Lecture 20:

The Adversary Method

for Quantum Query Lower Bounds

Quantum query model: recap

Secret *N*-bit input string *w* You can query a coordinate *j* to find out w_i In fact, you can query *superpositions*... Given access to Q_w^{\pm} which implements $|j\rangle \mapsto (-1)^{w_j}|j\rangle$ Trying to solve some fixed *decision problem* φ on w **Cost:** only the number of uses of Q_w^{\pm} Example: φ = "OR", deciding if w has at least one 1 *Grover's Algorithm*: Solves φ = "OR" with cost $\leq \sqrt{N}$

Think of $\varphi = (YES, NO)$, where YES and NO are subsets of strings. In "OR" example, YES = {all *N*-bit strings with at least one 1}, NO = {00…0} If YES \cup NO = {all strings}, φ is called "total"; otherwise, φ is "partial/promise"

How to prove Lower Bounds on quantum query algorithms...

[Bennett–Bernstein–Brassard–Vazirani ca. '96]: Proved a cost lower bound for $\varphi = "OR": \gtrsim \sqrt{N}$ queries are *necessary*. They called their technique the Hybrid Method.

[Beals-Buhrman-Cleve-Mosca-de Wolf '98]: The Polynomial Method.

[Ambainis '00]: The (Basic) Adversary Method.

[Many groups]: Variants on the Adversary Method.

[Høyer–Lee–Špalek '07]: "Negative-weights", aka General Adversary Method.

[Reichardt '09]: The General Adversary Method is optimal

— there is always a matching upper bound (query algorithm)!

A generic *T*-query algorithm:

Secret N-bit input string w defines the behavior of Q_w^{\pm}

Secret N-bit input string w defines the behavior of Q_w^{\pm}

 $|0\rangle$

 $|0\rangle$

0

 $|0\rangle$

 $|0\rangle$

 $|0\rangle$

Algorithm must be able to *discriminate* between $|\psi_y^T\rangle$ and $|\psi_z^T\rangle$ with high probability, because it must "accept" *y* and "reject" *z*.

Algorithm must be able to *discriminate* between $|\psi_y^T\rangle$ and $|\psi_z^T\rangle$ with high probability, because it must "accept" *y* and "reject" *z*.

 $\left\langle \psi_{y}^{0} \middle| \psi_{z}^{0} \right\rangle = 1$

In fact, we better have $|\langle \psi_y^T | \psi_z^T \rangle| \le .99$

Recall Lecture 4.5, "Discriminating Two Qubits":

Given two quantum states $|u\rangle$ and $|v\rangle$, the probability with which they can be distinguished by *any* quantum algorithm is a function of the angle between them.

Possible idea: define $\operatorname{Progress}_{t} = |\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle|$

Suppose we can show $|Progress_t - Progress_{t+1}| \le \delta$

This would imply: $T \ge .01/\delta$ \odot

Note: Applying unitary U_t does not affect $|\langle \psi_y^t | \psi_z^t \rangle|$ So suffices to analyze how Q_w^{\pm} affects Progress

Possible idea: define $\operatorname{Progress}_{t} = |\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle|$ Suppose we can show $|\operatorname{Progress}_{t} - \operatorname{Progress}_{t+1}| \leq \delta$ This would imply: $T \geq .01/\delta$ \odot

Note: Applying unitary U_t does not affect $|\langle \psi_y^t | \psi_z^t \rangle|$ So suffices to analyze how Q_w^{\pm} affects Progress

This is a good idea, but a little too simple

Doesn't suffice to focus on a *single* $y \in YES$ and a *single* $z \in NO$

If it did, would show that many queries needed to distinguish w = y from w = z

But this only requires **1** query: since $y \neq z$, there exists *j* such that $y_j \neq z_j$

Need to have a *bunch* of **y**'s versus a *bunch* of **z**'s

[Ambainis '00] Super-Basic Adversary Method:

For $\varphi = (YES, NO)$, suppose $Y \subseteq YES$, $Z \subseteq NO$ are such that:

- for each $y \in Y$, there are at least m strings $z \in Z$ with dist(y, z) = 1
- for each $z \in Z$, there are at least m' strings $y \in Y$ with dist(y, z) = 1

Then Q(φ), the quantum query complexity of φ , is $\geq \sqrt{m m'}$.

we'll show $\geq .005 \sqrt{m m'}$

dist(y, z) = Hamming distance, # of coordinates where y, z differ

For $\varphi = (YES, NO)$, suppose $Y \subseteq YES$, $Z \subseteq NO$ are such that:

- for each $y \in Y$, there are at least m strings $z \in Z$ with dist(y, z) = 1
- for each $z \in Z$, there are at least m' strings $y \in Y$ with dist(y, z) = 1

Then Q(φ), the quantum query complexity of φ , is $\geq \sqrt{m m'}$.

<u>Example use #1</u>: $\varphi =$ "OR" (Decision-Grover)

Take $Y = \{000001, 000010, 000100, 001000, 010000, 100000\}$. Take $Z = \{000000\}$. (Well, at least for N = 6.) $m = 1, m' = N \implies Q(\varphi) \gtrsim \sqrt{N}$ S

For $\varphi = (YES, NO)$, suppose $Y \subseteq YES$, $Z \subseteq NO$ are such that:

- for each $y \in Y$, there are at least m strings $z \in Z$ with dist(y, z) = 1
- for each $z \in Z$, there are at least m' strings $y \in Y$ with dist(y, z) = 1

Then Q(φ), the quantum query complexity of φ , is $\geq \sqrt{m m'}$.

