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Abstract

We present a language for access control. The language is organized around the notion of execution on behalf of a
principal. This is characterized using an indexed lax modality. Central to the language is the idea of manifest security
– accessing a resource requires presenting a proof of accessibility to the resource monitor. Proofs are generated at
runtime by actions such as typing in password, looking up an access-control list or by composing other proofs etc. In
the present work, we consider a simplified setting in which the access-control theory is static. In such a case proofs
can be regarded as static entities. Proof generation can be hoisted away from resource access since proofs become
permanent. Also, the actual proofs are irrelevant. The results of runtime checks can therefore be reflected as types
and the program can be verified statically to ensure that relevant runtime checks would be passed before accessing
any resource. We prove a theorem stating that the language is safe in terms of how all a principal can get to access a
resource.
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1 Introduction
This paper presents a programming language for access control. The language is based on the idea of manifest security
wherein access to resources si granted subject to the demonstration of a proof of accessibility. Operations concerned
with accessing resources are parameterized by suitable proofs that vouch for the safety of execution of the operation.

Access-control deals with controlling access to sensitive resources/data in adherance to a policy. When talking
about access, we first need to have a notion of a principal trying to access a reaource. These two notions are reflected
directly in our language. Access is identified with the execution of a language term on behalf of a principal. Principals
are introduced at a sufficiently high level of abstraction. The language does not associate any property with the
principals except that they be different from the terms in the language and the resources in the system.

We assume that the system consists of a fixed number of principals and a fixed number of resources, both of which
are known statically. Principals interact with the resources using resource-specific operations. For example, in an
operating system setting, principals might correspond to users or programs running on behalf of users. In a π-calculus,
the channels might be thought of as principals. In our setting, a principal is any agent that is responsible for the
execution of certain programs or that receives the results of such programs.

The language distinguishes effectful computations, such as reading or writing a file, from pure lambda terms. This
distinction is made because access control is primarily concerned with controlling the effects produced by principals,
e.g. writing to a file. Pure terms can be executed alike by all principals. Effectful computations (or simply, computa-
tions) are always executed on behalf of a principal. The particular principal executing a computation affects the results
of the computation. Pure terms on the other hand, evaluate to the same value, no matter which principal executes them.

The language allows a principal to assume the identity of another principal. Such a capability is often useful
in scenarios where a principal wishes to execute a computation with downgraded permissions, for instance when
following the principle of least privileges. Principals may, for example, be roles and a user should be allowed to
switch between them by providing their respective passwords. Entering the correct password generates a proof of
reachability from the principal, say w1, who typed in the password to the principal , say w2, whose password has been
typed in. This proof can then be used by w1 to switch to w2.

Now we give a high level overview of the manifest security architecture. This provides the scheme of things this
language is supposed to fit in.

1.1 The overall architecture
Manifest security [CHP+07] proposes a new architecture for building secure extensible systems. The proposal targets
software that can be customized using third party extensions. Issues like access-control and information flow control
feature predominantly in such applications. The proposal addresses these issues in two major phases: (a) building a
logic in which to specify security policies; (b) building a runtime system and a programming language that can be
used to write secure programs. These are described below in more detail:

1. Access-control policy The language assumes the existence of an access-control theory specified as a set of
axioms and rules of derivation. The rules of derivation come from a logic of access control that describes
the access-control policy. We do not intend to build such a logic in this paper. Instead, we work with a very
simple logic (containing only the hypothesis rule). This logic essentially mimics access-control lists, which
can be viewed as a binary predicate on principals and resources, specifying for each tuple, whether an access
is allowed. Important issues arise while considering richer logics in connection with our language because the
proofs from the logic need to be reflected as types in the language. Section 2.1 discusses these issues with the
help of an example logic.

2. Proof-carrying runtime system The runtime system acts as a bridge between the programming language and
the access-control logic. It is responsible for handling requests for proofs in the access-control theory and for
requests to access a resource. Each resource is associated with a reference monitor that validates the proofs of
accessibility before allowing access to the resource.

3. The security language The security language provides guarantees to the effect that proper proofs would be
passed to the resource monitor for accessing a resource. This serves twofold purposes: in a setting where the
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access-control theory is not mutable, the resource monitors no longer need to check for the validity of the proofs.
Proofs can therefore be safely erased from the language. In cases where the axioms of the theory may change
along the execution of the program, the resource monitors still do not need to validate the entire proof. Only the
axioms appearing at the top level of a proof need to be checked. The validity of the rest of the proof should be
guaranteed by the language.

Secondly, and more importantly, the type system facilitates a separation between proof generation and their
use, thereby permitting reuse. To best motivate this, consider, for an analogy with array bounds checking, the
following code that accesses elements of an array. Before reading off the element at a particular index, it verifies
that the index is not out-of-bounds. This can be done in different ways.

• Explicitly comparing the index with the length of the array

if Array.length array > index
then

(* access the element at index *)
let x = Array.sub (array, index)
in
...
end

else
...

Such a method is not amenable to static analysis. There is no relationship between checking for the bounds
and subscripting it. In other words, what stops the programmer from writing the code of the then branch
in the else branch instead?

• Combining array bounds checking with subscripting A radical change would be to use a subscripting
operation, say safesub instead of sub, that checks for the array bounds before accessing any index in
the array. This would be rather wasteful in the case when the same index is used to subscript the array
multiple times.

• Explicit proofs using dependent types This approach is based on the observation that the boolean test
used in the first approach is actually a predicate. Testing for the truth of the predicate could be done by
searching for a proof, which can then be passed along as a witness to that test having being passed. Thus
each time the array needs to be indexed, the presence of the relevant proof obviates doing a bounds check.
Array.sub would then be typed as ∀l : nat.∀i : nat.array[l] → lt(i, l) → nat, where l is the size of the
array, i is the index being accessed, and lt(i, l) is the type of proofs that i is less than l. This proof would be
generated by the guard and passed down the if branch. Better still, this proof could be generated anywhere
in the program, thereby hoisting the proof generation away from the site of its use.

To summarize, the main features of the language are:

1. The language is built around the notion of execution on behalf of principals. This allows a direct reference to
principals in the language itself.

2. We carefully separate the programming language from the access-control logic. That is to say, the programming
language does not force the use of a particular logic. The logical machinery is reflected in the language using
an embedding. We hope this separation allows for modular development of the language and the logic.

3. Proof-checking and proof generation are essentially runtime activities. The results of dynamic proof checks is
reflected into the types in the language. This allows us to statically reason about their generation and use to
access resources. The separation between proof generation and their use allows for hoisting the dynamic checks
away from the resource accesses.

Before presenting the details of our language, we motivate the idea of manifest security by presenting an example
logic for access-control in Section 2. We also motivate the issues regarding the embedding of logical constructs in the
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programming language. Section 3 presents the syntax and gives the type system for the language. We motivate our
choice of typing judgments by presenting a judgmental formulation of the language in Section 4. Section 5 presents
the runtime semantics. This is followed by a discussion of the access-control logic and its embedding in the language.
Section 7 illustrates theorems regarding type-safety and access-control safety.

2 An example logic
Let us try formulating an example access-control policy that mimics simple ACL-based file protection in Unix. We
want to be able to express a notion of ownership of resources by principals. Further, we want that a principal should
be able to permit access to other principals for the resources it owns. As we shall see in this section, the manner in
which this logic is formulated depends on the interface between the language and the logic.

2.1 Interfacing the policy logic with the language
The language interacts closely with the policy logic. This is because the terms contain proofs of accessibility. Type-
checking, therefore, involves proof checking and the rules for verifying proofs come from the policy logic. This
ultimately leads to the language knowing about all the judgmental forms used by the policy logic. This leads to
the question: how many types of judgments do we need in the logic? On one extreme, we might just have the
truth judgment in the logic and represent all other judgmental concepts as propositions. On the other extreme, we
may have a rich judgmental level in the logic. In the former case, the logic may be developed independently of the
language. Type-checking would involve checking equality between propositions. The biggest drawback to such an
approach is that since we do not allow any judgment other than the truth judgment, we can hope to define only very
simple logics. For instance, consider formulating a logic with ownership and affirmation. We may start off with
having a proposition owns(w, R) for ownership, a proposition 〈w〉P for affirmation, and propositions mayrd(w, R),
maywt(w, R) expressing that the principal w is allowed to read/write to a resource. We might also be able to have an
axiom: ∀w.∀R.owns(w,R) ⊃ mayrd(w, R) true. The trouble comes when we try to have axioms for affirmation.
We do not know of a way to define the affirmation proposition without affirmation judgment. We might try to have the
following rules instead:

Γ ` P true

Γ ` 〈w〉P true

Γ ` 〈w〉P true Γ, P true ` 〈w〉Q true

Γ ` 〈w〉Q true

The above rules however can not function as introduction and elimination rules for the affirmation proposition as
the purported elimination rule is not locally complete. In general, it might not be possible to design the required logic
using only propositions and truth judgment.

The other design choice, i.e. having a rich judgmental level in the logic, looks more promising. The only downside
is that the language gets tied closely to the logic since it needs to know about all the judgmental forms used in the
logic.

We begin by having a judgment form w owns I that expresses ownership of the resource indexed I . In an imple-
mentation, evidence of this judgment would be credentials about ownership provided a priori in the implementation.
For our example, we have the following logic, where P ranges over the propositions in the logic (we use the subscript
L to distinguish proof terms of the logic):
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Γ, x : P ` x : P
(hyp)

Γ ` p1 : P1 Γ ` p2 : P2

Γ ` 〈p1, p2〉L : P1 ∧ P2

(∧I)
Γ ` p : P1 ∧ P2

Γ ` fstLp : P1

(∧E1)
Γ ` p : P1 ∧ P2

Γ ` sndLp : P2

(∧E2)

Γ, x : P1 ` p : P2

Γ ` λLx.p : P1 ⊃ P2

(⊃ I)
Γ ` p : P1 ⊃ P2 Γ ` q : P1

Γ ` appLpq : P2

(⊃ E)
Γ ` p : w owns R

Γ ` ownerrd(p) : mayrd(w, R)

Γ ` p : w owns R

Γ ` ownerwt(p) : maywt(w, R)
Γ ` p : 〈w〉mayrd(w′, R) Γ ` o : w owns R

Γ ` owner permit rd(p, o) : mayrd(w′, R)

Γ ` p : 〈w〉maywt(w′, R) Γ ` o : w owns R

Γ ` owner permit wt(p, o) : maywt(w′, R)

Now we wish to enrich the logic with affirmations as presented by Garg et al. [GBB+06]. Affirmations are used
to express intent. We use the judgment form w says P to express that the principal thinks that the proposition P is
true. It is important to note that P may not be considered to be true simply because a principal believes it to be. The
above judgment only expresses the point of view of the principal w. Further, we assume that all principals are rational
and thereby affirm any true proposition. We thus have the judgment form w says P where P ranges over the set of
propositions in the logic and w ranges over principals. We characterize the judgment using hypothetical judgments –
the context Γ is a set of assumptions of the form P true.

Γ ` p : P true

Γ ` p ∼ w says P

where p ∼ w says P is a new form of typing judgment corresponding to the says judgment. We internalize this
judgment as a modality:

Γ ` p ∼ w says P

Γ ` rat (w, p) : 〈K〉P true

Next, we see how to use the affirmation judgment. Since an affirmation only expresses the point of view of a principal,
it can be used to derive conclusions that are affirmations by the same principal.

Γ ` p : 〈w〉P true Γ, x : P true ` q : 〈w〉Q true

Γ ` let x = p in q : 〈w〉Q true

This finishes our example logic. The proof terms of the logic appear as static constructors in the language and
the propositions appear as classifiers of proof terms. Consider formulating a typical policy statement found in access-
control lists. Suppose Alice is the owner of a file foo and wants to give read permission for the file to Bob. The
ownership relation would be made manifest by a primitive certificate C1 of the type owns(Alice, foo). Alice could
then issue a certificate C2 of the type 〈Alice〉mayrd(Bob, foo,). The proof that Bob can read the file foo would have to
be assembled as owner permit rd(C1, C2).

3 Syntax
The language distinguishes between effectful terms, called computations (C), and pure terms (M ) 1. We use a com-
putational monad [Mog89] to characterize effects. Since effectful computations are always executed on behalf of a
principal, the monad is indexed with the principal executing the computation. In this language, we consider only a

1Computations are further divided into instructions (Ins) and plain computations (C). Instructions are the most primitive computations that
cannot be further divided. More on why this division is required appears in Section 5.1.
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Kinds K ::= TYPE | RES | w1 ≤ w2

(Embedded propositions)
| mayrd(w, I) | maywt(w, I) | K1 → K2

| K1 × K2 | >
Constructors A, P, I, w ::= c Type constants

| w world constants
| string A type constant
| A1 → A2 Function types
| AC[w]A Monadic type constructor
| Res[I] Resource type
| 1 Unit
| α Type variable

(Embedded proofs)
| ?
| 〈P1, P2〉 Pair
| fst P Projection
| snd P
| λα :: K.A Abstraction
| A1A2 Application

Pure terms M ::= x | λx:A.M | M1 M2 | ac[w]C | 〈〉
| ι[I] Constant ref-cells

Instructions Ins ::= sudo[w][P ](C) Movement to an accessible world
| read [I][P ](M) Reading a ref cell
| write [I][P ](M1)(M2) writing to a ref cell

Computations C ::= return M Monadic unit
| letac x = M in C Monadic bind
| su[w](M){α.C1 | C2} Gatekeeper for world-accessibility proofs
| proverd[I][w]{α.C1 | C2} Gatekeeper
| provewt[I][w]{α.C1 | C2} Gatekeeper
| Ins; x.C Instruction

Values v ::= λx:A.M | ac[w]C | ι[I] | 〈〉
Static context ∆ ::= α :: K
Dynamic context Γ ::= x:A
Signature Σ ::= · | Σ, c::K

Figure 1: Syntax
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fixed set of resources. Since the resources are fixed, they can be statically indexed. The indices are introduced at the
level of types and the family of such indices is called RES. Resources are simply modelled as injections ι[I] of types
I of the kind RES into the level of terms. The resource indices are introduced as constants using the signature Σ. The
language can thus be thought of as being parametrized by the set of fixed resources.

The central primitives for accessign a resource are read [I][P ](M) and write [I][P ](M1)(M2). These primitives
are parametrized by the resource index I being accessed. The read primitive reads the resource M (which should be
of type Res[I]). The write primitive modifies the value of the resource M1 to M2. Each of these primitives requires a
proof P that permits the principal executing the primitive to access the resource.

