
Lecture 20:

The Adversary Method
for Quantum Query Lower Bounds

Secret N-bit input string w

You can query a coordinate j to find out 𝑤𝑗

In fact, you can query superpositions…

Given access to 𝑄𝑤
± which implements 𝑗 ↦ −1 𝑤𝑗|𝑗⟩

Trying to solve some fixed decision problem 𝜑 on w

Example: 𝜑 = “OR”, deciding if w has at least one 1

Think of 𝜑 = (𝐘𝐄𝐒, 𝐍𝐎), where YES and NO are subsets of strings.
In “OR” example, YES = {all N-bit strings with at least one 1}, NO = {00∙∙∙0}

If 𝐘𝐄𝐒 ∪ 𝐍𝐎 = {all strings}, 𝜑 is called “total”; otherwise, 𝜑 is “partial/promise”

Quantum query model: recap

Cost: only the number of uses of 𝑄𝑤
±

Grover’s Algorithm: Solves 𝜑 = “OR” with cost ≲ 𝑁

[Bennett–Bernstein–Brassard–Vazirani ca. ’96]:

Proved a cost lower bound for 𝜑 = “OR”: ≳ 𝑁 queries are necessary.

They called their technique the Hybrid Method.

How to prove Lower Bounds on
quantum query algorithms…

[Beals–Buhrman–Cleve–Mosca–de Wolf ’98]: The Polynomial Method.

[Ambainis ’00]: The (Basic) Adversary Method.

[Many groups]: Variants on the Adversary Method.

[Høyer–Lee–Špalek ’07]: “Negative-weights”, aka General Adversary Method.

[Reichardt ’09]: The General Adversary Method is optimal
— there is always a matching upper bound (query algorithm)!

A generic T-query algorithm:

log(N)-qubit
query register

𝑈0

𝑄𝑤
±

𝑈1

𝑄𝑤
± 𝑄𝑤

±

𝑈𝑇

•
•
•“workspace”

qubits

Secret N-bit input string w defines the behavior of 𝑄𝑤
±

𝑈0

𝑄𝑤
±

𝑈1

𝑄𝑤
± 𝑄𝑤

±

𝑈𝑇

•
•
•

0
0
0
0
0
0
0

•••

An algorithm supposedly
solving 𝜑 = (𝐘𝐄𝐒, 𝐍𝐎):

Secret N-bit input string w defines the behavior of 𝑄𝑤
±

𝜓𝑤
0 𝜓𝑤

1 𝜓𝑤
𝑇−1 𝜓𝑤

𝑇

𝑈0

𝑄𝑤
±

𝑈1

𝑄𝑤
± 𝑄𝑤

±

𝑈𝑇

•
•
•

0
0
0
0
0
0
0

•••

An algorithm supposedly
solving 𝜑 = (𝐘𝐄𝐒, 𝐍𝐎):

𝜓𝑤
0 𝜓𝑤

1 𝜓𝑤
𝑇−1 𝜓𝑤

𝑇

An “adversary” picks some 𝒚 ∈ 𝐘𝐄𝐒 and some 𝒛 ∈ 𝐍𝐎
and considers running your algorithm with 𝑤 = 𝒚 or with 𝑤 = 𝒛.

𝑈0

𝑄𝑤
±

𝑈1

𝑄𝑤
± 𝑄𝑤

±

𝑈𝑇

•
•
•

0
0
0
0
0
0
0

An algorithm supposedly
solving 𝜑 = (𝐘𝐄𝐒, 𝐍𝐎):

𝜓𝑤
0

An “adversary” picks some 𝒚 ∈ 𝐘𝐄𝐒 and some 𝒛 ∈ 𝐍𝐎
and considers running your algorithm with 𝑤 = 𝒚 or with 𝑤 = 𝒛.

Clearly: 𝜓𝒚
0 = |𝜓𝒛

0⟩; 𝜓𝒚
0 𝜓𝒛

0 = 1i.e.,

𝑈0

𝑄𝑤
±

𝑈1

𝑄𝑤
± 𝑄𝑤

±

𝑈𝑇

•
•
•

0
0
0
0
0
0
0

An algorithm supposedly
solving 𝜑 = (𝐘𝐄𝐒, 𝐍𝐎):

An “adversary” picks some 𝒚 ∈ 𝐘𝐄𝐒 and some 𝒛 ∈ 𝐍𝐎
and considers running your algorithm with 𝑤 = 𝒚 or with 𝑤 = 𝒛.

𝜓𝑤
𝑇𝜓𝒚

0 𝜓𝒛
0 = 1

𝑈0

𝑄𝑤
±

𝑈1

𝑄𝑤
± 𝑄𝑤

±

𝑈𝑇

•
•
•

0
0
0
0
0
0
0

An algorithm supposedly
solving 𝜑 = (𝐘𝐄𝐒, 𝐍𝐎):

An “adversary” picks some 𝒚 ∈ 𝐘𝐄𝐒 and some 𝒛 ∈ 𝐍𝐎
and considers running your algorithm with 𝑤 = 𝒚 or with 𝑤 = 𝒛.

𝜓𝒚
𝑇 𝜓𝒛

𝑇 ≠ 1Clearly:𝜓𝒚
0 𝜓𝒛

0 = 1

Algorithm must be able to discriminate between

|𝜓𝒚
𝑇⟩ and |𝜓𝒛

𝑇⟩ with high probability,

because it must “accept” y and “reject” z.

𝑈0

𝑄𝑤
±

𝑈1

𝑄𝑤
± 𝑄𝑤

±

𝑈𝑇

•
•
•

0
0
0
0
0
0
0

An algorithm supposedly
solving 𝜑 = (𝐘𝐄𝐒, 𝐍𝐎):

An “adversary” picks some 𝒚 ∈ 𝐘𝐄𝐒 and some 𝒛 ∈ 𝐍𝐎
and considers running your algorithm with 𝑤 = 𝒚 or with 𝑤 = 𝒛.