<u>Example use #2</u>: φ : Decide if *w* has at least *k* 1's, or less than *k* 1's

Take $Y = \{\text{all strings with exactly } k \ 1's\}.$ Take $Z = \{\text{all strings with exactly } k - 1 \ 1's\}.$ $m = k, \ m' = N - k + 1$ $\Rightarrow \ Q(\varphi) \gtrsim \sqrt{k(N - k + 1)}, \text{ which is } \gtrsim \sqrt{kN} \text{ for } k \le \frac{N}{2}$

For $\varphi = (YES, NO)$, suppose $Y \subseteq YES$, $Z \subseteq NO$ are such that:

- for each $y \in Y$, there are at least m strings $z \in Z$ with dist(y, z) = 1
- for each $z \in Z$, there are at least m' strings $y \in Y$ with dist(y, z) = 1

Then Q(φ), the quantum query complexity of φ , is $\geq \sqrt{m m'}$.

YES = strings with a 1 in each 'block' NO = strings with a block of all 0's

Y = strings with *exactly* one 1 per block

Z = strings with exactly one all-0's block, all other blocks having exactly one 1

 $m = \sqrt{N}, \ m' = \sqrt{N} \Rightarrow Q(\varphi) \gtrsim \sqrt{N}$

This lower bound is sharp, and not known to be attainable by the "Polynomial Method"

For $\varphi = (YES, NO)$, suppose $Y \subseteq YES$, $Z \subseteq NO$ are such that:

- for each $y \in Y$, there are at least m strings $z \in Z$ with dist(y, z) = 1
- for each $z \in Z$, there are at least m' strings $y \in Y$ with dist(y, z) = 1

Then Q(φ), the quantum query complexity of φ , is $\geq \sqrt{m m'}$.

Proof: Define $R = \{ (y, z) : dist(y, z) = 1 \} \subseteq Y \times Z$

(These are *particularly challenging* pairs of inputs for the algorithm: the algorithm needs to give different answers on them, but there is only a single coordinate where they are different.)

For $\varphi = (YES, NO)$, suppose $Y \subseteq YES$, $Z \subseteq NO$ are such that:

- for each $y \in Y$, there are at least m strings $z \in Z$ with dist(y, z) = 1
- for each $z \in Z$, there are at least m' strings $y \in Y$ with dist(y, z) = 1

Then Q(φ), the quantum query complexity of φ , is $\geq \sqrt{m m'}$.

Proof: Define $R = \{ (y, z) : dist(y, z) = 1 \} \subseteq Y \times Z$

Define $\operatorname{Progress}_{t} = \sum_{(y,z)\in R} |\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle|$, where $|\psi_{w}^{t}\rangle$ is state after t^{th} query, on input w

We have $\text{Progress}_0 = |R|$ and $\text{Progress}_T \le .99|R|$

the latter because $|\langle \psi_y^T | \psi_z^T \rangle| \le .99$ must hold for all $y \in Y, z \in Z$

For $\varphi = (YES, NO)$, suppose $Y \subseteq YES$, $Z \subseteq NO$ are such that:

- for each $y \in Y$, there are at least m strings $z \in Z$ with dist(y, z) = 1
- for each $z \in Z$, there are at least m' strings $y \in Y$ with dist(y, z) = 1

Then Q(φ), the quantum query complexity of φ , is $\geq \sqrt{m m'}$.

Proof: Define $R = \{ (y, z) : dist(y, z) = 1 \} \subseteq Y \times Z$

Define $\operatorname{Progress}_{t} = \sum_{(y,z)\in R} |\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle|$, where $|\psi_{w}^{t}\rangle$ is state after t^{th} query, on input w

We have $Progress_0 = |R|$ and $Progress_T \le .99|R|$

Claim:
$$\operatorname{Progress}_{t} - \operatorname{Progress}_{t+1} \le \frac{2}{\sqrt{m m'}} |R|$$
 for all *t*.

 \Rightarrow $T \ge .005\sqrt{m m'}$, as desired.

- for each $y \in Y$, there are at least m strings $z \in Z$ with dist(y, z) = 1
- for each $z \in Z$, there are at least m' strings $y \in Y$ with dist(y, z) = 1

$$R = \{ (y, z) : \text{dist}(y, z) = 1 \} \subseteq Y \times Z \qquad \text{Progress}_t = \sum_{(y, z) \in R} |\langle \psi_y^t | \psi_z^t \rangle|$$

Claim: $\text{Progress}_t - \text{Progress}_{t+1} \le \frac{2}{\sqrt{m m'}} |R| \text{ for all } t.$

- for each $y \in Y$, there are at least m strings $z \in Z$ with dist(y, z) = 1
- for each $z \in Z$, there are at least m' strings $y \in Y$ with dist(y, z) = 1

$$R = \{ (y, z) : \text{dist}(y, z) = 1 \} \subseteq Y \times Z \qquad \text{Progress}_t = \sum_{(y, z) \in R} |\langle \psi_y^t | \psi_z^t \rangle|$$

Claim: $\text{Progress}_t - \text{Progress}_{t+1} \leq \frac{2}{\sqrt{m m'}} \text{ for all } t.$

for each $y \in Y$, there are at least m strings $z \in Z$ with dist(y, z) = 1Hence $|R| \ge m |Y|$ Similarly $|R| \ge m'|Z|$ So $2|R| \ge m|Y| + m'|Z|$

Claim is even stronger if RHS is
$$\frac{1}{\sqrt{m m'}} (m|Y| + m'|Z|) = \sqrt{\frac{m}{m'}} |Y| + \sqrt{\frac{m'}{m}} |Z|$$

Recall: Unitaries don't affect Progress, just the Q_w^{\pm} queries.

