Lecture 20:

The Adversary Method

for Quantum Query Lower Bounds

Quantum query model: recap

Secret N-bit input string w
You can query a coordinate j to find out w_{j}
In fact, you can query superpositions...
Given access to $Q_{w}^{ \pm}$which implements $|j\rangle \mapsto(-1)^{w_{j}}|j\rangle$
Trying to solve some fixed decision problem φ on w
Cost: only the number of uses of $Q_{w}^{ \pm}$
Example: $\varphi=$ "OR", deciding if w has at least one 1
Grover's Algorithm: Solves $\varphi=$ "OR" with cost $\lesssim \sqrt{N}$
Think of $\varphi=$ (YES, NO), where YES and NO are subsets of strings. In "OR" example, YES $=\{$ all N-bit strings with at least one 1$\}, N O=\{00 \cdots 0\}$

If YES UNO $=$ \{all strings $\}, \varphi$ is called "total"; otherwise, φ is "partial/promise"

How to prove Lower Bounds on quantum query algorithms...

[Bennett-Bernstein-Brassard-Vazirani ca. '96]:

Proved a cost lower bound for $\varphi=$ "OR": $\gtrsim \sqrt{N}$ queries are necessary.
They called their technique the Hybrid Method.
[Beals-Buhrman-Cleve-Mosca-de Wolf '98]: The Polynomial Method.
[Ambainis '00]: The (Basic) Adversary Method.
[Many groups]: Variants on the Adversary Method.
[Høyer-Lee-Špalek '07]: "Negative-weights", aka General Adversary Method.
[Reichardt '09]: The General Adversary Method is optimal

- there is always a matching upper bound (query algorithm)!

A generic T-query algorithm:

Secret N-bit input string w defines the behavior of $Q_{w}^{ \pm}$

An algorithm supposedly solving $\varphi=(\mathrm{YES}, \mathrm{NO})$:

Secret N-bit input string w defines the behavior of $Q_{w}^{ \pm}$

An algorithm supposedly solving $\varphi=(\mathrm{YES}, \mathrm{NO})$:

An "adversary" picks some $y \in \mathbb{Y E S}$ and some $z \in \mathbb{N O}$ and considers running your algorithm with $w=y$ or with $w=z$.

An algorithm supposedly solving $\varphi=(\mathrm{YES}, \mathrm{NO})$:

An "adversary" picks some $y \in \mathbb{Y E S}$ and some $z \in \mathbb{N O}$ and considers running your algorithm with $w=y$ or with $w=z$.

An algorithm supposedly solving $\varphi=(\mathrm{YES}, \mathrm{NO})$:

An "adversary" picks some $y \in \mathbb{Y E S}$ and some $z \in \mathbb{N O}$ and considers running your algorithm with $w=y$ or with $w=z$.

An algorithm supposedly solving $\varphi=(\mathrm{YES}, \mathrm{NO})$:

Algorithm must be able to discriminate between $\left|\psi_{y}^{T}\right\rangle$ and $\left|\psi_{z}^{T}\right\rangle$ with high probability, because it must "accept" y and "reject" z.

An "adversary" picks some $y \in \mathbb{Y E S}$ and some $z \in \mathbb{N} O$ and considers running your algorithm with $w=y$ or with $w=z$.

An algorithm supposedly solving $\varphi=(\mathrm{YES}, \mathrm{NO})$:

Algorithm must be able to discriminate between $\left|\psi_{y}^{T}\right\rangle$ and $\left|\psi_{z}^{T}\right\rangle$ with high probability, because it must "accept" y and "reject" z.

An "adversary" picks some $y \in \mathbb{Y E S}$ and some $z \in \mathbb{N} O$ and considers running your algorithm with $w=y$ or with $w=z$.

An algorithm supposedly solving $\varphi=(\mathbb{Y} E S$, NO):

Algorithm must be able to discriminate between $\left|\psi_{y}^{T}\right\rangle$ and $\left|\psi_{z}^{T}\right\rangle$ with high probability, because it must "accept" y and "reject" z.

$$
\left\langle\psi_{y}^{0} \mid \psi_{z}^{0}\right\rangle=1 \quad \text { In fact, we better have }\left|\left\langle\psi_{y}^{T} \mid \psi_{z}^{T}\right\rangle\right| \leq .99
$$

Recall Lecture 4.5, "Discriminating Two Qubits":

Given two quantum states $|u\rangle$ and $|v\rangle$, the probability with which they can be distinguished by any quantum algorithm is a function of the angle between them.

An "adversary" picks some $y \in Y E S$ and some $z \in N O$ and considers running your algorithm with $w=y$ or with $w=z$.

Possible idea: define Progress $_{t}=\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|$
Suppose we can show \mid Progress $_{t}-$ Progress $_{t+1} \mid \leq \delta$
This would imply: $T \geq .01 / \delta$

An "adversary" picks some $y \in \mathbb{Y E S}$ and some $z \in \mathbb{N} O$ and considers running your algorithm with $w=y$ or with $w=z$.

Possible idea: define Progress $_{t}=\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|$
Suppose we can show \mid Progress $_{t}-$ Progress $_{t+1} \mid \leq \delta$
This would imply: $T \geq .01 / \delta$
Note: Applying unitary U_{t} does not affect $\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|$
So suffices to analyze how $Q_{w}^{ \pm}$affects Progress

An "adversary" picks some $y \in Y E S$ and some $z \in N O$ and considers running your algorithm with $w=y$ or with $w=z$.

Possible idea: define Progress $_{t}=\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|$
Suppose we can show \mid Progress $_{t}-$ Progress $_{t+1} \mid \leq \delta$
This would imply: $T \geq .01 / \delta \odot$
Note: Applying unitary U_{t} does not affect $\left|\left\langle\psi_{y}^{t} \mid \psi_{\lambda}^{t}\right\rangle\right|$
So suffices to analyze how $Q_{w}^{ \pm}$affects Progress
This is a good idea, but a little too simple
Doesn't suffice to focus on a single $y \in Y E S$ and a single $\mathbb{Z} \in \mathbb{N}$
If it did, would show that many queries needed to distinguish $w=y$ from $w=z$
But this only requires 1 query: since $y \neq z$, there exists j such that $y_{j} \neq z_{j}$
Need to have a bunch of y 's versus a bunch of z 's
An "adversary" picks some $y \in Y \in S$ and some $z \in N O$ and considers running your algorithm with $w=y$ or with $w=z$.