𝜓𝒚
𝑇 𝜓𝒛

𝑇 ≤ .99In fact, we better have𝜓𝒚
0 𝜓𝒛

0 = 1

Algorithm must be able to discriminate between

|𝜓𝒚
𝑇⟩ and |𝜓𝒛

𝑇⟩ with high probability,

because it must “accept” y and “reject” z.

𝑈0

𝑄𝑤
±

𝑈1

𝑄𝑤
± 𝑄𝑤

±

𝑈𝑇

•
•
•

0
0
0
0
0
0
0

An algorithm supposedly
solving 𝜑 = (𝐘𝐄𝐒, 𝐍𝐎):

An “adversary” picks some 𝒚 ∈ 𝐘𝐄𝐒 and some 𝒛 ∈ 𝐍𝐎
and considers running your algorithm with 𝑤 = 𝒚 or with 𝑤 = 𝒛.

𝜓𝒚
𝑇 𝜓𝒛

𝑇 ≤ .99In fact, we better have𝜓𝒚
0 𝜓𝒛

0 = 1

Algorithm must be able to discriminate between

|𝜓𝒚
𝑇⟩ and |𝜓𝒛

𝑇⟩ with high probability,

because it must “accept” y and “reject” z.

Recall Lecture 4.5, “Discriminating Two Qubits”:

Given two quantum states |𝒖⟩ and |𝒗⟩,
the probability with which they can be distinguished by any
quantum algorithm is a function of the angle between them.

𝑈0

𝑄𝑤
±

𝑈1

𝑄𝑤
± 𝑄𝑤

±

𝑈𝑇

•
•
•

0
0
0
0
0
0
0

An “adversary” picks some 𝒚 ∈ 𝐘𝐄𝐒 and some 𝒛 ∈ 𝐍𝐎
and considers running your algorithm with 𝑤 = 𝒚 or with 𝑤 = 𝒛.

𝜓𝒚
𝑇 𝜓𝒛

𝑇 ≤ .99We have𝜓𝒚
0 𝜓𝒛

0 = 1

Possible idea: define Progress𝑡 = 𝜓𝒚
𝑡 𝜓𝒛

𝑡

Suppose we can show Progress𝑡 − Progress𝑡+1 ≤ 𝛿

This would imply: 𝑇 ≥ .01/𝛿 ☺

𝑈0

𝑄𝑤
±

𝑈1

𝑄𝑤
± 𝑄𝑤

±

𝑈𝑇

•
•
•

0
0
0
0
0
0
0

An “adversary” picks some 𝒚 ∈ 𝐘𝐄𝐒 and some 𝒛 ∈ 𝐍𝐎
and considers running your algorithm with 𝑤 = 𝒚 or with 𝑤 = 𝒛.

Possible idea: define Progress𝑡 = 𝜓𝒚
𝑡 𝜓𝒛

𝑡

Suppose we can show Progress𝑡 − Progress𝑡+1 ≤ 𝛿

This would imply: 𝑇 ≥ .01/𝛿 ☺

Note: Applying unitary Ut does not affect 𝜓𝒚
𝑡 𝜓𝒛

𝑡

So suffices to analyze how 𝑄𝑤
± affects Progress

An “adversary” picks some 𝒚 ∈ 𝐘𝐄𝐒 and some 𝒛 ∈ 𝐍𝐎
and considers running your algorithm with 𝑤 = 𝒚 or with 𝑤 = 𝒛.

Possible idea: define Progress𝑡 = 𝜓𝒚
𝑡 𝜓𝒛

𝑡

Suppose we can show Progress𝑡 − Progress𝑡+1 ≤ 𝛿

This would imply: 𝑇 ≥ .01/𝛿 ☺

Note: Applying unitary Ut does not affect 𝜓𝒚
𝑡 𝜓𝒛

𝑡

So suffices to analyze how 𝑄𝑤
± affects Progress

This is a good idea, but a little too simple

Doesn’t suffice to focus on a single 𝒚 ∈ 𝐘𝐄𝐒 and a single 𝒛 ∈ 𝐍𝐎

If it did, would show that many queries needed to distinguish 𝑤 = 𝒚 from 𝑤 = 𝒛

But this only requires 1 query: since 𝒚 ≠ 𝒛, there exists j such that 𝒚𝑗 ≠ 𝒛𝑗

Need to have a bunch of 𝒚’s versus a bunch of 𝒛’s

dist(y, z) = Hamming distance,
of coordinates where y, z differ

we’ll show ≥ .005 𝑚 𝑚′

[Ambainis ’00]
Super-Basic Adversary Method:

For 𝜑 = (YES, NO), suppose 𝒀 ⊆ YES, 𝒁 ⊆ NO are such that:

• for each 𝒚 ∈ 𝒀, there are at least 𝑚 strings 𝒛 ∈ 𝒁 with dist(y, z) = 1

• for each 𝒛 ∈ 𝒁, there are at least 𝑚′ strings 𝒚 ∈ 𝒀 with dist(y, z) = 1

Then Q(𝜑), the quantum query complexity of 𝜑, is ≳ 𝑚𝑚′.

Super-Basic Adversary Method:

For 𝜑 = (YES, NO), suppose 𝒀 ⊆ YES, 𝒁 ⊆ NO are such that:

• for each 𝒚 ∈ 𝒀, there are at least 𝑚 strings 𝒛 ∈ 𝒁 with dist(y, z) = 1

• for each 𝒛 ∈ 𝒁, there are at least 𝑚′ strings 𝒚 ∈ 𝒀 with dist(y, z) = 1

Then Q(𝜑), the quantum query complexity of 𝜑, is ≳ 𝑚𝑚′.

Example use #1: 𝜑 = “OR” (Decision-Grover)

Take 𝒀 = {000001, 000010, 000100, 001000, 010000, 100000}.

Take 𝒁 = {000000}. (Well, at least for N = 6.)

𝑚 = 1, 𝑚′ = 𝑁 ⇒ Q(𝜑) ≳ 𝑁 ☺

Super-Basic Adversary Method:

For 𝜑 = (YES, NO), suppose 𝒀 ⊆ YES, 𝒁 ⊆ NO are such that:

• for each 𝒚 ∈ 𝒀, there are at least 𝑚 strings 𝒛 ∈ 𝒁 with dist(y, z) = 1

• for each 𝒛 ∈ 𝒁, there are at least 𝑚′ strings 𝒚 ∈ 𝒀 with dist(y, z) = 1

Then Q(𝜑), the quantum query complexity of 𝜑, is ≳ 𝑚𝑚′.

