Lecture 20:
The Adversary Method

for Quantum Query Lower Bounds

Quantum query model: recap
Secret N-bit input string w
You can query a coordinate j to find out w;
In fact, you can query superpositions...

Given access to 0, which implements |j) » (—1)"i|)
Trying to solve some fixed decision problem ¢ on w
Cost: only the number of uses of 0,
Example: ¢ = “OR” deciding if w has at least one 1
Grover’s Algorithm: Solves ¢ = “OR” with cost S VN

Think of ¢ = (VES, N(O), where and are subsets of strings.
In “OR” example, = {all N-bit strings with at least one 1}, ={00---0}

If U = {all strings}, ¢ is called “total”; otherwise, ¢ is “partial /promise”

How to prove Lower Bounds on
quantum query algorithms...

| Bennett-Bernstein-Brassard-Vazirani ca. '96]:
Proved a cost lower bound for ¢ = “OR”: = +/N queries are necessary.

They called their technique the Hybrid Method.

|Beals-Buhrman-Cleve-Mosca-de Wolf '98]: The Polynomial Method.
|Ambainis '00]: The (Basic) Adversary Method.

|Many groups|: Variants on the Adversary Method.

[Hgyer-Lee-Spalek '07]: “Negative-weights”, aka General Adversary Method.

|Reichardt'09]: The General Adversary Method is optimal
— there is always a matching upper bound (query algorithm)!

A generic T-query algorithm:

log(N)-qubit

.)
query register
)
“workspace” °
qubits

Secret N-bit input string w defines the behavior of Q.

An algorithm supposedly
solving ¢ = (VES, NO):

) i) e WO D)

Secret N-bit input string w defines the behavior of 0}

An algorithm supposedly
solving ¢ = (VES, NO):

1Y) P) eee by) |1|/;3;)

An “adversary” picks some v € and some 7 €
and considers running your algorithm with w = y or with w = =,

An algorithm supposedly
solving ¢ = (VES, NO):

Il/)%) Clearly: \IIJO) = [p?); ie, (1/JO‘I/JO) =

An “adversary” picks some v € and some 7 €
and considers running your algorithm with w = y or with w = =,

An algorithm supposedly
solving ¢ = (VES, NO):

(Wolp0) = 1

An “adversary” picks some v € and some 7 €
and considers running your algorithm with w = y or with w = =,

An algorithm supposedly | o
) Algorithm must be able to discriminate between
SOlVlng QP = (,): |Y1) and |y!) with high probability,

because it must “accept” y and “reject” ~. \

Clearly: (lpT‘lpT) * 1

An “adversary” picks some v € and some 7 €
and considers running your algorithm with w = y or with w =

An algorithm supposedly | o
) Algorithm must be able to discriminate between
SOlVlng QP = (,): |Y1) and |y!) with high probability,

because it must “accept” y and “reject” ~. \

In fact, we better have ‘(l/JT‘l/JT)‘ < .99

An “adversary” picks some v € and some 7 €
and considers running your algorithm with w = y or with w =

An algorithm supposedly

Algorithm must be able to discriminate between

SOlVing QP = (,): |Y1) and |y!) with high probability,
because it must “accept” y and “reject” ~. \
(1/)0\1/;0) =1 In fact, we better have ‘(1/JT‘1/JT>‘ < .99

Recall Lecture 4.5, “Discriminating Two Qubits”:

Given two quantum states |12) and
the probability with which they can be dlstlngulshed by any
quantum algorithm is a function of the angle between them.

An “adversary” picks some v € and some 7 €
and considers running your algorithm with w = y or with w =

Possible idea: define Progress, = |(l/)t|l/Jt)|

Suppose we can show |Progress; — Progress; ;| < 6

This would imply: T = .01/ ©

< .99

An “adversary” picks some v € and some 7 €
and considers running your algorithm with w = y or with w = =,

Possible idea: define Progress, = |(!|y?)|
Suppose we can show |Progress; — Progress; ;| < 6

This would imply: T = .01/ ©

Note: Applying unitary U, does not affect (1! |y?)|
So suffices to analyze how Q. affects Progress

An “adversary” picks some v € and some 7 €
and considers running your algorithm with w = y or with w =

Possible idea: define Progress, = |(!|y?)|
Suppose we can show |Progress; — Progress; ;| < 6
This would imply: T = .01/ ©