[Ambainis '00]

Super-Basic Adversary Method:

For $\varphi=(Y E S, N O)$, suppose $Y \subseteq Y E S, \mathbb{Z} \subseteq N O$ are such that:

- for each $y \in \mathbb{Y}$, there are at least m strings $\mathbb{Z} \in \mathbb{Z}$ with $\operatorname{dist}(y, z)=1$
- for each $z \in \mathbb{Z}$, there are at least m^{\prime} strings $y \in \mathbb{Y}$ with $\operatorname{dist}(y, z)=1$

Then $Q(\varphi)$, the quantum query complexity of φ, is $\gtrsim \sqrt{m m^{\prime}}$.
we'll show $\geq .005 \sqrt{m m^{\prime}}$
$\operatorname{dist}(y, z)=$ Hamming distance, \# of coordinates where y, z differ

Super-Basic Adversary Method:

For $\varphi=(Y E S, N O)$, suppose $\mathbb{Y} \subseteq Y E S, \mathbb{Z} \subseteq N O$ are such that:

- for each $y \in \mathbb{Y}$, there are at least m strings $z \in \mathbb{Z}$ with $\operatorname{dist}(y, z)=1$
- for each $z \in \mathbb{Z}$, there are at least m^{\prime} strings $y \in \mathbb{Y}$ with $\operatorname{dist}(y, z)=1$

Then $Q(\varphi)$, the quantum query complexity of φ, is $\gtrsim \sqrt{m m^{\prime}}$.

Example use \#1: $\varphi=$ "OR" (Decision-Grover)
Take $Y=\{000001,000010,000100,001000,010000,100000\}$.
Take $\mathbb{Z}=\{000000\}$.
(Well, at least for $N=6$.)
$m=1, m^{\prime}=N \Rightarrow \mathrm{Q}(\varphi) \gtrsim \sqrt{N}$

Super-Basic Adversary Method:

For $\varphi=(Y E S, N O)$, suppose $Y \subseteq Y E S, \mathbb{Z} \subseteq N O$ are such that:

- for each $y \in Y$, there are at least m strings $z \in \mathbb{Z}$ with $\operatorname{dist}(y, z)=1$
- for each $z \in \mathbb{Z}$, there are at least m^{\prime} strings $y \in \mathbb{Y}$ with $\operatorname{dist}(y, z)=1$

Then $Q(\varphi)$, the quantum query complexity of φ, is $\gtrsim \sqrt{m m^{\prime}}$.

Example use \#2: $\quad \varphi$: Decide if w has at least k 1's, or less than $k 1$'s
Take $Y=$ all strings with exactly $k \quad 1$'s $\}$.
Take $\mathbb{Z}=\{$ all strings with exactly $k-11$'s $\}$.

$$
\begin{aligned}
m=k, \quad m^{\prime} & =N-k+1 \\
& \Rightarrow \mathrm{Q}(\varphi) \gtrsim \sqrt{k(N-k+1)}, \text { which is } \gtrsim \sqrt{k N} \text { for } k \leq \frac{N}{2}
\end{aligned}
$$

Super-Basic Adversary Method:

For $\varphi=(Y E S, N O)$, suppose $Y \subseteq Y E S, \mathbb{Z} \subseteq N O$ are such that:

- for each $y \in \mathbb{Y}$, there are at least m strings $z \in \mathbb{Z}$ with $\operatorname{dist}(y, z)=1$
- for each $z \in \mathbb{Z}$, there are at least m^{\prime} strings $y \in \mathbb{Y}$ with $\operatorname{dist}(y, z)=1$

Then $\mathrm{Q}(\varphi)$, the quantum query complexity of φ, is $\gtrsim \sqrt{m m^{\prime}}$.

Example use \#3:

YES $=$ strings with a 1 in each 'block'
$\mathrm{NO}=$ strings with a block of all 0's
$Y=$ strings with exactly one 1 per block
$\mathbb{Z}=$ strings with exactly one all-0's block, all other blocks having exactly one 1

$$
m=\sqrt{N}, \quad m^{\prime}=\sqrt{N} \Rightarrow \mathrm{Q}(\varphi) \gtrsim \sqrt{N}
$$

This lower bound is sharp, and not known to be attainable by the "Polynomial Method"

Super-Basic Adversary Method:

For $\varphi=(Y E S, N O)$, suppose $Y \subseteq Y E S, \mathbb{Z} \subseteq N O$ are such that:

- for each $y \in Y$, there are at least m strings $z \in \mathbb{Z}$ with $\operatorname{dist}(y, z)=1$
- for each $z \in \mathbb{Z}$, there are at least m^{\prime} strings $y \in \mathbb{Y}$ with $\operatorname{dist}(y, z)=1$

Then $Q(\varphi)$, the quantum query complexity of φ, is $\gtrsim \sqrt{m m^{\prime}}$.

Proof: Define $R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times \mathbb{Z}$
(These are particularly challenging pairs of inputs for the algorithm: the algorithm needs to give different answers on them, but there is only a single coordinate where they are different.)

Super-Basic Adversary Method:

For $\varphi=(Y E S, N O)$, suppose $Y \subseteq Y E S, \mathbb{Z} \subseteq N O$ are such that:

- for each $y \in Y$, there are at least m strings $z \in \mathbb{Z}$ with $\operatorname{dist}(y, z)=1$
- for each $z \in \mathbb{Z}$, there are at least m^{\prime} strings $y \in \mathbb{Y}$ with $\operatorname{dist}(y, z)=1$

Then $Q(\varphi)$, the quantum query complexity of φ, is $\gtrsim \sqrt{m m^{\prime}}$.

Proof: Define $R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times \mathbb{Z}$
Define Progress $_{t}=\sum_{(y, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|$, where $\left|\psi_{w}^{t}\right\rangle$ is state after $t^{\text {th }}$ query, on input w We have Progress $_{0}=|R|$ and $\operatorname{Progress}_{T} \leq .99|R|$
the latter because $\left|\left\langle\psi_{y}^{T} \mid \psi_{z}^{T}\right\rangle\right| \leq .99$ must hold for all $y \in \mathbb{Y}, \mathbb{Z} \in \mathbb{Z}$

Super-Basic Adversary Method:

For $\varphi=(Y E S, N O)$, suppose $Y \subseteq Y E S, \mathbb{Z} \subseteq N O$ are such that:

- for each $y \in \mathbb{Y}$, there are at least m strings $z \in \mathbb{Z}$ with $\operatorname{dist}(y, z)=1$
- for each $z \in \mathbb{Z}$, there are at least m^{\prime} strings $y \in \mathbb{Y}$ with $\operatorname{dist}(y, z)=1$

Then $Q(\varphi)$, the quantum query complexity of φ, is $\gtrsim \sqrt{m m^{\prime}}$.

