
Quantum Computation CMU 15-859BB, Fall 2018

Lecture 25 — Quantum “Supremacy”

“Quantum supremacy” is a term coined by John Preskill in 2012. It refers to a very specific
concept: Getting an actual real-life quantum computer to perform some computational task that
is believed to be impossible to perform by any real-life classical computer. The term is in the news
these days, as it seems there is a chance that quantum supremacy will either be achieved — or
at least, will be claimed to have been achieved — in the near future. Even — next year? So I
want to end the course by talking about quantum “supremacy”, so you’ll be well-informed to judge
potential claims.

By the way, as a term, quantum “supremacy” has its pluses and minuses; it’s somehow dis-
tasteful sounding, but at the same time, it’s kind of catchy, and no other shorthand term for the
concept has caught on. So we’ll stick with it.

Again, the idea is to actually build a real-world quantum circuit — perhaps with 72 qubits and
1000 gates — that does. . . something. And then to assert that no real-world classical computer can
do this something. And, we don’t care if this something is in any way useful — it’s just something.

Perhaps the most likely team that will claim to demonstrate quantum supremacy in the near
future is John Martinis’s group, originally from UCSB, now at Google. They are very good at
building real-world quantum circuits, and they’ve published a concrete plan to achieve “quantum
supremacy”. And what is the something that their real-world quantum circuit is going to do?
It’s. . . implement a random quantum circuit. (“Simulate itself”, as some naysayers say. But that’s
fine with me personally; I’m on board the hype train!)

But first: Why don’t we have large-scale quantum computers already? If we did, then
implementing Shor’s algorithm would be the ideal demonstration of quantum supremacy.

Well, it’s hard to isolate and shield a physical qubit so that its state (including entanglement
with other qubits) does not collapse/decohere/get corrupted by noise. Another way to put this:
implementing the 0-qubit Identity gate is hard! That’s one major problem! As far as I know,
implementing 1-qubit gates and 1-qubit measurements is not that much harder. But implementing
even the simplest 2-qubit gate, CNOT, is apparently much harder still (you have to get qubits to
interact!). These are all huge engineering challenges.

Also: you have to physically lay out these qubits. It’s natural that they’re laid out in a 2-d grid.
And you can only do CNOTs between grid-adjacent pairs of qubits. Luckily this is fine; circuits
like this — 1-qubit gates, plus CNOTs between grid-adjacent qubits — have been proven to be
sufficient (in theory) for full quantum computation.

But getting a qubit to “last” for a short spell of time — like, through the application of a dozen
gates — is hard. Indeed, for real-world practice, the “parallel” time-complexity of quantum circuits
is paramount, as circuits looks like this —

draw circuit that looks like a few success “time-slices”,

where each potentially involves each qubit in a 1- or 2-qubit gate.

So getting high-quality qubits that can last, and accurate gate implementations, is the main hard
part — moreso than just getting “lots” of qubits. Bear this in mind when you hear groups boasting
of 25 or 50 (actually 49 because it’s 7× 7) or 72 (= 8× 9) qubits.

1



Classical fault-tolerance. In the early days of computing, people also used to worry about
noise and gate-failure for classical circuits, too. Like, suppose you’re computing with classical
AND/OR/NOT circuits, but

each gate fails (outputs garbage), independently with small probability η > 0 (“noise rate”).

Well, can you still achieve full-fledged classical computation? I’ll tell you — though it turned out
to be a practically-irrelevant problem. The main reason is that a real-world circuit implements a
logical bit, 0 or 1, with, like, a million physical particles (electrons on a wire) — high or low voltage.
It’s almost like it’s using the “repetition error-correcting code” with million-fold repetition! And
unlike with qubit-states, a bit is digital — 0 or 1. Today’s classical computers apparently do still
have a “noise rate”, but it’s like better than 2−64.

Anyway, von Neumann in 1952 thought about the theoretical problem and sketched a proof
(later made rigorous) that with suitable error-correction/fault-tolerance techniques. . .

∃ universal η0 > 0 such that, provided η < η0,

can make any m-gate circuit into a “fault-tolerant” version, with size ≈ m logm

Also, it’s not hard to show that a “blowup” factor of & logm is necessary. The exact threshold η0
here depends on your gate set, noise model, and what coding/fault-tolerance scheme you use.