Example use #2: 𝜑: Decide if w has at least k 1’s, or less than k 1’s

Take 𝒀 = {all strings with exactly k 1’s}.

Take 𝒁 = {all strings with exactly 𝑘 − 1 1’s}.

𝑚 = 𝑘, 𝑚′ = 𝑁 − 𝑘 + 1

⇒ Q(𝜑) ≳ 𝑘(𝑁 − 𝑘 + 1), which is ≳ 𝑘𝑁 for 𝑘 ≤
𝑁

2

Super-Basic Adversary Method:

For 𝜑 = (YES, NO), suppose 𝒀 ⊆ YES, 𝒁 ⊆ NO are such that:

• for each 𝒚 ∈ 𝒀, there are at least 𝑚 strings 𝒛 ∈ 𝒁 with dist(y, z) = 1

• for each 𝒛 ∈ 𝒁, there are at least 𝑚′ strings 𝒚 ∈ 𝒀 with dist(y, z) = 1

Then Q(𝜑), the quantum query complexity of 𝜑, is ≳ 𝑚𝑚′.

Example use #3:

AND

OR OR OR

𝑁

𝑁

𝜑

𝑤1𝑤2 𝑤 𝑁 𝑤𝑁

YES = strings with a 1 in each ‘block’
NO = strings with a block of all 0’s

Y= strings with exactly one 1 per block

Z= strings with exactly one all-0’s block,
all other blocks having exactly one 1

𝑚 = 𝑁, 𝑚′ = 𝑁 ⇒ Q(𝜑) ≳ 𝑁

This lower bound is sharp, and not known to be attainable by the “Polynomial Method”

Super-Basic Adversary Method:

For 𝜑 = (YES, NO), suppose 𝒀 ⊆ YES, 𝒁 ⊆ NO are such that:

• for each 𝒚 ∈ 𝒀, there are at least 𝑚 strings 𝒛 ∈ 𝒁 with dist(y, z) = 1

• for each 𝒛 ∈ 𝒁, there are at least 𝑚′ strings 𝒚 ∈ 𝒀 with dist(y, z) = 1

Then Q(𝜑), the quantum query complexity of 𝜑, is ≳ 𝑚𝑚′.

Proof: Define R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

(These are particularly challenging pairs of inputs for the algorithm:
the algorithm needs to give different answers on them,

but there is only a single coordinate where they are different.)

Super-Basic Adversary Method:

For 𝜑 = (YES, NO), suppose 𝒀 ⊆ YES, 𝒁 ⊆ NO are such that:

• for each 𝒚 ∈ 𝒀, there are at least 𝑚 strings 𝒛 ∈ 𝒁 with dist(y, z) = 1

• for each 𝒛 ∈ 𝒁, there are at least 𝑚′ strings 𝒚 ∈ 𝒀 with dist(y, z) = 1

Then Q(𝜑), the quantum query complexity of 𝜑, is ≳ 𝑚𝑚′.

Proof: Define R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡Define , where |𝜓𝑤
𝑡 ⟩ is state after tth query, on input w

We have Progress0 = |𝑅| and Progress𝑇 ≤ .99|𝑅|

the latter because 𝜓𝒚
𝑇 𝜓𝒛

𝑇 ≤ .99 must hold for all 𝒚 ∈ 𝒀, 𝒛 ∈ 𝒁

Super-Basic Adversary Method:

For 𝜑 = (YES, NO), suppose 𝒀 ⊆ YES, 𝒁 ⊆ NO are such that:

Then Q(𝜑), the quantum query complexity of 𝜑, is ≳ 𝑚𝑚′.

Proof: Define

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡Define , where |𝜓𝑤
𝑡 ⟩ is state after tth query, on input w

We have Progress0 = |𝑅| and Progress𝑇 ≤ .99|𝑅|

Claim: Progress𝑡 − Progress𝑡+1 ≤
2

𝑚𝑚′
|𝑅| for all t.

⇒ T ≥ .005 𝑚 𝑚′, as desired.

• for each 𝒚 ∈ 𝒀, there are at least 𝑚 strings 𝒛 ∈ 𝒁 with dist(y, z) = 1

• for each 𝒛 ∈ 𝒁, there are at least 𝑚′ strings 𝒚 ∈ 𝒀 with dist(y, z) = 1

R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

• for each 𝒚 ∈ 𝒀, there are at least 𝑚 strings 𝒛 ∈ 𝒁 with dist(y, z) = 1

• for each 𝒛 ∈ 𝒁, there are at least 𝑚′ strings 𝒚 ∈ 𝒀 with dist(y, z) = 1

Claim: Progress𝑡 − Progress𝑡+1 ≤
2

𝑚𝑚′
|𝑅| for all t.

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

• for each 𝒚 ∈ 𝒀, there are at least 𝑚 strings 𝒛 ∈ 𝒁 with dist(y, z) = 1

• for each 𝒛 ∈ 𝒁, there are at least 𝑚′ strings 𝒚 ∈ 𝒀 with dist(y, z) = 1

Claim: Progress𝑡 − Progress𝑡+1 ≤

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

for each 𝒚 ∈ 𝒀, there are at least 𝑚 strings 𝒛 ∈ 𝒁 with dist(y, z) = 1

Hence 𝑅 ≥ 𝑚 |𝒀|

Similarly 𝑅 ≥ 𝑚′|𝒁|

So 2 𝑅 ≥ 𝑚|𝒀| + 𝑚′|𝒁|

Claim is even stronger if RHS is
1

𝑚 𝑚′
(𝑚 𝒀 +𝑚′ 𝒁)

𝑚′

𝑚′
𝒀 +

𝑚′

𝑚′
𝒁=

2

𝑚𝑚′
|𝑅| for all t.