Note: Applying unitary U, does not affect (1! |y?)|
So suffices to analyze how Q. affects Progress

This is a good idea, but a little too simple

Doesn’t suffice to focus on a single v € and a single 7 €
If it did, would show that many queries needed to distinguish w = y from w =

But this only requires 1 query: since v # 7, there exists j such that y; # 7;

Need to have a bunch of v’s versus a bunch of 7’s

An “adversary” picks some v € and some 7 €
and considers running your algorithm with w = y or with w =

[Ambainis 0] Super-Basic Adversary Method:

For ¢ = (, (), suppose !V C , - are such that:

 foreach y € V, there are at least m strings » € 7 with dist(y, 1
1

)
)

« foreach 7 € 7, there are at least m’ strings v € V with dist(y,

!

Then Q(¢), the quantum query complexity of ¢, is = vm m'.

we’ll show = .005 vm m/’ dist(y,) = Hamming distance,
of coordinates where v, z differ

Super-Basic Adversary Method:

For ¢ = (YES, N0), suppose V' C , . C are such that:

 foreach y € V, there are at least m strings » € 7~ with dist(y,

1
1

)
« foreach 7 € 7, there are at least m’ strings v € V with dist(y,)

Then Q(¢), the quantum query complexity of ¢, is = vm m'.

Example use #1: ¢ =“OR"” (Decision-Grover)

Take ¥ ={000001,000010,000100,001000,010000, 100000}.
Take ©~ ={000000}. (Well, at least for N = 6.)

m=1 m'=N = Q(p)=VN ©

Super-Basic Adversary Method:

For ¢ = (YES, N0), suppose V' C , . C are such that:

 foreach y € V, there are at least m strings » € 7~ with dist(y, 1
1

)
« foreach 7 € 7, there are at least m’ strings v € V with dist(y,)

Then Q(¢), the quantum query complexity of ¢, is = vm m'.

Example use #2: : Decide if w has atleast k 1’s, or less than k 1’s

Take V' = {all strings with exactly k 1’s}.
Take ~ = {all strings with exactly k — 1 1’s}.
m=k m=N—-k+1
= Q(¢) = k(N — k + 1), which is = VEN for k <

N
2

Super-Basic Adversary Method:

For ¢ = (YES, N0), suppose V' C , . C are such that:
* foreach y € V, there are at least m strings » € 7~ with dist(y, 7) =1
« foreach 7 € 7, there are at least m’ strings v € V with dist(y, 7) =1
Then Q(¢), the quantum query complexity of ¢, is = vm m'.
Example use #3: % = strings with a 1 in each ‘block’

= strings with a block of all 0’s

= strings with exactly one 1 per block

= strings with exactly one all-0’s block,
all other blocks having exactly one 1

m=+N, m"=VN = Q@)= VN

This lower bound is sharp, and not known to be attainable by the “Polynomial Method”

Super-Basic Adversary Method:

For ¢ = (YES, N0), suppose V' C , . C are such that:
* foreach y € V, there are at least m strings » € 7~ with dist(y, 7) =1
« foreach 7 € 7, there are at least m’ strings v € V with dist(y, 7) =1

Then Q(¢), the quantum query complexity of ¢, is = vm m'.

Proof: DefineR={(y,7):dist(y,7)=1}C V X

(These are particularly challenging pairs of inputs for the algorithm:
the algorithm needs to give different answers on them,
but there is only a single coordinate where they are different.)

Super-Basic Adversary Method:

For ¢ = (YES, N0), suppose V' C , . C are such that:

 foreach y € V, there are at least m strings » € 7~ with dist(y,

)=1
)=1

« foreach 7 € 7, there are at least m’ strings v € V with dist(y,

Then Q(¢), the quantum query complexity of ¢, is = vm m'.

Proof: DefineR={(y,7):dist(y,7)=1}C V X
Define Progress; = z | P! |1/J , where [l is state after t™ query, on input w
,”)ER

We have Progress, = |R| and Progressy < .99|R|

the latter because |(7|T)| < .99 must hold forall y € V, ~ €

Super-Basic Adversary Method:

For ¢ = (YES, N0), suppose V' C , . C are such that:

 foreach y € V, there are at least m strings 7 € 7~ with dist(y, 7) =1
)=1

« foreach 7z € 7, there are atleast m’ strings v € V with dist(y,

Then Q(¢), the quantum query complexity of ¢, is = vm m'.

