)

∆, a:τ1; Λ; Γ, f :τ1
mc

→ τ2;° ec : τ2

∆;Λ; Γ ° mc funm f(a:τ1):τ2 is ec end : τ1
mc

→ τ2

(memoized changeable fun)

Figure 12: Typing of values.
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∆;Λ; Γ ° vi : τi (1 ≤ i ≤ n) `o o : (τ1, . . . , τn) τ

∆;Λ; Γ ° o(v1, . . . , vn) : τ
(primitive)

∆, a:τ1; Λ; Γ, f :τ1
ms

→ τ2 ° es : τ2

∆;Λ; Γ ° ms fun f (a:τ1):τ2 is es end : τ1
ms

→ τ2

(memo stable fun)

∆, a:τ1; Λ; Γ, f :τ1
mc

→ τ2 ² ec : τ2

∆;Λ; Γ ° mc fun f (a:τ1):τ2 is ec end : τ1
mc

→ τ2

(memo changeable fun)

Λ;Γ ° v1 : (τ1
s

→ τ2) Λ; Γ ° v2 : τ1

Λ;Γ ° s app(v1, v2) : τ2
(stable apply)

∆;Λ; Γ ° v1 : τ1
ms

→ τ2 ∆;Λ; Γ ° v2 : τ1

∆;Λ; Γ ° ms app(v1, v2) : τ2
(memo stable apply)

∆;Λ; Γ ° ts : τ1 Λ;Γ, x : τ1 ° t′s : τ2

∆;Λ; Γ ° let x be ts in t′s end : τ2
(let)

∆;Λ; Γ ² tc : τ

∆;Λ; Γ ° modτ tc : τ mod
(mod)

∆;Λ; Γ ° v : τ1 + τ2

∆;Λ; Γ, x1:τ1 ° ts : τ
∆;Λ; Γ, x2:τ2 ° t′s : τ

∆;Λ; Γ ° case v of inl (x1:τ1) ⇒ ts | inr (x2:τ2) ⇒ t′s end : τ
(case)

∆;Λ; Γ ° v : τ

∆;Λ; Γ ² write(v) : τ
(write)

∆;Λ; Γ ° v1 : (τ1
c

→ τ2) ∆;Λ; Γ ° v2 : τ1

∆;Λ; Γ ² c app(v1, v2) : τ2
(apply)

∆;Λ; Γ ° v1 : (τ1
mc

→ τ2) ∆;Λ; Γ ° v2 : τ1

∆;Λ; Γ ² mc app(v1, v2) : τ2
(memo changeable apply)

∆;Λ; Γ ° ts : τ1 ∆;Λ; Γ, x : τ1 ² tc : τ2

∆;Λ; Γ ² let x be ts in tc end : τ2
(let)

∆;Λ; Γ ° v : τ1 mod ∆;Λ; Γ, x : τ1 ² tc : τ2

∆;Λ; Γ ² read v as x in tc end : τ2
(read)

∆;Λ; Γ ° v : τ1 + τ2

∆;Λ; Γ, x1:τ1 ² tc : τ
∆;Λ; Γ, x2:τ2 ² t′c : τ

∆;Λ; Γ ° case v of inl (x1:τ1) ⇒ tc | inr (x2:τ2) ⇒ t′c end : τ
(case)

Figure 13: Typing of stable (top) and changeable (bottom) terms.
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∅; Λ; Γ ° ts : τ

∆;Λ; Γ ° return(ts) : τ
(return)

∆;Λ; Γ ° ts : τ1 ∆, a:τ1; Λ; Γ ° es : τ2

∆;Λ; Γ ° let a:τ1 be ts in es end : τ2
(let)

∆;Λ; Γ ° v : ! τ1 ∆;Λ; Γ, x:τ2 ° es : τ2

∆;Λ; Γ ° let !x:τ1 be v in es end : τ2
(let!)

∆;Λ; Γ ° v : ? (τ1 mod) ∆;Λ; Γ, x:τ1 mod ° es : τ2

∆;Λ; Γ ° let ?x:(τ1 mod) be v in es end : τ2
(let?)

∆;Λ; Γ ° v : τ1 × τ2 ∆, a1:τ1, a2:τ2; Λ; Γ ° es : τ

∆;Λ; Γ ° let a1:τ1×a2:τ2 be v in es end : τ
(let×)

∆;Λ; Γ ° v : τ1 + τ2

∆, a1:τ1; Λ; Γ ° es : τ
∆, a2:τ2; Λ; Γ ° e′s : τ

∆;Λ; Γ ° mcase v of inl (a1:τ1) ⇒ es | inr (a2:τ2) ⇒ e′s end : τ
(case)

∅; Λ; Γ ² tc : τ

∆;Λ; Γ ² return(tc) : τ
(return)

∆;Λ; Γ ° ts : τ1 ∆, a:τ1; Λ; Γ ² ec : τ2

∆;Λ; Γ ° let a:τ1 be ts in ec end : τ2
(let)

∆;Λ; Γ ° v : ! τ ∆;Λ; Γ, x:τ ² ec : τ

∆;Λ; Γ ° let !x:τ be v in ec end : τ
(let!)