The instruction sudo[w][P ](C) allows a principal to switch to another principal. That is to say, the computation
C is executed on behalf of the principal w. After C is finished, computation of following code proceeds on behalf of
the former principal. This operation requires a proof of movement P between the two principals which is generated
using the computation su[w](M){α.C1 | C2}. The instruction su is used to abstract away the details of runtime
generation of proofs of movement. In an implementation, su might correspond to prompting the user for a password,
and generating a proof if the password is correct. The computation C1 is typed in a hypothetical setting assuming
existence of a proof of accessibility. The computation C2, on the other hand does not need such a proof. Thus the
purpose of su[w](M){α.C1 | C2} is two-fold: first, it generates a proof of movement between worlds; second, it
discharges the assumption of movement by substituting the proof for a free variable in C1. In case no such proof
exists, the second branch C2 is executed.

Similar to the su are the commands proverd[w][I]{α.C1 | C2} and provewt[w][I]{α.C1 | C2} which interface
the language with the access-control database. They are used to search for primitive proofs of accessibility. The
computation proverd[w][I]{α.C1 | C2} searches for a primitive proof of the kind mayrd(w, I). If such a proof is
found in the access-control database, the assumption about existence of this proof in C1 is discharged by substituting
the actual proof for the free variable α representing the hypothesis. If no such proof is found, execution continues with
C2.

As the syntax suggests, the generation of proofs and the use of proofs have been seperately dealt with. This allows
for hoisting runtime checks for proofs away from the place where they are used thereby permitting reuse of proofs.
The task of the type system is to ensure that the right kind of proofs are used in access-control sensitive operations.

Constructors in the language can be categorized into three groups, as is evident at the level of kinds: (i) those
that classify terms in the language, which are classified by the kind TYPE; (ii) those that represent resource indices,
classified by the kind RES; and those corresponding to proof terms in the access-control logic; classified by kinds that
correspond to propositions in the logic. We refer to the latter sort of constructors as embedded proofs, and their kinds
as embedded propositions, since they are defined by an injection from proofs and propositions in the access-control
logic.

3.1 Static typing
The typing judgments for computations are written as ∆; Γ `Σ C @ w ∼ A meaning that the computation C is well-
typed and can be executed on behalf of the principal w. Pure terms are typed using the judgment ∆; Γ `Σ M : A.
The judgment ∆ `Σ A :: K classifies constructors using kinds. Well-formed kinds are given by the judgment
∆ `Σ K kind. All the typing judgments are parametrized by a signature Σ which is used to introduce constant types.
Note that no knowledge of the access-control database π is required for typechecking.

We begin by defining well-formed signatures. The primary purpose of a signature is to introduce constant resource
indices. The type definitions in the signature form an ordered sequence, where latter definitions may depend on
constants defined in former ones.

Σ sig

· sig
· `Σ K kind Σ sig

Σ, c::K sig

Σ sig · `Σ I::RES
Σ, l:Res[I] sig

∆ `Σ K kind
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∆ `Σ TYPE kind ∆ `Σ RES kind ∆ `Σ w1 ≤ w2 kind

∆ `Σ I :: RES
∆ `Σ mayrd(w, I) kind

∆ `Σ I :: RES
∆ `Σ maywt(w, I) kind

∆ `Σ K1 kind ∆ `Σ K2 kind

∆ `Σ K1 → K2 kind

∆ `Σ K1 kind ∆ `Σ K2 kind

∆ `Σ K1 ×K2 kind

∆ `Σ > kind

∆ `Σ A :: K

c :: K ∈ Σ
∆ `Σ c :: K

α :: K ∈ ∆
∆ `Σ α :: K ∆ `Σ string::TYPE ∆ `Σ 1::TYPE

∆ `Σ A1 :: TYPE ∆ `Σ A2 :: TYPE
∆ `Σ A1 → A2 :: TYPE

∆ `Σ A :: TYPE
∆ `Σ AC[w]A :: TYPE

∆ `Σ I :: RES
∆ `Σ Res[I] :: TYPE

∆ `Σ P1 :: K1 ∆ `Σ P2 :: K2

∆ `Σ 〈P1, P2〉 :: K1 ×K2

∆ `Σ P :: K1 ×K2

∆ `Σ fst P :: K1

∆ `Σ P :: K1 ×K2

∆ `Σ snd P :: K2

∆, α :: K1 `Σ P :: K2

∆ `Σ λα::K1.P :: K1 → K2

∆ `Σ P1 :: K1 → K2 ∆ `Σ P2 :: K1

∆ `Σ P1P2 :: K2 ∆ `Σ ? :: >

∆; Γ `Σ Ins @ w ∼ A

∆ `Σ P :: w′ ≤ w ∆; Γ `Σ C @ w′ ∼ A

∆; Γ `Σ sudo[w′][P ](C) @ w ∼ A

∆ `Σ I :: RES ∆; Γ `Σ M : Res[I] ∆ `Σ P :: mayrd(w, I)
∆; Γ `Σ read [I][P ](M) @ w ∼ string

∆ `Σ I :: RES ∆; Γ `Σ M1 : Res[I] ∆; Γ `Σ M2 : string ∆ `Σ P :: maywt(w, I)
∆; Γ `Σ write [I][P ](M1)(M2) @ w ∼ 1

∆; Γ `Σ C @ w ∼ A

∆; Γ `Σ M : A

∆; Γ `Σ return M @ w ∼ A

∆; Γ `Σ M : AC[w]A1 ∆; Γ, x:A1 `Σ C @ w ∼ A

∆; Γ `Σ letac x = M in C @ w ∼ A

∆; Γ `Σ M : string ∆, α :: w′ ≤ w; Γ `Σ C1 @ w ∼ A ∆; Γ `Σ C2 @ w ∼ A

∆; Γ `Σ su[w′](M){α.C1 | C2} @ w ∼ A

∆ `Σ I :: RES ∆, α :: mayrd(w′, I); Γ `Σ C1 @ w ∼ A ∆; Γ `Σ C2 @ w ∼ A

∆; Γ `Σ proverd[I][w′]{α.C1 | C2} @ w ∼ A

∆ `Σ I :: RES ∆, α :: maywt(w′, I); Γ `Σ C1 @ w ∼ A ∆; Γ `Σ C2 @ w ∼ A

∆; Γ `Σ provewt[I][w′]{α.C1 | C2} @ w ∼ A

∆; Γ `Σ Ins @ w ∼ A′ ∆; Γ, x : A′ `Σ C @ w ∼ A

∆; Γ `Σ Ins;x.C @ w ∼ A
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∆; Γ `Σ M : A

x:A ∈ Γ
∆; Γ `Σ x:A

∆ `Σ I :: RES
∆; Γ `Σ ι[I] : Res[I]

∆; Γ, x:A1 `Σ M : A2

∆; Γ `Σ λx:A.M : A1 → A2

∆; Γ `Σ M1 : A1 → A2 ∆; Γ `Σ M2 : A1

∆; Γ `Σ M1M2 : A2

∆; Γ `Σ C @ w ∼ A

∆; Γ `Σ ac[w]C : AC[w]A ∆; Γ `Σ 〈〉 : 1

4 A judgmental formulation

4.1 The basic judgments
We begin with the question: what does access-control try to achieve? A first guess would be “access-control deals
with controlling executability of terms by principals in accordance with some policy”. But this definition seems far
too general; for instance, why would one like to restrict a principal from evaluating the function application λx.x+1 2
(assuming that we are not concerned with information flow)? We would like any principal to be able to execute this
term without having to produce a certificate permitting him to do so. Upon some thought, it is easy to see that access-
control deals with controlling particular kinds of effects produced by principals, e.g. printing a file on a printer, reading
the contents of a file, writing to a file etc. which are all effectful operations. Precisely what effects are being controlled
depends on the particular setting. Here, we present a prototype language dealing with reading/writing of reference
locations as effectful operations. However the approach is general and applies to any kind of effect whatsoever.

Following this observation, we divide the term level of our language into two syntactic categories: effectful com-
putations and pure terms.

The two most basic judgments that give rise to terms and computations in the language are A true and A @ w comp
resp.. The first judgment is not surprising. The second is the computability judgment, similar to the computability
judgment in [PH04], stating that A holds after the principal w produces some effect. The computability judgment has
been formulated so as to include the mention of the principal on whose behalf computation would be executed. The
idea is that a computation of the type A @ w comp should be executable on behalf of the principal w.

Let us now look at proof term assignment for the above judgments. An evidence for the judgment A true is a
pure term (ranged over by M ). The corresponding typing judgment is written as M : A. Since this typing judgment
does not depend on any principal, it is necessary to restrict the proof terms of this judgment to pure terms that can be
executed by all principals.

An evidence for the judgment A @ w comp is an effectful expression (C) which produces a value of type A in
addition to producing an effect when run on behalf of the principal w. We use the judgment C @ w ∼ A to show the
evidence of the judgment A @ w comp. A may be considered to be the “type” of the computation C. Note that the
type of a computation carries information about the security level of the expression viz. the principal that is allowed
to run the computation.

We now characterize computability judgment using the lax modality as described in [PH04]. The extra principal
parameter can be seen as indexing the monad. In order to define the computability judgment, we need to resort to
hypothetical judgments. It turns out, for the purpose of this definition, that the hypotheses we need to assume are of
the form A true. We do not need to assume anything of the form A @ w comp. Let the context Γ denote hypotheses
in the form of truth judgments.

Definition of computability judgment

1. If Γ ` A true, then Γ ` A @ w comp

2. If Γ ` A @ w comp and Γ, A true ` B @ w comp, then Γ ` B @ w comp.

The first axiom says that if A is true, then it is also the case that A is true after a principal w executes something
effectful. The proof of A true is a pure term. This rule suggests that any principal must be able to execute a pure
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term as a computation, thereby producing the empty effect. Thus we obtain the computation form return M which
simply executes M and returns the resulting value. It is no surprise that the typing rule for this computation must be:

Γ ` M : A

Γ ` return M @ w ∼ A

To understand the second axiom, assume that A holds after w executes something effectful. Further, assume that
in a hypothetical setting where A is true, w is able to execute something effectful to make B true. Then w can make B
true in a world where A does not necessarily holds. This axiom fits our interpretation of proof terms of computability
judgments as effectful expressions. The trick is to string together the proof terms corresponding to A and B one
after another. The resulting computation is executable by w (since its pieces are) and is effectful; the final effect
being the two effects applied one after another. This leads to the composition expression Ins;x.C. We do nt need the
computation C1;x.C2 as it can be expressed inductively using the composition of instruction with a computation as
the base case. This has been defined in section 5.1.

Finally, the computability judgment is internalized as the proposition AC[w]A:

∆; Γ ` C @ w ∼ A

∆; Γ ` ac[w]C : AC[w]A

This forms the introduction rule for the monadic type constructor. The proof term for the monadic type can be
seen as a suspended computation. It is interesting to note that the proof term contains enough information to “open”
up the suspended computation and start executing it. In particular, it specifies which principal is authorized to run it.
The elimination rule for the monad makes sure that this restriction is obeyed. The elimination form is precisely the
operation that opens up the computation and runs it. Since this operation is potentially effectful, the elimination form
is a kind of computation. Note that a suspended computation of type AC[w]A is opened only while running on behalf
of the principal w.

∆; Γ ` M : AC[w]A1 ∆; Γ, x : A1 ` C @ w ∼ A2

∆; Γ ` letac x = M in C @ w ∼ A2

Note that the suspended computation is opened only on behalf of the principal that is authorized to open it. The
elimination form can be viewed as a substitution of computations into computations.

It is interesting to see that there is no substitution principle for substituting computations inside terms. This is
because there is no way to go from a term to a computational monad.

4.2 Movement between principals
The computability judgment in itself is not very interesting. Once computation starts on behalf of a principal, there is
no way to get out of the indexed monad. In terms of execution, computation proceeds on behalf of a single principal
and there is no way to switch between principals. We therefore add a new judgment which specifies movement between
principals. A principal may be allowed to switch roles and effectively start executing on behalf of another principal. A
direct application of such a facility would be in the implementation an ssh-like utility. A user Alice may ssh as the
user Bob and start executing programs on behalf of Bob. Considering it from the point of computation, an ssh does a
context-switch. The expression that was being run on behalf of Alice starts executing on behalf of Bob after the ssh.
Another typical example is concerned with downgrading privileges to the minimum needed to do an operation. This
is often referred to as the principle of least privilege. Consider, for instance, the getty process in Unix. This process
is used to start a shell when a user logs in. The process runs on behalf of the principal root. However, just before
spawning a shell for a user, it downgrades to the privileges of the user.

The movement judgment is written as w ≤ w′. This says that the principal w′ is allowed to switch to the principal
w (in some sense, w′ is stronger than w as it can execute all the expressions that w can). We use this intuition to
define the judgment using the following rule:

If Γ ` w ≤ w′ and Γ ` A @ w comp, then Γ ` A @ w′ comp

9



This rule gives us an elimination form for the judgment w ≤ w′. We have not specified what stands as an
evidence of the movement judgment. In our current language, the only way to establish an accessibility between
principals (w ≤ w′ may be seen as w being accessible from w′) is by typing in the password for the principal w
while executing on behalf of w′. In an implementation, an evidence for this judgment would be generated by the
runtime system whenever w′ keys in w’s password. The instruction su[w](M){α.C1 | C2} is used to generate the
above evidence by entering the password M . To keep things simple, we assume that M is a pure term of type string
instead of an effectful computation reading off the password from some input stream. The su expression is one of the
language interfaces between static type-checking and runtime generation of proofs. In case the password is correct, a
proof certifying the accessibility to principal w is generated. Execution proceeds with C1 after substituting the proof
for α in C1. In the other case, if the password turns out to be wrong, execution proceeds with C2. C2 has been typed
in a context which does not assume that such a proof exists.