Proof: DefineR={(y,7):dist(y,72)=1}C V X

Define Progress; = Z | P! |1/J , where [l is state after t™ query, on input w
,”)ER

We have Progress, = |R| and Progressy < .99|R|

2
SW|R| forallt.]

= T = .005vmm’, as desired.

[Claim: Progress; — Progress;

 foreach y € V, there are at least m strings » € 7 with dist(y, 7)

« foreach 7 € 7, there are at least m’ strings v € V with dist(y,)

R={(y,7):dist(y,7) =1}V X Progress, = 2 (e[t

,”)ER

: 2
[Claim: Progress; — Progress;,; < WlRl for all .]

 foreach y € V, there are at least m strings » € 7 with dist(y, 7)

« foreach 7 € 7, there are at least m’ strings v € V with dist(y,)

R={(y,7):dist(y,7) =1}V X Progress, = 2 (e[t

,”)ER
: 2
[Claim: Progress; — Progress;,; < WlRl for all ¢.]

for each v € V, there are at least m strings » € © with dist(y, 7) =1
Hence [R| = m |V]
Similarly |R| = m'| 7]
So 2|R|=m|V]|+m'|7]

m
Claim is even stronger if RHS is (m|V|+m'|Z) = |[—|V|+ [—]|7]
m m

R={(y,7):dist(y,”) =1} V X Progress; = 2 (Wi [l

(v,7)ER
s —)
Claim: Progress; — Progress;,; < m| | + 1| |
\ m' NR
\ J

Recall: Unitaries don't affect Progress, just the Q;—r, queries.

Fix any t and t+1 (“before” and “after”)
Consider any pair (1, 7) € R

They differ on some coordinate j*

R={(y,7):dist(y,7)=1}CS V x

Progress; = 2 |<1/Jt|1/)t>|

(v,7)ER

-

_

Claim: Progress; — Progress;,; <

!

\

m
— |V + |—|7]
m m

~N

\ y

Fix any t and t+1

“Before”: |[y?)

“After”: |pit1)

Consider any pair (v, 7) € R

They differ on some coordinate j*

R={(y,7):dist(y,”) =1} V X Progress; = 2 (Wi [l

(v,7)ER
4 _)
- ml
Claim: Progress; — Progress; 1 < |—|V|+ |—|7|
N N
_ Y,
Fix any t and t+1 Consider any pair (v, 7) € R They differ on some coordinate j*

“Before”: |yt)

“After”: |ypl*1)

R={(y,7):dist(y,”) =1} V X Progress; = 2 (Wi [l

(v,7)ER
~ -)
Claim: Progress; — Progress;; < 2| | + 1| |
N N
_ ,
Fix any t and t+1 Consider any pair (v, 7) € R They differ on some coordinate j*
“Before”: |[Y!)=]1)&Q +(2) ® +-+|N)®

[

query workspace
register register

We have collected like terms

based on the query register.
“After”: |ypl*1)

Let be a unit vector
in the direction of

R={(y,7):dist(y,”) =1} V X Progress; = 2 (Wi [l

(v,7)ER
~ -)
Claim: Progress; — Progress;; < 2| | + E| |
N N
_ _J
Fix any t and t+1 Consider any pair (v, 7) € R They differ on some coordinate j*

“Before”: |Yl) = a¢]|1) ® + a,[2) ® + -+ ay|N) @

We have collected like terms

based on the query register.
“After”: |ypl*1)

Let be a unit vector
in the direction of

R={(y,7):dist(y,7)=1}CS V x

Progress; = 2 |<1/Jt|1/)t>|

v,

-

_

Claim: Progress; — Progress;,; <

m
—|v] +

!

Vm

\‘m

)ER

Fix any t and t+1

“Before”: |Yf) = a;|1) ®

“After”: [pit1)

+ a,(2) ®

Consider any pair (v, 7) € R

They differ on some coordinate j*

ot ay V) ®

Each is unit,
2
and Zj|aj| = 1.

R={(y,7):dist(y,”) =1} V X Progress; = 2 (Wi [l

(v,7)ER
4 _)
: m'
Claim: Progress; — Progress; 1 < |—|V|+ |—|7|
N N
g J
Fix any t and t+1 Consider any pair (v, 7) € R They differ on some coordinate j*
“Before”: |Yl) = a¢]|1) ® + a,]|2) @ + -+ ay|N) ® Each is unit,
: 2
’ and Zj|aj| = 1.