Fix any *t* and *t*+1 ("before" and "after")

Consider any pair $(y, z) \in R$

They differ on some coordinate *j**

$$R = \{ (y, z) : \operatorname{dist}(y, z) = 1 \} \subseteq Y \times Z \qquad \operatorname{Progress}_{t} = \sum_{(y, z) \in R} |\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle|$$

$$\left(\begin{array}{claim: } \operatorname{Progress}_{t} - \operatorname{Progress}_{t+1} \leq \sqrt{\frac{m}{m'}} |Y| + \sqrt{\frac{m'}{m}} |Z| \end{array} \right)$$
Fix any t and t+1 Consider any pair $(y, z) \in R$ They differ on some coordinate "Before": $|\psi_{y}^{t}\rangle = |1\rangle \otimes (\operatorname{stuff}_{1}) + |2\rangle \otimes (\operatorname{stuff}_{2}) + \dots + |N\rangle \otimes (\operatorname{stuff}_{N})$

"After": $|\psi_y^{t+1}\rangle$

queryworkspaceWe have collected like termsregisterregisterbased on the query register.

Let $|\phi_j\rangle$ be a unit vector in the direction of (stuff_j) **i***

$$R = \{ (y, z) : \operatorname{dist}(y, z) = 1 \} \subseteq Y \times Z \qquad \operatorname{Progress}_{t} = \sum_{(y, z) \in R} |\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle|$$

Claim: $\operatorname{Progress}_{t} - \operatorname{Progress}_{t+1} \le \sqrt{\frac{m}{m'}} |Y| + \sqrt{\frac{m'}{m}} |Z|$

Fix any *t* and t+1 Consider any pair $(y, z) \in R$ They differ on some coordinate j^* "Before": $|\psi_y^t\rangle = \alpha_1 |1\rangle \otimes |\phi_1\rangle + \alpha_2 |2\rangle \otimes |\phi_2\rangle + \dots + \alpha_N |N\rangle \otimes |\phi_N\rangle$

We have collected like terms based on the query register.

Let $|\phi_j\rangle$ be a unit vector in the direction of (stuff_j)

"After": $|\psi_{\gamma}^{t+1}\rangle$

$$R = \{ (y, z) : \operatorname{dist}(y, z) = 1 \} \subseteq Y \times Z \qquad \operatorname{Progress}_{t} = \sum_{(y, z) \in R} \left| \langle \psi_{y}^{t} | \psi_{z}^{t} \rangle \right|$$

Claim: $\operatorname{Progress}_{t} - \operatorname{Progress}_{t+1} \leq \sqrt{\frac{m}{m'}} |Y| + \sqrt{\frac{m'}{m}} |Z|$

Fix any *t* and *t*+1 Consider any pair $(y, z) \in R$ They differ on some coordinate j^* "Before": $|\psi_y^t\rangle = \alpha_1|1\rangle \otimes |\phi_1\rangle + \alpha_2|2\rangle \otimes |\phi_2\rangle + \dots + \alpha_N|N\rangle \otimes |\phi_N\rangle$ Each $|\phi_j\rangle$ is unit, and $\sum_j |\alpha_j|^2 = 1$.

"After": $|\psi_{y}^{t+1}\rangle$

$$R = \{ (y, z) : \operatorname{dist}(y, z) = 1 \} \subseteq Y \times Z \qquad \operatorname{Progress}_{t} = \sum_{(y, z) \in R} |\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle|$$

Claim: $\operatorname{Progress}_{t} - \operatorname{Progress}_{t+1} \le \sqrt{\frac{m}{m'}} |Y| + \sqrt{\frac{m'}{m}} |Z|$

Fix any *t* and *t*+1 Consider any pair $(y, z) \in R$ They differ on some coordinate j^* "Before": $|\psi_y^t\rangle = \alpha_1|1\rangle \otimes |\phi_1\rangle + \alpha_2|2\rangle \otimes |\phi_2\rangle + \dots + \alpha_N|N\rangle \otimes |\phi_N\rangle$ Each $|\phi_j\rangle$ is unit, \vdots Q_y^{\pm} The *j*th amplitude is multiplied by $(-1)^{y_j}$ \vdots "After": $|\psi_y^{t+1}\rangle = (-1)^{y_1}\alpha_1|1\rangle \otimes |\phi_1\rangle + (-1)^{y_2}\alpha_2|2\rangle \otimes |\phi_2\rangle + \dots + (-1)^{y_N}\alpha_N|N\rangle \otimes |\phi_N\rangle$

$$R = \{ (y, z) : \operatorname{dist}(y, z) = 1 \} \subseteq Y \times Z \qquad \operatorname{Progress}_{t} = \sum_{(y, z) \in R} \left| \langle \psi_{y}^{t} | \psi_{z}^{t} \rangle \right|$$

Claim: $\operatorname{Progress}_{t} - \operatorname{Progress}_{t+1} \leq \sqrt{\frac{m}{m'}} |Y| + \sqrt{\frac{m'}{m}} |Z|$

Fix any *t* and *t*+1 Consider any pair $(y, z) \in R$ They differ on some coordinate *j** "Before": $|\psi_y^t\rangle = \alpha_1|1\rangle \otimes |\phi_1\rangle + \alpha_2|2\rangle \otimes |\phi_2\rangle + \dots + \alpha_N|N\rangle \otimes |\phi_N\rangle$ Each $|\phi_j\rangle$ is unit, $|\psi_z^t\rangle = \beta_1|1\rangle \otimes |\chi_1\rangle + \beta_2|2\rangle \otimes |\chi_2\rangle + \dots + \beta_N|N\rangle \otimes |\chi_N\rangle$ and $\sum_j |\alpha_j|^2 = 1$.