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

Claim: Progress𝑡 − Progress𝑡+1 ≤
𝑚′

𝑚′
𝒀 +

𝑚′

𝑚′
𝒁

Recall: Unitaries don’t affect Progress, just the 𝑄𝑤
± queries.

Consider any pair 𝒚, 𝒛 ∈ 𝑅

Fix any t and t+1 (“before” and “after”)

They differ on some coordinate j*

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

Claim: Progress𝑡 − Progress𝑡+1 ≤
𝑚′

𝑚′
𝒀 +

𝑚′

𝑚′
𝒁

Consider any pair 𝒚, 𝒛 ∈ 𝑅Fix any t and t+1 They differ on some coordinate j*

“Before”: |𝜓𝒚
𝑡⟩

𝑈0

𝑄𝒚
±

𝑈1

𝑄𝒚
± 𝑄𝒚

±

𝑈𝑇

•
•
•

“After”: |𝜓𝒚
𝑡+1⟩

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

Claim: Progress𝑡 − Progress𝑡+1 ≤
𝑚′

𝑚′
𝒀 +

𝑚′

𝑚′
𝒁

Consider any pair 𝒚, 𝒛 ∈ 𝑅Fix any t and t+1 They differ on some coordinate j*

“Before”: |𝜓𝒚
𝑡⟩

𝑄𝒚
± 𝑄𝒚

± 𝑄𝒚
±•

•
•

|𝜓𝒚
𝑡⟩ |𝜓𝒚

𝑡+1⟩

“After”: |𝜓𝒚
𝑡+1⟩

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

Claim: Progress𝑡 − Progress𝑡+1 ≤
𝑚′

𝑚′
𝒀 +

𝑚′

𝑚′
𝒁

Consider any pair 𝒚, 𝒛 ∈ 𝑅Fix any t and t+1 They differ on some coordinate j*

“Before”: |𝜓𝒚
𝑡⟩ = 1 ⊗ stuff1 + 2 ⊗ stuff2 +⋯+ 𝑁 ⊗ stuff𝑁

query
register

workspace
register

We have collected like terms
based on the query register.

Let |𝜙𝑗⟩ be a unit vector

in the direction of (stuff𝑗)

“After”: |𝜓𝒚
𝑡+1⟩

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

Claim: Progress𝑡 − Progress𝑡+1 ≤
𝑚′

𝑚′
𝒀 +

𝑚′

𝑚′
𝒁

Consider any pair 𝒚, 𝒛 ∈ 𝑅Fix any t and t+1 They differ on some coordinate j*

“Before”: |𝜓𝒚
𝑡⟩ = 𝛼1 1 ⊗ |𝜙1⟩ + 𝛼2 2 ⊗ |𝜙2⟩ + ⋯+ 𝛼𝑁 𝑁 ⊗ |𝜙𝑁⟩

We have collected like terms
based on the query register.

Let |𝜙𝑗⟩ be a unit vector

in the direction of (stuff𝑗)

“After”: |𝜓𝒚
𝑡+1⟩

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

Claim: Progress𝑡 − Progress𝑡+1 ≤
𝑚′

𝑚′
𝒀 +

𝑚′

𝑚′
𝒁

Consider any pair 𝒚, 𝒛 ∈ 𝑅Fix any t and t+1 They differ on some coordinate j*

“Before”: |𝜓𝒚
𝑡⟩ = 𝛼1 1 ⊗ |𝜙1⟩ + 𝛼2 2 ⊗ |𝜙2⟩ + ⋯+ 𝛼𝑁 𝑁 ⊗ |𝜙𝑁⟩ Each |𝜙𝑗⟩ is unit,

and σ𝑗 𝛼𝑗
2
= 1.

“After”: |𝜓𝒚
𝑡+1⟩

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

Claim: Progress𝑡 − Progress𝑡+1 ≤
𝑚′

𝑚′
𝒀 +

𝑚′

𝑚′
𝒁

Consider any pair 𝒚, 𝒛 ∈ 𝑅Fix any t and t+1 They differ on some coordinate j*

“Before”: |𝜓𝒚
𝑡⟩ = 𝛼1 1 ⊗ |𝜙1⟩ + 𝛼2 2 ⊗ |𝜙2⟩ + ⋯+ 𝛼𝑁 𝑁 ⊗ |𝜙𝑁⟩

𝑄𝒚
±

= −1 𝒚1𝛼1 1 ⊗ |𝜙1⟩ + −1 𝒚2𝛼2 2 ⊗ |𝜙2⟩ + ⋯+ −1 𝒚𝑁𝛼𝑁 𝑁 ⊗ |𝜙𝑁⟩

The jth amplitude is multiplied by −1 𝒚𝑗

Each |𝜙𝑗⟩ is unit,

and σ𝑗 𝛼𝑗
2
= 1.