I
(5 The % amplitude is multiplied by (—1)J

v
After”: [i+1) = (1)1, 1) @ [61) + (=1)20,12) @ [4,) + - + (=1) Vay V) @

R={(y,7):dist(y,7)=1}C V x Progress, = 2 (W[

(v,7)ER
4 _)
Claim: Progress; — Progress;;; < ﬁ| |+ [—|7|
N N

_ Y,
Fix any t and t+1 Consider any pair (v, 7) € R They differ on some coordinate j*
“Before”: |Yl) = a¢]|1) ® + a,]|2) @ + -+ ay|N) ® Each is unit,

2

i) = 111) ® + [212) & + -+ ByIN) ® and X ;|a;|" = 1.

“After”: [P ™) = (=1)"14]1) @ + (1) 7"2a,[2) ® + o+ (1) Vay|N) Q
P = (DB 1) ® + (=125, 12) & ++ (“DVBy N) &

R={(y,7):dist(y,7)=1}C V x Progress, = 2 (W[

(v,7)ER
4 _)
Claim: Progress; — Progress;,; < ﬁ| | + ﬁ| |
N N

g J
Fix any t and t+1 Consider any pair (v, 7) € R They differ on some coordinate j*
“Before”: |Yl) = a¢]|1) ® + a,]|2) @ + -+ ay|N) ® Each is unit,

2
Y =Bl ® 1) +B2l2) ® L) + -+ BylN) ® and X o] = 1.
WiWr) = @b, + @p; + -+ ayPBy

‘After”; [i+1) =a1|1> ® +2|z> ® [0)) + - +N|N> ®
Py S (=11, 11 ® [v1) H(=1)2 55 12) @ 112) + - H(=1) "By V) ®

These signs are all the same — except for in coordinate j*

R={(y,7):dist(y,7)=1}CS V x

Progress; = 2 |<1/Jt|1/)t>|

v,

-

_

Claim: Progress; — Progress;,; <

m
!

\

~N

!

Pl
m

\

J

Fix any t and t+1

Consider any pair (v, 7) € R

They differ on some coordinate j*

+ ay|N) &
+ BulN) ®

+ an Py

“Before”: |Yl) = a¢]|1) ® +a,]2) ® 1.
Y =411 & + 6,12) ® + o
Wit =ap, + @[5, 4o
“‘After”: |P!™) = (=1)104|1) ® + (-1 2a,]2) ®
P = (DB 1) @ + (D25 12)Q
W) = @B, + a2

I P p— Wﬁ]*

ot (=) Vay IN) @
Fot (CD By IN) @
ot @ fy

1S unit,
and Z]-|aj|2 = 1.

R={(y,7):dist(r,))=1}C V x

Progress; = 2 |<1/Jt|1/)t>|

-

_

(v,7)€ER
-)
Claim: Progress; — Progress;;; < ﬂ| |+ [—|7|
m' m
N N y

Fix any t and t+1

“Before”:

Wity =By
“After”:

(¢t+1|¢t+1> = a1

Consider any pair (v, 7) € R

s + -

3P, 4o

They differ on some coordinate j*

Each is unit,
2
and Z]-|aj| = 1.

+ an Py

R={(y,7):dist(y,7)=1}C V x Progress, = 2 (W[

(v,72)ER
4 _)
Claim: Progress; — Progress; 1 < |—|V|+ |—|7|
NV T
\ _J
Fix any t and t+1 Consider any pair (v, 7) € R They differ on some coordinate j*
“Before”: Each is unit,
Wl = @ py + @ + e+ Ty Py and | |* = 1.
“After”:
@I i) = @ + P + oo — @ By + o+ @y

(W |l) = (Wi [i™) = 25 B;- = [{i[l) - @I)] < 2| - [

R={(y,7):dist(y,7)=1}C V x Progress, = 2 (W[

(v,72)ER
4 _)
: m’
Claim: Progress; — Progress; 1 < |—|V|+ |—|7|
N N
\ _J
Fix any t and t+1 Consider any pair (v, 7) € R They differ on some coordinate j*
“Before”: Each is unit,
Wl = @ py + @ + e+ Ty Py and | |* = 1.
“After”:
@I i) = @ + P + oo — @ By + o+ @y
(triangle inequality)