Γ ` M : string Γ, α : w′ ≤ w ` C1 @ w ∼ A Γ ` C2 @ w ∼ A

Γ ` su[w′](M){α.C1 | C2} @ w ∼ A

Note that C1 has been typed in a hypothetical setting assuming that such a proof exists. Thus existence of such
a proof is crucial to evaluate the expression C1. C1 may use this proof to establish further proofs of accessibility
and to perform the actual context switch to a different principal. For instance, one may think of a scenario where the
principals form a join-semilattice. Further suppose the following rule exists:

Γ ` p1 : w1 ≤ w0 Γ ` p2 : w2 ≤ w0

Γ ` join(p1, p2) : (w1 tw2) ≤ w0

In such a scenario, w0 would generate proofs of accessibility to w1 and w2 using M1 and M2 as passwords to w1 and
w2 resp. and use those proofs to produce a proof of accessibility to w1 tw2 :

su[w1](M1){α.(su[w2](M2){β.sudo[w1 tw2][join(α, β)](C1) | fail}) | fail}

The movement from one principal to another is facilitated using the sudo instruction. The sudo instruction running
on behalf of w1 requires a proof of the type w2 ≤ w1. This proof establishes that the principal w1 can execute any
computation that w2 is allowed to. Upon doing a sudo, the execution starts on behalf of the principal w2.

We specifically assume that the policy does not change over time. In such a case, a proof of movement to another
world or a proof of being allowed to access a resource is persistent. The same proof may therefore be used again and
again. Computations are typed in a hypothetical setting which assume certain proofs to be available. The primitive
proofs are generated at runtime upon entry of a password/searching in the access-control list to see if a proof of access
exists. More complex proofs may be constructed by using the proof constructors. The reference monitors for access
operations explicitly require proofs of accessibility

5 Runtime Semantics
We present the runtime semantics of the language in terms of transition relation between states of an abstract machine.
The states are organized as stacks of partially finished computation. In addition, the state consists of the reference-
cell store ξ, and the store σ, of all the proofs of movement between principals that have been generated during the
program execution. The state σ; ξ; ·B C @ w with a closed computation C being evaluated on behalf of the principal
w in an empty context forms the initial state of the machine. Note that computations are evaluated on behalf of a
principal whereas the evaluation of terms is the same irrespective of the principal executing it. This is because the
effects produced by computations may depend on the principal executing it.

While computations are said to be executed on behalf of some principal, it is important to note that the values are
not situated. A computation can be termed as situated at a principal w if it can be run on behalf of w. Values, on the
other hand are not evaluated any further, and hence are not situated.

Before discussing the operational semantics, let us look at the additional syntax needed for describing the se-
mantics. A continuation of the form κ ‖ F represents a stack of partially finished executions. The frame F is a
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Continuation κ ::= · | κ ‖ F
Continuation frame F ::= return • @ w

| •;x.C @ w
| letac x = • in C @ w
| su[w](•){α.C1 | C2} @ w
| read [I][P ](•) @ w
| write [I][P ](•)(M) @ w
| write [I][P ](v)(•) @ w
| (•) M
| λx:A.M (•)

Access control lists π ::= ε | π, c:mayrd(w, I)
| π, c:maywt(w, I)

Ref-cell store ξ ::= · | ξ[ι[I] 7→ v]
Su-permissions σ ::= · | σ, α::w ≤ w′

Abstract machine states Abs ::= σ; ξ;κ B C @ w
| σ; ξ;κ B Ins @ w
| σ; ξ;κ B M
| σ; ξ;κ C v

Figure 2: Syntax for describing operational semantics

computation, a part of which is being evaluated. The part being evaluated may be a computation or a term (we shall
view instructions as computations for the time being). The remaining computation in F is resumed after the part has
been evaluated to a value. Depending on whether the part being evaluated is a computation or a term, the abstract
machine state may be depicted as κ ‖ F B C @ w or κ ‖ F B M resp. The B symbol is used to denote the focus
of our attention while giving the rules of evaluation. In the first case, we are analyzing the computation C on behalf
of w, in order to evaluate it down to a value. Similarly, in the second case, a term is being analyzed. Another form
of the abstract machine state comes into play when we have finished evaluating a computation/term to a value. It is
then when the topmost frame is evaluated. The rules then specify how the recently calculated result of the subpart of
F should be used in the evaluation of F . This state is depicted as κ ‖ F C v, the symbol C denoting that our point of
attention is now the topmost frame F where the value v would be used.

Execution of terms is influenced by the facts about access-control pertinent at the time of execution. These deci-
sions are captured in the access-control database π which also forms the context for inference using the access-control
theory (see Section 6). π is used to model an access-control list which simply lists the files that a principal is allowed
to access. It contains primitive proofs of the type mayrd(I,w) and maywt(I,w). We assume that all the proofs in π
have unique names. Since no new resources are added at runtime and the access-control theory does not change with
program execution, π remains fixed. σ represents the store of all the proofs of movement between principals generated
during program execution. We assume a countably infinite set of names α which is used to generate a unique proof. It
is possible to do away with any name for a primitive proof because the actual proofs are irrelevant. Two proofs with
different shapes would both qualify as a proof for accessibility as long as they have the correct type.

The transition relation for operational semantics is parameterized by the access control database π and the language
signature Σ. The relation is defined in Figure 3.

We have chosen to specify a non-deterministic semantics. In an implementation, all the non-deterministic choices
can be resolved. The choices occur in the transition rules for su, proverd and provewt. In each of three cases
different branches are taken depending on whether a required proof is available. For su[w′](M){α.C1 | C2}, in an
actual implementation, the choice can be made deterministically by always generating a proof of movement if M is
the correct password of w′. Similarly, nondeterminism can be resolved in case of proverd[I][w′]{α.C1 | C2} (and
similarly for provewt) by always choosing the first branch if a proof of type mayrd(I,w′) (maywt(I,w′)) exists in
the ACL database π, and substituting that proof for α in C1.

The rest of operational semantics is fairly standard except for the rules concerning the access-control monad.
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σ; ξ; κ B return M @ w 7→π;Σ σ; ξ; κ ‖ return • @ w B M
σ; ξ; κ ‖ return • @ w C v 7→π;Σ σ; ξ; κ C v

σ; ξ; κ B letac x = M in C @ w 7→π;Σ σ; ξ; κ ‖ letac x = • in C @ w B M
σ; ξ; κ ‖ letac x = • in C @ w C ac[w]C′ 7→π;Σ σ; ξ; κ B 〈C′/x〉C @ w

σ; ξ; κ B su[w′](M){α.C1 | C2} @ w 7→π;Σ σ; ξ; κ ‖ su[w′](•){α.C1 | C2} @ w B M
σ; ξ; κ ‖ su[w′](•){α.C1 | C2} @ w C v 7→π;Σ σ[β : w′ ≤ w]; ξ; κ B [β/α]C1 @ w (β fresh)
σ; ξ; κ ‖ su[w′](•){α.C1 | C2} @ w C v 7→π;Σ σ; ξ; κ B C2 @ w

σ; ξ; κ B proverd[I][w′]{α.C1 | C2} @ w 7→π;Σ σ; ξ; κ B [pmq/α]C1 @ w if π `L m : mayrd(w′, I)
σ; ξ; κ B proverd[I][w′]{α.C1 | C2} @ w 7→π;Σ σ; ξ; κ B C2 @ w
σ; ξ; κ B provewt[I][w′]{α.C1 | C2} @ w 7→π;Σ σ; ξ; κ B [pmq/α]C1 @ w if π `L m : maywt(w′, I)
σ; ξ; κ B provewt[I][w′]{α.C1 | C2} @ w 7→π;Σ σ; ξ; κ B C2 @ w

σ; ξ; κ B Ins; x.C @ w 7→π;Σ σ; ξ; κ ‖ •; x.C @ w B Ins @ w
σ; ξ; κ ‖ •; x.C @ w C v 7→π;Σ σ; ξ; κ B [v/x]C

σ; ξ; κ B sudo[w′][P ](C) @ w 7→π;Σ σ; ξ; κ B C @ w′

σ; ξ; κ B read [I][P ](M) @ w 7→π;Σ σ; ξ; κ ‖ read [I][P ](•) @ w B M
ξ[ι[I] 7→ v] ; κ ‖ read [I][P ](•) @ w C ι[I] 7→π;Σ σ; ξ[l 7→ v] ; κ B v

σ; ξ; κ B write [I][P ](M1)(M2) @ w 7→π;Σ σ; ξ; κ ‖ write [I][P ](•)(M2) @ w B M1

σ; ξ; κ ‖ write [I][P ](•)(M2) @ w C ι[I] 7→π;Σ σ; ξ; κ ‖ write [I][P ](l)(•) B M2

σ; ξ[ι[I] 7→ v] ; κ ‖ write [I][P ](l)(•) C v′ 7→π;Σ ξ[ι[I] 7→ v′]; κ B 〈〉

σ; ξ; κ B M1M2 7→π;Σ σ; ξ; κ ‖ (•)M2 B M1

σ; ξ; κ ‖ (•)M ′ C λx:A.M 7→π;Σ σ; ξ; κ ‖ λx:A.M(•) B M ′

σ; ξ; κ ‖ λx:A.M(•) C v 7→π;Σ σ; ξ; κ B [v/x]M
σ; ξ; κ B v 7→π;Σ σ; ξ; κ C v

Figure 3: Operational semantics

The instruction sudo is used to change the principal on whose behalf the computation is being run. A computation
σ; ξ;κ B sudo[w′][P ](C) @ w steps to executing C on behalf of the new principal w′. Note that this excursion to
another principal w′ is temporary. When the computation C finishes, execution resumes on behalf of the principal w
that was executing the computation before sudo.

Another interesting transition rule is that of the computation letac x = M in C. M is a suspended computation.
The type system ensures that the principal currently executing the letac command is allowed to open the suspended
computation. First, M is evaluated. The canonical forms lemma for values (Lemma B.8) ensures that M evaluates
to a value of the form ac[w]C ′. The next step is to evaluate C ′ followed by execution of C after plugging in the
result of C ′ in it. This sequential composition of two computations is written as 〈C ′/x〉C and is defined inductively in
Section 5.1. We shall refer to this substitution as a leftist substitution since it is defined by induction on the structure of
the computation being substituted. What makes this substitution unique is the form being subsituted. The computation
C ′ is not substituted directly in C. It is first evaluated to a value which is then substituted for x in C.

5.1 Leftist substitution
The substitution 〈C1/x〉C2 executes the computations C1 and C2 sequentially, substituting the value obtained by
evaluating C1 into C2 for x. Since C1 is evaluated first, this is defined by induction on the structure of C1 instead of
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C2.
〈return M/x〉C = [M/x]C
〈su[w′](M){α.C1 | C2}/x〉C = su[w′](M){α.〈C1/x〉C | 〈C2/x〉C}
〈Ins;x′.C ′/x〉C = Ins;x′.〈C ′/x〉C
〈letac y = M in C1/x〉C2 = letac y = M in 〈C1/x〉C2

〈proverd[w′][I]{α.C1 | C2}/x〉C = proverd[w′][I]{α.〈C1/x〉C | 〈C2/x〉C}
〈provewt[w′][I]{α.C1 | C2}/x〉C = provewt[w′][I]{α.〈C1/x〉C | 〈C2/x〉C}

Note that the base cases for induction over C1 are exactly what we have termed as instructions. Since instruc-
tions can be no further analyzed, sequencing one with a computation simply executes the instruction first. This is
given by the computation form Ins;x.C. The cases of proof-generating computations are all similar. Let us consider
〈su[w′](M){α.C1 | C2}/x〉C first. The computation branches off to either C1 or to C2 before executing C. C can
therefore be pushed inside both the branches after alpha-varying the binding variable α of the first branch to ensure
that it does not falsely capture a free variable in C.

Next, consider the composition 〈letac y = M in C1/x〉C2. This rule characterizes associativity of sequential
composition. The first computation can be viewed as sequentially composing three computations: the suspension
that M evaluates to, the computation C1 and the computation C2. These can be written as M composed with the
sequentially composed computation 〈C1/x〉C2. Again, care must be taken to α-vary y to avoid capture in C2.

6 The access-control logic
We use a very simple notion of access-control based on access-control lists (ACLs). We present a constructive logic
extended with propositions that reflect access permissions.

Proposition p ::= mayrd(w, I) | maywt(w, I) | p1 ∧ p2 | p1 ⊃ p2 | >
Proof terms m ::= x | c | 〈m1,m2〉L | fstLm | sndLm | λLx:p.m | appLm1m2 | 〈〉L
Hypothesis π ::= x:p, π | c:p, π

where c represent constants.
The rules of deduction in the logic are given in Figure 4 using hypothetical judgments.

π, u:p `L u:p
(hyp)

π `L m1 : p1 π `L m2 : p2

π `L 〈m1,m2〉L : p1 ∧ p2

(∧I)
π `L m : p1 ∧ p2

π `L fstLm : p1

(∧E1)

π, u : p1 `L m : p2

π `L λLu:p.m : p1 ⊃ p2

(⊃ I)
π `L m1 : p1 ⊃ p2 π `L m2 : p1

π `L appLm1m2 : p2

(⊃ E) π `L 〈〉L : >

Figure 4: The access-control logic

Note that we do not have introduction and elimination forms of the propositions mayrd(w, I) and maywt(w, I).
An introduction form is missing because the only way to come up with a proof of the proposition, say, mayrd(w, I),
in the current logic based on ACLs is to look up the access-control list π for such a proof. Since no information is put
in to construct a proof of the proposition mayrd(w, I), there is no corresponding elimination construct for it.

6.1 Embedding the access-control logic into the language
We embed the propositions of the logic as kinds in the programming language. Proofs of propositions are embedded
as constructors, with the kinding relation in the language reflecting the typing relation in the logic. This embedding is
described in Figure 5 by induction on the structure of propositions and proofs thereof:

It is easy to check that this embedding preserves typing. This is proved by the following theorem:
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pmayrd(w, I)q = mayrd(w, I)
pmaywt(w, I)q = maywt(w, I)
pp1 ∧ p2q = pp1q× pp2q
pp1 ⊃ p2q = pp1q → pp2q
p>q = >

puq = u
pcq = c
p〈m1,m2〉Lq = 〈m1,m2〉
pfstLmq = fst pmq
psndLmq = snd pmq
pλLu : p.mq = λu::ppq.pmq
pappLm1m2q = pm1qpm2q
p〈〉Lq = ?

Figure 5: Embedding access-control logic into language

Theorem 6.1. (Soundness of embedding)

1. If p is a proposition in the logic, · `Σ ppq kind.

2. If π `L m : p
then Var(pπq) `Σ,Con(pπq) pmq :: ppq,
where Var(·) and Con(·) represent the variable and constant parts of the context.

Proof. 1. By induction on the structure of p.