“After”: |𝜓𝒚
𝑡+1⟩

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

Claim: Progress𝑡 − Progress𝑡+1 ≤
𝑚′

𝑚′
𝒀 +

𝑚′

𝑚′
𝒁

Consider any pair 𝒚, 𝒛 ∈ 𝑅Fix any t and t+1 They differ on some coordinate j*

“Before”: |𝜓𝒚
𝑡⟩

“After”: |𝜓𝒚
𝑡+1⟩

= 𝛼1 1 ⊗ |𝜙1⟩ + 𝛼2 2 ⊗ |𝜙2⟩ + ⋯+ 𝛼𝑁 𝑁 ⊗ |𝜙𝑁⟩

= −1 𝒚1𝛼1 1 ⊗ |𝜙1⟩ + −1 𝒚2𝛼2 2 ⊗ |𝜙2⟩ + ⋯+ −1 𝒚𝑁𝛼𝑁 𝑁 ⊗ |𝜙𝑁⟩

Each |𝜙𝑗⟩ is unit,

and σ𝑗 𝛼𝑗
2
= 1.= 𝛽1 1 ⊗ 𝜒1 + 𝛽2 2 ⊗ 𝜒2 +⋯+ 𝛽𝑁 𝑁 ⊗ |𝜒𝑁⟩

= −1 𝒛1𝛽1 1 ⊗ |𝜒1⟩ + −1 𝒛2 𝛽2 2 ⊗ |𝜒2⟩ + ⋯+ −1 𝒛𝑁𝛽𝑁 𝑁 ⊗ |𝜒𝑁⟩

|𝜓𝒛
𝑡⟩

|𝜓𝒛
𝑡+1⟩

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

Claim: Progress𝑡 − Progress𝑡+1 ≤
𝑚′

𝑚′
𝒀 +

𝑚′

𝑚′
𝒁

Consider any pair 𝒚, 𝒛 ∈ 𝑅Fix any t and t+1 They differ on some coordinate j*

“Before”: |𝜓𝒚
𝑡⟩

“After”: |𝜓𝒚
𝑡+1⟩

= 𝛼1 1 ⊗ |𝜙1⟩ + 𝛼2 2 ⊗ |𝜙2⟩ + ⋯+ 𝛼𝑁 𝑁 ⊗ |𝜙𝑁⟩

= −1 𝒚1𝛼1 1 ⊗ |𝜙1⟩ + −1 𝒚2𝛼2 2 ⊗ |𝜙2⟩ + ⋯+ −1 𝒚𝑁𝛼𝑁 𝑁 ⊗ |𝜙𝑁⟩

Each |𝜙𝑗⟩ is unit,

and σ𝑗 𝛼𝑗
2
= 1.= 𝛽1 1 ⊗ 𝜒1 + 𝛽2 2 ⊗ 𝜒2 +⋯+ 𝛽𝑁 𝑁 ⊗ |𝜒𝑁⟩

= −1 𝒛1𝛽1 1 ⊗ |𝜒1⟩ + −1 𝒛2 𝛽2 2 ⊗ |𝜒2⟩ + ⋯+ −1 𝒛𝑁𝛽𝑁 𝑁 ⊗ |𝜒𝑁⟩

|𝜓𝒛
𝑡⟩

|𝜓𝒛
𝑡+1⟩

⟨𝜓𝑦
𝑡 |𝜓𝒛

𝑡⟩ = 𝛼1𝛽1⟨𝜙1 𝜒1 + 𝛼2𝛽2⟨𝜙2 𝜒2 +⋯+ 𝛼𝑁𝛽𝑁⟨𝜙𝑁|𝜒𝑁⟩

These signs are all the same — except for in coordinate j*

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

Claim: Progress𝑡 − Progress𝑡+1 ≤
𝑚′

𝑚′
𝒀 +

𝑚′

𝑚′
𝒁

Consider any pair 𝒚, 𝒛 ∈ 𝑅Fix any t and t+1 They differ on some coordinate j*

“Before”: |𝜓𝒚
𝑡⟩

“After”: |𝜓𝒚
𝑡+1⟩

= 𝛼1 1 ⊗ |𝜙1⟩ + 𝛼2 2 ⊗ |𝜙2⟩ + ⋯+ 𝛼𝑁 𝑁 ⊗ |𝜙𝑁⟩

= −1 𝒚1𝛼1 1 ⊗ |𝜙1⟩ + −1 𝒚2𝛼2 2 ⊗ |𝜙2⟩ + ⋯+ −1 𝒚𝑁𝛼𝑁 𝑁 ⊗ |𝜙𝑁⟩

Each |𝜙𝑗⟩ is unit,

and σ𝑗 𝛼𝑗
2
= 1.= 𝛽1 1 ⊗ 𝜒1 + 𝛽2 2 ⊗ 𝜒2 +⋯+ 𝛽𝑁 𝑁 ⊗ |𝜒𝑁⟩

= −1 𝒛1𝛽1 1 ⊗ |𝜒1⟩ + −1 𝒛2 𝛽2 2 ⊗ |𝜒2⟩ + ⋯+ −1 𝒛𝑁𝛽𝑁 𝑁 ⊗ |𝜒𝑁⟩

|𝜓𝒛
𝑡⟩

|𝜓𝒛
𝑡+1⟩

⟨𝜓𝑦
𝑡 |𝜓𝒛

𝑡⟩ = 𝛼1𝛽1⟨𝜙1 𝜒1 + 𝛼2𝛽2⟨𝜙2 𝜒2 +⋯+ 𝛼𝑁𝛽𝑁⟨𝜙𝑁|𝜒𝑁⟩

⟨𝜓𝑦
𝑡+1|𝜓𝒛

𝑡+1⟩ = 𝛼1𝛽1⟨𝜙1 𝜒1 + 𝛼2𝛽2⟨𝜙2 𝜒2 +⋯− 𝛼𝑗∗𝛽𝑗∗ 𝜙𝑗∗ 𝜒𝑗∗ +⋯+ 𝛼𝑁𝛽𝑁⟨𝜙𝑁|𝜒𝑁⟩

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

Claim: Progress𝑡 − Progress𝑡+1 ≤
𝑚′

𝑚′
𝒀 +

𝑚′

𝑚′
𝒁

Consider any pair 𝒚, 𝒛 ∈ 𝑅Fix any t and t+1 They differ on some coordinate j*

“Before”:

“After”:

Each |𝜙𝑗⟩ is unit,

and σ𝑗 𝛼𝑗
2
= 1.

⟨𝜓𝑦
𝑡 |𝜓𝒛

𝑡⟩ = 𝛼1𝛽1⟨𝜙1 𝜒1 + 𝛼2𝛽2⟨𝜙2 𝜒2 +⋯+ 𝛼𝑁𝛽𝑁⟨𝜙𝑁|𝜒𝑁⟩

⟨𝜓𝑦
𝑡+1|𝜓𝒛

𝑡+1⟩ = 𝛼1𝛽1⟨𝜙1 𝜒1 + 𝛼2𝛽2⟨𝜙2 𝜒2 +⋯− 𝛼𝑗∗𝛽𝑗∗ 𝜙𝑗∗ 𝜒𝑗∗ +⋯+ 𝛼𝑁𝛽𝑁⟨𝜙𝑁|𝜒𝑁⟩

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

Claim: Progress𝑡 − Progress𝑡+1 ≤
𝑚′

𝑚′
𝒀 +

𝑚′

𝑚′
𝒁

Consider any pair 𝒚, 𝒛 ∈ 𝑅Fix any t and t+1 They differ on some coordinate j*

“Before”:

“After”:

Each |𝜙𝑗⟩ is unit,

and σ𝑗 𝛼𝑗
2
= 1.

