Lecture 16-Shor's Factoring Alg!
"Great! Today we'll do the most famous quantum alg; Shor's efficient quantum alg. for factoring huge \#s.|l Actually, today will be 100% classical \#-theong algs. All the quantum staff has been covered in previous lectures! Il
Rec. from last time: Let Q_{F} be a quartum $\begin{aligned} & \text { circuit implementing some } F:\{0,1,2 \ldots, N-1\} \rightarrow \text { colooss } \\ &\left(N=2^{n}\right) \quad\left\{_{0,1},\right\}_{m}\end{aligned}$ which is "L-periodic":

$$
\begin{array}{ll}
F(X)=F(X+L)=F(X+2 L)=\cdots & \& F(X)=F(Y) \\
\int \text { And } X+k L \text { is not taken mod } \Rightarrow L \mid Y-X .
\end{array}
$$

N, so L need not divide N.I
Then w/ $x n^{2}+\operatorname{size}\left(Q_{F}\right)$ quantum gates, can get a "clue" to L, looking like: $\begin{gathered}\text { randem } 0 \leq k<L \text { picked }\end{gathered}$

Today: (1) \|shor:] How to use clue to find L If with decent probability, efficiently, using a classical alg.].
(2) How this ability helps factor \#'s
\|This was II Again, classically \& efficiently. I already knoun-70s.] \|IUSes a classically efficient-tocompute F, hence quanturly effic. QF.I
Rem: Simple algs: $\approx m^{3}$ quantum gates to factor m-bit integers

- More carefully: $\approx m^{2}(\cdot \log n \log \log m \ldots)$ WRest known. Not quasilinear. I'l point out the bottleneck - which is classical! I
Rec: Naive classical $a l g,: \approx \sqrt{2}^{n}$ steps
Sophisticated " : $C_{1}^{m^{1 / 3}(1 \cdot . . .)}$ steps
\uparrow (1 still exp mention)!
【\$100k to factor RSA-1024.
Record is <800 bits. 2048 bits-noy!ll

Well start with (2): How to factor, given ability to find the "L" of an "L-eriodic" F. "This reduction from factoring to "order-finding" was perhaps folklore in ${ }^{7} 70$ s. First(?) published by Cru's Gary Miller in '76. Cf. Long' 81 , Wall' 877$]$
Input: B, a Bis number: m bits (eg. $m=1000$) Goal: prime factors of B.
For simplicity today: Assume $B=P \cdot Q$ for primes II Imagine P, Q both have 512 bits. I P, Q.

- this is the case of interest for "RSA crypto"
- intuitively, the "hardest case"

II If B has sa prime factors, they're smaller $\&$ easier to find. Recall primality testing is doable efficiently, $\approx m^{2}$ steps. I]
-General case mainly requires a little mare book keeping. (And ability to detect perfect II
$\| O K$: how can we use peciod-finding to help factor B? It's a bit similar to the Miller-Rabin primality test, actually.... II

Goal: Find a "nontrivial" square -root of $1, \bmod B$.

$$
R: R^{2}=1 \bmod B
$$

kIf B is prime, this quadratic can only have 2 roots, ± 1, since \mathbb{Z}_{B} would be a field. But $B=P \cdot Q$. Turns out to imply there are 2 more square roth

$$
\begin{aligned}
& \Rightarrow R^{2}-1 \equiv 0 \bmod B \\
& \Rightarrow(R-1)(R+1) \equiv 0 \quad \bmod B=P \cdot Q \\
& \therefore P, Q \mid(R-1)(R+1) \text {, } \\
& \text { but } P Q \nmid R-1 \text { or } R+1 \\
& \text { (} \because R \neq \pm 1 \text { Mod } \\
& B=P Q \text {) }
\end{aligned}
$$

$\therefore P \mid R-1, Q(R+1$, or vice versa.
Either way, take $R X($ (say) \& ged it with $B=P Q \rightarrow$ gives you either $\left[{ }^{\tau}\right.$ classically efficient if] P or Q.