∆;Λ; Γ ° v : ? (τ1 mod) ∆;Λ; Γ, x:τ1 mod ² ec : τ2

∆;Λ; Γ ² let ?x:(τ1 mod) be v in ec end : τ2
(let?)

∆;Λ; Γ ° v : τ1 × τ2 ∆, a1:τ1, a2:τ2; Λ; Γ ² ec : τ

∆;Λ; Γ ° let a1:τ1×a2:τ2 be v in ec end : τ
(let×)

∆;Λ; Γ ° v : τ1 + τ2

∆, a1:τ1; Λ; Γ ² ec : τ
∆, a2:τ2; Λ; Γ ² e′c : τ

∆;Λ; Γ ° mcase v of inl (a1:τ1) ⇒ ec | inr (a2:τ2) ⇒ e′c end : τ
(case)

Figure 14: Typing of stable (top) and changeable (bottom) expressions.
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4.3 Dynamic Semantics

The dynamic semantics consists of four separate evaluation judgments corresponding to
stable and changeable terms and stable and changeable expressions. All evaluation judg-
ments take place with respect to a state σ = (α, µ, χ, T) consisting of a location store α,
a memoized-function identifier store µ, a set of changed locations χ, and a re-use trace
T. The location store is where modifiables are allocated, the memoized-function identifier
store dispenses unique identifiers for memoized functions that are used for memo lookups.
The set of changed location contains the locations that has been changed since the previous
execution. The re-use trace is the trace available for re-use by the memo functions. Re-use
trace is provided by change propagation and is empty in the initial evaluation.

The term evaluation judgments consists of changeable and stable evaluation forms. The
judgment σ, ts ⇓s v, σ′, Ts states that evaluation of the stable term ts with respect to the
state σ yields value v, state σ′, and the trace Ts. The judgment σ, l ← tc ⇓c σ′, Tc states
that evaluation of the changeable term tc with respect to the state σ writes to destination
l and yields the state σ′, and the trace Tc.

The expression evaluation judgments consists of changeable and stable evaluation forms.
The judgment σ, m:β, es

V

s σ′, v, Ts states that the evaluation of the stable expression with
respect to state σ, branch β, and memo identifier m yields the state σ′, the value v and the
trace Ts. The judgment σ, m:β, l ← ec

V
c σ′, Tc states that the evaluation of the changeable

expression with respect to state σ, branch β, and memo identifier m writes to target l and
yields the state σ′ and the trace Tc.

Evaluation of a term or an expression records its activity in a trace. Traces are divided
into stable and changeable. The abstract syntax of traces is given by the following grammar,
where T stands for a trace, Ts stands for a stable trace and Tc stands for a changeable trace.

T : : = Ts | Tc

Ts : : = ε | 〈Tc〉l:τ | Ts ; Ts | { Ts }
m:β

(v,(l1,...,ln))

Tc : : = Wτ | Rx.t
l (Tc) | Ts ; Tc | { Tc }

m:β

(l1,...,ln)

When writing traces, we adopt the convention that “;” is right-associative.
A stable trace records the sequence of allocations of modifiables that arise during the

evaluation of a stable term or expression. The trace 〈Tc〉l:τ records the allocation of the
modifiable, l, its type, τ , and the trace of the initialization code for l. The trace Ts ; T′s
results from evaluation of a let expression in stable mode, the first trace resulting from
the bound expression, the second from its body. The trace { Ts }

m:β

(v,(l1,...,ln))
arises from the

evaluation of a stable memoized function application; m is the identifier, β is the branch
expressing the input-output dependences, the value v is the result of the evaluation, l1 . . . ln
are the unmatched modifiables, and Ts is the trace of the body of the function.

A changeable trace has one of four forms. A write, Wτ , records the storage of a value
of type τ in the target. A sequence Ts ; Tc records the evaluation of a let expression in
changeable mode, with Ts corresponding to the bound stable expression, and Tc correspond-
ing to its body. A read Rx.t

l (Tc) trace specifies the location read, l, the context of use of
its value, x.e, and the trace, Tc, of the remainder of evaluation with the scope of that read.
This records the dependency of the target on the value of the location read. The memoized
changeable trace { Tc }

m:β

(l1,...,ln)
arises from the evaluation of a changeable memoized func-

20



tion; m is the identifier, β is the branch expressing the input-output dependences, l1 . . . ln
are the unmatched modifiables, and Tc is the trace of the body of the function. Since
changeable function write their result to the store, the trace has no result value.

Dynamic dependency graphs and the memo tables described in Section 3 may be seen
as an efficient representation of traces. Time intervals may be assigned to each read in
the trace in left-to-right order. The containment hierarchy is directly represented by the
structure of the trace. Specifically, the trace Tc (and any read in Tc) is contained within

the read trace Rx.t
l (Tc). Memo tables remember traces of the form { Ts }

m:β

(v,(l1,...,ln))
and

{ Tc }
m:β

(l1,...,ln)
. The identifier m identifies a memo table, the branch β is the lookup key,

v is the result, and the trace Tc or Ts along with the unmatched modifiables l1, . . . , ln is
an encapsulated adaptive computation with inputs l1, . . . , ln. Since changeable expression
write their result to a modifiable, an explicit result is not stored for memoized changeable
expressions.