⟨𝜓𝑦
𝑡+1|𝜓𝒛

𝑡+1⟩ = 𝛼1𝛽1⟨𝜙1 𝜒1 + 𝛼2𝛽2⟨𝜙2 𝜒2 +⋯− 𝛼𝑗∗𝛽𝑗∗ 𝜙𝑗∗ 𝜒𝑗∗ +⋯+ 𝛼𝑁𝛽𝑁⟨𝜙𝑁|𝜒𝑁⟩

⟨𝜓𝑦
𝑡 |𝜓𝒛

𝑡⟩ = 𝛼1𝛽1⟨𝜙1 𝜒1 + 𝛼2𝛽2⟨𝜙2 𝜒2 +⋯+ 𝛼𝑁𝛽𝑁⟨𝜙𝑁|𝜒𝑁⟩

𝜓𝑦
𝑡 𝜓𝒛

𝑡 − 𝜓𝑦
𝑡+1 𝜓𝒛

𝑡+1 = 2 𝛼𝑗∗𝛽𝑗∗ 𝜙𝑗∗ 𝜒𝑗∗ 𝜓𝑦
𝑡 𝜓𝒛

𝑡 − 𝜓𝑦
𝑡+1 𝜓𝒛

𝑡+1 ≤ 2 𝛼𝑗∗ ∙ 𝛽𝑗∗⇒

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

Claim: Progress𝑡 − Progress𝑡+1 ≤
𝑚′

𝑚′
𝒀 +

𝑚′

𝑚′
𝒁

Consider any pair 𝒚, 𝒛 ∈ 𝑅Fix any t and t+1 They differ on some coordinate j*

“Before”:

“After”:

Each |𝜙𝑗⟩ is unit,

and σ𝑗 𝛼𝑗
2
= 1.

⟨𝜓𝑦
𝑡+1|𝜓𝒛

𝑡+1⟩ = 𝛼1𝛽1⟨𝜙1 𝜒1 + 𝛼2𝛽2⟨𝜙2 𝜒2 +⋯− 𝛼𝑗∗𝛽𝑗∗ 𝜙𝑗∗ 𝜒𝑗∗ +⋯+ 𝛼𝑁𝛽𝑁⟨𝜙𝑁|𝜒𝑁⟩

⟨𝜓𝑦
𝑡 |𝜓𝒛

𝑡⟩ = 𝛼1𝛽1⟨𝜙1 𝜒1 + 𝛼2𝛽2⟨𝜙2 𝜒2 +⋯+ 𝛼𝑁𝛽𝑁⟨𝜙𝑁|𝜒𝑁⟩

𝜓𝑦
𝑡 𝜓𝒛

𝑡 − 𝜓𝑦
𝑡+1 𝜓𝒛

𝑡+1 ≤

(triangle inequality)

𝜓𝑦
𝑡 𝜓𝒛

𝑡 − 𝜓𝑦
𝑡+1 𝜓𝒛

𝑡+1 ≤ 2 𝛼𝑗∗ ∙ 𝛽𝑗∗

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

Claim: Progress𝑡 − Progress𝑡+1 ≤
𝑚′

𝑚′
𝒀 +

𝑚′

𝑚′
𝒁

Consider any pair 𝒚, 𝒛 ∈ 𝑅Fix any t and t+1 They differ on some coordinate j*

“Before”:

“After”:

Each |𝜙𝑗⟩ is unit,

and σ𝑗 𝛼𝑗
2
= 1.

