Lecture 7:

The CHSH Game

EPR Pair:

$$
\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle
$$

|1>

Alice is going to measure in one of two bases.

Bob is going to measure in one of two bases.

$$
0
$$

$$
\begin{array}{ll}
\text { Red is "close" to Orange }\left(22.5^{\circ}\right) \\
\text { Orange is "close" to Yellow } & \left(22.5^{\circ}\right) \\
\text { Yellow is "close" to Green } & \left(22.5^{\circ}\right) \\
\text { Green is "far" from Red } & \left(90^{\circ}-22.5^{\circ}\right)
\end{array}
$$

$$
y^{\circ} x^{2}
$$

Flips a fair coin to choose either "Red" or "Yellow", as a "challenge".

Flips a fair coin to choose either "Green" or "Orange", as a "challenge".

Say the referees: - synchronize their watches

- challenge at the stroke of midnight, Pittsburgh time
- give Alice and Bob 10 seconds to respond

(Mars is at least 30 light-minutes from Jupiter; no time for Alice to secretly communicate with Bob.)

Analysis: May assume Alice measures first.
Whichever outcome vector she receives, Bob's qubit snaps to the same vector. In all cases, when Bob measures, the outcome vector Bob "wants" is at angle 22.5° from his state.

Hence success probability is always

$$
\cos \left(22.5^{\circ}\right)^{2}=\frac{1}{2}+\frac{1}{2 \sqrt{2}} \approx \mathbf{8 5} \%
$$

With "shared entanglement" (1 EPR pair) and no communication, Alice and Bob can succeed with probability $\mathbf{8 5 \%}$.

Is that impressive?

Hence success probability is always

$$
\cos \left(22.5^{\circ}\right)^{2}=\frac{1}{2}+\frac{1}{2 \sqrt{2}} \approx 85 \%
$$

With communication allowed,

Alice and Bob can succeed with probability 100\%!

What if Alice and Bob are deterministic?

Alice $(\mathrm{O})=$ Solid/Dotted
Alice (O) = Solid/Dotted
$\operatorname{Bob}(\mathrm{O})=$ Solid $/$ Dotted
$\operatorname{Bob}(\mathrm{O})=$ Solid/Dotted

What if Alice and Bob are deterministic?
$\operatorname{Alice}(O)=0 / 1$
$\operatorname{Bob}(O)=0 / 1$
Alice $(\bigcirc)=0 / 1$
$\operatorname{Bob}(O)=0 / 1$

What if Alice and Bob are deterministic?

$$
\text { Success probability } \leq \frac{3}{4}=\mathbf{7 5 \%}
$$

What if Alice and Bob may use (private) randomness?

What if Alice and Bob may use (private) randomness?

What if Alice and Bob may use (private) randomness?

What if Alice and Bob may use (private) randomness?

What if Alice and Bob may use (private) randomness?
Alice $(O$, her coin flips $)=0 / 1$
Alice $(\mathrm{O}$, her coin flips $)=0 / 1$
$\operatorname{Bob}(O$, his coin flips $)=0 / 1$
$\operatorname{Bob}(\mathrm{O}$, his coin flips $)=0 / 1$

Success probability $\leq \mathbf{7 5 \%}$

What if Alice and Bob may use shared randomness?

What if Alice and Bob may use shared randomness?

What if Alice and Bob may use shared randomness?
(H) H H

What if Alice and Bob may use shared randomness?