(@A = [)] < [l wf) = Wi i) < 2]| - |-

R={(y,7):dist(y,7)=1}C V x Progress, = 2 (W[

(v,72)ER
4 _)
: m '
Claim: Progress; — Progress; 1 < |—|V|+ |—|7|
NV T
\ _J
Fix any t and t+1 Consider any pair (v, 7) € R They differ on some coordinate j*
“Before”: Each is unit,
Wl = @ py + @ + e+ Ty Py and | |* = 1.
“After”:
@I i) = @ + P + oo — @ By + o+ @y

(@A = [)] < 2 -] - |-

R={(y,7):dist(r,))=1}C V x

Progress; = 2 |<1/Jt|1/)t>|

v,

-

_

Claim: Progress; — Progress;,; <

m
!

\

~N

!

Pl
m

\

J

Fix any t and t+1

A math trick:

Proof 1:
Proof 2:

For any real a, b, and h > 0:

AM-GM inequality: ab is the geometric mean of ha® and (1/h)b?

Consider any pair (v, 7) € R

(@A = [i) < 2 oy

They differ on some coordinate j*

-|ﬁG*

2ab < ha® + (1/h)b?

2
Certainly: 0 < (\/ﬁ a —+1/h b)
Expanding: 0 < ha? + (1/h)b? — 2ab

R={(y,7):dist(y,7)=1}C V x Progress, = 2 (W[

(v,7)ER
4 -)
- ml
Claim: Progress; — Progress; 1 < |—|V|+ |—|7|
N N
_ Y,
Fix any t and t+1 Consider any pair (v, 7) € R They differ on some coordinate j*

@A = [)] < 2| - 18-

A math trick: Foranyreala,b,andh > 0: 2ab < ha” + (1/h)b?

Apply this above, with a = |cxj*

, b =B

m
’h= —
m

R={(y,7):dist(y,7)=1}C V x Progress, = 2 (W[

(v,7)ER
4 -)
- ml
Claim: Progress; — Progress; 1 < |—|V|+ |—|7|
N N
_ Y,
Fix any t and t+1 Consider any pair (v, 7) € R They differ on some coordinate j*

2

) =) < 2 e (2 15,

A math trick: Foranyreala,b,andh > 0: 2ab < ha” + (1/h)b?

Apply this above, with a = |cxj*

, b =B

m
’h= —
m

R={(y,7):dist(y,”) =1} V X Progress; = 2 (Wi [l

(v,7)ER
4 -)
- ml
Claim: Progress; — Progress; 1 < |—|V|+ |—|7|
N N
_ Y,
Fix any t and t+1 Consider any pair (v, 7) € R They differ on some coordinate j*

2

)| =t)] < 2

2 !/
+\/§ |ﬁ]*

Finally, coordinate j* really depends on the pair (7, 7), so let’s write it as

J (v, 7)

R={(y,7):dist(y,7)=1}CS V x

Progress; = 2 |<1/Jt|1/)t>|

-

_

Claim: Progress; — Progress;,; <

(v,7)ER
-)
m m'’
Wl | + Hl |
N N y

Fix any t and t+1

Consider any pair (v, 7) € R

= 1) < 25 el 22 16l

They differ on some coordinate j*

Finally, coordinate j* really depends on the pair (7, 7), so let’s write it as

J (v, 7)

):dist(,) =1} ¥ x Progress, = |(wtfw!)
(v,

R={(,
4 —
= m !/
Claim: Progress; — Progress; 1 < |—|V|+ |—|7|
m' m
L N N

)ER

Fix any t and t+1

Also, to be scrupulous about notation, the «;’s come from |!), and thus depend on v.

Consider any pair (v, 7) €

They differ on some coordinate j*(y,

) - |<wt+1|wt+1|_f el

Similarly, the f5;’s depend on 7.