The issue of noise is much more severe with quantum circuits, where it seems you want to use
1 particle for 1 qubit. Shor recognized this soon after his algorithm, and developed the first quan-
tum error-correcting codes. It’s perhaps surprising that these can even exist — you’re protecting
quantum amplitudes, you seemingly can’t repeat/copy qubits due to No-Cloning, you can’t look at
your qubits to see if they got corrupted, without spoiling them yourself. But — it’s possible! Not
too complicated to do Shor’s basic ones either — though more sophisticated ones (e.g., “surface
codes”) now exist.

Quantm error-correcting codes alone are not enough; you need to be able to compute on error-
corrected qubits — even though your computations also experience η-noise. We assume, by the
way, roughly the same error model in the quantum case — each gate outputs garbage (potentially
a mixed state, even) independently with probability η. But the necessary fault-tolerance theorem
was proven around 1996 by Dorit Aharonov and Miki Ben-Or:

Quantum Threshold Theorem: ∃ universal η0 > 0 such that, provided η < η0, can make any

m-gate quantum circuit into a “fault-tolerant” version, with size ≈ mpolylog(m)

Their initial estimate was η0 = 10−6. Subsequent improvements (more sophisticated ECC’s and
fault-tolerance algorithms) have led to

η0 ≈ 10−3 . . . 10−2,

depending on exact model details. Interestingly, results from this year (Gottesman + Fawzi–
Grospellier–Leverrier) showed that it’s possible to get only a constant-factor circuit-size blowup
too (as opposed to polylog(m)), albeit with much smaller η0. Wait — how? Wasn’t it shown
that blowup logm is needed even classically? Well, the new results assume noiseless classical
computation.

It’s a real, numerical threshold: if you can just get your qubit/gate noise relates below η0, you
can bootstrap to arbitrary fault-tolerant quantum computation. You may ask, what kinds of rates
are the best engineers achieving these days? Well, it’s kinda close to η ≈ 10−3. So why aren’t we

2



done? Well, there are many caveats. For one, you’d probably want a few extra factors of 10 for
safety, or to overcome the mismatches between theory and practice. For another, the η0 ≈ 10−3

estimate assume you are using the best possible ECCs and fault-tolerance algorithms, which are
very sophisticated; e.g., they use a few hundred physical qubit per logical qubit. So if you want
100 logical qubits. . .

Yet another problem is that the ECC-decoding/correcting algorithms used — which are com-
pletely classical! — are, like, cubic-time algorithms, yet the qubits decay so fast you would need
to run them, like, every 10 clock-cycles on your classical computer. Since that’s currently impossi-
ble, you’d have to use much less sophisticated quantum fault-tolerance algorithms. . . which in turn
might require η0 = 10−8. . . which we can’t achieve in practice today.

Indeed: Quantum error correction (let alone fault-tolerance) has never been demonstrated in
practice, even at a very small scale. (As far as I know.)

Given this, how are they planning to achieve “quantum supremacy”? Well, it will involve them
making their absolute highest-quality 72 = 8×9 qubits, doing maybe 20 layers of un-error-corrected
1-qubit, CNOT, and measurements on them, and hoping everything comes through okay.

The quantum supremacy plan. Can’t do any actually useful computation with such a circuit.
So what’s the quantum supremacy plan? Here’s the one proposed by the Martinis–Google group.
As mentioned, it’s basically “simulate” a quantum circuit. And to make it hard (hopefully) for
classical algorithms, it’ll be a random quantum circuit.

1. On paper, draw a random quantum circuit B (of the aforementioned type). Call it the
Blueprint. All n = 72 input qubits to |0〉, all qubits finally measured.

2. Output is a (classical, randomly constructed) probability distribution pB on {0, 1}n.

3. Declare the computational task to be: Create a machine that generates draws from pB.

4. (Try to) solve the task by building Q, a physical implementation of B.