2. By induction on the derivation of π `L m : p.

6.2 An access-control database
Programs in the language execute under a static set of “facts” about access-control. These facts represent the access-
control decisions relevant in that particular execution, and are represented as a set of proof-proposition pairs (m, p),
where each term m is a constant term and represents a proof of the corresponding proposition p. We refer to such
proof terms as primitive proofs. Note that this is the way we introduce proofs of propositions like mayrd(w, I) and
maywt(w, I) which do not have any introduction rules. In addition to these propositions, the access-control database
may have primitive proofs of other propositions as well. This access-control database along with the rules of deduction
of the logic form the access-control theory.

7 Type safety and access-control safety
The language is type-safe with respect to the operational semantics. A formal proof of type-safety appears in Ap-
pendix A.

Apart from type-safety, we require that the language is safe in terms of how it allows access to resources. Formal-
izing the access-control safety theorem has two parts to it: first, proving that whenever a principal accesses a resource,
the access control theory permits that access, i.e. there is a proof derivable from the access-control theory π under
which the computation was evaluated. This is shown by the following theorem:

Theorem 7.1. If · `Σ C @ w ∼ A and ·; ξ; ·B C @ w 7→?
π;Σ σ; ξ′;κ B read [I][P ](M) @ w′,

then access to resource indexed I is allowed to the principal w′ according to the access-control theory, i.e. there exists
a proof p such that π `L p : mayrd(w′, I).
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Proof. Refer to appendix C.

Secondly, since principals can switch identities, we need stronger guarantees with respect to what all a principal
can execute. The main idea is that a principal executing a computation C is responsible for all further computations to
which C evaluates to, no matter on whose behalf they execute. The following theorem proves that starting execution
on behalf of a principal w, a computation can only lead to execution on behalf of those principals w′, for which w has
a proof of movement, i.e. a proof of type w′ ≤ w exists. Proving this theorem requires us to generalize the statement
to include all principals that appear on the computation stack of an execution. We refer to such principals as being
active in the abstract machine state.

The active principals in an abstract machine state Abs are defined by induction on Abs. The judgment w ↑ Abs is
used to denote that w is active in the state Abs. The auxilliary judgment form w ↑ κ denotes that w is active in the
continuation κ.

w ↑ σ; ξ;κ
w ↑ σ; ξ;κ B C @ w′

w ↑ σ; ξ;κ
w ↑ σ; ξ;κ B M

w ↑ σ; ξ;κ
w ↑ σ; ξ;κ B Ins @ w′

w ↑ σ; ξ;κ
w ↑ σ; ξ;κ C v

w ↑ σ; ξ;κ B C @ w w ↑ σ; ξ;κ B Ins @ w

w ↑ κ

w ↑ κ ‖ F w ↑ κ ‖ return • @ w w ↑ κ ‖ •;x.C @ w w ↑ κ ‖ letac x = • in C @ w

w ↑ κ ‖ su[w′](•){α.C1 | C2} @ w w ↑ κ ‖ read [I][P ](•) @ w w ↑ κ ‖ write [I][P ](•)(M) @ w

w ↑ κ ‖ write [I][P ](v)(•) @ w

Theorem 7.2. (Access-control safety): If π,∆; · `Σ C @ w ∼ A
and ·; ξ; ·B C @ w 7→?

π;Σ Abs,
then for each wi active in Abs, either wi = w, or there exist sequences 〈w1, . . . ,win

〉, 〈P1, . . . , Pin−1〉,
such that w1 = w,win = wi and σ,∆ `Σ,pπq Pj :: wj+1 ≤ wj for 1 ≤ j < in, where σ is the Su-permissions
component of Abs.

Proof. We proceed by induction on the number of steps of the operational semantics it takes to reach Abs from
·; ξ; ·B C @ w. The full proof appears in Appendix C.

8 An example
To illustrate the concepts in the language, let us consider programming an editor for writing reviews to papers submit-
ted in a conference. A paper is assigned to one or more referees and a referee may read or write reviews only for a
paper that has been assigned to him. In addition to referees, there is a program chair who can read/write reviews for
any paper he wishes. Usually a program chair has additional responsibilities such as assigning papers to referees, but
we do not consider them here.

The system consists of an access policy determining the referees assigned to each paper. For a referee r assigned
to a paper p, the policy database would have the following axioms: mayrd(r, pr) and maywt(r, pr), where pr is the
static index of the review file of the referee r for the paper p. In addition to similar rules for each (referee, paper) pair,
axioms of the form mayrd(pc, pr) and mayrd(pc, pr) for each pair of p and r, are needed in order for the program
chair (pc) to access all the reviews. How these axioms are entered into the policy database and how this policy is
manipulated by the program chair is out of scope of this paper. The access-control logic is the same as that described
in this paper. Note that this kind of a policy prohibits a reviewer from accessing reviews written by other reviewers.

In order to read/write the review for a paper, a referee logs into the system and edits the review using a customized
editor. The task of the editor is to provide an interface to securely edit reviews. Figure 6 describes the skeleton of the
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su[r](passwd){’a.sudo[r][’a](
whichreview?{p : Res[’p].

proverd[r][’p]{’b.
provewt[r][’p]{’c.

read[’p][’b](p);
cnts.display(cnts);
_. // The read-save loop

// Loop until the user quits
while(true){

read_terminal;
cnts.write[’p][’c](p)(cnts)

}
| print "Read-only file"

}
| print "Could not open the file for reading"

}
}

)
| print "Login failed."

}

Figure 6: An editor for writing paper reviews securely

editor illustrating how it can be based on the primitives provided in our security language. The example shows the
code of an editor compiled for a specific referee r. Making the editor polymorphic for the users requires extending the
security language for runtime principals and is a topic for future work.

The editor compiled for the referee r first prompts the user to enter the correct password in order to authenticate
him as the referee r. This is done using the su primitive. Thus the editor starts running on behalf of the public user
but immediately switches to executing on behalf of a specific referee. Once authenticated, the user may enter the name
of the review file to edit. This may involve the user typing the name of the file on the terminal or selecting it from
a list of files presented to it by the editor. The details of exactly how this happens has been abstracted away in the
computation whichreview?{p : Res[′p].C}. After interaction with the user, the name of the review file to be edited
is bound to the variable p and the static index representing the file is bound to ′p in the incipient computation C. At
this stage, the editor checks if the referee r has the required permissions to read the file p. This is done by doing a
proverd. If successful, this search yields a proof of the type mayrd(r, pr). This proof is then used by the editor to
read the file from the review repository binding the contents to cnts and then display it to the user. At this stage the
editor enters a read-save loop.

In the read-save loop, the editor cycles periodically between reading the input from the user and saving the current
version back to the file in the repository. Reading the input from the user for a fixed amount of time has been abstracted
in the computation read terminal. Each call to write the file back to the repository requires the editor to use a proof
of the type maywt(r, p). This proof is generated only once per editing session and is reused during the read-save loop.

9 Future work
The current work provides a basic framework for building more complex languages for access-control. We would like
to extend the work along the following dimensions:

Runtime principals Assuming a constant set of principals is too restrictive. In the real world, a number of different
principals may interact with the system. The identity of all such principals that would interact with the system may
not even be known statically. A simple example is that of a web browser. The web pages that the browser opens
may be considered to be principals (e.g. the web page might be an applet trying to execute on the local host). In
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such a scenario, an applet may try to read a local file after presenting a certificate that the local user has delegated the
authority to it. The browser should allow all such applets to function properly.

Runtime principals in a security setting similar to ours have been investigated by Tse et al. [TZ04]. They use
polymorphism over principals to accommodate reasoning with principals that are unknown statically. In our setup,
the typing judgments for computations depend on the identity of the principal executing the computation. Principals
thus interact in a non-trivial manner with type checking. Here we would like to investigate the use of static indices to
model runtime principals, much the same way as we handle resources in the current framework.

Runtime generation of resources The system would be pretty much unusable if there is no more than a fixed
number of resources to work with. Here again, we would like to facilitate generation of new resources at runtime. In
the current framework, resources are identified by their resource index. A resource of type Res[I] has index I :: RES.
In order to extend the current framework to support dynamic resources, we need a way to create unique indices at
runtime. Note that the actual index of a resource is of no runtime concern to the principal. Indices are static entities
meant only to identify resources statically. This suggests that the actual index of the newly created resource should
be abstracted away. One way to achieve this is to use existential types. Suppose we have a computation new that
creates resources at runtime. For the time being, let us not worry about the access control policies associated with this
resource. Since we wish to abstract away the index of the resource, we could have the following typing rule for new:

∆; Γ ` new @ w ∼ ∃i::RES.Res[i]

new can then be thought of as packaging a resource along with the index that identifies it with the index forming
the hidden part of the package. The elimination form for existential quantifier would open the package as:

∆; Γ ` M1 : ∃α::K.A1 ∆, α :: K; Γ, x : A1 ` M2 : A2 ∆; Γ ` A2 :: TYPE
∆; Γ ` unpack M1 as {α, x} in M2 : A2

(∃-E)

There is however a problem with this approach. This arises due to the generativity of existentially quantified
packages. Each time an existential package is opened, we get new identities for the hidden (and therefore for the
dependent) part of the package. This is precisely the opposite of what we want. A resource package generated using
new should yield the same resource each time when opened. To this end, we could use translucent sums instead of
existential packages.

Translucent sums are more flexible than existential packages. As the name might suggest, the difference between
translucent sums and existential packages is that of the amount of information available about the hidden component in
the scope it is being used. Existential packages are opaque in the sense that absolutely no information can be attached
to the hidden part. This is the reason why opening the same package twice generates two different entities because
there is no information whatsoever available about the hidden part which could be used to check an equivalence.
Translucent sums, on the other hand, allow a selfification rule that enables one to note the identity of the opened
instance and use it to type the package. We do not go into further details of translucent sums here. A detailed account
can be found in [HL94].

Using translucent sums, it is easy to type new as:

∆; Γ ` new @ w ∼ {I B i :: RES,R B r : Res[i]}

new would return a dependent labeled sum with the I component being the resource index and the R component being
the actual resource. The following selfification rules, taken from [HL94], would allow propagation of the identity of
opened package to the type of the package (V denotes a value):

∆; Γ ` V : {L1 B α::K, . . . ,Ln B xn:An}
∆; Γ ` V : {L1 B α = V.L1::K, . . . ,Ln B xn:An}

(Value-o)

∆ ` V.L1::K ′ ∆; Γ ` V : {L1 B α::K, . . . ,Ln B xn:An}
∆; Γ ` V : {L1 B α::K ′, . . . ,Ln B xn:An}

(Value-v)
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Dynamic policy updates Almost any interesting real-world situation requires updating the access-control policy
at runtime. For example, when new resources are generated, the access control theory must be augmented with new
policies regarding the new resources. With the architecture for new as sketched above in place, adding new access
control axioms to the theory can be done relatively easily. We shall briefly sketch this.

Another kind of updates to access control theory involve changing the theory in a manner that previously estab-
lished proofs might no longer hold. This is the case with revocation. e.g. A proof that principal B speaks for principal
A holds only until A has revoked the authority that it had granted to B. If we wish to provide revocation as a primitive
computation form in the language, we need to tackle the following questions first:

1. Modeling revocation We view revocation of rights by a principal as a positive assertion of his intent. That
is to say rather than regarding revocation as a process of subtracting a policy decision from the access control
theory, we would like to model it as a separate judgment which would be added to the theory. It is immediately
clear that the present logic becomes unsuitable in such a scenario because the present logic is monotonic. In
the new setting, addition of new axioms to the theory may invalidate proofs written in the previous theory. This
suggests the use of non-monotonic logics to formulate revocation. In a naive implementation, the deduction of
a judgment might depend on scanning the entire policy database. We do not yet know of a logic in which such
a scenario can be elegantly expressed and proof search implemented efficiently.

2. Status of proofs Thus far, the proofs in the language had been static entities. This was largely due to the fact that
proof-checking was required during type-checking. Revocation, which interacts with the proofs non-trivially is
a runtime computation. This violates the principle of phase-distinction. Certain static entities (proofs in this
case) start to depend on runtime terms. In order to maintain a phase-distinction, we need to come up with
alternative formulations of the proofs that work with the revocation language while still preserving decidability
of static proof-checking.

Information flow Access control in systems is intimately connected with flow of information. This connection
between access control and information flow is not trivial. In the SLam calculus [HR98], access-control is ensured by
controlling the set of direct readers of an object. This restricts legitimate eliminations to those in which the introduction
form being eliminated is owned by a principal that trusts the eliminator principal. Information flow is achieved by
specifying the set of readers for the result of the elimination. This approach views information flow control as a
mechanism to ensure that no illegal access to information takes place.

An orthogonal view (as suggested by Frank Pfenning) is that access control deals with controlling who can read
an item while information flow control is concerned with controlling writes. This view is suitable particularly in our
setting of reference cells, where information flows from one principal to another when the data written to a ref-cell by
a principal is read by another. If one considers this view of information flow control, the following question becomes
pertinent: Can access control alone suffice to prevent illegal flows of information?

Another interesting body of work is related to quantifying the information leaked by a program using concepts
from information theory. Malacaria et al. [Mal07, CHM05] present an information-theoretic account of leakage
of information in a functional programming language. Such an approach is interesting because some leakage of
information turns out to be essential for the functioning of many applications. For instance, checking if the password
input by a user is corrected itself reveals some information (howsoever little) about the secret password.

The challenge before us is to identify a view of information flow conducive to our setting of effectful computations
and come up with the non-interference theorem that we would like of our system to hold.

10 Related Work
There is a large body of research work related to access control. In this section, we shall only touch upon some of the
work that has influenced our work or is related to it.

10.1 Logics for access control
A large body of work regarding access control is related to designing logics which provide constructs to efficiently
reason about various notions found in access control. One of the first accounts of a study of access control from a
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logical perspective can be found in [ABLP93]. In this paper, Abadi et al. formulate notions of principals, assertions
by principals and delegation in a logical manner and discuss a spectrum of design choices that can be made depending
on the setting at hand. We believe that our language can be extended to include the calculus of principals as introduced
by Abadi et al. in [ABLP93]. Some similarities can be already seen. For instance, the judgment w1 ≤ w2 in our
language can be viewed as a form of delegation: principal w1 delegating all his capabilities to w2. This view of
delegation is an indirect one. One usually thinks of delegation as being initiated by the granter. In our scenario, it
is the grantee which actively generates the delegation by typing a password. Currently, the syntax of principals in
our language lacks a way to specify roles since the set of principals is fixed. One of the future tasks is to extend
the calculus to include runtime generation of principals. Dynamic specification of new roles provides a motivating
example to consider this line of future work.