Term evaluation. Figures 15 and 16 show the evaluation rules for stable and changeable
terms. Memoized stable and memoized changeable functions are evaluated into values
by generating a new memoized function identifier m. Memoized changeable and stable
applications evaluate some expression in the context of an identifier m and a branch β. As
in selective memoization, the branch collects the precise dependencies between the input
and the output. For stable applications the branch starts out empty (ε). For changeable
applications it is initialized to the target—since a changeable expressions writes to its target,
the target must be identical for the “result” to be re-used.

Expression Evaluation. Expression evaluation takes place in the context of memo func-
tion identifier m, a branch, and a re-use trace. The incremental evaluation constructs (let!,
let?, let*, mcase) create a branch, denoted β. A branch is a list of events corresponding
to “choice points” in the evaluation of an expression.

Event ε : : = !v | ? v | inl | inr
Branch β : : = • | ε · β

The branch and the identifier m is used by the return construct to lookup the re-use
trace for a match. If a match is found, the result is returned and the body of return is
skipped. Otherwise, the body of the return is executed.
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σ, v ⇓s v, σ, ε (value) σ, o(v1, . . . , vn) ⇓s app(o, (v1, . . . , vn)), σ, ε (primitive)

(α, µ, χ, T) = σ
σ′ = (α, µ ∪ {m}, χ, T), m 6∈ dom(µ)

σ, ms fun f (a:τ1):τ2 is es end ⇓s ms funm f(a:τ1):τ2 is es end, σ
′, ε

(memo stable fun)

(α, µ, χ, T) = σ
σ′ = (α, µ ∪ {m}, χ, T), m 6∈ dom(µ)

σ, mc fun f (a:τ1):τ2 is ec end ⇓s mc funm f(a:τ1):τ2 is ec end, σ, ε
(memo changeable fun)

(v1 = s fun f(x : τ1) : τ2 is ts end)
σ, [v1/f, v2/x] ts ⇓s v, σ′, Ts

σ, s app(v1, v2) ⇓s v, σ′, Ts

(stable apply)

(v1 = ms fun f (a:τ1):τ2 is es end)
σ,m:ε, [v1/f, v2/a] es

V

s v, σ′, Ts

σ, ms app(v1, v2) ⇓s v, σ′, Ts

(memo stable apply)

σ, ts ⇓s v1, σ
′, Ts

σ′, [v1/x] t′s ⇓s v2, σ
′′, T′s

σ, let x be ts in t′s end ⇓s v2, σ
′′, (Ts ; T′s)

(let)

(α, µ, χ, T) = σ
α′ = α[l 7→ ¤], l 6∈ dom(α)

(α′, µ, χ, T), l ← tc ⇓c σ′, Tc

σ, modτ tc ⇓s l, σ′, 〈Tc〉l:τ
(mod)

σ, ts ⇓c v′, σ′, Ts

σ, case inlτ1+τ2
v of inl (x1:τ1) ⇒ ts | inr (x2:τ2) ⇒ t′s end ⇓c v′, σ′, Ts

(case)

σ, t′s ⇓c v′, σ′, Ts

σ, case inrτ1+τ2
v of inl (x1:τ1) ⇒ ts | inr (x2:τ2) ⇒ t′s end ⇓c v′, σ′, Ts

(case)

Figure 15: Evaluation of stable terms.

Figure 17 shows the rules for stable-expression evaluation and Figure 18 shows the rules
for changeable-expression evaluation. Changeable expressions are evaluated with an implicit
target and the evaluation rules are otherwise similar to those of stable expressions. The
evaluation σ, m:β, es

V

s v, σ′, Ts states that the evaluation of stable expressions es in the
context of the state σ, with memo function identifier m and branch β yields the value v, the
state σ′ and the trace Ts. The evaluation σ, m:β, l ← ec

V

c σ′, Tc states that the evaluation
of changeable expression ec in the context of the state σ, with memo function identifier m
and branch β write to location l and yields the state σ′ and the trace Tc.

Adaptive memoization permits result re-use by matching a subset of the values that the
result of a function depends on. The unmatched dependences are expressed by the let?

construct. The type system ensures that all unmatched arguments are modifiables. During



(α, µ, χ, T) = σ
σ′ = (α[l ← v], µ, χ, T)

σ, l ← write(v) ⇓c σ′, Wτ

(write)

(v1 = c fun (x : τ1) : τ2 is tc end)
σ, l ← [v1/f, v2/x] tc ⇓c σ′, Tc

σ, l ← c app(v1, v2) ⇓c σ′, Tc

(changeable apply)

(v1 = mc fun f (a:τ2):τ is ec end)
σ,m:! l, l ← [v1/f, v2/a] ec

V

c σ′, T

σ, l ← mc app(v1, v2) ⇓s σ′, T
(memo apply)