"After": $|\psi_{y}^{t+1}\rangle = (-1)^{y_{1}}\alpha_{1}|1\rangle \otimes |\phi_{1}\rangle + (-1)^{y_{2}}\alpha_{2}|2\rangle \otimes |\phi_{2}\rangle + \dots + (-1)^{y_{N}}\alpha_{N}|N\rangle \otimes |\phi_{N}\rangle$ $|\psi_{z}^{t+1}\rangle = (-1)^{z_{1}}\beta_{1}|1\rangle \otimes |\chi_{1}\rangle + (-1)^{z_{2}}\beta_{2}|2\rangle \otimes |\chi_{2}\rangle + \dots + (-1)^{z_{N}}\beta_{N}|N\rangle \otimes |\chi_{N}\rangle$

$$R = \{ (y, z) : \operatorname{dist}(y, z) = 1 \} \subseteq Y \times Z \qquad \operatorname{Progress}_{t} = \sum_{(y, z) \in R} |\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle|$$

Claim: $\operatorname{Progress}_{t} - \operatorname{Progress}_{t+1} \leq \sqrt{\frac{m}{m'}} |Y| + \sqrt{\frac{m'}{m}} |Z|$

Fix any *t* and t+1 Consider any pair $(y, z) \in R$ They differ on some coordinate *j** "Before": $|\psi_{v}^{t}\rangle = \alpha_{1}|1\rangle \otimes |\phi_{1}\rangle + \alpha_{2}|2\rangle \otimes |\phi_{2}\rangle + \cdots + \alpha_{N}|N\rangle \otimes |\phi_{N}\rangle$ Each $|\phi_i\rangle$ is unit, and $\sum_{i} |\alpha_{i}|^{2} = 1$. $|\psi_{z}^{t}\rangle = \beta_{1}|1\rangle \otimes |\chi_{1}\rangle + \beta_{2}|2\rangle \otimes |\chi_{2}\rangle + \dots + \beta_{N}|N\rangle \otimes |\chi_{N}\rangle$ $\langle \psi_{\gamma}^{t} | \psi_{z}^{t} \rangle = \overline{\alpha_{1}} \beta_{1} \langle \phi_{1} | \chi_{1} \rangle + \overline{\alpha_{2}} \beta_{2} \langle \phi_{2} | \chi_{2} \rangle + \dots + \overline{\alpha_{N}} \beta_{N} \langle \phi_{N} | \chi_{N} \rangle$ "After": $|\psi_{y}^{t+1}\rangle = (-1)^{y_{1}} \alpha_{1} |1\rangle \otimes |\phi_{1}\rangle + (-1)^{y_{2}} \alpha_{2} |2\rangle \otimes |\phi_{2}\rangle + \dots + (-1)^{y_{N}} \alpha_{N} |N\rangle \otimes |\phi_{N}\rangle$ $|\psi_{z}^{t+1}\rangle = (-1)^{z_{1}} \beta_{1} |1\rangle \otimes |\chi_{1}\rangle + (-1)^{z_{2}} \beta_{2} |2\rangle \otimes |\chi_{2}\rangle + \dots + (-1)^{z_{N}} \beta_{N} |N\rangle \otimes |\chi_{N}\rangle$

These signs are all the same — except for in coordinate j^*

$$R = \{ (y, z) : \operatorname{dist}(y, z) = 1 \} \subseteq Y \times Z \qquad \operatorname{Progress}_{t} = \sum_{(y, z) \in R} |\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle|$$

$$\left(\begin{array}{claim: \operatorname{Progress}_{t} - \operatorname{Progress}_{t+1} \leq \sqrt{\frac{m}{m'}} |Y| + \sqrt{\frac{m'}{m}} |Z| \\ \sqrt{\frac{m'}{m'}} |Y| + \sqrt{\frac{m'}{m'}} |Z| \end{array} \right)$$
Fix any *t* and *t*+1 Consider any pair $(y, z) \in R$ They differ on some coordinate *j**
"Before": $|\psi_{y}^{t}\rangle = \alpha_{1}|1\rangle \otimes |\phi_{1}\rangle + \alpha_{2}|2\rangle \otimes |\phi_{2}\rangle + \dots + \alpha_{N}|N\rangle \otimes |\phi_{N}\rangle \qquad \operatorname{Each} |\phi_{j}\rangle \text{ is unit,}$

 $|\psi_{z}^{t}\rangle = \beta_{1}|1\rangle \otimes |\chi_{1}\rangle + \beta_{2}|2\rangle \otimes |\chi_{2}\rangle + \dots + \beta_{N}|N\rangle \otimes |\chi_{N}\rangle$ and $\sum_{j} |\alpha_{j}|^{2} = 1$.