How to find R ?
Recall (HW3, \#5; HW4, \#6)

$$
\begin{aligned}
\mathbb{Z}_{B}^{*} & =\left\{\text { integers } A \in \mathbb{Z}_{B} \text { with } \operatorname{gcd}(A, B)=1\right\} \\
& =\left\{\begin{array}{lllll}
& \text { ". } & \text { sit. } \left.A^{-1} \operatorname{mot} B \text { exist }\right\}
\end{array}\right\}
\end{aligned}
$$

(1) Pick $A \in \mathbb{Z}_{B}^{*}$ uniformly at random. How?

Pick $A \in \mathbb{Z}_{b} \quad$ " ", compute $\operatorname{gad}(A, B)$.
If it's $1, A \in \mathbb{Z}_{B}^{*}$. $ت$
If not, it's P or $Q \rightarrow$ you're done!
This is exponentially unlikely, so don't get too excited י. I
$\begin{array}{ccc}\text { Hypothetically, consider } & A \bmod B \\ & A^{2} \bmod B \\ & A^{3} \bmod B \\ \text { deft: } L=\text { "order" } & \vdots \\ \text { of } A \text { in } & A^{2}=1 \bmod B \\ \mathbb{Z}_{B^{*}} & & A^{i} \equiv A^{j}, j>i \\ A^{j-i}=1 \\ \left(\because A^{-1} \text { exists }\right)\end{array}$
$\left[\right.$ Least L st. $A^{L}=1$ mod $\left.B.\right]$
Then repeats:

$$
A^{L+1} \equiv A^{1}, A^{4 t^{2}} \equiv A^{2}, \text { etc.. }
$$

(Remark: L could be enormous, like an $\approx \frac{m}{2}$-bit number. Can't find it naively... Known to be "as hard as factoring. But.... II
$F:\{0,1,2, \ldots, N-1\} \rightarrow \mathbb{Z}_{B}^{*}, F(x)=A^{X} \bmod B$
Need not be B.
will take it to be:a power of 2 "Colors", It's"L-periodic".
$\left.s 0_{0} 1\right\}^{m "}$. It

- Classically computable
["Modular exponentiation", HW1,
- much bigger than b. in $x m^{3}$ time \# 3

efficiency bottleneck for Sher, as it turns out. ll

Can build, make reversible, voila! - get Q_{F} quatiuly implementing F.
\longrightarrow Can find L with decent prob. (Part (1), $\begin{gathered}\text { coming } p \text {.) }\end{gathered}$

Given L, hope for 2 lucky things:
(based on random choice of A)
Luck 1: $L_{\text {is even. }}$

$$
\Rightarrow L / 2 \text { an integer }
$$

$\Rightarrow " A^{L / 2}$ "not B (which you con compute maker sense. efficiently B)

$$
\begin{aligned}
& \&\left(A^{L / 2}\right)^{2} \equiv A^{L} \equiv 1 \bmod B \\
& \therefore A^{L / 2} \text { a square-soot of } 1!
\end{aligned}
$$

Luck 2: $A^{L / 2} \neq \pm 1 \bmod B \quad$ (natriv. slut")

Elementary number theory lemma:

$$
\operatorname{Pr}\left[\text { Luck } 1 \text { \& Luck 2] } \geqslant \frac{1}{2}\right. \text {. }
$$

Proof: [Not hard, will be on homework. II
\therefore can Factor $B=P \cdot Q$ with decent prob. given L! [can cheek your worth ton just reed och times!

Part (2): Finding L given "clue": $S=\operatorname{Neurest} \operatorname{Int}\left(k \cdot \frac{N}{L}\right)$ (with prob $\geqslant 40 \%$)
for random $0 \leq k<L$.
(Recall that's what the quantum "approximate period - finding alg." based on QFT\& Simon's Alg. over \mathbb{Z}_{N} gave $\|$

Rem: L is m bits.
Well choose $N=2^{n}$ for $n=10 m$.
【 Conceptually clearer if you make $n=\mu^{10}$, which would still lead to "polynomial "tine"]
Note: $L \leq 2^{m} \ll 2^{10 m} \sim N$.