σ, ts ⇓s v1, σ
′, Ts

σ′, l ← [v1/x]tc ⇓c σ′′, Tc

σ, l ← let x be ts in tc end ⇓c σ′′, (Ts ; Tc)
(let)

σ, l′ ← [σ(l)/x] tc ⇓c σ′, Tc

σ, l′ ← read l as x in tc end ⇓c σ′, Rx.tc

l (Tc)
(read)

σ, l ← tc ⇓c σ′, Tc

σ, l ← case inlτ1+τ2
v of inl (x1:τ1) ⇒ tc | inr (x2:τ2) ⇒ t′c end ⇓c σ′, Tc

(case)

σ, l ← t′c ⇓c σ′, Tc

σ, l ← case inrτ1+τ2
v of inl (x1:τ1) ⇒ tc | inr (x2:τ2) ⇒ t′c end ⇓c σ′, Tc

(case)

Figure 16: Evaluation of changeable terms.

a memo lookup, unmatched modifiables are separated from other dependences and memo
look up is performed based on the matched dependences only.

The first row of Figure 17 shows the evaluation rules for the stable return expression.
First the unmatched modifiables l1 . . . ln are separated from the branch by split (·) and a
memo look up is performed. The memo lookup seeks for a memoized result in the re-use
trace whose identifier and branch matches m and β′. If a result is not found, then the look
up returns an empty trace (ε). If a result is found, then it returns the trace found and the
uninspected tail of the re-use trace. Figure 19 shows the definition of a look up.

When no result is found in the memo (top, left rule in Figure 17), the unmatched
modifiables l1, . . . , ln are copied into fresh modifiables l′1 . . . l′n and the body of the return
is evaluated. The trace of the evaluation is then extended with the trace representing the
copy operations and the result is returned.

When a match is found in the memo (top, right rule in Figure 17), the values of un-
matched locations l1 . . . ln are copied to the local copies l′1 . . . l′n of the re-used computation
and a change propagation is performed to update the re-used trace with respect to the val-
ues of unmatched modifiables. The trace returned by change propagation forms the result
trace together with the trace of the copies. Since a result is found in the memo, the body
of the return is skipped.
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(α, µ, χ, T) = σ

([l1, . . . , ln], β′) = split (β)

m : β′, T ; ε,

α′ = α[l′1 ← α[l1], . . . , l
′

n ← α[ln]], l′i 6∈ dom(α), l′i 6= l′j

(α′, µ, χ, T), [l′1/l1, . . . l
′

n/ln] ts ⇓s v, σ′, Ts

T′s = 〈Rx.write(x)
l1

Wτ1
〉l′

1
:τ1

; . . . ; 〈Rx.write(x)
ln

Wτn
〉l′

n
:τn

σ,m:β, return(ts)

V

s v, σ′,
(

T′s ; { Ts }
m:β

(v,(l′
1
,...,l′

n
))

)

(α, µ, χ, T) = σ

([l1, . . . , ln], β′) = split (β)

m : β′, T ; { Ts }
m:β′

(v,(l′
1
,...l′

n
))

, T′

α′ = α[l′1 ← α[l1], . . . , l
′

n ← α[ln]]

(α′, µ), χ ∪ {l′1, . . . , l
′

n}, { Ts }
m:β′

(v,(l′
1
,...l′

n
))

s

y
→ T′s, χ

′, (α′′, µ′)

T′′s = 〈Rx.write(x)
l1

Wτ1
〉l′

1
:τ1

; . . . ; 〈Rx.write(x)
ln

Wτn
〉l′

n
:τn

σ,m:β, return(ts)

V

s v, (α′′, µ′, χ′, T′), (T′′s ; T′s)

σ, ts ⇓s σ′, v, Ts

σ′,m:β, [v/a]es

V

s σ′′, v′, T′s

σ,m:β, let a : τ be ts in es end
V

s v′, σ′′, (Ts ; T′s)
(let)

σ,m:! v · β, [v/x]es

V

s v′, σ′, Ts

σ,m:β, let !x : τ be ! v in es end

V

s v′, σ′, Ts

(let!)

σ,m:? v · β, [v/x]es
V

s v′, σ′, Ts

σ,m:β, let ?x : τ be ? v in es end

V

s v′, σ′, Ts

(let?)
σ,m:β, [v1/a1, v2/a2]es

V

s v, σ′, Ts

σ,m:β, let a1×a2 be v1 × v2 in es end

V

s v, σ′, Ts

(let×)

σ,m:inl · β, [v/a1]es

V

s v′, σ′, Ts

σ,m:β, mcase inlτ1+τ2
v of

inl (a1:τ1) ⇒ es

| inr (a2:τ2) ⇒ e′s

⇓s v′, σ′, Ts

(case)
σ,m:inr · β, [v/a2]es

V

s v′, σ′, Ts

σ,m:β, mcase inrτ1+τ2
v of

inl (a1:τ1) ⇒ es

| inr (a2:τ2) ⇒ e′s

⇓s v′, σ′, Ts

(case)

Figure 17: Evaluation of stable expressions.
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(α, µ, χ, T) = σ