10.1.1 The says modality

A number of other studies on using logic to formulate notions regarding access control have been undertaken. A brief
survey can be found in [Aba03]. One of the key notions dealt with in such logics is the concept of assertion by
a principal. This is of central importance because access control is about determining whether a principal should be
trusted on what it says. Garg and Pfenning [GP06] provide a constructive logic which defines the affirmation modality.
Their logic is particularly useful in our setting because of two reasons: first, being constructive, it is very well suited
for a setting like ours of proof carrying authorization; and secondly, because it enjoys a useful non-interference-like
proof-theoretic property.

10.1.2 Dependency due to access control

In [Aba06], Abadi provides another characterization of the says modality using the framework of Dependency
Core Calculus [ABHR99] by interpreting the indexed dependency monad as a proposition expressing assertion by a
principal. Not surprisingly, the calculus is mainly concerned with controlling the dependencies between computations
at various levels of security. A computation at a high level can not depend on a value at a lower level. In other words,
a computation at a particular security level l is able to influence only the computations at levels where l is trusted, i.e
levels below l in the trust lattice. This basic idea of dependence can also be seen in our approach where computations
run on behalf of a principal w1 can effectively be run (by doing a sudo) by another principal w2 as long as w2 is
allowed to act as w1. In contrast however, instead of assuming a fixed lattice of principals, our language allows the
relationship between principals to evolve dynamically as principals try to identify themselves as other principals by
typing in their passwords.

10.2 Languages for authorization policy
Authorization policies can be specified in various ways each differing in expressive power and mechanisms for rea-
soning about the policy. Languages for specifying authorization policies range from the simple access-control lists, to
the logically founded languages such as Binder. Examples of commercial security languages, usually designed for a
specific scenarios abound, e.g. X.509, SDSI, SPKI [RB] and KeyNote [BFK98] etc. Binder [DeT02] is based on the
Datalog fragment of Prolog. Authorization policies are expressed as logic programs. The language is polynomial-time
decidable.

10.3 Type systems for access-control
While there is a large body of work on type systems for access control, we review only the most popular and the most
closely related ones.

10.3.1 Ownership types

A closely related type system is the one with ownership types proposed by Krishnaswami et al. [KA05]. Their system
is primarily concerned with information hiding in a module system by preventing leakage of information through
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aliasing. They formulate the solution by restricting access to module functions from other modules. This notion
can be related to the idea of restricting resource access to principals. Just as with ownership types, principals can
be thought of as being owners of certain resources. Access to resources is permitted only if the accessor principal
has permissions to access resources owned by another principal. While adequate in the setting of a module system,
ownership types do not provide a flexible setting for writing programs dealing with access control. Their type system,
adapted to access control, can be considered as an instance of our framework obtained by fixing the access control
theory to consist of notions of ownership. Our framework will, however, be able to work with richer logics of access
control since the only judgments regarding access control that the language depends on are those regarding accessing
a resource by a principal. The kind of judgments that access control judgments are derived from depends completely
on the access control logic which can be developed orthogonally.

10.3.2 SLam calculus

Heintze et al. present the SLam calculus [HR98] for access control. They consider a setting in which pieces of
data are owned by principals and programs are executed on behalf of principals. Further, a partial order on principals
is assumed. This ordering models the trust lattice of the principals. A principal executing a program receives all
information about the result of the program when the execution finishes. The calculus determines if executing a
program on behalf of a principal is safe, i.e. data owned by a high-security principal are not leaked to a low security
principal upon execution of a program by the low-security principal.

Since the programs are represented by elimination forms, the SLam calculus requires that all the elimination forms
be annotated with a principal. This represents executing the elimination form on behalf of the tagged principal. Intro-
duction forms, on the other hand, carry information about which principal is allowed to use the value by eliminating
the introduction. The type system ensures that the tags on the introduction form and the elimination construct match,
or at least that the elimination tag has all the read permissions that the introduction tag enjoys.

10.3.3 Runtime stack inspection

Another widely studied approach to access control is the runtime stack inspection method [FG03] used by the Java
Virtual Machine. The underlying idea is that the privileges available to a piece of code at runtime depend on the
history of execution. A system function call that has been invoked by an untrusted caller would have less privileges as
compared to the same function invoked by a trusted code. Skalka and Smith [SS00], and Pottier et al. [PSS05] have
provided a type system to statically ensure that no violations of the security policy would happen during runtime call
stack inspection. Higuchi et al. [HO03] extend the ideas to provide a type system for Java bytecode language. One of
the weaknesses of their system is the loss of modularity. All classes that are subclasses of a particular class need to be
known for type-checking the bytecode.

10.3.4 File-system secrecy

Chaudhuri et al. [CA06] study a type system for statically ensuring secrecy in a file system. They consider a setting in
which filenames and/or their contents may be secret. The principals are modeled as processes in a pi calculus. One of
the limitations of their system is the static nature of the trust characteristics of the principals. In particular, they assume
that it is statically known as to which principals can be trusted. In contrast, our approach makes no such assumptions
because trust is established explicitly by means of a proof.

11 Conclusions
This paper presents a language for programming in environments where access to resources is governed by the explicit
proofs. The main motivation for this language has been to capture results of runtime checks as types. The type system
ensures that all the required checks would be passed before accessing any resource, while obviating redundant runtime
checks.

The language can be thought of as being parametric in the access-control logic being employed. We have motivated
this separation by treating the logic as being a distinct structure from the language. An embedding of proofs and
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propositions in the logic to constructors and kinds in the language serves as the point of connection between the logic
and the language. This clear separation allows for independent development of the two systems.

The idea of separation, however, brings up a question. What kinds of logics can be made to work with the language
in the manner employed here? For instance, is it possible to use a classical logic for access-control along with this
language? Another interesting question worth asking is: how good is a constructive logic for expressing access-control
decisions? Are there other logics better suited? We do not yet know the answers to these.
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A Metatheory
We first prove that the language is type-safe with respect to the operational semantics. In order to state and prove the
type safety theorem, we need a new set of judgments stating that an abstract machine state is well-formed. Since the
access-control lists provide proof terms, the judgments below consider the abstract machine state augmented with an
ACL π.

σ; ξ;κ B C @ w ok[π]

σ; ξ;κ B M ok[π]

σ; ξ;κ C v ok[π]

The proper way to read the above judgments is: “the abstract machine state σ; ξ;κ B C @ w (and similarly for
other states) under the ACL π represents a valid state”. Next we need to specify that a state is an initial state (i.e. the
computation starts from that state) and that a state is final (it terminates the execution sequence).

Abs initial

∆ `Σ ·; ξ; ·B C @ w ok[π]
∆ `Σ ·; ξ; ·B C @ w initial

(C-init)
∆ `Σ ·; ξ; ·B M ok[π]
∆ `Σ ·; ξ; ·B M initial

(M -init)

Abs final

∆ `Σ σ; ξ; ·C v ok[π]
∆ `Σ σ; ξ; ·C v final

(v-final)
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The judgment for well-formedness of a state σ; ξ;κBC checks that the stack κ is well-formed and that C evaluates
to a value of the same type as is expected by the top-most frame of κ. We therefore need a new judgment form to state
that a stack is well-formed and expects a value of a particular type. This is written as κ : A.

∆ `Σ σ; ξ;κ B C @ w ok[π]

σ,∆ `Σ,pπq κ : A σ,∆; · `Σ,pπq C @ w ∼ A ∆ `Σ,pπq σ ok[π] σ,∆ `Σ,pπq ξ ok[π]
∆ `Σ σ; ξ;κ B C @ w ok[π]

(Abs-C-ok)

In addition, we also need auxiliary judgments stating the well-formedness of the ref-cell and proof stores resp.
These are fairly straightforward.

∆ `Σ σ ok[π]

∆ `Σ · ok[π]
(σ-ok1)

∆ `Σ σ ok[π] α # σ

∆ `Σ σ, α::w ≤ w′ ok[π]
(σ-ok2)

∆ `Σ ξ ok[π]

∆ `Σ · ok[π]
(ξ-ok1)

∆ `Σ ξ ok[π] ∆; · `Σ v value ∆ `Σ I :: RES
∆ `Σ ξ[ι[I] 7→ v] ok[π]

(ξ-ok2)

∆ `Σ κ : A

∆ `Σ · : A
(κ-ok)

∆ ` κ : A

∆ `Σ κ ‖ return • @ w : A
(κ-return)

∆; x : A `Σ C @ w ∼ A′ ∆ `Σ κ : A′

∆ `Σ κ ‖ •;x.C @ w : A
(κ-seq)

∆ `Σ κ : A′ ∆, α :: w′ ≤ w; · `Σ C1 @ w ∼ A′ ∆; · `Σ C2 @ w ∼ A′

∆ `Σ κ ‖ su[w′](•){α.C1 | C2} @ w : string
(κ-su)

∆ `Σ κ : A ∆; x:A′ `Σ C @ w : A

∆ ` κ ‖ letac x = • in C @ w : AC[w]A′ (κ-letac)

∆ `Σ κ : string ∆ `Σ I :: RES ∆ `Σ P :: mayrd(w, I)
∆ `Σ κ ‖ read [I][P ](•) @ w : Res[I]

(κ-read)

∆ `Σ κ : 1 ∆ `Σ I :: RES ∆ `Σ P :: maywt(w, I) ∆; · `Σ M : string
∆ `Σ κ ‖ write [I][P ](•)(M) @ w : Res[I]

(κ-write1)

∆ `Σ κ : 1 ∆ `Σ I :: RES ∆ `Σ P :: maywt(w, I) ∆; · `Σ v : Res[I]
∆ `Σ κ ‖ write [I][P ](v)(•) @ w : string

(κ-write2)

∆ `Σ κ : A2 ∆; · `Σ M : A1

∆ `Σ κ ‖ (•) M : A1 → A2

(κ-app1)
∆ `Σ κ : A′ ∆; x:A `Σ M : A′

∆ `Σ κ ‖ λx:A.M (•) : A
(κ-app2)

∆ `Σ σ; ξ;κ B M ok[π]

∆ `Σ,pπq σ ok[π] σ,∆; · `Σ,pπq M : A σ,∆ `Σ,pπq κ : A ∆ `Σ,pπq ξ ok[π]
∆ `Σ σ; ξ;κ B M ok[π]

(Abs-M -ok)
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∆ `Σ σ; ξ;κ C v ok[π]

∆ `Σ,pπq σ ok[π] σ,∆; · `Σ,pπq v value σ,∆; · `Σ,pπq v : A σ,∆ `Σ,pπq κ : A

∆ `Σ σ; ξ;κ C v ok[π]
(Abs-v-ok)

The safety theorem can now be stated as follows:

Progress: (a) If ∆ `Σ σ; ξ;κ B C @ w ok[π], then there exists a state Abs s.t. σ; ξ;κ B C @ w 7→π;Σ Abs.

(b) If ∆ `Σ σ; ξ;κ B Ins @ w ok[π], then there exists a state Abs s.t. σ; ξ;κ B Ins @ w 7→π;Σ Abs.

(c) If ∆ `Σ σ; ξ;κ B M ok[π], then there exists a state Abs s.t. σ; ξ;κ B M 7→π;Σ Abs.

(d) If ∆ `Σ σ; ξ;κ C v ok[π], then there exists a state Abs s.t. ξ;κ C v 7→π;Σ Abs or ∆ `Σ σ; ξ;κ C v final.

Preservation: (a) If ∆ `Σ σ; ξ;κ B C @ w ok[π] and σ; ξ;κ B C @ w 7→π;Σ Abs, then ∆ `Σ Abs ok[π].

(b) If ∆ `Σ σ; ξ;κ B Ins @ w ok[π] and σ; ξ;κ B Ins @ w 7→π;Σ Abs, then ∆ `Σ Abs ok[π].

(c) If ∆ `Σ σ; ξ;κ B M ok[π] and σ; ξ;κ B M 7→π;Σ Abs, then ∆ `Σ Abs ok[π].

(d) If ∆ `Σ σ; ξ;κ C v ok[π] and σ; ξ;κ C v 7→π;Σ Abs, then ∆ `Σ Abs ok[π].

A.1 Proof of the progress theorem
The progress theorem is easier to prove than the preservation theorem. For part (a), we proceed by analyzing all
different cases of C in the abstract machine state σ; ξ;κ B C @ w. Part (b) and (c) follow similarly by analyzing
different forms of instruction Ins, and of pure terms M resp.. Below we show cases for all the three parts together.

Case: C = return M

σ; ξ;κ B return M @ w 7→π;Σ σ; ξ;κ ‖ return • @ w B M .

Case: C = letac x = M in C

ξ;κ B letac x = M in C @ w 7→π;Σ ξ;κ ‖ letac x = • in C @ w B C @ w

Case: C = Ins;x.C

σ; ξ;κ B Ins;x.C @ w 7→π;Σ σ; ξ;κ ‖ •;x.C @ w B Ins @ w

Case: C = su[w′](M){α.C1 | C2}
σ; ξ;κ B su[w′](M){α.C1 | C2} @ w 7→π;Σ σ; ξ;κ ‖ su[w′](•){α.C1 | C2} @ w B M

Case: C = proverd[I][w′]{α.C1 | C2}
Again, following the pattern similar to the one in su, we have the following two cases:

Case 1: π `L m : mayrd(w′, I)
ξ;κ B proverd[I][w′]{α.C1 | C2} @ w 7→π;Σ ξ;κ B [pmq/α]C1 @ w

Case 2: ξ;κ B proverd[I][w′]{α.C1 | C2} @ w 7→π;Σ ξ;κ B C2 @ w

Case: C = provewt[I][w′]{α.C1 | C2}

Case 1: π `L m : maywt(w′, I)
ξ;κ B provewt[I][w′]{α.C1 | C2} @ w 7→π;Σ ξ;κ B [pmq/α]C1 @ w

Case 2: ξ;κ B provewt[I][w′]{α.C1 | C2} @ w 7→π;Σ ξ;κ B C2 @ w

Case: Ins = sudo[w′][P ](C)

ξ;κ B sudo[w′][P ](C) @ w 7→π;Σ ξ;κ B C @ w′
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Case: Ins = read [I][P ](M)

ξ;κ B read [I][P ](M) @ w 7→π;Σ ξ;κ ‖ read [I][P ](•) @ w B M

Case: Ins = write [I][P ](M1)(M2)

ξ;κ B write [I][P ](M1)(M2) @ w 7→π;Σ ξ;κ ‖ write [I][P ](•)(M2) @ w B M1

Case: M = x

∆ `Σ σ; ξ;κ B x ok[π] Assumption
σ,∆; · `Σ,pπq x : A Inverting Abs-M-ok

Since there is no typing derivation of x in the empty dynamic context, M can not be x. Thus this case cannot
occur.

