Quantum Computation CMU 15-859BB, Fall 2018

WEEK 3 WORK:  SEPT. 20 — SEPT. 27
12-HOUR WEEK
OBLIGATORY PROBLEMS ARE MARKED WITH [#]




1. [CMU Quantum Experience.]

(a) Take a look at some quantum programming environments, like Quantum Computing
Playground, Quirk, IBM Q.

(b) [¥*] Write a “quantum circuit simulator” in your favorite programming language.’ Your
program should support a fixed number n of qubits (you choice; say, 5 < n < 10). It is
assumed that the qubits are initialized to the state |00 - - - 0). The input to your program
should be the description of a quantum circuit (in any convenient format of your choice;
e.g., a text file). The circuit may be an arbitrary-length sequence of operations from the
following set:

Not 4
Hadamard ¢
CNot i j
Swap 1 j
CCNot 775k
CSwap 1©j k

For each operation, %, j, k stand for distinct qubit numbers between 1 and n. For CNot,
assume 17 is the control qubit, j is the target. The Swap operation does what the name
says; it transforms 2-qubit basis state |ab) into |ba) (for a,b € {0,1}). CCNot means
“controlled CNOT”: if the ith qubit is 0, it does nothing; if the ith qubit is 1, it applies
a CNOT with control j and target k. CSwap means “controlled Swap”: if the ¢th qubit
is 0, it does nothing; if the ith qubit is 1, it applies a Swap to qubits j and k.

Given the input circuit description, your program should output the exact final n-qubit
state. (Ideally, you should treat the quantity /2 symbolically, not numerically.)

(c) [*x] Update your program to optionally allow the final operation to be “Measure”. When
this is the final operation, your program should no longer output the final quantum state.
Instead, it should use the programming language’s (pseudo)random number generation
facility to simulate the result of measuring all n qubits and outputting the n-classical-bit
readout.

(Remark: If you somehow figure out a way to implement this “Measure” version in a
way that is substantially simpler than going through the whole hassle of first solving
part (b), please let me know and I will advise the Nobel Prize committee.)

. 1 .
(d) Implement the one-qubit “Z” gate, [0 _OJ Implement the one-qubit “phase” gate,

S = [é ?] Implement one-qubit rotation gates (say by 45° and 22.5°— or indeed,

1y gl Implement the

1 0
by a user-selected angle). Implement the “T™” gate, 0
V2 V2

0
1
0 -z

VSWAP gate.

7

Sl

1
“TT” gate, [ ] . Implement the vVNOT gate. Work out and implement the

f you do it in Scratch, you can skip all other problems this week.


http://www.quantumplayground.net/#/playground/5080491044634624
http://www.quantumplayground.net/#/playground/5080491044634624
https://algassert.com/quirk
https://quantumexperience.ng.bluemix.net/qx/editor

(e) Use your program to determine the behavior of the following quantum circuit:?
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Figure 1: A quantum circuit

You’ll want to precede this circuit by all 8 possible ways of doing or not doing NOT
gates on the relevant 3 qubits, so as to see what this circuit does to each of the basic
states |000), [001), ..., |111).

(f) Implement partial — rather than full — measurements as the final instruction.

(g) Implement partial/full measurements allowed at any place in the computation (not nec-
essarily at the end). You can do this using (pseudo)randomness; i.e., with simulation.
Or, for more work, implement this by keeping track of (and outputting) the full “mixed
state” (probability distribution over quantum states) achieved at the end of the circuit.

2Thanks to Nielsen and Chuang for the figure.



2. [Tensor Product Practice.] In this problem, you may assume that (A® B) - (C ® D) =
(AC) ® (BD) (provided A has the same number of columns as C' has rows, and similarly for
B and D). We sort of saw this in class, by observing that the two matrices (A® B) - (C ® D)
and (AC) ® (BD) act in the same way on each basis vector |i) ® |j), namely by mapping it
to (AC'i)) ® (BD |j)).

(a)

(b)

(d)

(e)
(f)

In typical linear algebra notation, given an m x n matrix A, one names its entries A;;
for 1 <i<m,1<j <n. Show that with bra-ket notation, one can instead name them

(il Al5)-
Show that the definition of the Kronecker product follows from the rule about multipli-
cation I said you could assume. Basically, explain what’s going on in this equation:

(ik|A® B|jt) = (i|Al7) (k[BI).

The “element-wise product”® of matrices 4, B € C™*" is the matrix A o B € C™*"»
defined by

(i|Ao Blj) = (ilAlj) (i|Bl7) -
Show that (A® B)o (C® D)= (AoC)® (BoD,).
Show that if A and B are invertible matrices, then so is A® B, and in fact (A® B)~! =
Ale Bt
Verify that (A® B)' = AT @ BT.
[*+] Suppose |u1),...,|ug) is an orthonormal basis for C?¢, and |v1),...,|vq) is an or-
thonormal basis for C°. Show that the collection |u;) ® |v;) (forall1 <i<d,1<j <e)

is an orthonormal basis for ©%. (Hint/request: exploit Dirac’s bra-ket notation to the
hilt.)