 $\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle = \overline{\alpha_{1}} \beta_{1} \langle \phi_{1} | \chi_{1} \rangle + \overline{\alpha_{2}} \beta_{2} \langle \phi_{2} | \chi_{2} \rangle + \dots + \overline{\alpha_{N}} \beta_{N} \langle \phi_{N} | \chi_{N} \rangle$

"After": $|\psi_{y}^{t+1}\rangle = (-1)^{y_{1}}\alpha_{1}|1\rangle \otimes |\phi_{1}\rangle + (-1)^{y_{2}}\alpha_{2}|2\rangle \otimes |\phi_{2}\rangle + \dots + (-1)^{y_{N}}\alpha_{N}|N\rangle \otimes |\phi_{N}\rangle$ $|\psi_{z}^{t+1}\rangle = (-1)^{z_{1}}\beta_{1}|1\rangle \otimes |\chi_{1}\rangle + (-1)^{z_{2}}\beta_{2}|2\rangle \otimes |\chi_{2}\rangle + \dots + (-1)^{z_{N}}\beta_{N}|N\rangle \otimes |\chi_{N}\rangle$

 $\langle \psi_{y}^{t+1} | \psi_{z}^{t+1} \rangle = \overline{\alpha_{1}} \beta_{1} \langle \phi_{1} | \chi_{1} \rangle + \overline{\alpha_{2}} \beta_{2} \langle \phi_{2} | \chi_{2} \rangle + \dots - \overline{\alpha_{j^{*}}} \beta_{j^{*}} \langle \phi_{j^{*}} | \chi_{j^{*}} \rangle + \dots + \overline{\alpha_{N}} \beta_{N} \langle \phi_{N} | \chi_{N} \rangle$

$$R = \{ (y, z) : \operatorname{dist}(y, z) = 1 \} \subseteq Y \times Z \qquad \operatorname{Progress}_{t} = \sum_{(y, z) \in R} |\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle|$$

Claim: $\operatorname{Progress}_{t} - \operatorname{Progress}_{t+1} \le \sqrt{\frac{m}{m'}} |Y| + \sqrt{\frac{m'}{m}} |Z|$

Fix any *t* and *t*+1 Consider any pair $(y, z) \in R$ They differ on some coordinate j^*

"Before":

Each $|\phi_j\rangle$ is unit, and $\sum_j |\alpha_j|^2 = 1$.

$$\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle = \overline{\alpha_{1}} \beta_{1} \langle \phi_{1} | \chi_{1} \rangle + \overline{\alpha_{2}} \beta_{2} \langle \phi_{2} | \chi_{2} \rangle + \dots + \overline{\alpha_{N}} \beta_{N} \langle \phi_{N} | \chi_{N} \rangle$$

"After":

 $\langle \psi_{y}^{t+1} | \psi_{z}^{t+1} \rangle = \overline{\alpha_{1}} \beta_{1} \langle \phi_{1} | \chi_{1} \rangle + \overline{\alpha_{2}} \beta_{2} \langle \phi_{2} | \chi_{2} \rangle + \dots - \overline{\alpha_{j^{*}}} \beta_{j^{*}} \langle \phi_{j^{*}} | \chi_{j^{*}} \rangle + \dots + \overline{\alpha_{N}} \beta_{N} \langle \phi_{N} | \chi_{N} \rangle$

$$R = \{ (y, z) : \operatorname{dist}(y, z) = 1 \} \subseteq Y \times Z \qquad \operatorname{Progress}_{t} = \sum_{(y, z) \in R} |\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle|$$

$$\left(\begin{array}{claim: \operatorname{Progress}_{t} - \operatorname{Progress}_{t+1} \leq \sqrt{\frac{m}{m'}} |Y| + \sqrt{\frac{m'}{m}} |Z| \\ \sqrt{\frac{m'}{m'}} |Y| + \sqrt{\frac{m'}{m'}} |Z| \end{array} \right)$$
any *t* and *t*+1 Consider any pair $(y, z) \in R$ They differ on some coordinate *j**

"Before": $\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle = \overline{\alpha_{1}} \beta_{1} \langle \phi_{1} | \chi_{1} \rangle + \overline{\alpha_{2}} \beta_{2} \langle \phi_{2} | \chi_{2} \rangle + \dots + \overline{\alpha_{N}} \beta_{N} \langle \phi_{N} | \chi_{N} \rangle \quad \text{and } \sum_{j} |\alpha_{j}|^{2} = 1.$

"After":

Fix

$$\langle \psi_{y}^{t+1} | \psi_{z}^{t+1} \rangle = \overline{\alpha_{1}} \beta_{1} \langle \phi_{1} | \chi_{1} \rangle + \overline{\alpha_{2}} \beta_{2} \langle \phi_{2} | \chi_{2} \rangle + \dots - \overline{\alpha_{j^{*}}} \beta_{j^{*}} \langle \phi_{j^{*}} | \chi_{j^{*}} \rangle + \dots + \overline{\alpha_{N}} \beta_{N} \langle \phi_{N} | \chi_{N} \rangle$$

 $\left\langle \psi_{y}^{t} | \psi_{z}^{t} \right\rangle - \left\langle \psi_{y}^{t+1} | \psi_{z}^{t+1} \right\rangle = 2 \overline{\alpha_{j^{*}}} \beta_{j^{*}} \left\langle \phi_{j^{*}} | \chi_{j^{*}} \right\rangle \quad \Rightarrow \quad \left| \left\langle \psi_{y}^{t} | \psi_{z}^{t} \right\rangle - \left\langle \psi_{y}^{t+1} | \psi_{z}^{t+1} \right\rangle \right| \le 2 \left| \alpha_{j^{*}} \right| \cdot \left| \beta_{j^{*}} \right|$

$$R = \{ (y, z) : \operatorname{dist}(y, z) = 1 \} \subseteq Y \times Z \qquad \operatorname{Progress}_{t} = \sum_{(y, z) \in R} |\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle|$$

Claim: $\operatorname{Progress}_{t} - \operatorname{Progress}_{t+1} \leq \sqrt{\frac{m}{m'}} |Y| + \sqrt{\frac{m'}{m}} |Z|$

Fix any *t* and *t*+1 Consider any pair $(y, z) \in R$ They differ on some coordinate j^*

