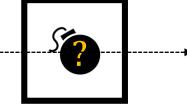
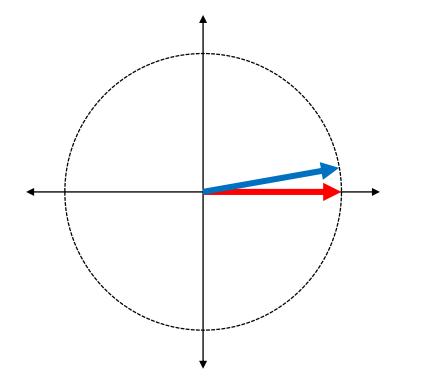
Lecture 4.5: Discriminating Two Qubits

Input qubit _____ at angle ϵ

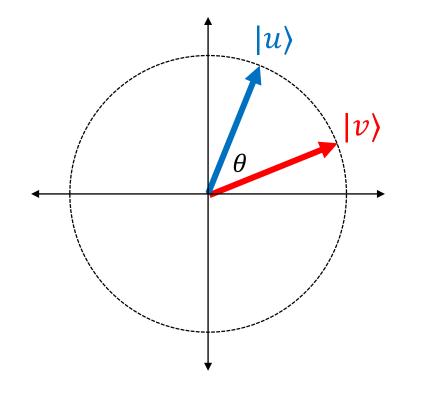




Discriminating Quantum States:

Given an *unknown* quantum state $|\psi\rangle$. You're *promised* it's either $|u\rangle$ or $|v\rangle$. (These are two states you *know*.) Must guess whether $|\psi\rangle = |u\rangle$ or $|\psi\rangle = |v\rangle$. Apply a unitary transformation?

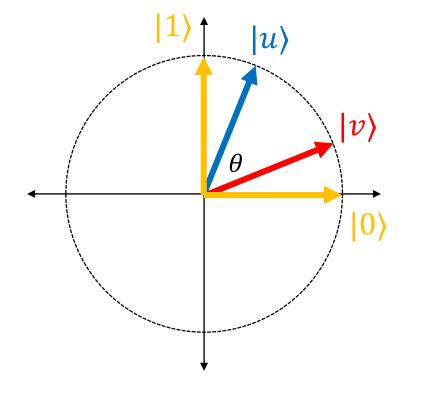
Let's put their bisector at 45°.



Discriminating Quantum States:

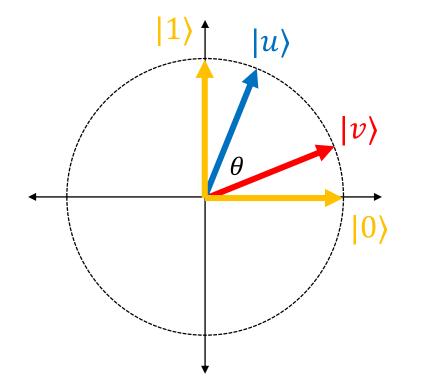
Given an *unknown* quantum state $|\psi\rangle$. You're *promised* it's either $|u\rangle$ or $|v\rangle$. (These are two states you *know*.) Must guess whether $|\psi\rangle = |u\rangle$ or $|\psi\rangle = |v\rangle$.

Measure in the **standard basis**...



Discriminating Quantum States:

Given an *unknown* quantum state $|\psi\rangle$. You're *promised* it's either $|u\rangle$ or $|v\rangle$. (These are two states you *know*.) Must guess whether $|\psi\rangle = |u\rangle$ or $|\psi\rangle = |v\rangle$.



Measure in the **standard basis**...

- If readout $|0\rangle$, guess $|v\rangle$
- If readout $|1\rangle$, guess $|u\rangle$

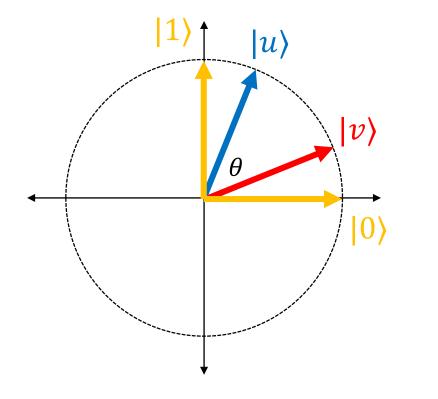
Error?