3 Also called “Hadamard product”; nothing to do with the Hadamard gate/matrix, though.



3. [1 ebit + 1 qubit > 2 bits.]

(a)

[*x] Alice and Bob prepare an EPR pair (that is, two qubits in the state % |00)+% |11)).
They each take one qubit home. Suddenly, Alice decides she wishes to convey one of 4
messages to Bob; in other words, she wants to convey a classical string uv € {0,1}? to
Bob.

Alice does the following in the privacy of her own home: First, if v = 1, she applies a
NOT gate to her qubit (else if u = 0 she does nothing here). Next, if v = 1, she applies

a “Z” gate, [1 to her qubit (else if v = 0, she does nothing here). Finally, she

0
o 1)
walks to Bob’s house and silently hands him her qubit.
Show that by measuring in an appropriate basis, Bob can exactly determine Alice’s
message uv € {0,1}2.
Work out a circuit using only CNOT gates, 1-qubit gates, and “standard” measurement
gates, which actually outputs Alice’s message with 100% probability.



4. [Indistinguishable States.]

(a)

(b)

[«+] Let [¢) and |¢*) be orthonormal qubit states. Show % ) ® ) + % lvh) @ [yt)

is precisely equal to the Bell state, % |00) + % |11).

[#+] Let |u) € C? be a qubit state and let |[v) = c|u), where ¢ is a complex number
of magnitude 1 (for example, ¢ = —1 or ¢ = 7). (In this scenario, ¢ is called a “global
phase”.)

Suppose someone hands you a qubit [¢) and promises you that |¢) is either |u) or |v).
(You know, mathematically, exactly what |u) and |v) are; but you do not know whether
|1) is |u) or |v).) Show, to the best of your abilities, that there is nothing you can possibly
to do to tell the difference. You should at least show that applying 1-qubit unitaries and
1-qubit measurements in any combination does not help. (If you want to be even more
sophisticated, show that it doesn’t help even if you introduce additional qubits in known
states, and then apply unitaries and measurements to this larger-dimensional system.)

[*x] Suppose someone hands you a qubit [¢) and promises you that they prepared it
according to one of the following two scenarios:

Scenario 1: They flipped a fair coin, and set [¢)) = |0) if the result was Heads and set
|ty = |1) if the result was Tails.

Scenario 2: They flipped a fair coin, and set |¢)) = |+) if the result was Heads and set
|)) = |—) if the result was Tails.

Show, to the best of your abilities, that there is nothing you can possibly to do to tell
whether they employed Scenario 1 or Scenario 2. (Same comments as in (b) about what
you should at least do, and what you can further strive to do.)



5. [Elementary Number Theory.] Let M > 1 be an integer. Let Z3, denote the set of all
integers 0 < A < M which have a reciprocal modulo M (meaning an integer R such that
A-R=1mod M).

(a)

Show that A € 73, if and only if GCD(A, M) = 1. (Hint: for the “if”, do a careful
analysis of Euclid’s Algorithm from last homework to show that the GCD of two numbers
is always an “integer linear combination” of the two numbers.)

Let ¢(M) denote |Z},|. Show that if M is prime then ¢(M) = M — 1, and that if M is
the product of two distinct primes, M = P - @, then (M) = (P —1)(Q — 1).

Show that Z3, is “closed under multiplication” (mod M); i.e., if A, B € Z}; then A- B
(mod M) is also in Z3,.

Suppose we make the “multiplication table” for Z3,; i.e., the array whose rows and
columns are indexed by Z},, and whose (A, B)th entry is A- B (mod M). Show that in
each row, all entries are distinct.

By using the previous result, and by considering the product of all entries in row A,
deduce that A?(™) =1 (mod M).

Conclude “Fermat’s Little Theorem”: if P is prime and 1 < A < P, then AP~1 =1
(mod P).

Remark: The last fact suggests an efficient test for primality. Given a number M, pick a
bunch of random numbers 1 < A < M. For each, compute AM~! mod M. (You figured
out how to do this efficiently on the first homework.) If you ever get something other
than 1, you know for sure that M is not prime. If you always get 1, you might guess
that M is prime.

In fact, this test does not work; there are some super-rare “Carmichael numbers” M
which are not prime, yet which have A~ =1 (mod M) for all 1 < A < M. Never-
theless, this is the basic idea of the Miller—Rabin efficient primality test; it adds a few
number-theory tweaks to deal with this Carmichael numbers.



6. [Hadamard Transform I.] [xx] Suppose we start with n qubits in the state |000---0).
Then, for a certain subset S C [n], suppose we apply the Hadamard gate H to qubit i for
each i € S. Describe the resulting state in the most succinct/compelling way that you can.
You might want to introduce the “indicator-string” y € {0,1}" for the set S, and/or use the

word “XOR”, in your description.



7. [Vazirani Lectures.] Watch Lectures 11-13 of Vazirani’s nice video lectures on YouTube.


https://youtu.be/_XoSAS96ES4