- $\frac{N}{L}$ not on integer $\left[\begin{array}{l}N \text { is an enormas } \\ \text { power of } 2\end{array}\right.$ power of 2 . Think of L as "smallish" now! It

Get $S \stackrel{!}{\sim} k \cdot \frac{N}{L}, \quad 0 \leq k<L$ rand. int. (Basically.
 ny new notation for super-duper -close - to. II

Alg knows number. \& denom.

KeyClaim: From $\frac{S}{N}$, classical alg. can efficiently figure out the frac. $\frac{k}{L}$ in lowest $\begin{array}{r}\text { terms }\end{array}$
\Rightarrow Were dore!
Method (1): Hope random k is

Method (2): Repeat a few times. With high prob., LCM of denominators is L . (Exercise.)
prime (or coprimetol). Then $\frac{k}{L}$ is in lowest terms \Rightarrow alg. knows L. $\operatorname{Pr}[k$ prime $] \geqslant \frac{1}{m}$.
(By Prime \# Theorem. Now can repeat um times in expectation, get L. Efficient)

Last step: how to figure out $k / L ?$?
Imagine $N=10^{n}$, not 2^{n}.
Alg gets $S, \quad \frac{S}{N} \stackrel{1}{\approx} \frac{k}{L}$ to $\pm .5 / \mathrm{m}$
$\Rightarrow \frac{S}{N}=0 . S$ is frae, $\frac{k}{L} t-1$ decined
Only $M \ll \sqrt{n} \quad \|$ to n binary digits \quad for $N=2^{\wedge}$ I]
bit number.I.
eeg. imagine $L \leq 50, \quad N=1,000,000$.
Say quantum circuit returns $S=666,667$.
Alg, knows $\frac{k}{L} \approx 0.666667 \int$ to 6 decimal places I.
Obviously, $\frac{k}{L}=2 / 3 \quad$ (Remember, just wart it in la west
terms now.
\|Still imagine $N=1,000,000 \& L \leqslant 50 . \|$
Say $S=181.818$, so $\frac{k}{L} \stackrel{1}{\approx} 0.181818$.

$$
\leadsto \frac{k}{L}=\frac{2}{11}
$$

Say $S=142,857, \quad$ so $\frac{k}{L} \approx 0.142857$.

$$
\leadsto \frac{k}{L}=\frac{1}{7}
$$

Say $S=309.524$. so $\frac{k}{L} \stackrel{!}{=} 0.309524$.

$$
\leadsto \frac{k}{L}=? ?
$$

II Remark: Go to Maple (or Mathematica, \& type "identif y(.309524);"
It will give the answer!! How does it do it?!
[Leet's go back to easier cases, by y to "discover" the answer. If $S=142857$? know $S \div N \approx \frac{k}{c}$.
(an (efficiently) do integer division N div. \leadsto Yields 7 remainder... 1.
\int From algorithins perspective, this is a preposterously small remainder! Could have been anything in 0... 142856, and it was 17?!

Not a coincidence! Alg. surely now sees that $\frac{S}{N} \simeq \frac{1}{7}$. I
sHow about...] $S=181818$.
S_{1}
Alg can first try for same miracle. Il

$$
\begin{aligned}
N \operatorname{div} S_{1} & =1000000 \text { div } 181818 \\
& =5, \text { remainder... } 90910 .=: S_{2}
\end{aligned}
$$

You \& I secretly
HMm. This is a big remainder, not a preposterously small are.I know $\frac{S_{1}}{N}=\frac{2}{11} \Rightarrow \frac{N}{S_{1}}=5.5$. So that remainder S_{2} is $\stackrel{!}{\approx} \cdot 5 \cdot S_{1}$. That is, $S_{1} \div S_{2} \approx 2!$

Alg now does S_{1} div S_{2}.

$$
\begin{aligned}
& =181818 \text { div. } 90910 \\
& =1 \text { remainder } 90908
\end{aligned}
$$

or 2 remainder $-2\left[\begin{array}{l}\text { so surely } \\ \text { sees } \\ \text { s. }\end{array}\right.$

Now surely knows: $S_{1} \approx 2 S_{2}, N \approx 5 S_{1}+S_{2}=10 S_{2}+S_{2}=\| S_{\text {s }}$.