Proof: Define $R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times \mathbb{Z}$
Define Progress $_{t}=\sum_{(y, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|$, where $\left|\psi_{w}^{t}\right\rangle$ is state after $t^{\text {th }}$ query, on input w
We have Progress $_{0}=|R|$ and $\operatorname{Progress}_{T} \leq .99|R|$
Claim: Progress $_{t}-$ Progress $_{t+1} \leq \frac{2}{\sqrt{m m^{\prime}}}|R|$ for all t.

$$
\Rightarrow T \geq .005 \sqrt{m^{m^{\prime}}}, \text { as desired. }
$$

- for each $y \in Y$, there are at least m strings $z \in \mathbb{Z}$ with $\operatorname{dist}(y, z)=1$
- for each $z \in \mathbb{Z}$, there are at least m^{\prime} strings $y \in Y$ with $\operatorname{dist}(y, z)=1$

$$
R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times Z
$$

$$
\text { Progress }_{t}=\sum_{(y, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|
$$

Claim: Progress $_{t}-$ Progress $_{t+1} \leq \frac{2}{\sqrt{m m^{\prime}}}|R|$ for all t.

- for each $y \in \mathbb{Y}$, there are at least m strings $z \in \mathbb{Z}$ with $\operatorname{dist}(y, z)=1$
- for each $z \in \mathbb{Z}$, there are at least m^{\prime} strings $y \in \mathbb{Y}$ with $\operatorname{dist}(y, z)=1$

$$
R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times \mathbb{Z} \quad \operatorname{Progress}_{t}=\sum_{(y, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|
$$

Claim: Progress $_{t}-\operatorname{Progress}_{t+1} \leq \frac{2}{\sqrt{m m^{\prime}}}|R|$ for all t.
for each $y \in \mathbb{Y}$, there are at least m strings $z \in \mathbb{Z}$ with $\operatorname{dist}(y, z)=1$

$$
\begin{aligned}
\text { Hence }|R| & \geq m|\mathbb{Y}| \\
\text { Similarly }|R| & \geq m^{\prime}|\mathbb{Z}| \\
\text { So } \quad 2|R| & \geq m|\mathbb{Y}|+m^{\prime}|\mathbb{Z}|
\end{aligned}
$$

Claim is even stronger if RHS is $\frac{1}{\sqrt{m m^{\prime}}}\left(m|\mathbb{Y}|+m^{\prime}|\mathbb{Z}|\right)=\sqrt{\frac{m}{m^{\prime}}}|\mathbb{Y}|+\sqrt{\frac{m^{\prime}}{m}}|\mathbb{Z}|$

$$
\begin{gathered}
R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times \mathbb{Z} \quad \text { Progress }_{t}=\sum_{(y, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right| \\
\text { Claim: } \text { Progress }_{t}-\text { Progress }_{t+1} \leq \sqrt{\frac{m}{m^{\prime}}}|Y|+\sqrt{\frac{m^{\prime}}{m}}|\mathbb{Z}|
\end{gathered}
$$

Recall: Unitaries don't affect Progress, just the $Q_{w}^{ \pm}$queries.

Fix any t and $t+1$ ("before" and "after")
Consider any pair $(y, z) \in R$
They differ on some coordinate j^{*}

$$
\begin{gathered}
R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times Z \quad \text { Progress }_{t}=\sum_{(y, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right| \\
\\
\text { Claim: } \text { Progress }_{t}-\text { Progress }_{t+1} \leq \sqrt{\frac{m}{m^{\prime}}}|Y|+\sqrt{\frac{m^{\prime}}{m}}|Z|
\end{gathered}
$$

Fix any t and $t+1$ "Before": $\left|\psi_{y}^{t}\right\rangle$
"After": $\left|\psi_{y}^{t+1}\right\rangle$

$$
\begin{gathered}
R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times \mathbb{Z} \quad \text { Progress }_{t}=\sum_{(y, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right| \\
\\
\text { Claim: } \text { Progress }_{t}-\text { Progress }_{t+1} \leq \sqrt{\frac{m}{m^{\prime}}}|Y|+\sqrt{\frac{m^{\prime}}{m}}|\mathbb{Z}|
\end{gathered}
$$

Fix any t and $t+1$ "Before": $\left|\psi_{y}^{t}\right\rangle$
"After": $\left|\psi_{y}^{t+1}\right\rangle$

Consider any pair $(y, z) \in R \quad$ They differ on some coordinate j^{*}

$$
R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times \mathbb{Z} \quad \quad \text { Progress }_{t}=\sum_{(y, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|
$$

$$
\text { Claim: } \text { Progress }_{t}-\text { Progress }_{t+1} \leq \sqrt{\frac{m}{m^{\prime}}}|Y|+\sqrt{\frac{m^{\prime}}{m}}|Z|
$$

Fix any t and $t+1 \quad$ Consider any pair $(y, z) \in R \quad$ They differ on some coordinate j^{*} "Before": $\left|\psi_{y}^{t}\right\rangle=|1\rangle \otimes\left(\right.$ stuff $\left._{1}\right)+|2\rangle \otimes\left(\right.$ stuff $\left._{2}\right)+\cdots+|N\rangle \otimes\left(\right.$ stuff $\left._{N}\right)$
"After": $\left|\psi_{y}^{t+1}\right\rangle$
query workspace register register

Let $\left|\phi_{j}\right\rangle$ be a unit vector in the direction of $\left(\right.$ stuff $\left._{j}\right)$

$$
\begin{gathered}
R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times \mathbb{Z} \quad \text { Progress }_{t}=\sum_{(y, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right| \\
\\
\text { Claim: } \text { Progress }_{t}-\text { Progress }_{t+1} \leq \sqrt{\frac{m}{m^{\prime}}}|Y|+\sqrt{\frac{m^{\prime}}{m}}|\mathbb{Z}|
\end{gathered}
$$

Fix any t and $t+1 \quad$ Consider any pair $(y, z) \in R \quad$ They differ on some coordinate j^{*} "Before": $\left|\psi_{y}^{t}\right\rangle=\alpha_{1}|1\rangle \otimes\left|\phi_{1}\right\rangle+\alpha_{2}|2\rangle \otimes\left|\phi_{2}\right\rangle+\cdots+\alpha_{N}|N\rangle \otimes\left|\phi_{N}\right\rangle$
"After": $\left|\psi_{y}^{t+1}\right\rangle$
We have collected like terms based on the query register.