([l1, . . . , ln], β′) = split (β)

m : β′, T ; ε,

α′ = α[l′1 ← α[l1], . . . , l
′

n ← α[ln]], l′i 6∈ dom(α), l′i 6= l′j

(α′, µ, χ, T), l ← [l′1/l1, . . . l
′

n/ln] tc ⇓c σ′, Tc

Ts = 〈Rx.write(x)
l1

Wτ1
〉l′

1
:τ1

; . . . ; 〈Rx.write(x)
ln

Wτn
〉l′

n
:τn

σ,m:β, l ← return(tc)

V

c σ′,
(

Ts ; { Tc }
m:β

(l′
1
,...,l′

n
)

)

(α, µ, χ, T) = σ

([l1, . . . , ln], β′) = split (β)

m : β′, T ; { Tc }
m:β′

((l′
1
,...l′

n
))

, T′

α′ = α[l′1 ← α[l1], . . . , l
′

n ← α[ln]]

(α′, µ), χ ∪ {l′1, . . . , l
′

n}, { Tc }
m:β′

((l′
1
,...l′

n
))

c

y
→ T′c, χ

′, (α′′, µ′)

Ts = 〈Rx.write(x)
l1

Wτ1
〉l′

1
:τ1

; . . . ; 〈Rx.write(x)
ln

Wτn
〉l′

n
:τn

σ,m:β, l ← return(tc)

V

c (α′′, µ′, χ′, T′), (Ts ; T′c)

σ, ts ⇓s σ′, v, Ts

σ′,m:β, l ← [v/a]ec

V

c σ′′, Tc

σ,m:β, l ← let a : τ be ts in ec end

V

s σ′′, (Ts ; Tc)
(let)

σ,m:! v · β, l ← [v/x]ec

V

c σ′, Tc

σ,m:β, l ← let !x : τ be ! v in ec end

V

c σ′, Tc

(let!)

σ,m:? v · β, l ← [v/x]ec

V

c σ′, Tc

σ,m:β, l ← let ?x : τ be ? v in ec end

V

c σ′, Tc

(let?)
σ,m:β, l ← [v1/a1, v2/a2]ec

V

c σ′, Tc

σ,m:β, l ← let a1×a2 be v1 × v2 in ec end

V

c v, σ′, Tc

(let×)

σ,m:inl · β, l ← [v/a1]ec

V

c σ′, Tc

σ,m:β, l ← mcase inlτ1+τ2
v of

inl (a1:τ1) ⇒ ec

| inr (a2:τ2) ⇒ e′c

V

c σ′, Tc

(case)
σ,m:inr · β, l ← [v/a2]ec

V

c σ′, Tc

σ,m:β, l ← mcase inrτ1+τ2
v of

inl (a1:τ1) ⇒ ec

| inr (a2:τ2) ⇒ e′c

⇓s v′, σ′, Tc

(case)

Figure 18: Evaluation of changeable expressions.

m : β, ε ; ε, ε

m : β, Tc ; T1, T2

m : β, 〈Tc〉l:τ ; T1, T2

m : β, Ts ; T1, T2 T1 6= ε

m : β, Ts ; T′s ; T1, T2 ; T′s

m : β, Ts ; ε,
m : β, T′s ; T1, T2

m : β, Ts ; T′s ; T1, T2

m = m′ ∧ β = β′

m : β, { Ts }
m′:β′

(v,(l1,...,ln))
; { Ts }

m′:β′

(v,(l1,...,ln))
, ε

m 6= m′ ∨ β 6= β′

m : β, { Ts }
m′:β′

(v,(l1,...,ln))
; ε, { Ts }

m′:β′

(v,(l1,...,ln))

m : β, Wτ ; ε, Wτ

m : β, Tc ; T1, T2

m : β,Rx.t
l (Tc) ; T1, T2

m : β, Ts ; T1, T2 T1 6= ε

m : β, Ts ; Tc ; T1, T2 ; Tc

m : β, Ts ; ε,
m : β, Tc ; T1, T2

m : β, Ts ; Tc ; T1, T2

m = m′ ∧ β = β′

m : β, { Tc }
m′:β′

((l1,...,ln))
; { Tc }

m′:β′

((l1,...,ln))
, ε

m 6= m′ ∨ β 6= β′

m : β, { Tc }
m′:β′

((l1,...,ln))
; ε, { Tc }

m′:β′

((l1,...,ln))

Figure 19: The rules for memo look up.
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4.4 Change Propagation

We present a formal version of the change-propagation algorithm, which is informally de-
scribed in Section 3. The algorithm extends the original change propagation algorithm [2]
to support result re-use. Given a trace, a state ς, and a set of changed locations χ, the
algorithm scans through the trace as it seeks for reads of changed locations. When such
a read is found, the body of the read is re-evaluated to obtain a revised trace. Crucial
point is that the re-evaluation of a read re-uses the trace of that read. In contrast, the
original change propagation algorithm throws away the trace of the re-evaluated read [2].
Since re-evaluation can change the value of the target of the re-evaluated read, the target
is added to the set of changed locations. Figure 20 shows the rules for change propagation.