5. Hope that Q’s output distribution, pQ, matches pB.

6. Assert no classical (randomized) circuit C can have output distribution, pC , matching pB.

7. Declare Quantum Supremacy. Profit (?). (Perhaps with a Nobel Prize?)

Note that the computational task here is not a decision problem, it’s a “sampling problem”. We’ll
talk later about the assertion that no real-world classical C can do a good job at generating pB.
First, though, we’ll talk about pQ matching pB itself. In fact, in the Martinis plan, they foresee
that, since the physical Q will experience a lot of noise, it will also do a bad job at generating
pB. The plan/hope, though, is to just show that it does a somewhat less terrible job than any
classical C!

Porter–Thomas distribution. First things first: What will pB (probably) look like? Remem-
ber, this is a probability distribution that is randomly generated, via the randomly chosen quantum
circuit B. Note that

B induces some N = 272-dimensional unitary, U.

It is claimed that, since B is a randomly chosen circuit, U will (at least in some ways) act like a
“uniformly random unitary”. While this has not been formally proven, it’s a mathematically clean

3



statement and recent positive results along these lines have been shown (e.g., Arrow–Mehraban ’18
showed that a certain kind of random n-qubit matrix, qubits in a 2-d grid, depth O(

√
n), indeed

acts in some ways like a truly random unitary).
So let’s assume that B induces a truly random unitary. Since B’s input is all-|0〉’s, the final

output state is simply the first column of that unitary. In turn, it’s known mathematically that
the first column of a uniformly random unitary is virtually identical to a random vector where each
entry is an independent (complex) Gaussian of variance 1/N . Now the output probabilities for
each of the N = 2n strings are the (magnitude-)squares of these Gaussians. In turn, the square of
Gaussian is distributed as an exponential random variable. Thus we are fairly confident that the
probability distribution pB will have the so-called. . .

Porter–Thomas distribution: model pB(x) =
Exp(1)

N
, for each x ∈ {0, 1}n,

where the Exp(1)’s denote independent exponential random variables. (Sketch pdf f(x) = e−x.)
So. . . , it’s a vaguely uniform distribution, in that each probability is typically const.

N . But. . . there
are some heavier and lighter elements. E.g., whp half of the strings will have probability ≤ .7/N ,
half will have probability ≥ .7/N . (Actually, “.7” is ln 2.)

The question (for the algorithm) is, roughly: which strings are heavy and light? Can you
generate random strings with the pB probabilities, given access to B?

Evaluating algorithms. The plan is to physically build a quantum circuit Q that models B.
It will generate some distribution pQ on {0, 1}n. Due to noise, it’s too much to hope that pQ will
exactly be pB. But perhaps one can fairly declare “quantum supremacy” if it’s noticeably closer
than any distribution pC that can be generated by a physical classical computer. But what should
“close” mean? A very natural measure, statistically speaking, is the KL divergence:

dKL(pB‖pQ) vs. dKL(pB‖pC), where dKL(p‖q) =
∑
x

p(x) ln(p(x)/q(x)).

As I’ll describe shortly, the Martinis et al. plan kind of gets its stats backwards, IMHO. But let’s
briefly talk about the above. One might assert (as Martinis et al. do) that a classical algorithm, even
knowing B, can’t really do better than simply generating the uniform distribution pC(x) ≡ 1/N .
A bit of a bold claim, but perhaps roughly true. We’ll discuss this as well. But if it’s true, it’s not
hard to show that

dKL(pB‖uniform) ≈ γ ≈ .577

with high probability, where γ is the “Euler–Mascheroni constant” (nth Harmonic number minus
lnn, in the limit as n → ∞). So the high-level idea is that if the Google group can show that
their Q has, say,

dKL(pB‖pQ) ≤ .56,

or ideally, ≤ .01, they might fairly declare “quantum supremacy”.
How will they do that, though?! They say they might be able to heuristically understand

the noise rates in their own physical quantum gate implementations, and thereby maybe predict
dKL(pB‖pQ).