Let $\left|\phi_{j}\right\rangle$ be a unit vector in the direction of (stuff ${ }_{j}$)

$$
\begin{gathered}
R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times \mathbb{Z} \quad \text { Progress }_{t}=\sum_{(y, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right| \\
\\
\text { Claim: } \text { Progress }_{t}-\text { Progress }_{t+1} \leq \sqrt{\frac{m}{m^{\prime}}}|Y|+\sqrt{\frac{m^{\prime}}{m}}|\mathbb{Z}|
\end{gathered}
$$

Fix any t and $t+1 \quad$ Consider any pair $(y, z) \in R \quad$ They differ on some coordinate j^{*}

$$
\begin{array}{ll}
\text { "Before": }\left|\psi_{y}^{t}\right\rangle=\alpha_{1}|1\rangle \otimes\left|\phi_{1}\right\rangle+\alpha_{2}|2\rangle \otimes\left|\phi_{2}\right\rangle+\cdots+\alpha_{N}|N\rangle \otimes\left|\phi_{N}\right\rangle & \text { Each }\left|\phi_{j}\right\rangle \text { is unit, } \\
& \text { and } \sum_{j}\left|\alpha_{j}\right|^{2}=1 .
\end{array}
$$

"After": $\left|\psi_{y}^{t+1}\right\rangle$

$$
R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times Z \quad \text { Progress }_{t}=\sum_{(y, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|
$$

$$
\text { Claim: } \text { Progress }_{t}-\text { Progress }_{t+1} \leq \sqrt{\frac{m}{m^{\prime}}}|Y|+\sqrt{\frac{m^{\prime}}{m}}|Z|
$$

Fix any t and $t+1 \quad$ Consider any pair $(y, z) \in R \quad$ They differ on some coordinate j^{*} "Before": $\begin{array}{cc}\left|\psi_{y}^{t}\right\rangle=\alpha_{1}|1\rangle \otimes\left|\phi_{1}\right\rangle+\alpha_{2}|2\rangle \otimes\left|\phi_{2}\right\rangle+\cdots+\alpha_{N}|N\rangle \otimes\left|\phi_{N}\right\rangle & \text { Each }\left|\phi_{j}\right\rangle \text { is unit, } \\ Q^{ \pm} & \text {and } \sum_{j}\left|\alpha_{j}\right|^{2}=1 .\end{array}$ $Q_{y}^{ \pm} \quad$ The $j^{\text {th }}$ amplitude is multiplied by $(-1)^{y_{j}}$
\vdots
"After": $\left|\psi_{y}^{t+1}\right\rangle=(-1)^{y_{1}} \alpha_{1}|1\rangle \otimes\left|\phi_{1}\right\rangle+(-1)^{y_{2}} \alpha_{2}|2\rangle \otimes\left|\phi_{2}\right\rangle+\cdots+(-1)^{y_{N}} \alpha_{N}|N\rangle \otimes\left|\phi_{N}\right\rangle$

$$
R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times Z \quad \text { Progress }_{t}=\sum_{(y, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|
$$

$$
\text { Claim: } \text { Progress }_{t}-\text { Progress }_{t+1} \leq \sqrt{\frac{m}{m^{\prime}}}|Y|+\sqrt{\frac{m^{\prime}}{m}}|Z|
$$

Fix any t and $t+1 \quad$ Consider any pair $(y, z) \in R \quad$ They differ on some coordinate j^{*}

$$
\text { "Before": } \begin{array}{rll}
\left|\psi_{y}^{t}\right\rangle & =\alpha_{1}|1\rangle \otimes\left|\phi_{1}\right\rangle+\alpha_{2}|2\rangle \otimes\left|\phi_{2}\right\rangle+\cdots+\alpha_{N}|N\rangle \otimes\left|\phi_{N}\right\rangle & \text { Each }\left|\phi_{j}\right\rangle \text { is unit, } \\
\left|\psi_{z}^{t}\right\rangle & =\beta_{1}|1\rangle \otimes\left|\chi_{1}\right\rangle+\beta_{2}|2\rangle \otimes\left|\chi_{2}\right\rangle+\cdots+\beta_{N}|N\rangle \otimes\left|\chi_{N}\right\rangle & \text { and } \sum_{j}\left|\alpha_{j}\right|^{2}=1 .
\end{array}
$$

"After": $\left|\psi_{y}^{t+1}\right\rangle=(-1)^{y_{1}} \alpha_{1}|1\rangle \otimes\left|\phi_{1}\right\rangle+(-1)^{y_{2}} \alpha_{2}|2\rangle \otimes\left|\phi_{2}\right\rangle+\cdots+(-1)^{y_{N}} \alpha_{N}|N\rangle \otimes\left|\phi_{N}\right\rangle$

$$
\left|\psi_{z}^{t+1}\right\rangle=(-1)^{z_{1}} \beta_{1}|1\rangle \otimes\left|\chi_{1}\right\rangle+(-1)^{z_{2}} \beta_{2}|2\rangle \otimes\left|\chi_{2}\right\rangle+\cdots+(-1)^{z_{N}} \beta_{N}|N\rangle \otimes\left|\chi_{N}\right\rangle
$$

$$
R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times Z \quad \text { Progress }_{t}=\sum_{(y, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|
$$

$$
\text { Claim: } \text { Progress }_{t}-\text { Progress }_{t+1} \leq \sqrt{\frac{m}{m^{\prime}}}|Y|+\sqrt{\frac{m^{\prime}}{m}}|Z|
$$

Fix any t and $t+1 \quad$ Consider any pair $(y, z) \in R \quad$ They differ on some coordinate j^{*}

$$
\begin{aligned}
\text { "Before": }\left|\psi_{y}^{t}\right\rangle & =\alpha_{1}|1\rangle \otimes\left|\phi_{1}\right\rangle+\alpha_{2}|2\rangle \otimes\left|\phi_{2}\right\rangle+\cdots+\alpha_{N}|N\rangle \otimes\left|\phi_{N}\right\rangle \quad \text { Each }\left|\phi_{j}\right\rangle \text { is unit, } \\
\left|\psi_{z}^{t}\right\rangle & =\beta_{1}|1\rangle \otimes\left|\chi_{1}\right\rangle+\beta_{2}|2\rangle \otimes\left|\chi_{2}\right\rangle+\cdots+\beta_{N}|N\rangle \otimes\left|\chi_{N}\right\rangle \quad \text { and } \sum_{j}\left|\alpha_{j}\right|^{2}=1 . \\
\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle & =\overline{\alpha_{1}} \beta_{1}\left\langle\phi_{1} \mid \chi_{1}\right\rangle+\overline{\alpha_{2}} \beta_{2}\left\langle\phi_{2} \mid \chi_{2}\right\rangle+\cdots+\overline{\alpha_{N}} \beta_{N}\left\langle\phi_{N} \mid \chi_{N}\right\rangle \\
\text { "After": }\left|\psi_{y}^{t+1}\right\rangle & =(-1)^{y_{1}} \alpha_{1}|1\rangle \otimes\left|\phi_{1}\right\rangle+(-1)^{y_{2}} \alpha_{2}|2\rangle \otimes\left|\phi_{2}\right\rangle+\cdots+(-1)^{y_{N}} \alpha_{N}|N\rangle \otimes\left|\phi_{N}\right\rangle \\
\left|\psi_{z}^{t+1}\right\rangle & =(-1)^{z_{1}} \beta_{1}|1\rangle \otimes\left|\chi_{1}\right\rangle+(-1)^{z_{2}} \beta_{2}|2\rangle \otimes\left|\chi_{2}\right\rangle+\cdots+(-1)^{z_{N}} \beta_{N}|N\rangle \otimes\left|\chi_{N}\right\rangle
\end{aligned}
$$