The change propagation algorithm is given by these two judgments:

1. Stable propagation: ς, χ, Ts

s

y
→ T′s, χ

′, ς ′

2. Changeable propagation: ς, χ, l ← Tc

c

y
→ T′c, χ

′, ς ′

These judgments define the change-propagation for a stable trace, Ts (respectively, change-
able trace, Tc), with respect to a a set of changed locations χ, and state ς = (α, µ) consisting
of a location store α, and function identifier store µ. For changeable propagation a target
location, l, is maintained as in the changeable evaluation mode of IFL.

Given a trace, change propagation mimics the evaluation rule of IFL that originally
generated that trace. To stress this correspondence, each rule is marked with the name of
the evaluation rule to which it corresponds. For example, the propagation rule for the trace
Ts ; T′s mimics the let rule of the stable mode that gives rise to this trace.

Note that the purely functional change-propagation algorithm presented here scans the
whole trace. Therefore, a direct implementation of this algorithm will run in time linear
in the size of the trace. Performance can be improved by using side effects: since the
change-propagation algorithm revises the trace by only replacing the changeable trace of
re-evaluated reads, the re-evaluated reads can be replaced in place, while skipping the unaf-
fected parts of the trace. This is how the ML implementation performs change propagation
using a dynamic dependency graph as described in Section 3.
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ς, χ, ε
s

y
→ ε, χ, ς

ς, χ, l ← Tc

c

y
→ T′c, χ

′, ς ′

ς, χ, 〈Tc〉l:τ

s

y
→ 〈T′c〉l:τ , χ′, ς ′

(mod)

ς, χ, Ts

s

y
→ T′′s , χ′, ς ′

ς ′, χ′, T′s

s

y
→ T′′′s , χ′′, ς ′′

ς, χ, (Ts ; T′s)
s

y
→ (T′′s ; T′′′s ), χ′′, ς ′′

(let)

ς, χ, Ts

s

y
→ T′s, χ

′, ς ′

ς, χ, { Ts }
m:β

(v,(l1,...,ln))

s

y
→ { T′s }

m:β

(v,(l1,...ln))
, χ′, ς ′

(memo)

ς, χ, l ← Wτ

c

y
→ Wτ , χ, ς (write)

(l 6∈ χ)

ς, χ, l′ ← Tc

c

y
→ T′c, χ

′, ς ′

ς, χ, l′ ← Rx.tc

l (Tc)
c

y
→ Rx.tc

l (T′c), χ
′, ς ′

(read, no change)

(l ∈ χ)

(α, µ) = ς

(α, µ, χ, Tc), l
′ ← [α(l)/x] tc ⇓c (α′, µ′, χ′, ), T′c

ς ′ = (α′, µ′)

χ′′ = χ′ ∪ {l′}

ς, χ, l′ ← Rx.tc

l (Tc)
c

y
→ Rx.tc

l (T′c), χ
′′, ς ′

(read, change)

ς, χ, Ts

s

y
→ T′s, χ

′, ς ′

ς ′, χ′, l ← Tc

c

y
→ T′c, χ

′′, ς ′′

ς, χ, l ← (Ts ; Tc)
s

y
→ (T′s ; T′c), χ

′′, ς ′′

(let)

ς, χ, l ← Tc

c

y
→ T′c, χ

′, ς ′

ς, χ, l ← { Tc }
m:β

((l1,...,ln))

c

y
→ { T′c }

m:β

((l1,...ln))
, χ′, ς ′

(memo)

Figure 20: Change propagation for stable (top) and changeable (bottom) traces.
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5 Applications

We describe how to make Insertion Sort and Quick Sort incremental under insertions and
deletions to the input. We prove strong performance bounds. For insertion sort, we show
that an insertion or deletion is handled in expected-case O(n) time with adaptive memo-
ization. For Quicksort, we consider insertions and deletions at random locations and show
an expected O(log2 n) bound by using the orthogonal combination. We improve this to
expected O(log n) by using adaptive memoization. The expectations are over internal ran-
domness for hashing used in memo tables. For Quicksort the expectation is also over all
permutations of the input, as usual.

We present the code for the applications by using an extended version of the IFL language
that support lists. For brevity, we also use pattern matching on the bang and question mark
types, and do not apply the named-form restriction.

Both algorithms operate on modifiable lists defined as

datatype ’a mlist = NIL | CONS (’a * (’a mlist) mod)
type ’a modlist = (’a mlist) mod.

For our results, we assume that inputs to the applications do not contain multiple
instances of the same key. Uniqueness can easily be ensured by associating a unique identifier
with each element of the input.

The time for updating the output of an incremental computation is affected by the kind
and the size of the priority queue employed for change propagation [2, 4]. Although a general
purpose, logarithmic time priority queue works for all applications, it is not efficient for many
applications. For example, we showed that a certain class of parallel computation can use
a constant-time priority queue [4]. In insertion sort and the Quicksort with orthogonal
combination, the size of the queue is bounded by a constant, and thus a general purpose
priority queue can be used. For the adaptively memoized version of Quicksort however the
queue size can be linear in the size of the input. Thus a general purpose priority queue does
not work well. Instead, we use a constant-time doubly ended priority queue. Insertions to
the queue are done either at the front or the back and deletions are always done at the
front. An insertion checks if the priority of the inserted key is higher than the key at the
front, if so the key inserted at the front, otherwise it is inserted at the back.