Ideally, though, you’d like to actually build your Q and then estimate how well you did; i.e.,
estimate dKL(pB‖pQ). There are several problems here. First of all, let’s assume that you even
could perfectly compute pB(x) for any x. (In fact, that’s supposed to be classically hard! A Catch-
22? Well, they suggest trying the whole story for smaller numbers of qubits, like n = 16 or n = 25,

4



where you can use an exponential-time algorithm to exactly compute pB(x). Then you can at least
get a sense for how things are going for n � 72, and then maybe extrapolate up.) Still you have
some problems, because all you can really do about pQ is sample from it! And how will you use
that ability to estimate

dKL(pB‖pQ) =
∑

x∈{0,1}n
pB(x) ln(pB(x)/pQ(x)).

What they do is decide to look at a different (perhaps statistically unsound?) figure of merit,
namely ∑

x

pQ(x) ln(1/pB(x)).

(This is the backwards of what one would call the “cross-entropy”.) At least this has the virtue
that you can empirically estimate it: Draw a bunch of x’s from Q, compute ln(1/pB(x)) for each,
and average. The idea again is that if the result is noticeably smaller than what you’d get if you
used pC = uniform in place of pQ, then you are achieving “quantum supremacy”. This is a slightly
dicey claim to me, because one can show that there are highly nonuniform distributions that do
better than the uniform distribution on this new figure of merit. Indeed, you can even do “better
than perfect” (pC = pB) if you can just classically find, say, one of the top .1% most probable
strings under pB. . .

But I digress. They have a somewhat reasonable claim for achieving quantum supremacy,
providing it’s really true that classically simulating the output distribution of a random quantum
circuit (with good KL-divergence error, say) is hard. But is there actually complexity-theoretic
evidence for that?

Time travel. I’m out of time in the course to tell you more! But let me briefly say one thing.
Might

BQP = BPP?

We don’t think so, but perhaps our best evidence is “we don’t think Factoring is doable efficiently,
classically”. What would be cool is if we could say something like

P 6= NP =⇒ BQP 6= BPP.

Because given that we can’t prove anything uncoditionally in complexity theory, “P 6= NP” is like
the gold standard assumption we’re willing to make. Unfortunately, we can’t prove the above. But if
instead of asking about solving decision problems, you ask about solving sampling problems (as you
do, in the quantum supremacy story!), then we can prove something like the above. Specifically, a
line of work due to Barbara Terhal, David DeVincenzo, Scott Aaronson, Michael Bremner, Richard
Jozsa, Dan Shepherd, Alex Arkhipov, and others shows:

Theorem:“PH doesn’t collapse” =⇒ “classically sampling quantum output distributions is impossible”.

Here “PH doesn’t collapse” is like the silver standard assumption in complexity theory (not as
beloved as “P 6= NP”, but still a longstanding and cherished assumption). And “classically sam-
pling quantum output distributions” can be taken to mean, “Given a quantum circuit (even of
quite restrictive simple forms) with inputs fixed to |0〉, create a classical randomized algorithm
whose output distribution matches the quantum circuit’s output distribution, in the sense that it
gets the probability of each string correct up to a factor of, say, 1.4.” Granted this is a bit stronger

5



than what’s assumed hard in quantum supremacy (the quantum supremacy situation is easier in
that: a) the circuit is promised to be random; b) you don’t have to get every probability correct
up to a constant multiplicative factor, maybe you just have to be overall good up to constant
KL-divergence error). Still.

Finally, how do you prove the above Theorem? Interestingly, the key idea dates back to David
Deutsch, the 10500 parallel universes guy, and it involves time travel . . . To be super-brief, General
Relativity is consistent with the existence of “closed time-like curves”; basically, “wormholes” that
allow bits to be sent back in time. (Kurt Gödel was the first to prove this! Note that it doesn’t
mean these wormholes exist; it just means they don’t provably not exist.)

Just as Deutsch did with quantum computation, he asked: Suppose we find such a closed
time-like curve, and it can send 1 bit back in time. What extra computational power would
that give you? Turns out it would give a lot of power to quantum computers (roughly, you’d
get a very large complexity class, containing all of “PH”), but not so much power to classical
computers (roughly, you’d get a somewhat small complexity, not much bigger than NP). And
then just by hypothetically considering this, you can show that if classical computers could closely
simulate the output distributions of quantum computers, then time-traveling classical computers
could simulate time-traveling quantum computers — thereby showing that a “small” complexity
class would contain a very “big” one; i.e., the polynomial-time hierarchy would collapse!

6