These signs are all the same - except for in coordinate j^{*}

$$
R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times Z \quad \text { Progress }_{t}=\sum_{(y, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|
$$

$$
\text { Claim: } \text { Progress }_{t}-\text { Progress }_{t+1} \leq \sqrt{\frac{m}{m^{\prime}}}|Y|+\sqrt{\frac{m^{\prime}}{m}}|Z|
$$

Fix any t and $t+1 \quad$ Consider any pair $(y, z) \in R \quad$ They differ on some coordinate j^{*}

$$
\begin{aligned}
\text { "Before": }\left|\psi_{y}^{t}\right\rangle & =\alpha_{1}|1\rangle \otimes\left|\phi_{1}\right\rangle+\alpha_{2}|2\rangle \otimes\left|\phi_{2}\right\rangle+\cdots+\alpha_{N}|N\rangle \otimes\left|\phi_{N}\right\rangle & \text { Each }\left|\phi_{j}\right\rangle \text { is unit, } \\
\left|\psi_{z}^{t}\right\rangle & =\beta_{1}|1\rangle \otimes\left|\chi_{1}\right\rangle+\beta_{2}|2\rangle \otimes\left|\chi_{2}\right\rangle+\cdots+\beta_{N}|N\rangle \otimes\left|\chi_{N}\right\rangle & \text { and } \sum_{j}\left|\alpha_{j}\right|^{2}=1 . \\
\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle & =\overline{\alpha_{1}} \beta_{1}\left\langle\phi_{1} \mid \chi_{1}\right\rangle+\overline{\alpha_{2}} \beta_{2}\left\langle\phi_{2} \mid \chi_{2}\right\rangle+\cdots+\overline{\alpha_{N}} \beta_{N}\left\langle\phi_{N} \mid \chi_{N}\right\rangle &
\end{aligned}
$$

"After": $\left|\psi_{y}^{t+1}\right\rangle=(-1)^{y_{1}} \alpha_{1}|1\rangle \otimes\left|\phi_{1}\right\rangle+(-1)^{y_{2}} \alpha_{2}|2\rangle \otimes\left|\phi_{2}\right\rangle+\cdots+(-1)^{y_{N}} \alpha_{N}|N\rangle \otimes\left|\phi_{N}\right\rangle$

$$
\begin{aligned}
\left|\psi_{z}^{t+1}\right\rangle & =(-1)^{z_{1}} \beta_{1}|1\rangle \otimes\left|\chi_{1}\right\rangle+(-1)^{z_{2}} \beta_{2}|2\rangle \otimes\left|\chi_{2}\right\rangle+\cdots+(-1)^{z_{N}} \beta_{N}|N\rangle \otimes\left|\chi_{N}\right\rangle \\
\left\langle\psi_{y}^{t+1} \mid \psi_{z}^{t+1}\right\rangle & =\overline{\alpha_{1}} \beta_{1}\left\langle\phi_{1} \mid \chi_{1}\right\rangle+\overline{\alpha_{2}} \beta_{2}\left\langle\phi_{2} \mid \chi_{2}\right\rangle+\cdots-\overline{\alpha_{j^{*}}} \beta_{j^{*}}\left\langle\phi_{j^{*}} \mid \chi_{j^{*}}\right\rangle+\cdots+\overline{\alpha_{N}} \beta_{N}\left\langle\phi_{N} \mid \chi_{N}\right\rangle
\end{aligned}
$$

$$
R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times Z \quad \text { Progress }_{t}=\sum_{(v, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|
$$

$$
\text { Claim: } \text { Progress }_{t}-\text { Progress }_{t+1} \leq \sqrt{\frac{m}{m^{\prime}}}|Y|+\sqrt{\frac{m^{\prime}}{m}}|Z|
$$

Fix any t
"Before":
Consider any pair $(y, z) \in R \quad$ They differ on some coordinate j^{*}
Each $\left|\phi_{j}\right\rangle$ is unit, and $\sum_{j}\left|\alpha_{j}\right|^{2}=1$.

$$
\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle=\overline{\alpha_{1}} \beta_{1}\left\langle\phi_{1} \mid \chi_{1}\right\rangle+\overline{\alpha_{2}} \beta_{2}\left\langle\phi_{2} \mid \chi_{2}\right\rangle+\cdots+\overline{\alpha_{N}} \beta_{N}\left\langle\phi_{N} \mid \chi_{N}\right\rangle
$$

"After":

$$
\left\langle\psi_{y}^{t+1} \mid \psi_{z}^{t+1}\right\rangle=\overline{\alpha_{1}} \beta_{1}\left\langle\phi_{1} \mid \chi_{1}\right\rangle+\overline{\alpha_{2}} \beta_{2}\left\langle\phi_{2} \mid \chi_{2}\right\rangle+\cdots-\overline{\alpha_{j^{*}}} \beta_{j^{*}}\left\langle\phi_{j^{*}} \mid \chi_{j^{*}}\right\rangle+\cdots+\overline{\alpha_{N}} \beta_{N}\left\langle\phi_{N} \mid \chi_{N}\right\rangle
$$

$$
R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times Z \quad \text { Progress }_{t}=\sum_{(v, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|
$$

$$
\text { Claim: } \text { Progress }_{t}-\text { Progress }_{t+1} \leq \sqrt{\frac{m}{m^{\prime}}}|Y|+\sqrt{\frac{m^{\prime}}{m}}|Z|
$$

Fix any t
"Before":

$$
\left\langle\psi_{y}^{t} \mid \psi_{Z}^{t}\right\rangle=\overline{\alpha_{1}} \beta_{1}\left\langle\phi_{1} \mid \chi_{1}\right\rangle+\overline{\alpha_{2}} \beta_{2}\left\langle\phi_{2} \mid \chi_{2}\right\rangle+\cdots+\overline{\alpha_{N}} \beta_{N}\left\langle\phi_{N} \mid \chi_{N}\right\rangle \quad \text { and } \sum_{j}\left|\alpha_{j}\right|^{2}=1 .
$$