• If $|\psi\rangle = |u\rangle$ then **Pr**[error] = $(\cos \gamma)^2$,

where γ = angle between $|u\rangle$ and $|0\rangle$

$$=\cos^2(45^\circ+\theta/2)$$

$$=\frac{1}{2}-\frac{1}{2}\sin\theta$$

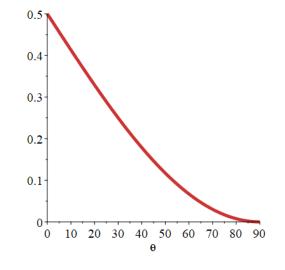


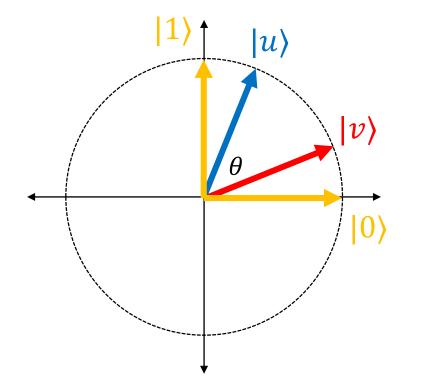
Measure in the **standard basis**...

- If readout $|0\rangle$, guess $|v\rangle$
- If readout $|1\rangle$, guess $|u\rangle$

Error?

• If
$$|\psi\rangle = |u\rangle$$
 then $\Pr[\text{error}] = \frac{1}{2} - \frac{1}{2}\sin\theta$





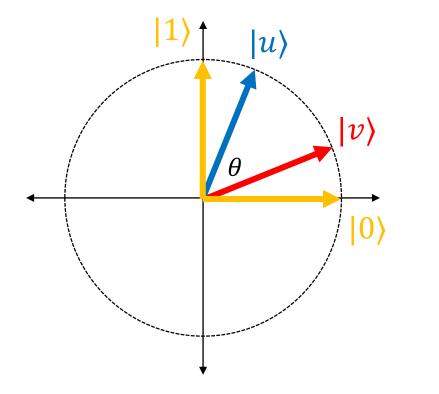
Measure in the **standard basis**...

- If readout $|0\rangle$, guess $|v\rangle$
- If readout $|1\rangle$, guess $|u\rangle$

Error?

• If $|\psi\rangle = |u\rangle$ then $\Pr[\text{error}] = \frac{1}{2} - \frac{1}{2}\sin\theta$

• If
$$|\psi\rangle = |v\rangle$$
 then $\Pr[\text{error}] = \frac{1}{2} - \frac{1}{2}\sin\theta$



Measure in the **standard basis**...

- If readout $|0\rangle$, guess $|v\rangle$
- If readout $|1\rangle$, guess $|u\rangle$

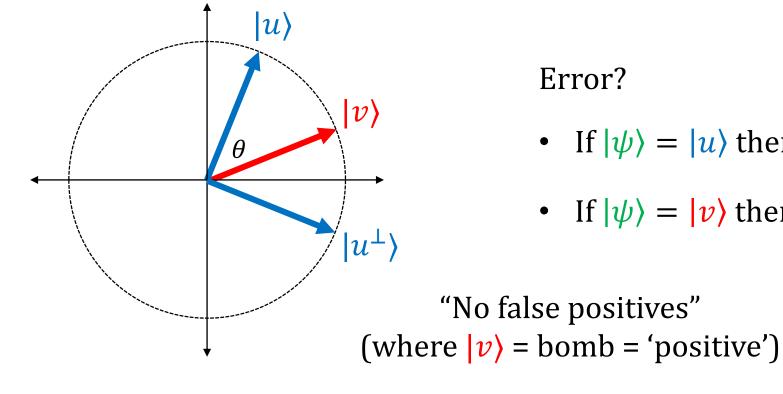
Error?