Alg is... do $\operatorname{GCD}(N, S)$ fill you hit a preposterously small \#!

Back to $N=1000000, S=" S_{1} "=309,524$.
$N \operatorname{div} S_{1}=3$ remainder 71428
S_{1} div $S_{2}=4$ remainder $23812{ }^{\prime \prime} S_{3}$
S_{2} div $S_{3}=2$ remainder 23804
or 3 remainder -8 !!!!
So $\quad S_{2} \approx 3 S_{3}$
$S_{1}=4 S_{2}+S_{3} \approx 13 S_{3}$
$N=3 S_{1}+S_{2}=39 S_{3}+3 S_{3}=42 S_{3}$
$\therefore \frac{S_{1}}{N} \approx\left[\frac{13}{42}\right] \quad \because \quad$ Indeed, $i t{ }^{2}$

Analysis? Lets recap
Did $G C D(N, S), \quad S \approx \frac{13}{42} N$.

$$
\begin{array}{llll}
& N & 42 \\
= & \frac{13}{42} N & (\text { quotient 3) } & \\
=\frac{3}{42} N & \text { (quotient 4) } & \stackrel{\text { same steps as }}{\longleftrightarrow} & 13 \\
\approx \frac{1}{42} N & (\text { quotient 3) } & & 3 \\
=0 & & 1 & 0
\end{array}
$$

Broad steps like doing GCD on L, K, which are m-bit \#'s
$\Rightarrow \leq 2 m$ steps.
[(error analysis?)]

$$
\begin{aligned}
& \begin{array}{l}
\quad N \\
\approx \frac{13}{42} N \pm \frac{1}{N}
\end{array} \\
& \left.=\frac{3}{42} N=\frac{3}{N} \text { (quotient } 4=q_{2}\right) \stackrel{\text { same steps as }}{\stackrel{\text { siD }}{2}(42,13)} 3 \\
& \approx \frac{1}{42} N=\frac{13}{N} \text { (quotient 3=:q3) } \\
& \approx 0 \pm \frac{42}{N}
\end{aligned}
$$

Q First error "e" at most $\pm \frac{1 / 2}{N}< \pm \frac{1}{N}$.
Second error $e_{2}:<q_{1} \cdot e_{2}=q_{1}\left(\pm \frac{1}{N}\right)= \pm 3 / N$
Third error $e_{3}: \leq q_{2} \cdot e_{2}+e_{1}=4 \cdot\left(\frac{ \pm 3}{N}\right) \pm \frac{1}{N}=13 / N$
Fourth error $e_{4}: \leq q_{3} \cdot e_{3}+e_{2}=3 \cdot\left(\pm \frac{13}{\mathrm{~N}}\right) \pm \frac{3}{\mathrm{~N}}=42 / \mathrm{N}$!
Final error is actually $\leq \pm L / N \leq \frac{2^{m}}{2^{n}}=\frac{1}{2^{q_{m}}},: n=10$.
our algorithmic threshold for " $\simeq 0$ ".
Follow chain back $\Rightarrow N=\frac{13}{12} S$ deduction correct up $b \pm \frac{L^{2}}{N} \leqslant \frac{2^{2 m}}{\partial^{n}}$
Could $\frac{K}{L}=\frac{K^{\prime}}{L^{\prime}}$ up to $\frac{ \pm L^{2}}{N}$? $\left|\frac{K}{L}-\frac{K^{\prime}}{L^{\prime}}\right| \geqslant \frac{1}{L \cdot L^{\prime}} \geqslant \frac{1}{2^{2 m}}$.