"After":

$$
\left\langle\psi_{y}^{t+1} \mid \psi_{z}^{t+1}\right\rangle=\overline{\alpha_{1}} \beta_{1}\left\langle\phi_{1} \mid \chi_{1}\right\rangle+\overline{\alpha_{2}} \beta_{2}\left\langle\phi_{2} \mid \chi_{2}\right\rangle+\cdots-\overline{\alpha_{j^{*}}} \beta_{j^{*}}\left\langle\phi_{j^{*}} \mid \chi_{j^{*}}\right\rangle+\cdots+\overline{\alpha_{N}} \beta_{N}\left\langle\phi_{N} \mid \chi_{N}\right\rangle
$$

$$
\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle-\left\langle\psi_{y}^{t+1} \mid \psi_{z}^{t+1}\right\rangle=2 \overline{\alpha_{j^{*}}} \beta_{j^{*}}\left\langle\phi_{j^{*}} \mid \chi_{j^{*}}\right\rangle \Rightarrow\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle-\left\langle\psi_{y}^{t+1} \mid \psi_{z}^{t+1}\right\rangle\right| \leq 2\left|\alpha_{j^{*}}\right| \cdot\left|\beta_{j^{*}}\right|
$$

$$
R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times Z \quad \text { Progress }_{t}=\sum_{(y, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|
$$

$$
\text { Claim: } \text { Progress }_{t}-\text { Progress }_{t+1} \leq \sqrt{\frac{m}{m^{\prime}}}|Y|+\sqrt{\frac{m^{\prime}}{m}}|Z|
$$

Fix any t
"Before":

$$
\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle=\overline{\alpha_{1}} \beta_{1}\left\langle\phi_{1} \mid \chi_{1}\right\rangle+\overline{\alpha_{2}} \beta_{2}\left\langle\phi_{2} \mid \chi_{2}\right\rangle+\cdots+\overline{\alpha_{N}} \beta_{N}\left\langle\phi_{N} \mid \chi_{N}\right\rangle
$$ and $\sum_{j}\left|\alpha_{j}\right|^{2}=1$.

"After":

$$
\left\langle\psi_{y}^{t+1} \mid \psi_{z}^{t+1}\right\rangle=\overline{\alpha_{1}} \beta_{1}\left\langle\phi_{1} \mid \chi_{1}\right\rangle+\overline{\alpha_{2}} \beta_{2}\left\langle\phi_{2} \mid \chi_{2}\right\rangle+\cdots-\overline{\alpha_{j^{*}}} \beta_{j^{*}}\left\langle\phi_{j^{*}} \mid \chi_{j^{*}}\right\rangle+\cdots+\overline{\alpha_{N}} \beta_{N}\left\langle\phi_{N} \mid \chi_{N}\right\rangle
$$

(triangle inequality)

$$
\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|-\left|\left\langle\psi_{y}^{t+1} \mid \psi_{z}^{t+1}\right\rangle\right| \leq\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle-\left\langle\psi_{y}^{t+1} \mid \psi_{z}^{t+1}\right\rangle\right| \leq 2\left|\alpha_{j^{*}}\right| \cdot\left|\beta_{j^{*}}\right|
$$

$$
R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times Z \quad \text { Progress }_{t}=\sum_{(y, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|
$$

$$
\text { Claim: } \text { Progress }_{t}-\text { Progress }_{t+1} \leq \sqrt{\frac{m}{m^{\prime}}}|Y|+\sqrt{\frac{m^{\prime}}{m}}|Z|
$$

Fix any t
"Before":
Consider any pair $(y, z) \in R \quad$ They differ on some coordinate j^{*}

$$
\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle=\overline{\alpha_{1}} \beta_{1}\left\langle\phi_{1} \mid \chi_{1}\right\rangle+\overline{\alpha_{2}} \beta_{2}\left\langle\phi_{2} \mid \chi_{2}\right\rangle+\cdots+\overline{\alpha_{N}} \beta_{N}\left\langle\phi_{N} \mid \chi_{N}\right\rangle \quad \text { and } \sum_{j}\left|\alpha_{j}\right|^{2}=1
$$

"After":

$$
\left\langle\psi_{y}^{t+1} \mid \psi_{z}^{t+1}\right\rangle=\overline{\alpha_{1}} \beta_{1}\left\langle\phi_{1} \mid \chi_{1}\right\rangle+\overline{\alpha_{2}} \beta_{2}\left\langle\phi_{2} \mid \chi_{2}\right\rangle+\cdots-\overline{\alpha_{j^{*}}} \beta_{j^{*}}\left\langle\phi_{j^{*}} \mid \chi_{j^{*}}\right\rangle+\cdots+\overline{\alpha_{N}} \beta_{N}\left\langle\phi_{N} \mid \chi_{N}\right\rangle
$$

$$
\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|-\left|\left\langle\psi_{y}^{t+1} \mid \psi_{z}^{t+1}\right\rangle\right| \leq 2\left|\alpha_{j^{*}}\right| \cdot\left|\beta_{j^{*}}\right|
$$

$$
R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times \mathbb{Z} \quad \quad \text { Progress }_{t}=\sum_{(y, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|
$$

$$
\text { Claim: } \text { Progress }_{t}-\text { Progress }_{t+1} \leq \sqrt{\frac{m}{m^{\prime}}}|Y|+\sqrt{\frac{m^{\prime}}{m}}|Z|
$$

Fix any t and $t+1$
Consider any pair $(y, z) \in R \quad$ They differ on some coordinate j^{*}

$$
\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|-\left|\left\langle\psi_{y}^{t+1} \mid \psi_{z}^{t+1}\right\rangle\right| \leq 2\left|\alpha_{j^{*}}\right| \cdot\left|\beta_{j^{*}}\right|
$$

A math trick:
Proof 1:
Proof 2:

For any real a, b, and $h>0: \quad 2 a b \leq h a^{2}+(1 / h) b^{2}$
AM-GM inequality: $a b$ is the geometric mean of $h a^{2}$ and $(1 / h) b^{2}$
Certainly: $0 \leq(\sqrt{h} a-\sqrt{1 / h} b)^{2}$
Expanding: $0 \leq h a^{2}+(1 / h) b^{2}-2 a b$

$$
\begin{gathered}
R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times Z \quad \quad \text { Progress }_{t}=\sum_{(y, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right| \\
\text { Claim: } \text { Progress }_{t}-\text { Progress }_{t+1} \leq \sqrt{\frac{m}{m^{\prime}}}|Y|+\sqrt{\frac{m^{\prime}}{m}}|Z|
\end{gathered}
$$

Fix any t and $t+1$
Consider any pair $(y, z) \in R \quad$ They differ on some coordinate j^{*}

$$
\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|-\left|\left\langle\psi_{y}^{t+1} \mid \psi_{z}^{t+1}\right\rangle\right| \leq 2\left|\alpha_{j^{*}}\right| \cdot\left|\beta_{j^{*}}\right|
$$