5.1 Incremental Insertion Sort

Figure 21 shows the code for incremental insertion sort. The function iSort inserts the keys
in the input list l into an initially empty accumulator a. As indicated by the ! and ?, the
result is memoized based on the input list and adaptively memoized on the accumulator.
This means that a result will be found in the memo when the input lists are identical even
though the accumulators are not. The function insert inserts a given key i into the list t.
It is memoized based on i and the previously inspected key h, and adaptively memoized
with respect to t. This ensures that the same result will be returned as long as the content
of the lists (t’s) are the same even if they contain different cons cells.

As discussed in Section 2 without using adaptive memoization, insertion takes Θ(n2)
time even with the orthogonal combination of adaptivity and memoization. Adaptive mem-
oization improves performance to expected O(n) time.
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insert: (!int * (!int*?int modlist))->int modlist
ms fun insert (!i,(!h,?t)) =
return mod (

read t as vt in
case vt of
NIL => write (CONS (i,t))

| CONS(hh,tt) =>
if (i < hh) then

write (CONS(i,t))
else

write (CONS(hh, ms app(insert, (!i,(!hh,?tt)))))
end)

mc fun iSort (!l:int modlist,?a:int modlist) =
return

read l as vl in
case vl of
NIL => write a

| CONS(h,t) =>
let aa = ms app (insert (!h, (!h,?a))) in

mc app(iSort, (!t, ?aa))
end

end

s fun insSort (l:int modlist):(int modlist) mod =
mod (mc app(iSort,(!l,?(mod (write NIL)))))

Figure 21: Insertion sort with adaptive memoization.

Theorem 1
Insertion sort (shown in Figure 21) updates its result in expected O(n) time when its input
is changed by an insertion or deletion anywhere in the list.

Proof (sketch): We consider iSort and insert in isolation. Inserting a new key k will
change some modifiable in the list and insert a new modifiable m for the tail. Since the tail
of m will not be affected, iSort will synchronize with the previous execution after two calls
to insert–even though the accumulator has changed.

To insert the new key k to the result, function iSort will call insert. Since k has never
been seen before, insert will insert k to the accumulator returning a new accumulator.
Since the accumulator has now changed, the subsequent calls to insert will need to be
re-executed. Since the contents of the accumulator are the same as before, except for the
location where k is inserted, each re-executed read of insert will synchronize with the
previous execution by returning the same result. At most n reads will involve the new key
k, and therefore the accumulators will be synchronized after O(n) re-execution of the sole
read in insert. Since each re-execution take expected constant time, the result will be
updated in expected O(n) time ¥

5.2 Incremental Quicksort

We consider two versions of Quicksort using the orthogonal combination and adaptive mem-
oization. The table below compares their performance for a single insertion or deletion at
the beginning, at the end, and at a random location in the list to the performance with
memoization or adaptivity only. All bounds are expected case with expectations taken over
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fil:(!int*!(int*int->bool)*!int modlist)->int modlist
ms fun fil (!p, !f, !l) =

return mod (
read l as ll in
case ll of
NIL => write NIL
CONS(h,t) =>
if (f h) then

write CONS(h,ms app(fil, (!p,!f,!t)))
else

read (ms app(fil, (!p,!f,!t))) as tt in write tt end
end)

c fun qs(l:int modlist, rest:int mlist) =
read l as vl in
case vl of
NIL => write rest

| CONS(h,t) =>
let
val g = ms app(fil, (!h, !(fn x => x > h),!t))
val gs = mod (c app (qs, (g,rest)))
val s = ms app(fil, (!h, !(fn x => x < h),!t))

in
c app (qs, (s,CONS(h,gs)))

end
end

s fun qsort (l:int modlist):int modlist = mod (c app (qs, (l,NIL)))

Figure 22: Quicksort with the orthogonal combination.

all possible permutations of the input; for random insertions, expectations are taken over
all possible locations in the input with uniform probability.

beginning end random

Adaptive Memo O(n) O(log n) O(log n)

Orthogonal O(n log n) O(log n) O(log2 n)

Memoized O(n) O(n log n) O(n log n)

Adaptive O(n log n) O(log n) O(n log n)

Quicksort with Orthogonal Combination. Figure 22 shows the code for incremental
Quicksort using the orthogonal combination. The code avoids appends by using an accu-
mulator and is very similar to the adaptive Quicksort analyzed in previous work [2]. The
only difference is that the filter function fil is memoized based on the pivot, the function
for filtering, and the input list.