"Before":

$$\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle = \overline{\alpha_{1}} \beta_{1} \langle \phi_{1} | \chi_{1} \rangle + \overline{\alpha_{2}} \beta_{2} \langle \phi_{2} | \chi_{2} \rangle + \dots + \overline{\alpha_{N}} \beta_{N} \langle \phi_{N} | \chi_{N} \rangle \quad \text{and} \sum_{j} |\alpha_{j}|^{2}$$

"After":

$$\langle \psi_{y}^{t+1} | \psi_{z}^{t+1} \rangle = \overline{\alpha_{1}} \beta_{1} \langle \phi_{1} | \chi_{1} \rangle + \overline{\alpha_{2}} \beta_{2} \langle \phi_{2} | \chi_{2} \rangle + \dots - \overline{\alpha_{j^{*}}} \beta_{j^{*}} \langle \phi_{j^{*}} | \chi_{j^{*}} \rangle + \dots + \overline{\alpha_{N}} \beta_{N} \langle \phi_{N} | \chi_{N} \rangle$$

(triangle inequality) $\left| \left\langle \psi_{y}^{t} | \psi_{z}^{t} \right\rangle \right| - \left| \left\langle \psi_{y}^{t+1} | \psi_{z}^{t+1} \right\rangle \right| \leq \left| \left\langle \psi_{y}^{t} | \psi_{z}^{t} \right\rangle - \left\langle \psi_{y}^{t+1} | \psi_{z}^{t+1} \right\rangle \right| \leq 2 \left| \alpha_{j^{*}} \right| \cdot \left| \beta_{j^{*}} \right|$

Each $|\phi_i\rangle$ is unit,

= 1.

$$R = \{ (y, z) : \operatorname{dist}(y, z) = 1 \} \subseteq Y \times Z \qquad \operatorname{Progress}_{t} = \sum_{(y, z) \in R} |\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle|$$

Claim: $\operatorname{Progress}_{t} - \operatorname{Progress}_{t+1} \leq \sqrt{\frac{m}{m'}} |Y| + \sqrt{\frac{m'}{m}} |Z|$

Fix any *t* and *t*+1 Consider any pair $(y, z) \in R$ They differ on some coordinate j^*

"Before":

e":

$$\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle = \overline{\alpha_{1}} \beta_{1} \langle \phi_{1} | \chi_{1} \rangle + \overline{\alpha_{2}} \beta_{2} \langle \phi_{2} | \chi_{2} \rangle + \dots + \overline{\alpha_{N}} \beta_{N} \langle \phi_{N} | \chi_{N} \rangle$$
and
$$\sum_{j} |\alpha_{j}|^{2} = 1.$$

"After":

$$\langle \psi_{y}^{t+1} | \psi_{z}^{t+1} \rangle = \overline{\alpha_{1}} \beta_{1} \langle \phi_{1} | \chi_{1} \rangle + \overline{\alpha_{2}} \beta_{2} \langle \phi_{2} | \chi_{2} \rangle + \dots - \overline{\alpha_{j^{*}}} \beta_{j^{*}} \langle \phi_{j^{*}} | \chi_{j^{*}} \rangle + \dots + \overline{\alpha_{N}} \beta_{N} \langle \phi_{N} | \chi_{N} \rangle$$

 $\left|\left\langle \psi_{\mathcal{Y}}^{t} | \psi_{\mathcal{Z}}^{t} \right\rangle\right| - \left|\left\langle \psi_{\mathcal{Y}}^{t+1} | \psi_{\mathcal{Z}}^{t+1} \right\rangle\right| \leq 2 \left|\alpha_{j^{*}}\right| \cdot \left|\beta_{j^{*}}\right|$

$$R = \{ (y, z) : \operatorname{dist}(y, z) = 1 \} \subseteq Y \times Z \qquad \operatorname{Progress}_{t} = \sum_{(y, z) \in R} |\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle|$$

Claim: $\operatorname{Progress}_{t} - \operatorname{Progress}_{t+1} \leq \sqrt{\frac{m}{m'}} |Y| + \sqrt{\frac{m'}{m}} |Z|$

Fix any *t* and *t*+1 Consider any pair $(y, z) \in R$ They differ on some coordinate j^* $|\langle \psi_y^t | \psi_z^t \rangle| - |\langle \psi_y^{t+1} | \psi_z^{t+1} \rangle| \le 2 |\alpha_{j^*}| \cdot |\beta_{j^*}|$

A math trick:For any real a, b, and h > 0: $2ab \le ha^2 + (1/h)b^2$ Proof 1:AM-GM inequality: ab is the geometric mean of ha^2 and $(1/h)b^2$ Proof 2:Certainly: $0 \le (\sqrt{h}a - \sqrt{1/h}b)^2$ Expanding: $0 \le ha^2 + (1/h)b^2 - 2ab$

$$R = \{ (y, z) : \operatorname{dist}(y, z) = 1 \} \subseteq Y \times Z \qquad \operatorname{Progress}_{t} = \sum_{(y, z) \in R} |\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle|$$

Claim: $\operatorname{Progress}_{t} - \operatorname{Progress}_{t+1} \le \sqrt{\frac{m}{m'}} |Y| + \sqrt{\frac{m'}{m}} |Z|$

Fix any *t* and *t*+1 Consider any pair $(y, z) \in R$ They differ on some coordinate j^* $|\langle \psi_y^t | \psi_z^t \rangle| - |\langle \psi_y^{t+1} | \psi_z^{t+1} \rangle| \le 2 |\alpha_{j^*}| \cdot |\beta_{j^*}|$