A math trick: \quad For any real a, b, and $h>0: \quad 2 a b \leq h a^{2}+(1 / h) b^{2}$
Apply this above, with $a=\left|\alpha_{j^{*}}\right|, \quad b=\left|\beta_{j^{*}}\right|, h=\sqrt{\frac{m}{m^{\prime}}}$

$$
\begin{aligned}
R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times \mathbb{Z} & \text { Progress }_{t}= \\
& \text { Claim: Progress }{ }_{t}-\text { Progress }_{t+1} \leq \sqrt{\frac{m}{m^{\prime}}}|Y|+\sqrt{\frac{m^{\prime}}{m}}|\mathbb{Z}|
\end{aligned}
$$

$$
\text { Progress }_{t}=\sum_{(y, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|
$$

Fix any t and $t+1$
Consider any pair $(y, z) \in R$
They differ on some coordinate j^{*}

$$
\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|-\left|\left\langle\psi_{y}^{t+1} \mid \psi_{z}^{t+1}\right\rangle\right| \leq \sqrt{\frac{m}{m^{\prime}}}\left|\alpha_{j^{*}}\right|^{2}+\sqrt{\frac{m^{\prime}}{m}}\left|\beta_{j^{*}}\right|^{2}
$$

A math trick: \quad For any real a, b, and $h>0: \quad 2 a b \leq h a^{2}+(1 / h) b^{2}$
Apply this above, with $a=\left|\alpha_{j^{*}}\right|, \quad b=\left|\beta_{j^{*}}\right|, h=\sqrt{\frac{m}{m^{\prime}}}$

$$
R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times \mathbb{Z} \quad \quad \text { Progress }_{t}=\sum_{(y, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|
$$

$$
\text { Claim: } \text { Progress }_{t}-\text { Progress }_{t+1} \leq \sqrt{\frac{m}{m^{\prime}}}|Y|+\sqrt{\frac{m^{\prime}}{m}}|\mathbb{Z}|
$$

Fix any t and $t+1$
Consider any pair $(y, z) \in R$
They differ on some coordinate j^{*}

$$
\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|-\left|\left\langle\psi_{y}^{t+1} \mid \psi_{z}^{t+1}\right\rangle\right| \leq \sqrt{\frac{m}{m^{\prime}}}\left|\alpha_{j^{*}}\right|^{2}+\sqrt{\frac{m^{\prime}}{m}}\left|\beta_{j^{*}}\right|^{2}
$$

Finally, coordinate j^{*} really depends on the pair (y, z), so let's write it as

$$
j^{*}(y, z)
$$

$$
R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times \mathbb{Z} \quad \quad \text { Progress }_{t}=\sum_{(y, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|
$$

$$
\text { Claim: } \text { Progress }_{t}-\text { Progress }_{t+1} \leq \sqrt{\frac{m}{m^{\prime}}}|Y|+\sqrt{\frac{m^{\prime}}{m}}|Z|
$$

Fix any t and $t+1$ Consider any pair $(y, z) \in R$

$$
\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|-\left|\left\langle\psi_{y}^{t+1} \mid \psi_{z}^{t+1}\right\rangle\right| \leq \sqrt{\frac{m}{m^{\prime}}}\left|\alpha_{j^{*}(y, z)}\right|^{2}+\sqrt{\frac{m^{\prime}}{m}}\left|\beta_{j^{*}(y, z)}\right|^{2}
$$

Finally, coordinate j^{*} really depends on the pair (y, z), so let's write it as

$$
j^{*}(y, z)
$$

$$
R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times \mathbb{Z} \quad \quad \text { Progress }_{t}=\sum_{(y, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|
$$

$$
\text { Claim: } \text { Progress }_{t}-\text { Progress }_{t+1} \leq \sqrt{\frac{m}{m^{\prime}}}|Y|+\sqrt{\frac{m^{\prime}}{m}}|Z|
$$

Fix any t and $t+1 \quad$ Consider any pair $(y, z) \in R \quad$ They differ on some coordinate $j^{*}(y, z)$

$$
\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|-\left|\left\langle\psi_{y}^{t+1} \mid \psi_{z}^{t+1}\right\rangle\right| \leq \sqrt{\frac{m}{m^{\prime}}}\left|\alpha_{j^{*}(y, z)}\right|^{2}+\sqrt{\frac{m^{\prime}}{m}}\left|\beta_{j^{* *}(y, z)}\right|^{2}
$$

Also, to be scrupulous about notation, the α_{j} 's come from $\left|\psi_{y}^{t}\right\rangle$, and thus depend on y.
Similarly, the β_{j} 's depend on z.

$$
\begin{aligned}
& R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times \mathbb{Z} \\
& \text { Progress }_{t}= \\
& \text { Claim: } \text { Progress }_{t}-\text { Progress }_{t+1} \leq \sqrt{\frac{m}{m^{\prime}}}|Y|+\sqrt{\frac{m^{\prime}}{m}}|\mathbb{Z}|
\end{aligned}
$$

$$
\text { Progress }_{t}=\sum_{(y, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|
$$

Fix any t and $t+1 \quad$ Consider any pair $(y, z) \in R \quad$ They differ on some coordinate $j^{*}(y, z)$

$$
\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|-\left|\left\langle\psi_{y}^{t+1} \mid \psi_{z}^{t+1}\right\rangle\right| \leq \sqrt{\frac{m}{m^{\prime}}}\left|\alpha_{j^{*}(y, z)}^{(y)}\right|^{2}+\sqrt{\frac{m^{\prime}}{m}}\left|\beta_{j^{*}(y, z)}^{(z)}\right|^{2}
$$

Summing over all $(y, z) \in R$:

$$
\text { Progress }_{t}-\text { Progress }_{t+1} \leq \sum_{(y, z) \in R} \sqrt{\frac{m}{m^{\prime}}}\left|\alpha_{j^{*}(y, z)}^{(y)}\right|^{2}+\sum_{(y, z) \in R} \sqrt{\frac{m^{\prime}}{m}}\left|\beta_{j^{*}(y, z)}^{(z)}\right|^{2}
$$

Final claim: $\sum_{(y, z) \in R}\left|\alpha_{j^{*}(y, z)}^{(\mathcal{y})}\right|^{2} \leq|Y| \quad$ (and similarly for the second term, completing the proof)

$$
R=\{(y, z): \operatorname{dist}(y, z)=1\} \subseteq Y \times Z \quad \text { Progress }_{t}=\sum_{(y, z) \in R}\left|\left\langle\psi_{y}^{t} \mid \psi_{z}^{t}\right\rangle\right|
$$

$$
\text { Claim: } \text { Progress }_{t}-\text { Progress }_{t+1} \leq \sqrt{\frac{m}{m^{\prime}}}|Y|+\sqrt{\frac{m^{\prime}}{m}}|Z|
$$

Fix any t and $t+1 \quad$ Consider any pair $(y, z) \in R \quad$ They differ on some coordinate $j^{*}(y, z)$ Final claim: $\sum_{(y, z) \in R}\left|\alpha_{j^{*}(y, z)}^{(y)}\right|^{2} \leq|Y|$
For each $y \in Y$, if you go over all z such that $(y, z) \in R$, the associated $j^{*}(y, z)$ are distinct. So for each $y \in Y$, you're summing a subset of all possible $\left|\alpha_{j}^{(\nu)}\right|^{2}$. Which is at most 1 . So indeed the overall sum is at most $|Y|$.