⟨𝜓𝑦
𝑡+1|𝜓𝒛

𝑡+1⟩ = 𝛼1𝛽1⟨𝜙1 𝜒1 + 𝛼2𝛽2⟨𝜙2 𝜒2 +⋯− 𝛼𝑗∗𝛽𝑗∗ 𝜙𝑗∗ 𝜒𝑗∗ +⋯+ 𝛼𝑁𝛽𝑁⟨𝜙𝑁|𝜒𝑁⟩

⟨𝜓𝑦
𝑡 |𝜓𝒛

𝑡⟩ = 𝛼1𝛽1⟨𝜙1 𝜒1 + 𝛼2𝛽2⟨𝜙2 𝜒2 +⋯+ 𝛼𝑁𝛽𝑁⟨𝜙𝑁|𝜒𝑁⟩

𝜓𝑦
𝑡 𝜓𝒛

𝑡 − 𝜓𝑦
𝑡+1 𝜓𝒛

𝑡+1 ≤ 2 𝛼𝑗∗ ∙ 𝛽𝑗∗

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

Claim: Progress𝑡 − Progress𝑡+1 ≤
𝑚′

𝑚′
𝒀 +

𝑚′

𝑚′
𝒁

Consider any pair 𝒚, 𝒛 ∈ 𝑅Fix any t and t+1 They differ on some coordinate j*

𝜓𝑦
𝑡 𝜓𝒛

𝑡 − 𝜓𝑦
𝑡+1 𝜓𝒛

𝑡+1 ≤ 2 𝛼𝑗∗ ∙ 𝛽𝑗∗

A math trick: For any real 𝑎, 𝑏, and ℎ > 0: 2𝑎𝑏 ≤ ℎ𝑎2 + Τ1 ℎ 𝑏2

Proof 1: AM-GM inequality: 𝑎𝑏 is the geometric mean of ℎ𝑎2 and Τ1 ℎ 𝑏2

Proof 2: Certainly: 0 ≤ ℎ 𝑎 − Τ1 ℎ 𝑏
2

Expanding: 0 ≤ ℎ𝑎2 + Τ1 ℎ 𝑏2 − 2𝑎𝑏

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

Claim: Progress𝑡 − Progress𝑡+1 ≤
𝑚′

𝑚′
𝒀 +

𝑚′

𝑚′
𝒁

Consider any pair 𝒚, 𝒛 ∈ 𝑅Fix any t and t+1 They differ on some coordinate j*

𝜓𝑦
𝑡 𝜓𝒛

𝑡 − 𝜓𝑦
𝑡+1 𝜓𝒛

𝑡+1 ≤

A math trick: For any real 𝑎, 𝑏, and ℎ > 0: 2𝑎𝑏 ≤ ℎ𝑎2 + Τ1 ℎ 𝑏2

Apply this above, with 𝑎 = 𝛼𝑗∗ , 𝑏 = 𝛽𝑗∗ , ℎ =
𝑚′

𝑚′

2 𝛼𝑗∗ ∙ 𝛽𝑗∗

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

Claim: Progress𝑡 − Progress𝑡+1 ≤
𝑚′

𝑚′
𝒀 +

𝑚′

𝑚′
𝒁

Consider any pair 𝒚, 𝒛 ∈ 𝑅Fix any t and t+1 They differ on some coordinate j*

𝜓𝑦
𝑡 𝜓𝒛

𝑡 − 𝜓𝑦
𝑡+1 𝜓𝒛

𝑡+1 ≤

A math trick: For any real 𝑎, 𝑏, and ℎ > 0: 2𝑎𝑏 ≤ ℎ𝑎2 + Τ1 ℎ 𝑏2

Apply this above, with 𝑎 = 𝛼𝑗∗ , 𝑏 = 𝛽𝑗∗ , ℎ =
𝑚′

𝑚′

𝑚′

𝑚′ 𝛼𝑗∗
2

+
𝑚′

𝑚′ 𝛽𝑗∗
2

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

Claim: Progress𝑡 − Progress𝑡+1 ≤
𝑚′

𝑚′
𝒀 +

𝑚′

𝑚′
𝒁

Consider any pair 𝒚, 𝒛 ∈ 𝑅Fix any t and t+1 They differ on some coordinate j*

𝜓𝑦
𝑡 𝜓𝒛

𝑡 − 𝜓𝑦
𝑡+1 𝜓𝒛

𝑡+1 ≤

Finally, coordinate j* really depends on the pair 𝒚, 𝒛 , so let’s write it as

j* 𝒚, 𝒛

𝑚′

𝑚′ 𝛼𝑗∗
2

+
𝑚′

𝑚′ 𝛽𝑗∗
2

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

Claim: Progress𝑡 − Progress𝑡+1 ≤
𝑚′

𝑚′
𝒀 +

𝑚′

𝑚′
𝒁

Consider any pair 𝒚, 𝒛 ∈ 𝑅Fix any t and t+1 They differ on some coordinate j*

𝜓𝑦
𝑡 𝜓𝒛

𝑡 − 𝜓𝑦
𝑡+1 𝜓𝒛

𝑡+1 ≤

Finally, coordinate j* really depends on the pair 𝒚, 𝒛 , so let’s write it as

j* 𝒚, 𝒛

𝑚′

𝑚′ 𝛼𝑗∗ 𝒚,𝒛
2

+
𝑚′

𝑚′ 𝛽𝑗∗ 𝒚,𝒛
2

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

Claim: Progress𝑡 − Progress𝑡+1 ≤
𝑚′

𝑚′
𝒀 +

𝑚′

𝑚′
𝒁

Consider any pair 𝒚, 𝒛 ∈ 𝑅Fix any t and t+1 They differ on some coordinate j* 𝒚, 𝒛

𝜓𝑦
𝑡 𝜓𝒛

𝑡 − 𝜓𝑦
𝑡+1 𝜓𝒛

𝑡+1 ≤
𝑚′

𝑚′ 𝛼𝑗∗ 𝒚,𝒛
2

+
𝑚′

𝑚′ 𝛽𝑗∗ 𝒚,𝒛
2

Also, to be scrupulous about notation, the 𝛼𝑗 ’s come from |𝜓𝒚
𝑡⟩, and thus depend on y.

Similarly, the 𝛽𝑗 ’s depend on z.

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

Claim: Progress𝑡 − Progress𝑡+1 ≤
𝑚′

𝑚′
𝒀 +

𝑚′

𝑚′
𝒁

Consider any pair 𝒚, 𝒛 ∈ 𝑅Fix any t and t+1 They differ on some coordinate j* 𝒚, 𝒛

𝜓𝑦
𝑡 𝜓𝒛

𝑡 − 𝜓𝑦
𝑡+1 𝜓𝒛

𝑡+1 ≤
𝑚′

𝑚′ 𝛼𝑗∗ 𝒚,𝒛
𝒚 2

+
𝑚′

𝑚′ 𝛽𝑗∗ 𝒚,𝒛
𝒛

2

Summing over
all 𝒚, 𝒛 ∈ 𝑅:

Progress𝑡 − Progress𝑡+1 ≤ ෍

𝒚,𝒛 ∈𝑅

𝑚′

𝑚′
𝛼𝑗∗ 𝒚,𝒛

𝒚 2
+ ෍

𝒚,𝒛 ∈𝑅

𝑚′

𝑚′
𝛽𝑗∗ 𝒚,𝒛

𝒛
2

Final claim: ෍

𝒚,𝒛 ∈𝑅

𝛼𝑗∗ 𝒚,𝒛
𝒚 2

≤ |𝒀| (and similarly for the second term, completing the proof)

Progress𝑡 = ෍

𝒚,𝒛 ∈𝑅

𝜓𝒚
𝑡 𝜓𝒛

𝑡R = { (𝒚, 𝒛) : dist(y, z) = 1 } ⊆ 𝒀 × 𝒁

Claim: Progress𝑡 − Progress𝑡+1 ≤
𝑚′

𝑚′
𝒀 +

𝑚′

𝑚′
𝒁

Final claim: ෍

𝒚,𝒛 ∈𝑅

𝛼𝑗∗ 𝒚,𝒛
𝒚 2

≤ |𝒀|

Consider any pair 𝒚, 𝒛 ∈ 𝑅 They differ on some coordinate j* 𝒚, 𝒛Fix any t and t+1

For each 𝒚 ∈ 𝒀, if you go over all z such that 𝒚, 𝒛 ∈ 𝑅, the associated j* 𝒚, 𝒛 are distinct.