What if Alice and Bob may use shared randomness?
Alice $(O$, their coin flips $)=0 / 1$
$\operatorname{Bob}(O$, their coin flips $)=0 / 1$
$\operatorname{Alice}(O$, their coin flips $)=0 / 1$
$\operatorname{Bob}(O$, their coin flips $)=0 / 1$

What if Alice and Bob may use shared randomness?
Alice $(O$, their coin flips $)=0 / 1$
$\operatorname{Bob}(O$, their coin flips $)=0 / 1$
$\operatorname{Alice}(O$, their coin flips $)=0 / 1$
$\operatorname{Bob}(O$, their coin flips $)=0 / 1$

Claim:

Success probability still $\leq \mathbf{7 5 \%}$

What if Alice and Bob may use shared randomness?
$\operatorname{Alice}(\mathrm{O}, \mathrm{H} \oplus(\mathbb{H}) \quad)=0 / 1$
$\operatorname{Bob}(\mathrm{O}$.
(H)(H)(H) $)=0 / 1$
$\operatorname{Alice}(\mathrm{O}, \oplus(\mathrm{H}(\boldsymbol{\mathrm { H }}) \mathrm{)}=0 / 1$
$\operatorname{Bob}(\mathrm{O},(\boldsymbol{(})(\boldsymbol{T}(\boldsymbol{H})=0 / 1$

Conditional success probability $\leq \mathbf{7 5 \%}$

What if Alice and Bob may use shared randomness?
Alice (O, (T)T(T)) $=0 / 1$
$\operatorname{Alice}(\mathrm{O}, \mathrm{T}$ (T)(T) $)=0 / 1$
$\operatorname{Bob}(\mathrm{O}, \mathrm{T}$ (T) $)=0 / 1$
$\operatorname{Bob}(\mathrm{O}$, (T)(T) $)=0 / 1$

Conditional success probability $\leq \mathbf{7 5 \%}$

What if Alice and Bob may use shared randomness?
Alice $(O$, their coin flips $)=0 / 1$
$\operatorname{Bob}(\mathrm{O}$, their coin flips $)=0 / 1$
Alice $(\mathbf{O}$, their coin flips $)=0 / 1$
$\operatorname{Bob}(\bigcirc$, their coin flips $)=0 / 1$

Overall success probability $\leq \mathbf{7 5 \%}$

With shared quantum entanglement:

Success probability $\geq \mathbf{8 5 \%}$

Summary

Best success probability Alice and Bob can achieve in thris Magit Trick... the "CHSH experiment"...

Deterministic:	75%
Private randomness:	75%
Shared randomness:	75%
Shared quantum entanglement:	$\mathbf{8 5 \%}$
(Tsirelson 1980: The 85\% strategy	
we saw is optimal.)	

Summary

Best success probability Alice and Bob can achieve in thris Magit Triek.... the "CHSH experiment"...

Deterministic:	75%	
Private randomness:	75%	
Shared randomness:	75%	
Shared quantum entanglement:	$\mathbf{8 5 \%}$	
	Clauser - Horne - Shimony - Holt	
(Tsirelson 1980: The 85\% strategy		
we saw is optimal.)	(1969)	

Summary

Best success probability Alice and Bob can achieve in the "CHSH experiment"...

Deterministic:	75%
Private randomness:	75%
Shared randomness:	75%
Shared quantum entanglement:	$\mathbf{8 5 \%}$
"Bell Inequality violation"	

Summary

Best success probability Alice and Bob can achieve in the "CHSH experiment"...

$$
\begin{array}{ll}
\text { Deterministic: } & 75 \% \\
\text { Private randomness: } & 75 \% \\
\hline \text { Shared randomness: } & 75 \% \\
\hline \hline \text { Shared quantum entanglement: } & \mathbf{8 5 \%}
\end{array}
$$

Summary

Best success probability Alice and Bob can achieve in the "CHSH experiment"...

Deterministic:	75%
Private randomness:	75%
Shared randomness: \longleftarrow	75%
Shared quantum entanglement:	$\mathbf{8 5 \%}$

Can the CHSH experiment be done in practice?

Can the CHSH experiment be done in practice?

A. Aspect et al., early '80s

84\% success rate!

FIG. 2. Timing experiment with optical switches. Each switching device ($C_{\mathrm{I}}, C_{\mathrm{II}}$) is followed by two polarizers in two different orientations. Each combination is equivalent to a polarizer switched fast between two orientations.

R. Hanson lab, 2014 Delft University of Technology

Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km