[Ambainis '00]
 Super-Basic Adversary Method:

For $\varphi=(Y E S, N O)$, suppose $\mathbb{Y} \subseteq Y E S, \mathbb{Z} \subseteq N O$ are such that:

- for each $y \in \mathbb{Y}$, there are at least m strings $\mathbb{Z} \in \mathbb{Z}$ with $\operatorname{dist}(y, z)=1$
- for each $z \in \mathbb{Z}$, there are at least m^{\prime} strings $y \in \mathbb{Y}$ with $\operatorname{dist}(y, z)=1$

Then $Q(\varphi)$, the quantum query complexity of φ, is $\gtrsim \sqrt{m m^{\prime}}$.

[Ambainis '00] Swper-Basic Adversary Method:

For $\varphi=(Y E S, N O)$, suppose $Y \subseteq Y E S, Z \subseteq N O$ are such that:

- for each $y \in \mathbb{Y}$, there are at least m strings $\mathbb{Z} \in \mathbb{Z}$ with $\operatorname{dist}(y, z)=1$
- for each $\mathbb{Z} \in \mathbb{Z}$, there are at least m^{\prime} strings $y \in \mathbb{Y}$ with $\operatorname{dist}(y, z)=1$

Then $\mathrm{Q}(\varphi)$, the quantum query complexity of φ, is $\gtrsim \sqrt{m m^{\prime}}$.

Basic Adversary Method:

For $\varphi=(Y E S, N O)$, let $Y \subseteq Y E S, \mathbb{Z} \subseteq N O$.
Let $R \subseteq Y \times \mathbb{Z}$ be a set of "hard-to-distinguish" pairs, such that:

- for each $y \in \mathbb{Y}$, there are at least m strings $\mathbb{Z} \in \mathbb{Z}$ with $(y, z) \in R$
- for each $\mathbb{z} \in \mathbb{Z}$, there are at least m^{\prime} strings $y \in Y$ with $(y, z) \in R$

Also, for each coordinate j, define $R_{j}=\left\{(y, z) \in R: y_{j} \neq z_{j}\right\}$
(namely, all the pairs distinguishable by querying coordinate j).
Assume:

- for each $y \in \mathbb{Y}$ and j, there are at most ℓ strings $\mathbb{Z} \in \mathbb{Z}$ with $(y, z) \in R_{j}$
- for each $z \in \mathbb{Z}$ and j, there are at most ℓ^{\prime} strings $y \in \mathbb{Y}$ with $(y, z) \in R_{j}$

Then $\mathrm{Q}(\varphi)$, the quantum query complexity of φ, is $\gtrsim \sqrt{m m^{\prime} / \ell \ell^{\prime}}$.

Proof: Exercise!
(Only tiny modifications needed to the proof we saw.)

Exercise \#2: Recall that Grover Search only needs $\lesssim \sqrt{N / k}$ queries to find a 1 if it's promised there are at least k 1's. \quad (Assume $k \leq N / 2$.)

Use the Basic Adversary Method to show $\gtrsim \sqrt{N / k}$ queries are necessary for the promise problem:
$\varphi=$ "decide if w has no 1 's, or at least $k 1$'s".

Basic Adversary Method:

For $\varphi=(Y E S, N O)$, let $Y \subseteq Y E S, \mathbb{Z} \subseteq N O$.
Let $R \subseteq \mathbb{Y} \times \mathbb{Z}$ be a set of "hard-to-distinguish" pairs, such that:

- for each $y \in \mathbb{Y}$, there are at least m strings $\mathbb{Z} \in \mathbb{Z}$ with $(y, z) \in R$
- for each $z \in \mathbb{Z}$, there are at least m^{\prime} strings $y \in \mathbb{Y}$ with $(y, z) \in R$

Also, for each coordinate j, define $R_{j}=\left\{(y, z) \in R: y_{j} \neq z_{j}\right\}$
(namely, all the pairs distinguishable by querying coordinate j).
Assume:

- for each $y \in \mathbb{Y}$ and j, there are at most ℓ strings $\mathbb{Z} \in \mathbb{Z}$ with $(y, z) \in R_{j}$
- for each $z \in \mathbb{Z}$ and j, there are at most ℓ^{\prime} strings $y \in \mathbb{Y}$ with $(y, z) \in R_{j}$

Then $\mathrm{Q}(\varphi)$, the quantum query complexity of φ, is $\gtrsim \sqrt{m m^{\prime} / \ell \ell^{\prime}}$.

General ("Negative-Weights") Adversary Method:

For $\varphi=(Y E S, N O)$, let $Y \subseteq Y E S, \mathbb{Z} \subseteq N O$.
Let $R \subseteq \mathbb{Y} \times \mathbb{Z}$ be a set of "hard-to-distinguish" pairs, such that:

- for each $y \in \mathbb{Y}$, there are at least m strings $\mathbb{Z} \in \mathbb{Z}$ with $(y, z) \in R$
- for each $z \in \mathbb{Z}$, there are at least m^{\prime} strings $y \in \mathbb{Y}$ with $(y, z) \in R$

Also, for each coordinate j, define $R_{j}=\left\{(y, z) \in R: y_{j} \neq z_{j}\right\}$
(namely, all the pairs distinguishable by querying coordinate j).
Assume:

- for each $y \in \mathbb{Y}$ and j, there are at most ℓ strings $\mathbb{Z} \in \mathbb{Z}$ with $(y, z) \in R_{j}$
- for each $z \in \mathbb{Z}$ and j, there are at most ℓ^{\prime} strings $y \in \mathbb{Y}$ with $(y, z) \in R_{j}$

Then $\mathrm{Q}(\varphi)$, the quantum query complexity of φ, is $\gtrsim \sqrt{m m^{\prime} / \ell \ell^{\prime}}$.

General ("Negative-Weights") Adversary Method:

A story for another time!