So for each 𝒚 ∈ 𝒀, you’re summing a subset of all possible 𝛼𝑗
𝒚 2

. Which is at most 1.

So indeed the overall sum is at most |𝒀|.

[Ambainis ’00]
Super-Basic Adversary Method:

For 𝜑 = (YES, NO), suppose 𝒀 ⊆ YES, 𝒁 ⊆ NO are such that:

• for each 𝒚 ∈ 𝒀, there are at least 𝑚 strings 𝒛 ∈ 𝒁 with dist(y, z) = 1

• for each 𝒛 ∈ 𝒁, there are at least 𝑚′ strings 𝒚 ∈ 𝒀 with dist(y, z) = 1

Then Q(𝜑), the quantum query complexity of 𝜑, is ≳ 𝑚𝑚′.

[Ambainis ’00]
Super-Basic Adversary Method:

For 𝜑 = (YES, NO), suppose 𝒀 ⊆ YES, 𝒁 ⊆ NO are such that:

• for each 𝒚 ∈ 𝒀, there are at least 𝑚 strings 𝒛 ∈ 𝒁 with dist(y, z) = 1

• for each 𝒛 ∈ 𝒁, there are at least 𝑚′ strings 𝒚 ∈ 𝒀 with dist(y, z) = 1

Then Q(𝜑), the quantum query complexity of 𝜑, is ≳ 𝑚𝑚′.

[Ambainis ’00] Basic Adversary Method:

For 𝜑 = (YES, NO), let 𝒀 ⊆ YES, 𝒁 ⊆ NO.

Let 𝑅 ⊆ 𝒀 × 𝒁 be a set of “hard-to-distinguish” pairs, such that:

• for each 𝒚 ∈ 𝒀, there are at least 𝑚 strings 𝒛 ∈ 𝒁 with 𝒚, 𝒛 ∈ 𝑅

• for each 𝒛 ∈ 𝒁, there are at least 𝑚′ strings 𝒚 ∈ 𝒀 with 𝒚, 𝒛 ∈ 𝑅

Also, for each coordinate j, define Rj = 𝒚, 𝒛 ∈ 𝑅 ∶ 𝒚𝑗 ≠ 𝒛𝑗

(namely, all the pairs distinguishable by querying coordinate j).

Assume:

• for each 𝒚 ∈ 𝒀 and j, there are at most ℓ strings 𝒛 ∈ 𝒁 with 𝒚, 𝒛 ∈ 𝑅𝑗

• for each 𝒛 ∈ 𝒁 and j, there are at most ℓ′ strings 𝒚 ∈ 𝒀 with 𝒚, 𝒛 ∈ 𝑅𝑗

Then Q(𝜑), the quantum query complexity of 𝜑, is ≳ Τ𝑚 𝑚′ ℓ ℓ′.

Proof: Exercise!

(Only tiny modifications needed to the proof we saw.)

Exercise #2: Recall that Grover Search only needs ≲ Τ𝑁 𝑘 queries to find a 1
if it’s promised there are at least k 1’s. (Assume 𝑘 ≤ Τ𝑁 2.)

Use the Basic Adversary Method to show ≳ Τ𝑁 𝑘 queries are
necessary for the promise problem:

𝜑 = “decide if w has no 1’s, or at least k 1’s”.

Basic Adversary Method:

For 𝜑 = (YES, NO), let 𝒀 ⊆ YES, 𝒁 ⊆ NO.

Let 𝑅 ⊆ 𝒀 × 𝒁 be a set of “hard-to-distinguish” pairs, such that:

• for each 𝒚 ∈ 𝒀, there are at least 𝑚 strings 𝒛 ∈ 𝒁 with 𝒚, 𝒛 ∈ 𝑅

• for each 𝒛 ∈ 𝒁, there are at least 𝑚′ strings 𝒚 ∈ 𝒀 with 𝒚, 𝒛 ∈ 𝑅

Also, for each coordinate j, define Rj = 𝒚, 𝒛 ∈ 𝑅 ∶ 𝒚𝑗 ≠ 𝒛𝑗

(namely, all the pairs distinguishable by querying coordinate j).

Assume:

• for each 𝒚 ∈ 𝒀 and j, there are at most ℓ strings 𝒛 ∈ 𝒁 with 𝒚, 𝒛 ∈ 𝑅𝑗

• for each 𝒛 ∈ 𝒁 and j, there are at most ℓ′ strings 𝒚 ∈ 𝒀 with 𝒚, 𝒛 ∈ 𝑅𝑗

Then Q(𝜑), the quantum query complexity of 𝜑, is ≳ Τ𝑚 𝑚′ ℓ ℓ′.

General (“Negative-Weights”) Adversary Method:

For 𝜑 = (YES, NO), let 𝒀 ⊆ YES, 𝒁 ⊆ NO.

Let 𝑅 ⊆ 𝒀 × 𝒁 be a set of “hard-to-distinguish” pairs, such that:

• for each 𝒚 ∈ 𝒀, there are at least 𝑚 strings 𝒛 ∈ 𝒁 with 𝒚, 𝒛 ∈ 𝑅

• for each 𝒛 ∈ 𝒁, there are at least 𝑚′ strings 𝒚 ∈ 𝒀 with 𝒚, 𝒛 ∈ 𝑅

Also, for each coordinate j, define Rj = 𝒚, 𝒛 ∈ 𝑅 ∶ 𝒚𝑗 ≠ 𝒛𝑗

(namely, all the pairs distinguishable by querying coordinate j).

Assume:

• for each 𝒚 ∈ 𝒀 and j, there are at most ℓ strings 𝒛 ∈ 𝒁 with 𝒚, 𝒛 ∈ 𝑅𝑗

• for each 𝒛 ∈ 𝒁 and j, there are at most ℓ′ strings 𝒚 ∈ 𝒀 with 𝒚, 𝒛 ∈ 𝑅𝑗

Then Q(𝜑), the quantum query complexity of 𝜑, is ≳ Τ𝑚 𝑚′ ℓ ℓ′.

General (“Negative-Weights”) Adversary Method:

A story for another time!