A math trick: For any real *a*, *b*, and h > 0: $2ab \le ha^2 + (1/h)b^2$

Apply this above, with
$$a = |\alpha_{j^*}|$$
, $b = |\beta_{j^*}|$, $h = \sqrt{\frac{m}{m'}}$

$$R = \{ (y, z) : \operatorname{dist}(y, z) = 1 \} \subseteq Y \times Z \qquad \operatorname{Progress}_{t} = \sum_{(y, z) \in R} |\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle|$$

Claim: $\operatorname{Progress}_{t} - \operatorname{Progress}_{t+1} \le \sqrt{\frac{m}{m'}} |Y| + \sqrt{\frac{m'}{m}} |Z|$

Fix any *t* and *t*+1 Consider any pair $(y, z) \in R$ They differ on some coordinate j^* $|\langle \psi_y^t | \psi_z^t \rangle| - |\langle \psi_y^{t+1} | \psi_z^{t+1} \rangle| \le \sqrt{\frac{m}{m'}} |\alpha_{j^*}|^2 + \sqrt{\frac{m'}{m}} |\beta_{j^*}|^2$

A math trick: For any real *a*, *b*, and h > 0: $2ab \le ha^2 + (1/h)b^2$

Apply this above, with
$$a = |\alpha_{j^*}|$$
, $b = |\beta_{j^*}|$, $h = \sqrt{\frac{m}{m'}}$

$$R = \{ (y, z) : \operatorname{dist}(y, z) = 1 \} \subseteq Y \times Z \qquad \operatorname{Progress}_{t} = \sum_{(y, z) \in R} |\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle|$$

Claim: $\operatorname{Progress}_{t} - \operatorname{Progress}_{t+1} \le \sqrt{\frac{m}{m'}} |Y| + \sqrt{\frac{m'}{m}} |Z|$

Fix any *t* and *t*+1 Consider any pair $(y, z) \in R$ They differ on some coordinate j^* $|\langle \psi_y^t | \psi_z^t \rangle| - |\langle \psi_y^{t+1} | \psi_z^{t+1} \rangle| \le \sqrt{\frac{m}{m'}} |\alpha_{j^*}|^2 + \sqrt{\frac{m'}{m}} |\beta_{j^*}|^2$

Finally, coordinate j^* really depends on the pair (y, z), so let's write it as $j^*(y, z)$

$$R = \{ (y, z) : \operatorname{dist}(y, z) = 1 \} \subseteq Y \times Z \qquad \operatorname{Progress}_{t} = \sum_{(y, z) \in R} |\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle|$$

Claim: $\operatorname{Progress}_{t} - \operatorname{Progress}_{t+1} \le \sqrt{\frac{m}{m'}} |Y| + \sqrt{\frac{m'}{m}} |Z|$

Fix any *t* and *t*+1 Consider any pair $(y, z) \in R$ They differ on some coordinate j^* $|\langle \psi_y^t | \psi_z^t \rangle| - |\langle \psi_y^{t+1} | \psi_z^{t+1} \rangle| \le \sqrt{\frac{m}{m'}} |\alpha_{j^*(y,z)}|^2 + \sqrt{\frac{m'}{m}} |\beta_{j^*(y,z)}|^2$

Finally, coordinate j^* really depends on the pair (y, z), so let's write it as $j^*(y, z)$

$$R = \{ (y, z) : \operatorname{dist}(y, z) = 1 \} \subseteq Y \times Z \qquad \operatorname{Progress}_{t} = \sum_{(y, z) \in R} |\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle|$$

Claim: $\operatorname{Progress}_{t} - \operatorname{Progress}_{t+1} \leq \sqrt{\frac{m}{m'}} |Y| + \sqrt{\frac{m'}{m}} |Z|$

Fix any *t* and *t*+1 Consider any pair $(y, z) \in R$ They differ on some coordinate $j^*(y, z)$ $|\langle \psi_y^t | \psi_z^t \rangle| - |\langle \psi_y^{t+1} | \psi_z^{t+1} \rangle| \le \sqrt{\frac{m}{m'}} |\alpha_{j^*(y,z)}|^2 + \sqrt{\frac{m'}{m}} |\beta_{j^*(y,z)}|^2$

Also, to be scrupulous about notation, the α_i 's come from $|\psi_y^t\rangle$, and thus depend on y.

Similarly, the β_i 's depend on *z*.

$$R = \{ (y, z) : \operatorname{dist}(y, z) = 1 \} \subseteq Y \times Z \qquad \operatorname{Progress}_{t} = \sum_{(y, z) \in R} |\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle|$$

Claim: $\operatorname{Progress}_{t} - \operatorname{Progress}_{t+1} \leq \sqrt{\frac{m}{m'}} |Y| + \sqrt{\frac{m'}{m}} |Z|$

Fix any t and t+1 Consider any pair $(y, z) \in R$ They differ on some coordinate $j^*(y, z)$ $|\langle \psi_y^t | \psi_z^t \rangle| - |\langle \psi_y^{t+1} | \psi_z^{t+1} \rangle| \le \sqrt{\frac{m}{m'}} \left| \alpha_{j^*(y,z)}^{(y)} \right|^2 + \sqrt{\frac{m'}{m}} \left| \beta_{j^*(y,z)}^{(z)} \right|^2$ Summing over all $(y, z) \in R$: Progress_t - Progress_{t+1} $\le \sum_{(y,z)\in R} \sqrt{\frac{m}{m'}} \left| \alpha_{j^*(y,z)}^{(y)} \right|^2 + \sum_{(y,z)\in R} \sqrt{\frac{m'}{m}} \left| \beta_{j^*(y,z)}^{(z)} \right|^2$ Final claims $\sum_{j=1}^{n} |\alpha_j^{(y)}|^2 \le |W|$ for the final claim of the large shows the larg