• If $|\psi\rangle = |u\rangle$ then $\Pr[\text{error}] = \frac{1}{2} - \frac{1}{2}\sin\theta$

• If
$$|\psi\rangle = |v\rangle$$
 then $\Pr[\text{error}] = \frac{1}{2} - \frac{1}{2}\sin\theta$

This is a **"two-sided error"** algorithm.

A "one-sided error" algorithm?



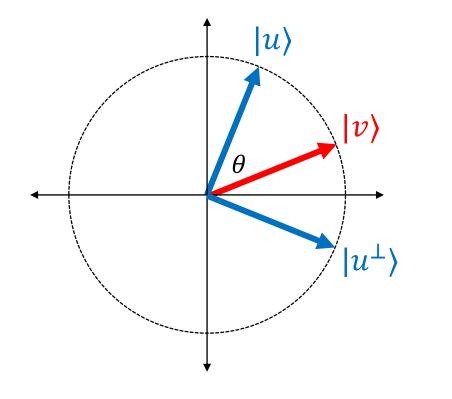
Measure in the $\{|u\rangle, |u^{\perp}\rangle\}$ basis...

- If readout $|u\rangle$, guess $|u\rangle$
- If readout $|u^{\perp}\rangle$, guess $|v\rangle$

- If $|\psi\rangle = |u\rangle$ then **Pr**[error] = 0
- If $|\psi\rangle = |v\rangle$ then **Pr**[error] = $(\cos \theta)^2$

 $= 1 - (\sin \theta)^2$ same as prob. of explosion

A **"one**-sided error" algorithm?

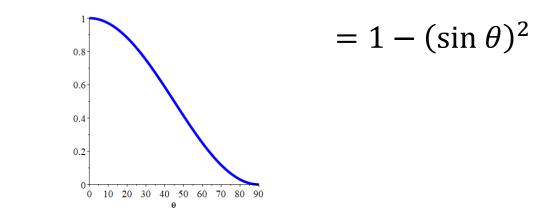


Measure in the $\{|u\rangle, |u^{\perp}\rangle\}$ basis...

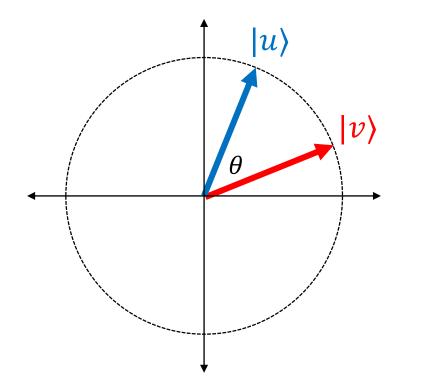
- If readout $|u\rangle$, guess $|u\rangle$
- If readout $|u^{\perp}\rangle$, guess $|v\rangle$

Error?

- If $|\psi\rangle = |u\rangle$ then **Pr**[error] = 0
- If $|\psi\rangle = |v\rangle$ then $\Pr[\text{error}] = (\cos \theta)^2$



A "zero-sided error" algorithm?



We have a "no false positives" algorithm.

By symmetry, we have an equally good "no false negatives" algorithm.

For a **zero**-sided error algorithm:

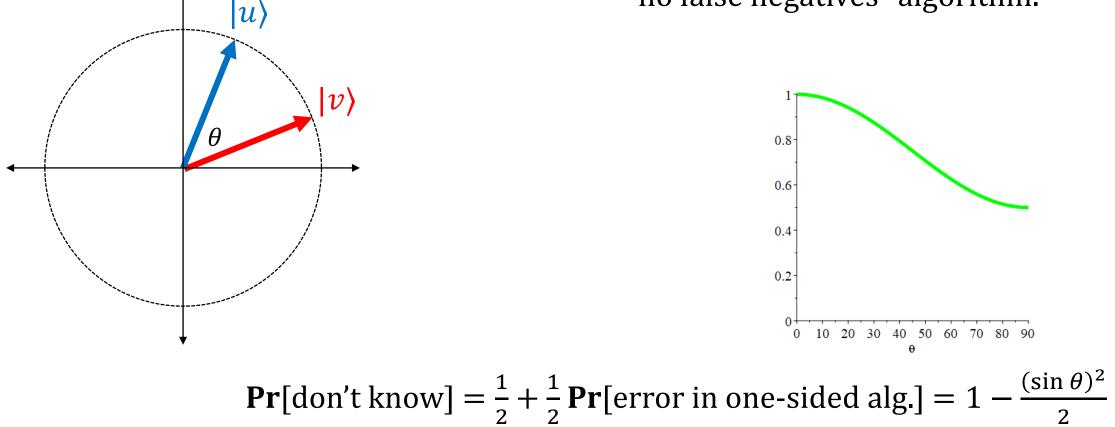
- With probability ½, do no-false-positives test;
 With probability ½, do no-false-negatives test
- If you get the answer you're "sure of", guess it;
 Otherwise, output "don't know"

$$\mathbf{Pr}[\text{don't know}] = \frac{1}{2} + \frac{1}{2} \mathbf{Pr}[\text{error in one-sided alg.}] = 1 - \frac{(\sin \theta)^2}{2}$$

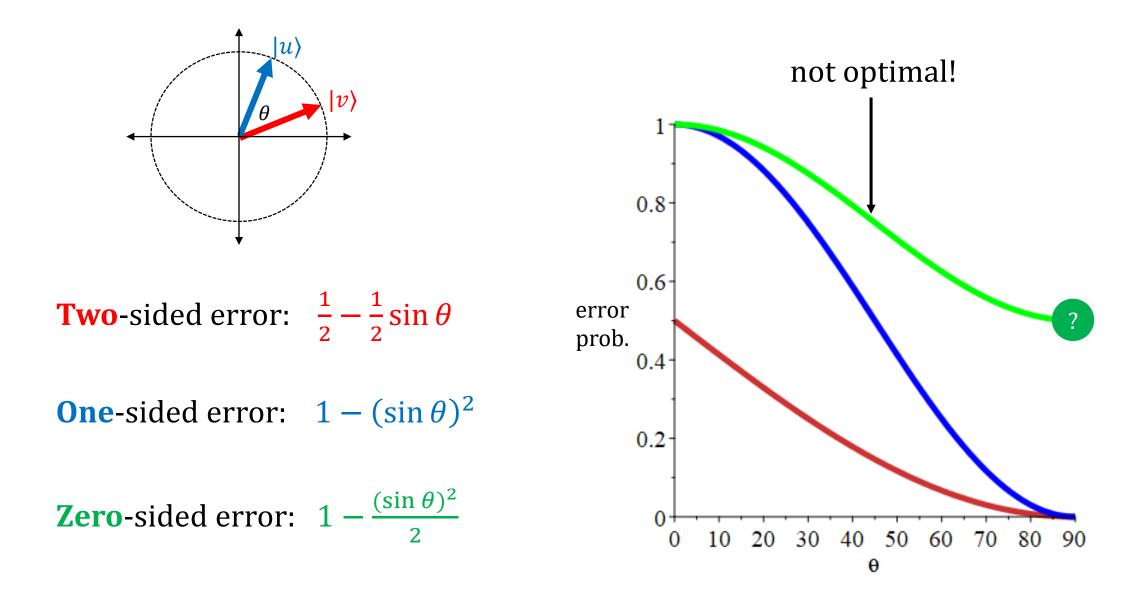
A "zero-sided error" algorithm?

We have a "no false positives" algorithm.

By symmetry, we have an equally good "no false negatives" algorithm.



Discriminating Two Quantum States at Angle θ



<u>Discriminating Two Quantum States at Angle θ </u>