)

R={(y,7):dist(y,7)=1}C V x Progress, = 2 (W[

(v,7)ER
s —)
Claim: Progress; — Progress;,; < m| | + ﬁ| |
\ m' NR
\ J

Fixany tand t+1 Consider any pair (v,7) € R They differ on some coordinate j*(y, 7)

2 / 2
L R T T R Nl G
Summing over P _p < g) |2 my oy)2
all (v,7) € R: | 0BES5e T FTOBIESS 41 = Z W‘“j*(»‘ T 2 5‘51'*(,)‘
(7,)ER N (,)er \
2
Final claim: z |C(j(*()’)| < || (and similarly for the second term, completing the proof)

(v,2)ER

R={(y,7):dist(y,”) =1} V X Progress; = 2 (Wi [l

(v,7)ER
s —)
Claim: Progress; — Progress;,; < 2| | + 1| |
\ m' NR
\ J

Fixany tand t+1 Consider any pair (v,7) € R They differ on some coordinate j*(y, 7)

Final claim: z < |V]

,”)ER

For each y € V, if you go over all ~ such that (v, 7) € R, the associated j*(v, 7) are distinct.

. Which is at most 1.

2
So for each v € V, you're summing a subset of all possible ‘aj()‘

So indeed the overall sum is at most |V|.

[Ambainis 0] Super-Basic Adversary Method:

For ¢ = (, (), suppose !V C , - are such that:

 foreach y € V, there are at least m strings » € 7 with dist(y, 1
1

)
)

« foreach 7 € 7, there are at least m’ strings v € V with dist(y,

!

Then Q(¢), the quantum query complexity of ¢, is = vm m'.

[Ambainis 0] }up(—Basic Adversary Method:

For ¢ = (, (), suppose !V C , - are such that:

 foreach y € V, there are at least m strings » € 7 with dist(y, 1
1

)
)

« foreach 7 € 7, there are at least m’ strings v € V with dist(y,

!

Then Q(¢), the quantum query complexity of ¢, is = vm m'.

[Ambainis “00] Basic Adversary Method:

For ¢ = (VES, NO), let V C , /L C
Let R € V X 7 be a set of “hard-to-distinguish” pairs, such that:
« foreach y € V, there are at least m strings 2 € 7~ with (1,72) €R

« foreach 7 € 7, there are at least m’ strings y € V with (1,2) € R

Also, for each coordinate j, define R; = {(7)ER:y; # j}

(namely, all the pairs distinguishable by querying coordinate j).

Assume:
 foreach y € V" andj, there are at most ¢ strings ~ € 7 with (y,7) € R;

» foreach 7 € 7 and j, there are at most ¢’ strings v € V" with (, 7) € R;

Then Q(¢), the quantum query complexity of ¢, is = \/m m' /L.

Proof:

Exercise #2:

Exercise!

(Only tiny modifications needed to the proof we saw.)

Recall that Grover Search only needs < /N /k queries to find a 1
if it's promised there are at least k 1’s. (Assume k < N/2.)

Use the Basic Adversary Method to show = /N /k queries are
necessary for the promise problem:
@ = “decide if whasno 1's, or atleast k1’s".

Basic Adversary Method:
For ¢ = (VES, NO), let V C , /L C
Let R € V X 7 be a set of “hard-to-distinguish” pairs, such that:
« foreach y € V, there are at least m strings 2 € 7~ with (1,72) €R

« foreach 7 € 7, there are at least m’ strings y € V with (1,2) € R

Also, for each coordinate j, define R; = {(7)ER:y; # j}

(namely, all the pairs distinguishable by querying coordinate j).
Assume:

 foreach y € V" andj, there are at most ¢ strings ~ € 7 with (y,7) € R;

» foreach 7 € 7 and j, there are at most ¢’ strings v € V" with (, 7) € R;

Then Q(¢), the quantum query complexity of ¢, is = \/m m' /L.

General (“Negative-Weights”) Adversary Method:
For ¢ = (VES, NO), let V C , /L C
Let R € V X 7 be a set of “hard-to-distinguish” pairs, such that:
« foreach y € V, there are at least m strings 2 € 7~ with (1,72) €R

« foreach 7 € 7, there are at least m’ strings y € V with (1,2) € R

Also, for each coordinate j, define R; = {(7)ER:y; # j}

(namely, all the pairs distinguishable by querying coordinate j).
Assume:

 foreach y € V" andj, there are at most ¢ strings ~ € 7 with (y,7) € R;

» foreach 7 € 7 and j, there are at most ¢’ strings v € V" with (, 7) € R;

Then Q(¢), the quantum query complexity of ¢, is = \/m m' /L.

General (“Negative-Weights”) Adversary Method:

A story for another time!