Case: M = λx : A.M .

σ; ξ;κ B λx : A.M 7→π;Σ σ; ξ;κ C λx : A.M

Case: M = M1 M2

σ; ξ;κ B M1M2 7→π;Σ σ; ξ;κ ‖ (•)M2 B M1

Case: M = ac[w]C

σ; ξ;κ B ac[w]C 7→π;Σ σ; ξ;κ C ac[w]C

Case: M = 〈〉
σ; ξ;κ B 〈〉 7→π;Σ σ; ξ;κ C 〈〉

In order to prove part (d), we first assume that the domain of ref-cell store includes all locations l defined in the
signature Σ. We proceed by analyzing all possible values for κ.

Case: κ = ·.
∆ `Σ σ; ξ; ·C v ok[π]
∆ `Σ σ; ξ; ·C v final

Case: κ = κ′ ‖ F .
We now proceed by induction over the structure of F .

Case: F = return • @ w

σ; ξ;κ′ ‖ return • @ w C v 7→π;Σ σ; ξ;κ′ C v

Case: F = •;x.C @ w

σ; ξ;κ′ ‖ •;x.C @ w C v 7→π σ; ξ;κ′ B [v/x]C @ w

Case: F = letac x = • in C @ w

σ,∆ `Σ,pπq κ′ ‖ letac x = • in C @ w : A Premise
A = AC[w]A′ Inversion
v = ac[w]C ′ Canonical forms lemma B.8
σ; ξ;κ′ ‖ letac x = • in C @ w C ac[w]C ′ 7→π;Σ σ; ξ;κ′ B 〈C ′/x〉C @ w

Case: F = su[w′](•){α.C1 | C2} @ w
We have the following two cases, corresponding in an actual implementation to checking if the password
is correct:

Case: σ; ξ;κ′ ‖ su[w′](•){α.C1 | C2}C v 7→π σ[β : w′ ≤ w]; ξ;κ′ B [β/α]C1 @ w (β fresh).
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Case: σ; ξ;κ′ ‖ su[w′](•){α.C1 | C2}C v 7→π σ; ξ;κ′ B C2 @ w

Case: F = read [I][P ](•) @ w

A = Res[I] Inversion
σ,∆; · `Σ,pπq v : Res[I] Premise
v = ι[I] Canonical form lemma B.8
ι[I] ∈ dom(ξ) Assumption about ref-cell store
ξ = ξ′[ι[I] 7→ v′]
σ; ξ′[ι[I] 7→ v′];κ′ ‖ read [I][P ](•) @ w C v 7→π σ; ξ′[ι[I] 7→ v′];κ′ B v′

Case: F = write [I][P ](•)(M) @ w
Proof proceeds exactly the same way as for read [I][P ](•).

Case: F = write [I][P ](v)(•) @ w

A = string Inversion
σ,∆; · `Σ,pπq v : Res[I] Inversion
v = ι[I] Canonical form lemma B.8
ξ = ξ′[ι[I] 7→ v′] Assumption about ref-cell store
σ; ξ′[ι[I] 7→ v′];κ′ ‖ write [I][P ](v)(•) @ w C v 7→π σ; ξ′[ι[I] 7→ v];κ′ B 〈〉

Case: F = (•) M

A = A1 → A2 Inversion
v = λx:A1.M

′ Canonical form lemma B.8
σ; ξ;κ′ ‖ (•) M C λx:A1.M

′ 7→π σ; ξ;κ′ ‖ λx:A1.M
′ B M

Case: F = λx:A.M (•)
σ; ξ;κ′ ‖ λx:A.M (•) C v 7→π σ; ξ;κ′ B [v/x]M

A.2 Proof of preservation theorem
To prove the part (a) of preservation theorem, assume we have the following derivation:

σ,∆ `Σ,pπq κ : A σ,∆; · `Σ,pπq C @ w ∼ A ∆ `Σ,pπq σ ok[π] ∆ `Σ,pπq ξ ok[π]
∆ `Σ σ; ξ;κ B C @ w ok[π]

We proceed by analyzing the transition relation σ; ξ;κ B C @ w 7→π;Σ Abs for various cases of C. To prove part (b)
we analyze the relation for various cases Ins.

Case: σ; ξ;κ B return M @ w 7→π;Σ σ; ξ;κ ‖ return • @ w B M

∆ `Σ σ; ξ;κ B return M @ w ok[π] Assumption
∆ `Σ,pπq σ ok[π] and ∆ `Σ,pπq ξ ok[π] Inversion
σ,∆; · `Σ,pπq return M @ w ∼ A Inversion
σ,∆ `Σ,pπq κ : A Inversion
σ,∆; · `Σ,pπq M : A Inversion of typing derivation
σ,∆ `Σ,pπq κ ‖ return • @ w : A
∆ `Σ σ; ξ;κ ‖ return • @ w B M ok[π]
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Case: σ; ξ;κ B letac x = M in C @ w 7→π;Σ σ; ξ;κ ‖ letac x = • in C @ w B M

σ,∆ `Σ σ; ξ;κ B letac x = M in C @ w ok[π] Assumption
∆ `Σ,pπq σ ok[π] and ∆ `Σ,pπq ξ ok[π] Inversion
σ,∆; · `Σ,pπq letac x = M in C @ w ∼ A Inversion
σ,∆ `Σ,pπq κ : A Inversion
σ,∆; · `Σ,pπq M : AC[w]A′ Inversion of typing derivation
σ,∆; x:A′ `Σ,pπq C @ w ∼ A Inversion of typing derivation
σ,∆ `Σ,pπq κ ‖ letac x = • in C @ w : AC[w]A′

∆ `Σ σ; ξ;κ ‖ letac x = • in C @ w B M ok[π]

Case: σ; ξ;κ B sudo[w′][P ](C) @ w 7→π;Σ σ; ξ;κ B C @ w′

∆ `Σ σ; ξ;κ B sudo[w′][P ](C) @ w ok[π] Assumption
∆ `Σ,pπq σ ok[π] and ∆ `Σ,pπq ξ ok[π] Inversion
σ,∆ `Σ,pπq κ : A
σ,∆; · `Σ,pπq sudo[w′][P ](C) @ w ∼ A Inversion
σ,∆; · `Σ,pπq C @ w′ ∼ A Inversion
∆ `Σ σ; ξ;κ B C @ w′ ok[π]

Case: σ; ξ;κ B su[w′](M){α.C1 | C2} @ w 7→π;Σ σ; ξ;κ ‖ su[w′](•){α.C1 | C2} @ w B M

∆ `Σ σ; ξ;κ B su[w′](M){α.C1 | C2} @ w ok[π] Assumption
∆ `Σ,pπq σ ok[π] and ∆ `Σ,pπq ξ ok[π] Inversion
σ,∆ `Σ,pπq κ : A Inversion
σ,∆; · `Σ,pπq su[w′](M){α.C1 | C2} @ w ∼ A Inversion
σ,∆, α :: w′ ≤ w; · `Σ,pπq C1 @ w ∼ A
σ,∆; · `Σ,pπq C2 @ w ∼ A
σ,∆; · `Σ,pπq M : string Inversion
σ,∆ `Σ,pπq κ ‖ su[w′](•){α.C1 | C2} @ w : string
∆ `Σ σ; ξ;κ ‖ su[w′](•){α.C1 | C2} @ w B M ok[π]

Case: σ; ξ;κ B proverd[I][w′]{α.C1 | C2} @ w 7→π;Σ σ; ξ;κ B [pcq/α]C1 @ w

π `L m : mayrd(w′, I) Premise
∆ `Σ σ; ξ;κ B proverd[I][w′]{α.C1 | C2} @ w ok[π] Inversion
σ,∆ `Σ,pπq κ : A
σ,∆; · `Σ,pπq proverd[I][w′]{α.C1 | C2} @ w ∼ A
σ,∆, α :: mayrd(w′, I); · `Σ,pπq C1 @ w ∼ A
σ,∆ `Σ,pπq pmq :: mayrd(w′, I) By Theorem 6.1
σ,∆; · `Σ,pπq [pmq/α]C1 @ w ∼ A Substitution Lemma
∆ `Σ σ; ξ;κ B [pmq/α]C1 @ w ok[π]

Case: σ; ξ;κ B proverd[I][w′]{α.C1 | C2} @ w 7→π;Σ σ; ξ;κ B C2 @ w

∆ `Σ σ; ξ;κ B proverd[I][w′]{α.C1 | C2} @ w ok[π] Inversion
σ,∆ `Σ,pπq κ : A Inversion
σ,∆; · `Σ,pπq proverd[I][w′]{α.C1 | C2} @ w ∼ A
σ,∆; · `Σ,pπq C2 @ w ∼ A
∆ `Σ σ; ξ;κ B C2 @ w ok[π]
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Case: σ; ξ;κ B provewt[I][w′]{α.C1 | C2} @ w 7→π;Σ σ; ξ;κ B [P/α]C1 @ w

π `L m : maywt(w′, I) Premise
∆ `Σ σ; ξ;κ B provewt[I][w′]{α.C1 | C2} @ w ok[π] Inversion
σ,∆ `Σ,pπq κ : A
σ,∆; · `Σ,pπq provewt[I][w′]{α.C1 | C2} @ w ∼ A
σ,∆, α :: maywt(w′, I); · `Σ,pπq C1 @ w ∼ A
σ,∆ `Σ,pπq pmq :: maywt(w′, I) By Theorem 6.1
σ,∆; · `Σ,pπq [pmq/α]C1 @ w ∼ A Substitution Lemma
∆ `Σ σ; ξ;κ B [pmq/α]C1 @ w ok[π]

Case: σ; ξ;κ B provewt[I][w′]{α.C1 | C2} @ w 7→π;Σ σ; ξ;κ B C2 @ w

∆ `Σ σ; ξ;κ B provewt[I][w′]{α.C1 | C2} @ w ok[π] Assumption
σ,∆ `Σ,pπq κ : A Inversion
σ,∆; · `Σ,pπq provewt[I][w′]{α.C1 | C2} @ w ∼ A Inversion
σ,∆; · `Σ,pπq C2 @ w ∼ A Inversion of typing derivation
∆ `Σ σ; ξ;κ B C2 @ w ok[π]

Case: σ; ξ;κ B read [I][P ](M) @ w 7→π;Σ σ; ξ;κ ‖ read [I][P ](•) @ w B M

∆ `Σ σ; ξ;κ B read [I][P ](M) @ w ok[π]
σ,∆; · `Σ,pπq read [I][P ](M) @ w ∼ string Inversion, twice
σ,∆ `Σ,pπq κ : string
σ,∆; · `Σ,pπq M : Res[I]
σ,∆ `Σ,pπq I :: RES
σ,∆ `Σ,pπq P :: mayrd(w, I)
σ,∆ `Σ,pπq κ ‖ read [I][P ](•) @ w : Res[I]
∆ `Σ σ; ξ;κ ‖ read [I][P ](•) @ w B M ok[π]

Case: σ; ξ;κ B write [I][P ](M1)(M2) @ w 7→π;Σ σ; ξ;κ ‖ write [I][P ](•)(M2) @ w B M1

∆ `Σ σ; ξ;κ B write [I][P ](M1)(M2) @ w ok[π]
σ,∆; · `Σ,pπq write [I][P ](M1)(M2) @ w ∼ 1 Inversion, twice
σ,∆ `Σ,pπq κ : 1
σ,∆; · `Σ,pπq M1 : Res[I]
σ,∆; · `Σ,pπq M2 : string
σ,∆ `Σ,pπq I :: RES
σ,∆ `Σ,pπq P :: maywt(w, I)
σ,∆ `Σ,pπq κ ‖ write [I][P ](•)(M2) @ w : Res[I]
∆ `Σ σ; ξ;κ ‖ write [I][P ](•)(M2) @ w B M1 ok[π]

Case: σ; ξ;κ B Ins;x.C @ w 7→π;Σ σ; ξ;κ ‖ •;x.C @ w B Ins @ w

∆ `Σ σ; ξ;κ B Ins;x.C @ w ok[π] Assumption
σ,∆; · `Σ,pπq Ins;x.C @ w ∼ A Inversion
σ,∆ `Σ,pπq κ : A Inversion
σ,∆; · `Σ,pπq Ins @ w ∼ A′ Inversion
σ,∆; x : A′ `Σ,pπq C @ w ∼ A Inversion
σ,∆ `Σ,pπq κ ‖ •;x.C @ w : A′

∆ `Σ σ; ξ;κ ‖ •;x.C @ w B Ins @ w ok[π]
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If σ; ξ;κ B M 7→π;Σ Abs and σ; ξ;κ B M ok[π], then Abs ok[π]
We proceed by analyzing various cases of the transition relation σ; ξ;κ B M 7→π;Σ Abs:

Case: σ; ξ;κ B M1 M2 7→π;Σ σ; ξ;κ ‖ (•) M2 B M1

∆ `Σ σ; ξ;κ B M1 M2 ok[π] Assumption
σ,∆ `Σ,pπq κ : A
σ,∆; · `Σ,pπq M1 M2 : A
σ,∆; · `Σ,pπq M1 : A2 → A
σ,∆; · `Σ,pπq M2 : A2

σ,∆ `Σ,pπq κ ‖ (•) M2 : A2 → A
∆ `Σ σ; ξ;κ ‖ (•) M2 B M1 ok[π]

Case: σ; ξ;κ B v 7→π;Σ σ; ξ;κ C v

∆ `Σ σ; ξ;κ B v ok[π] Assumption
σ,∆ `Σ,pπq κ : A
σ,∆; · `Σ,pπq v : A
σ,∆; · `Σ,pπq v value Assumption
∆ `Σ σ; ξ;κ C v ok[π]

If σ; ξ;κ C v 7→π;Σ Abs, and σ; ξ;κ C v ok[π], then Abs ok[π]
As usual, we proceed by analyzing various cases of the transition relation σ; ξ;κ C v 7→π;Σ Abs:

Case: σ; ξ;κ ‖ return • @ w C v 7→π;Σ σ; ξ;κ C v

∆ `Σ σ; ξ;κ ‖ return • @ w C v ok[π] Assumption
σ,∆ `Σ,pπq κ ‖ return • @ w : A Inversion
∆ `Σ,pπq κ : A
σ,∆; · `Σ,pπq v : A, and σ,∆; · ` v value
∆ `Σ σ; ξ;κ C v ok[π]

Case: σ; ξ;κ ‖ letac x = • in C @ w C ac[w]C ′ 7→π;Σ σ; ξ;κ B 〈C ′/x〉C @ w

∆ `Σ σ; ξ;κ ‖ letac x = • in C @ w C ac[w]C ′ ok[π] Assumption
σ,∆ `Σ,pπq κ ‖ letac x = • in C @ w : AC[w]A′ Inversion, twice
σ,∆ `Σ,pπq κ : A
σ,∆; · `Σ,pπq ac[w]C ′:AC[w]A′

σ,∆; · `Σ,pπq C ′ @ w ∼ A′ Inversion of typing
σ,∆; x:A′ `Σ,pπq C @ w ∼ A
σ,∆; · `Σ,pπq κ ‖ 〈C ′/x〉C @ w : A By Lemma B.6
∆ `Σ σ; ξ;κ B 〈C ′/x〉C @ w ok[π]

Case: σ; ξ[ι[I] 7→ v];κ ‖ read [I][P ](•) @ w C ι[I] 7→π;Σ σ; ξ[ι[I] 7→ v];κ B v

∆ `Σ σ; ξ[ι[I] 7→ v];κ ‖ read [I][P ](•) @ w C ι[I] ok[π] Assumption
∆ `Σ,pπq ξ[ι[I] 7→ v] ok[π]
∆; · `Σ,pπq v:string
σ,∆ `Σ,pπq v:string weakening
σ,∆ `Σ,pπq ξ[ι[I] 7→ v];κ ‖ read [I][P ](•) @ w : Res[I] Inversion, twice
σ,∆ `Σ,pπq ξ[ι[I] 7→ v];κ : string
σ,∆; · `Σ,pπq ι[I] : Res[I]
∆ `Σ σ; ξ[ι[I] 7→ v];κ B v ok[π]
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Case: σ; ξ;κ ‖ write [I][P ](•)(M2) @ w C ι[I] 7→π;Σ σ; ξ;κ ‖ write [I][P ](ι[I])(•) @ w B M2

σ,∆ `Σ,pπq κ ‖ write [I][P ](•)(M2) @ w : Res[I]
σ,∆; · `Σ,pπq ι[I] : Res[I]
σ,∆ `Σ,pπq κ : 1
σ,∆ `Σ,pπq I :: RES
σ,∆ `Σ,pπq P :: maywt(w, I)
σ,∆; · `Σ,pπq M2 : string
σ,∆ `Σ,pπq κ ‖ write [I][P ](l)(•) @ w : string
∆ `Σ,pπq σ; ξ;κ ‖ write [I][P ](l)(•) @ w B M2 ok[π]

Case: σ; ξ[ι[I] 7→ v];κ ‖ write [I][P ](ι[I])(•) @ w C v′ 7→π;Σ σ; ξ[ι[I] 7→ v′];κ B 〈〉

∆ `Σ ξ[ι[I] 7→ v];κ ‖ write [I][P ](ι[I])(•) @ w C v′ ok[π] Assumption
σ,∆ `Σ,pπq κ ‖ write [I][P ](ι[I])(•) @ w : string Inversion, twice
∆ `Σ,pπq ξ[ι[I] 7→ v] ok[π] Inversion
∆ `Σ,pπq ξ ok[π]
∆ `Σ,pπq I :: RES and ∆; · `Σ,pπq ι[I]:Res[I]
σ,∆; · `Σ,pπq v:string
σ,∆; · ` v′:string Premise
σ,∆ `Σ,pπq ξ[ι[I] 7→ v′] ok[π]
σ,∆ `Σ,pπq κ : 1
σ,∆; · `Σ,pπq 〈〉 : 1
∆ `Σ σ; ξ[ι[I] 7→ v′];κ B 〈〉 ok[π]

Case: σ; ξ;κ ‖ •;x.C @ w C v 7→π;Σ σ; ξ;κ B [v/x]C @ w

∆ `Σ σ; ξ;κ ‖ •;x.C @ w C v ok[π] Assumption
σ,∆ `Σ,pπq v:A Inversion
σ,∆ `Σ,pπq v value Inversion
σ,∆ `Σ,pπq κ ‖ •;x.C @ w : A
σ,∆ `Σ,pπq κ : A′

σ,∆; x:A `Σ,pπq C @ w ∼ A′

σ,∆; · `Σ,pπq [v/x]C @ w ∼ A′ By Lemma B.4
∆ `Σ σ; ξ;κ B [v/x]C @ w ok[π]

Case:
(β fresh)

σ; ξ;κ ‖ su[w′](•){α.C1 | C2} @ w C v 7→π;Σ σ[β :: w′ ≤ w]; ξ;κ B [β/α]C1 @ w

∆ `Σ σ; ξ;κ ‖ su[w′](•){α.C1 | C2} @ w C v ok[π] Assumption
σ,∆ `Σ,pπq v:string
σ,∆ `Σ,pπq κ ‖ su[w′](•){α.C1 | C2} @ w : string Inversion twice
σ,∆ `Σ,pπq κ : A
σ,∆, α :: w′ ≤ w; · `Σ,pπq C1 @ w ∼ A
σ,∆, α :: w′ ≤ w, β :: w′ ≤ w; · `Σ,pπq C1 @ w ∼ A weakening
σ,∆, β :: w′ ≤ w `Σ,pπq β :: w′ ≤ w
σ,∆, β :: w′ ≤ w; · `Σ,pπq [β/α]C1 @ w ∼ A Substitution Lemma
σ,∆, β :: w′ ≤ w `Σ,pπq κ : A weakening
∆ `Σ σ[β :: w′ ≤ w]; ξ;κ B [β/α]C1 @ w ok[π]
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Case: σ; ξ;κ ‖ su[w′](•){α.C1 | C2} @ w C v 7→π;Σ σ; ξ;κ B C2 @ w

∆ `Σ σ; ξ;κ ‖ su[w′](•){α.C1 | C2} @ w C v ok[π] Assumption
σ,∆ `Σ,pπq v:string
σ,∆ `Σ,pπq κ ‖ su[w′](•){α.C1 | C2} @ w : string Inversion twice
σ,∆ `Σ,pπq κ : A
σ,∆ `Σ,pπq C2 @ w ∼ A
∆ `Σ σ; ξ;κ B C2 @ w ok[π]

Case: σ; ξ;κ ‖ (•) M2 C λx:A.M 7→π;Σ σ; ξ;κ ‖ (λx:A.M) (•) B M2

∆ `Σ σ; ξ;κ ‖ (•) M2 C λx:A.M ok[π] Assumption
σ,∆; · `Σ,pπq λx:A.M : A → A′ Premise, Inversion
σ,∆ `Σ,pπq κ ‖ (•) M2 : A → A′

σ,∆; · `Σ,pπq M2 : A
σ,∆ `Σ,pπq ξ;κ ‖ (λx:A.M) (•) : A
∆ `Σ σ; ξ;κ ‖ (λx:A.M) (•) B M2 ok[π]

Case: σ; ξ;κ ‖ λx:A.M (•) C v 7→π;Σ σ; ξ;κ B [v/x]M

∆ `Σ σ; ξ;κ ‖ λx:A.M (•) C v ok[π] Assumption
σ,∆ `Σ,pπq κ : A′

σ,∆; x:A `Σ,pπq M : A′

σ,∆; · `Σ,pπq v:A
σ,∆; · `Σ,pπq [v/x]M : A′ Substitution Lemma
∆ `Σ σ; ξ;κ B [v/x]M ok[π]

B Useful lemmas
First, let us define substitution of types and terms in terms, instructions and computations inductively. The metavariable
P stands for a type constructor and α stands for a type variable.

[P/α]return M = return [P/α]M
[P/α]letac x = M in C = letac x = [P/α]M in [P/α]C

[P/α](Ins;x.C) = ([P/α]Ins);x.[P/α]C
[P/α]sudo[w][P ′](C) = sudo[w][[P/α]P ′]([P/α]C)

[P/α]su[w](M){β.C1 | C2} = su[w]([P/α]M){β.[P/α]C1 | [P/α]C2}
[P/α]read [I][P ′](M) = read [[P/α]I][[P/α]P ′]([P/α]M)

[P/α]write [I][P ′](M1)(M2) = write [[P/α]I][[P/α]P ′]([P/α]M1)([P/α]M2)
[P/α]proverd[I][w]{β.C1 | C2} = proverd[[P/α]I][w]{β.[P/α]C1 | [P/α]C2}
[P/α]provewt[I][w]{β.C1 | C2} = provewt[[P/α]I][w]{β.[P/α]C1 | [P/α]C2}

Substitution into pure terms is defined as follows:

[P/α]x = x
[P/α]λx:A.M = λx:[P/α]A.[P/α]M
[P/α]M1 M2 = [P/α]M1 [P/α]M2

[P/α]ac[w]C = ac[w][P/α]C
[P/α]ι[I] = ι[[P/α]I]
[P/α]〈〉 = 〈〉
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Since constructors may depend on other constructors, we define substitution of constructors into constructors:

[P/α]w = w
[P/α]c = c

[P/α]string = string
[P/α](A1 → A2) = [P/α]A1 → [P/α]A2

[P/α]AC[w]A = AC[w][P/α]A
[P/α]Res[I] = Res[[P/α]I]

[P/α]α = P
[P/α]β = β
[P/α]1 = 1
[P/α]? = ?

[P/α]〈A1, A2〉 = 〈[P/α]A1, [P/α]A2〉
[P/α]fst A = fst [P/α]A
[P/α]snd A = snd [P/α]A

[P/α]λβ::K.A = λβ::[P/α]K.[P/α]A
[P/α] A1A2 = [P/α]A1[P/α]A2

The kinds too depend on constructors. Thus we have:

[P/α]TYPE = TYPE
[P/α]RES = RES

[P/α]w1 ≤ w2 = w1 ≤ w2

[P/α]mayrd(w, I) = mayrd(w, [P/α]I)
[P/α]maywt(w, I) = maywt(w, [P/α]I)
[P/α](K1 → K2) = [P/α]K1 → [P/α]K2

[P/α](K1 ×K2) = [P/α]K1 × [P/α]K2

[P/α]> = >

Finally, we define the substitution operation on contexts straightforwardly as:

[P/α]· = ·
[P/α]∆, β :: K = [P/α]∆, β :: [P/α]K
[P/α]∆, α :: K = [P/α]∆

[P/α]· = ·
[P/α]Γ, x:A = [P/α]Γ, x:[P/α]A

Next, we define substitution of terms into instructions and computations.

[M/x]return M ′ = return [M/x]M ′

[M/x]letac y = M ′ in C = letac y = [M/x]M ′ in [M/x]C
[M/x]su[w](M ′){α.C1 | C2} = su[w]([M/x]M ′){α.[M/x]C1 | [M/x]C2}

[M/x]proverd[I][w]{α.C1 | C2} = proverd[I][w]{α.[M/x]C1 | [M/x]C2}
[M/x]provewt[I][w]{α.C1 | C2} = provewt[I][w]{α.[M/x]C1 | [M/x]C2}

[M/x]Ins; y.C = [M/x]Ins; y.[M/x]C
[M/x]sudo[w][P ](C) = sudo[w][P ]([M/x]C)

[M/x]read [I][P ](M ′) = read [I][P ]([M/x]M ′)

Finally, the substitution of terms into terms is straightforward. The onlyinteresting case is ι[I] which does not
change upon substitution because there are no free term variables in it.
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B.1 Type substitution lemmas
Constructors can be substituted for constructor variables in kinds, constructors, computations and terms. We therefore
have the following set of lemmas (we club the context σ,∆ into ∆ for the sake of brevity) :

Lemma B.1. If ∆, α :: K `Σ A1 :: K1,
and ∆ `Σ P :: K,
then [P/α]∆ `Σ [P/α]A1 :: [P/α]K1.

Proof. By induction over the derivation of ∆, α :: K `Σ A1 :: K1.

Lemma B.2. If ∆, α :: K; Γ `Σ C @ w ∼ A,
and ∆ `Σ P :: K,
then [P/α]∆; [P/α]Γ `Σ [P/α]C @ w ∼ [P/α]A.

Proof. By induction over the derivation of ∆, α :: K; Γ `Σ C @ w ∼ A.

Lemma B.3. If ∆, α :: K; Γ `Σ M :A,
and ∆ `Σ P :: K,
then [P/α]∆; [P/α]Γ `Σ [P/α]M :[P/α]A.

Proof. By induction over the derivation of ∆, α :: K; Γ `Σ M :A.

B.2 Term substitution lemmas
Computations and pure terms depend on other terms. We have the following corresponding substitution lemmas:

Lemma B.4. The rule
∆; Γ, x:A `Σ C @ w ∼ A′ ∆; Γ `Σ M :A

∆; Γ `Σ [M/x]C @ w ∼ A′

is admissible.

Proof. We proceed by induction over the derivation of ∆; Γ, x:A `Σ C @ w ∼ A′.
(Verified).

Lemma B.5. The rule
∆; Γ, x:A `Σ M ′:A′ ∆; Γ `Σ M :A

∆; Γ `Σ [M/x]M ′:A′

is admissible.

B.3 Leftist substitution lemma
Lemma B.6.

∆; Γ `Σ C1 @ w ∼ A1 ∆; Γ, x : A1 `Σ C2 @ w ∼ A2

∆; Γ `Σ 〈C1/x〉C2 @ w ∼ A2

is admissible.

Proof. We proceed by induction over the derivation of the premise ∆; Γ `Σ C1 @ w ∼ A1.

Case:
∆; Γ `Σ M : A1

∆; Γ `Σ return M @ w ∼ A1

∆; Γ `Σ [M/x]C2 @ w ∼ A2 By Lemma B.4

33



Case:
∆; Γ `Σ M : AC[w]A ∆; Γ, y:A `Σ C @ w ∼ A1

∆; Γ `Σ letac y = M in C @ w ∼ A1

(y#C2, since it can always be α-varied.)