Final claim: $\sum_{(y,z)\in R} \left| \alpha_{j^*(y,z)}^{(y)} \right|^2 \le |Y| \quad \text{(and similarly for the second term, completing the proof)}$

$$R = \{ (y, z) : \operatorname{dist}(y, z) = 1 \} \subseteq Y \times Z \qquad \operatorname{Progress}_{t} = \sum_{(y, z) \in R} |\langle \psi_{y}^{t} | \psi_{z}^{t} \rangle|$$

Claim: $\operatorname{Progress}_{t} - \operatorname{Progress}_{t+1} \le \sqrt{\frac{m}{m'}} |Y| + \sqrt{\frac{m'}{m}} |Z|$

Fix any *t* and *t*+1 Consider any pair $(y, z) \in R$ They differ on some coordinate $j^*(y, z)$

Final claim:
$$\sum_{(y,z)\in R} \left| \alpha_{j^*(y,z)}^{(y)} \right|^2 \le |Y|$$

For each $y \in Y$, if you go over all z such that $(y, z) \in R$, the associated $j^*(y, z)$ are distinct.

So for each $y \in Y$, you're summing a *subset* of all possible $\left|\alpha_{j}^{(y)}\right|^{2}$. Which is at most 1.

So indeed the overall sum is at most |Y|.

[Ambainis '00] **Super-Basic Adversary Method:**

For $\varphi = (YES, NO)$, suppose $Y \subseteq YES$, $Z \subseteq NO$ are such that:

- for each $y \in Y$, there are at least m strings $z \in Z$ with dist(y, z) = 1
- for each $z \in Z$, there are at least m' strings $y \in Y$ with dist(y, z) = 1

Then Q(φ), the quantum query complexity of φ , is $\geq \sqrt{m m'}$.

For $\varphi = (YES, NO)$, suppose $Y \subseteq YES$, $Z \subseteq NO$ are such that:

[Ambainis '00]

- for each $y \in Y$, there are at least m strings $z \in Z$ with dist(y, z) = 1
- for each $z \in Z$, there are at least m' strings $y \in Y$ with dist(y, z) = 1

Then Q(φ), the quantum query complexity of φ , is $\geq \sqrt{m m'}$.

Basic Adversary Method:

For $\varphi = (YES, NO)$, let $Y \subseteq YES$, $Z \subseteq NO$.

[Ambainis '00]

Let $R \subseteq Y \times Z$ be a set of "hard-to-distinguish" pairs, such that:

- for each $y \in Y$, there are at least m strings $z \in Z$ with $(y, z) \in R$
- for each $z \in Z$, there are at least m' strings $y \in Y$ with $(y, z) \in R$

Also, for each coordinate *j*, define $R_j = \{(y, z) \in R : y_j \neq z_j\}$

(namely, all the pairs distinguishable by querying coordinate *j*). Assume:

- for each $y \in Y$ and j, there are at most ℓ strings $z \in Z$ with $(y, z) \in R_j$
- for each $z \in Z$ and *j*, there are at most ℓ' strings $y \in Y$ with $(y, z) \in R_i$

Then Q(φ), the quantum query complexity of φ , is $\geq \sqrt{m m' / \ell \ell'}$.

Proof: Exercise!

(Only tiny modifications needed to the proof we saw.)

Exercise #2: Recall that Grover Search only needs $\leq \sqrt{N/k}$ queries to find a 1 if it's promised there are at least *k* 1's. (Assume $k \leq N/2$.)

Use the Basic Adversary Method to show $\geq \sqrt{N/k}$ queries are necessary for the promise problem:

 φ = "decide if *w* has no 1's, or at least *k* 1's".

Basic Adversary Method:

For $\varphi = (YES, NO)$, let $Y \subseteq YES$, $Z \subseteq NO$.

Let $R \subseteq Y \times Z$ be a set of "hard-to-distinguish" pairs, such that:

- for each $y \in Y$, there are at least m strings $z \in Z$ with $(y, z) \in R$
- for each $z \in Z$, there are at least m' strings $y \in Y$ with $(y, z) \in R$

Also, for each coordinate *j*, define $R_j = \{(y, z) \in R : y_j \neq z_j\}$

(namely, all the pairs distinguishable by querying coordinate *j*). Assume:

- for each $y \in Y$ and j, there are at most ℓ strings $z \in Z$ with $(y, z) \in R_j$
- for each $z \in Z$ and *j*, there are at most ℓ' strings $y \in Y$ with $(y, z) \in R_i$

Then Q(φ), the quantum query complexity of φ , is $\geq \sqrt{m m' / \ell \ell'}$.

General ("Negative-Weights") Adversary Method: For $\varphi = (YES, NO)$, let $Y \subseteq YES$, $Z \subseteq NO$.

Let $R \subseteq Y \times Z$ be a set of "hard-to-distinguish" pairs, such that:

- for each $y \in Y$, there are at least m strings $z \in Z$ with $(y, z) \in R$
- for each $z \in Z$, there are at least m' strings $y \in Y$ with $(y, z) \in R$

Also, for each coordinate *j*, define $R_j = \{(y, z) \in R : y_j \neq z_j\}$

(namely, all the pairs distinguishable by querying coordinate *j*). Assume:

- for each $y \in Y$ and j, there are at most ℓ strings $z \in Z$ with $(y, z) \in R_j$
- for each $z \in Z$ and *j*, there are at most ℓ' strings $y \in Y$ with $(y, z) \in R_i$

Then Q(φ), the quantum query complexity of φ , is $\geq \sqrt{m m' / \ell \ell'}$.

General ("Negative-Weights") Adversary Method:

A story for another time!