Theorem 2
The Quicksort with the orthogonal combination takes expected O(n log n) time for inser-
tions at the head of the input, expected O(log n) time for insertions at the end of the
input, and expected O(log2 n) time for insertions at a (uniformly) randomly chosen posi-
tion. Expectations are over all permutations of the input list. The same bounds apply to
deletions.
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fil:(!int*!(int*int->bool)*!int modlist)->int modlist
ms fun fil (!p,!f,(!h,?t)) =
return mod (
read t as vt in
case vt of

NIL => write NIL
CONS(hh,tt) =>
if (f hh) then
write CONS(hh,ms app(fil, (!p,!f,(!hh,?tt))))

else
read (ms app(fil, (!p,!f,(!hh,?tt)))) as vtt in write vtt end

end)

c fun qs(l:int modlist,rest:int mlist) = ...

Figure 23: Quicksort with adaptive memoization.

Proof: Inserting a key at the head of the input list re-executes the first call to qs and thus
takes expected O(n log n) time. In previous work, we showed that insertions at the end of
the input take O(log n) expected time using adaptivity only, thus the same result applies.

Consider inserting a new key k anywhere in the list. Key k will be propagated down
the recursion tree by re-executing calls to fil along some path until k becomes the pivot.
When k becomes the pivot, the corresponding call to qs will be re-executed. Since fil is
memoized based on the input list, a single insertion to the input will take expected constant
time to handle at each level. Consequently, the total time is the no more than the depth
of the tree plus O(m log m) where m is the number of keys in the input when k becomes
pivot. The depth of the tree is expected O(log n). Thus we need to show is that O(m log m)
is O(log2 n) in the expected case.

The expected time for qs on an input list of size m is, E[T (m)] = O(m log m) with
expectation over all permutations of the input. We are interested in the expectation of
this for a random insertion position. Thus E[E[T (m)]] = E[O(m log m)], since m ≤ n, we
have E[E[T (m)]] = (log n)E[m]. The expected value m is O(log n) by using the well known
isometry between the pivot-tree of Quicksort and Treaps [18]. Thus a uniformly random
insertion takes O(log2 n) time. ¥

Quicksort with Adaptive Memoization. Figure 23 shows the code for Quicksort with
adaptive memoization. The difference between this version and the version using orthogonal
combination is that fil is not memoized based on the input list. It now takes a separate
head and tail and is memoized based only on the head. This ensures that fil generates the
same output when its input consists of keys that are a subset of the previous input—even
if the new input consists of different cons cells.

Theorem 3
The adaptively memoized Quicksort takes expected O(n) time for insertions at the head
of the input, expected O(log n) time for insertions at the end of the input, and expected
O(log n) time for insertions at a uniformly randomly chosen position. The expectations are
over permutations of the input list. The same bounds apply to deletions.
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Figure 24: The recursion tree for Quicksort with inputs L =
[15, 30, 26, 1, 3, 16, 27, 9, 35, 4, 46, 23, 11, 42, 19] (left) and L′ = [20, L] (right).

Proof: The result for inserting at the end of the input list relies only on adaptivity and
our previous result applies [2]. To prove the O(n) bound for insertions at the head, we
use an argument that is similar to that with memoization Quicksort [3]. The result for a
random insertion will then follow by the fact that the expected size of a randomly selected
subtree has size O(log n).

Consider the recursion tree for Quicksort on some input where each recursive call is
marked with its pivot. Now consider the recursion tree of Quicksort on the input changed
by inserting a new key k at the head. Figure 24 shows the pivots trees for two such inputs.
Since the new key k is inserted at the head of the input list, it will become root. Consider
the rightmost spine of the left subtree of the root and the leftmost spine of the right subtree
of the root—these spines are marked with bold edges in Figure 24. The following properties
are true as shown in previous work [3].

1. The subtree connected to the vertices of the spine are identical in both recursion trees.

2. The sum of the sizes of the subtrees of vertices on the spines is expected O(n), where
the expectation is over all permutation of the input.

Consider any call that is not on the spine. By property (1) the input to that call is
identical before and after the insertion. The call to filters at each such node will therefore
find its result in the memo and take expected constant time. Since calls to filter are
performed in reverse sorted order in both computations, re-use of a result will not invalidate
some other result. Thus all the calls except for those at the two spines will take constant
time. Note that such result re-use is not possible without adaptive memoization, because
the input lists will not in fact be identical even though their contents are the same—the
filters at the root will generate all new results. The calls at each spine will take expected
linear time in the size of their inputs. By property (2), the sum of the input sizes to the calls
on the spines is expected O(n), therefore the time for these calls is O(n). This establishes
the O(n) bound for an insertion at the head of the input list.

For random insertions, consider inserting a new key k at a random position in the input.
The newly inserted key will be propagated down the call tree by re-executing filter calls
along some path. Since the fil is memoized each level will take expected constant time.
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Since the depth of the recursion tree is expected O(log n), the time for these call will be
expected O(log n). When the new key becomes the pivot, it will cause the corresponding
call to qs to re-execute. By using the result for an insertion at the of the input, this will
take O(m) time where m is the size of the input to that call. By using the known isometry
between Treaps [18] and the call tree of Quicksort, the expected size of m if O(log n). It
follows that the expected time to handle a random insertion is O(log n). ¥
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