∆; Γ `Σ M : AC[w]A Premise
∆; Γ, y:A `Σ C @ w ∼ A1 Premise
∆; Γ, x:A1 `Σ C2 @ w ∼ A2 Premise
∆; Γ, x:A1, y:A `Σ C2 @ w ∼ A2 weakening
∆; Γy:A `Σ 〈C1/x〉C2 @ w ∼ A2 Ind. hyp.
∆; Γ `Σ letac y = M in 〈C1/x〉C2 @ w ∼ A2 by rule AC-E

Case:
∆; Γ `Σ M : string ∆, α :: w′ ≤ w; Γ `Σ C @ w ∼ A1 ∆; Γ `Σ C ′ @ w ∼ A1

∆; Γ `Σ su[w′](M){α.C | C ′} @ w ∼ A1

α # C2 otherwise, α− vary
∆; Γ, x : A1 `Σ C2 @ w ∼ A2 Premise
∆, α :: w′ ≤ w; Γ, x : A1 `Σ C2 @ w ∼ A2 weakening
∆, α :: w′ ≤ w; Γ `Σ C @ w ∼ A1 Premise
∆, α :: w′ ≤ w; Γ `Σ 〈C/x〉C2 @ w ∼ A2 By ind. hyp.
∆; Γ `Σ C ′ @ w ∼ A1 Premise
∆; Γ `Σ 〈C ′/x〉C2 @ w ∼ A2 By ind. hyp.
∆; Γ `Σ su[w′](M){α.〈C/x〉C2 | 〈C ′/x〉C2} @ w ∼ A2

Case:
∆ `Σ P :: w′ ≤ w ∆; Γ `Σ C1 @ w′ ∼ A1

∆; Γ `Σ sudo[w′][P ](C1) @ w ∼ A1

〈sudo[w′][P ](C1)/x〉C2 = sudo[w′][P ](C1);x.C2 By definition
∆; Γ `Σ sudo[w′][P ](C1) @ w ∼ A1 Assumption
∆; Γ `Σ sudo[w′][P ](C1);x.C2 @ w ∼ A2

Case:
∆ `Σ I :: RES ∆ `Σ P :: mayrd(w, I) ∆; Γ `Σ M : Res[I]

∆; Γ `Σ read [I][P ](M) @ w ∼ A1

Similar to sudo case.

Case:
∆ `Σ I :: RES ∆ `Σ P :: maywt(w, I) ∆; Γ `Σ M1 : Res[I] ∆; Γ `Σ M2 : string

∆; Γ `Σ write [I][P ](M1)(M2) @ w ∼ A1

Similar to sudo case.

Case:
∆ `Σ I :: RES ∆, α :: mayrd(w′, I); Γ `Σ C @ w ∼ A1 ∆; Γ `Σ C ′ @ w ∼ A1

∆; Γ `Σ proverd[I][w′]{α.C | C ′} @ w ∼ A1

α # C2 α-vary otherwise
∆; Γ, x : A1 `Σ C2 @ w ∼ A2 Assumption
∆, α :: mayrd(w′, I); Γ, x : A1 `Σ C2 @ w ∼ A2 weakening
∆, α :: mayrd(w′, I); Γ `Σ C @ w ∼ A1 Premise
∆, α :: mayrd(w′, I); Γ `Σ 〈C/x〉C2 @ w ∼ A2 By ind. hyp.
∆; Γ `Σ C ′ @ w ∼ A1 Premise
∆; Γ `Σ 〈C ′/x〉C2 @ w ∼ A2 By ind. hyp.
∆; Γ `Σ proverd[I][w′]{α.〈C/x〉C2 | 〈C ′/x〉C2} @ w ∼ A2
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Case:
∆ `Σ I :: RES ∆, α :: maywt(w′, I); Γ `Σ C @ w ∼ A1 ∆; Γ `Σ C ′ @ w ∼ A1

∆; Γ `Σ provewt[I][w′]{α.C | C ′} @ w ∼ A1

Exactly similar to proverd case.

B.4 Proof term substitution
Apart from the above lemmas about terms in the language, we can prove substitution lemmas for proof terms in the
logic. We first define the notion of replacement of a constant term by another term. Replacement of a constant c by a
term m′ in a proof term m (denoted as [c → m′]m) replaces all occurrences of c in m by m′ avoiding capture of free
variables in m′.

Lemma B.7. (Proof substitution)

1.

π, x:p′ `L m:p π `L m′:p′

π `L [m′/x]m:p

is admissible.

2.

π, c:p′ `L m:p π `L m′:p′

π `L [c → m′]m:p

is admissible.

Proof. By induction on the derivation of π, x:p′ `L m:p and π, c:p′ `L m:p resp.

B.5 Canonical forms lemma for values
Lemma B.8. (Canonical forms)

1. If v is a value of type A1 → A2, then v is of the form λx:A1.M .

2. If v is a value of type AC[w]A, then v is of the form ac[w]C.

3. If v is a value of type Res[I], then v = ι[I].

4. If v is a value of type 1, then v = 〈〉.

Proof. The values v can either be of the λxA.M , or ac[w]C, or 〈〉. For part (1), ac[w]C and 〈〉 are ruled out because
v is assumed to be of type A1 → A2. By inversion lemma, the last two forms of values cannot have such a type.
λx:A.M gives the desired answer. By inversion again, A = A1.

Proofs for the remaining parts are similar.

B.6 Inversion lemmas
Lemma B.9. 1. If ∆; Γ `Σ sudo[w′][P ](C) @ w ∼ A, then ∆ `Σ P ::w′ ≤ w, and ∆; Γ `Σ C @ w′ ∼ A.

2. If ∆; Γ `Σ read [I][P ](M) @ w ∼ string, then ∆ `Σ P :: mayrd(w, I),∆ `Σ I :: RES, and ∆; Γ `Σ M :
Res[I].

35



3. If ∆; Γ `Σ write [I][P ](M1)(M2) @ w ∼ 1, then ∆ `Σ I :: RES, ∆; Γ `Σ M1 : Res[I], ∆ `Σ P ::
maywt(w, I), and ∆; Γ `Σ M2 : string

4. If ∆; Γ `Σ letac x = M in C @ w ∼ A, then ∆; Γ, x:A1 `Σ C @ w ∼ A, ∆; Γ `Σ M : AC[w]A1.

5. If ∆; Γ `Σ return M @ w ∼ A, then ∆; Γ `Σ M : A.

6. If ∆; Γ `Σ su[w′](M){α.C1 | C2}@ w ∼ A, then ∆; Γ `Σ M : string, ∆, α :: w′ ≤ w; Γ `Σ C1 @ w ∼ A
and ∆; Γ `Σ C2 @ w ∼ A.

7. If ∆; Γ `Σ proverd[I][w′]{α.C1 | C2} @ w ∼ A, then ∆, α :: mayrd(w′, I); Γ `Σ C1 @ w ∼ A, ∆; Γ `Σ

C2 @ w ∼ A.

8. If ∆; Γ `Σ provewt[I][w′]{α.C1 | C2} @ w ∼ A, then ∆, α :: maywt(w′, I); Γ `Σ C1 @ w ∼ A,∆; Γ `Σ

C2 @ w ∼ A,

9. If ∆; Γ `Σ Ins;x.C @ w ∼ A, then ∆; Γ `Σ Ins @ w ∼ A′,∆; Γ, x : A′ `Σ C @ w ∼ A

10. If ∆; Γ `Σ λx:A.M : A1 → A2, then ∆; Γ, x:A1 `Σ M : A2.

11. If ∆; Γ `Σ M1M2 : A2, then ∆; Γ `Σ M1 : A1 → A2, and ∆; Γ `Σ M2 : A1

12. If ∆; Γ `Σ ac[w]C : AC[w]A, then ∆; Γ `Σ C @ w ∼ A.

13. If ∆; Γ `Σ 〈〉 : A, then A = 1.

C Access-control safety
In order to talk about access-control, we need to show the existence of proofs in the access-control theory whenever
the corresponding propositional kind in the programming language is inhabited. Often it is easy to construct a proof
from the constructor. For this we define a mapping (x·y) from constructors to proofs and from kinds to propositions in
the logic.

In the case of kinds, we map all the kinds that are in the image of the embedding p·q back to their preimages under
p·q. We call such kinds propositional. On the other hand, we will refer to those kinds that do not have a propositional
subkind as non-propositional. Note that there may be kinds which are neither propositional nor non-propositional.

xTYPEy = >
xRESy = >
xw1 ≤ w2y = >
xmayrd(w, I)y = mayrd(w, I)
xmaywt(w, I)y = maywt(w, I)
xK1 → K2y = xK1y ⊃ xK2y
xK1 ×K2y = xK1y ∧ xK2y
x>y = >
xcy = c
xαy = α
xA1 → A2y = 〈〉L
xAC[w]Ay = 〈〉L
xRes[I]y = 〈〉L
x〈〉y = 〈〉L
x?y = 〈〉L
x〈P1, P2〉y = 〈xP1y, xP2y〉L
xfst Py = fstLxPy
xsnd Py = sndLxPy
xλα::K.Ay = λLα:xKy.xAy
x A1A2y = appLxA1yxA2y

36



Non-propositional kinds are defined inductively by the judgment K nonp.

TYPE nonp RES nonp w1 ≤ w2 nonp
K1 nonp K2 nonp

K1 → K2 nonp
K1 nonp K2 nonp

K1 ×K2 nonp

Lemma C.1. If K nonp, then xKy ∈ p>, where p> is defined by the grammar:

p> ::= > | p> ⊃ p> | p> ∧ p>

Proof. By induction on the derivation of K nonp.

p> is a subset of trivially true propositions. Any hypothesis regarding a proposition in p> can be safely omitted
while still maintaining completeness of deductions.

It is easy to verify that x·y is the right-inverse of p·q.

Lemma C.2. 1. If ∆ `Σ K kind, then xKy is a proposition.

2. If ∆ `Σ A :: K, then x∆y, xΣy `L xAy : xKy.

Proof. By induction on derivation of ∆ `Σ K kind and ∆ `Σ A :: K resp.

Theorem C.1. (Safety of resource-access):

1. If · `Σ C @ w ∼ A, · `Σ ξ ok[π] and ·; ξ; ·B C @ w 7→?
π;Σ σ; ξ′;κ B read [I][P ](M) @ w′,

then there exists a proof p such that π `L p : mayrd(w′, I).

2. If · `Σ C @ w ∼ A, · `Σ ξ ok[π] and ·; ξ; ·B C @ w 7→?
π;Σ σ; ξ′;κ B write [I][P ](M)( @ )w′,

then there exists a proof p such that π `L p : maywt(w′, I).

Proof. We specifically assume that proofs of logical propositions are introduced into the language only through the
access-control theory. That is to say, for all c :: K ∈ Σ, K nonp.

We now sketch the proof of part(1). The proof for the second part is similar.

· `Σ C @ w ∼ A Assumption
· `Σ ξ ok[π] Assumption
·; ξ; ·B C @ w ok[π] By rule Abs-C-ok
·; ξ; ·B C @ w 7→?

π;Σ σ; ξ′;κ B read [I][P ](M) @ w′ Assumption
σ; ξ′;κ B read [I][P ](M) @ w′ ok[π] By preservation
· `Σ,pπq P :: mayrd(w′, I) By inversion of Abs-C-ok, and of typing derivation
xΣy, xpπqy `L xPy : mayrd(w′, I) By Lemma C.2
xΣy, π `L xPy : mayrd(w′, I) x·y is the right inverse of p·q

Having obtained a xPy, we can easily transform it to a proof in the context π (instead of xΣy, π) by replacing
all the constants c : K from Σ in xPy by canonical proofs of xKy. For example, the canonical proof of > is 〈〉L,
that of > → (> → >) is λLu:>.λLv:>.>. The substitution lemma B.7 ensures that we get the proof of the same
proposition.

Theorem C.2. (Access-control safety): If π,∆; · `Σ C @ w ∼ A
and ·; ξ; ·B C @ w 7→?

π;Σ Abs,
then for each wi active in Abs, either wi = w, or there exist sequences 〈w1, . . . ,win

〉, 〈P1, . . . , Pin−1〉,
such that w1 = w,win = wi and σ,∆ `Σ,pπq Pj :: wj+1 ≤ wj for 1 ≤ j < in, where σ is the Su-permissions
component of Abs.

Proof. We proceed by induction on the number of steps of the operational semantics it takes to reach Abs from
·; ξ; ·B C @ w.
For the base case we analyze all possible cases of the computation C:
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Case: return M
·; ξ; ·B return M @ w 7→π;Σ ·; ξ; · ‖ return • @ w B M
The only active principal after one step is w.

Case: letac x = M in C.
·; ξ; ·B letac x = M in C @ w 7→π;Σ ·; ξ; · ‖ letac x = • in C @ w B M
The only active principal is w.

Case: su[w′](M){α.C1 | C2}
·; ξ; ·B su[w′](M){α.C1 | C2} @ w 7→π;Σ ·; ξ; · ‖ su[w′](•){α.C1 | C2} @ w B M .
The only active principal is w.

We do not show rest of the cases. In all of them, the only active principal after one step is w: the principal that the
computation was started with.

Induction step: Assume that the induction hypothesis holds for transitions of length n.
Let ·; ξ; · B C @ w0 7→n

π;Σ Abs1 7→π;Σ Abs2, where Abs1 is the state after n transitions. We now induct on the
derivation of the transition step Abs1 7→π;Σ Abs2. Here we only show the interesting cases where the set of active
principals changes. In all remaining cases, the set of active principals in Abs2 is the same as those in Abs1, and hence
by induction hypothesis, the theorem holds in Abs2.

Case: σ; ξ;κ B sudo[w′][P ](C ′) @ w 7→π;Σ σ; ξ;κ B C ′ @ w′

By I.H., we have a chain of proofs from w0 to all active principals in κ. Also, by I.H., let 〈P1, P2, . . . , Pi〉 be
the chain of proofs from w0 to w.

∆; · `Σ,pπq C @ w0 ∼ A Assumption
σ; ξ;κ B sudo[w′][P ](C ′) @ w ok[π] By preservation
σ,∆; · `Σ,pπq sudo[w′][P ](C ′) @ w ∼ A′ Inversion of the derivation of ∆ ` Abs ok[π]
σ,∆ `Σ,pπq P :: w′ ≤ w Inversion of typing derivation

Thus 〈P1, P2, . . . , Pi, P 〉 forms a chain of proofs of accessibility from w0 to w′. The rest of the principals
active in Abs2 are all active in Abs1 and we have chains of proofs for them by induction hypothesis.
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