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Abstract

The Hales–Jewett theorem asserts that for every r and every k there exists n such that every
r-colouring of the n-dimensional grid {1, . . . , k}n contains a combinatorial line. This result is a
generalization of van der Waerden’s theorem, and it is one of the fundamental results of Ramsey
theory. The theorem of van der Waerden has a famous density version, conjectured by Erdős and
Turán in 1936, proved by Szemerédi in 1975, and given a different proof by Furstenberg in 1977.
The Hales–Jewett theorem has a density version as well, proved by Furstenberg and Katznelson
in 1991 by means of a significant extension of the ergodic techniques that had been pioneered
by Furstenberg in his proof of Szemerédi’s theorem. In this paper, we give the first elementary
proof of the theorem of Furstenberg and Katznelson, and the first to provide a quantitative
bound on how large n needs to be. In particular, we show that a subset of {1, 2, 3}n of density
δ contains a combinatorial line if n ≥ 2 � O(1/δ2). Our proof is reasonably simple: indeed, it
gives what is arguably the simplest known proof of Szemerédi’s theorem.

1 Introduction

1.1 Basic theorem statements

The purpose of this paper is to give the first elementary proof of the density Hales–Jewett theorem.
This theorem, first proved by Furstenberg and Katznelson [FK89, FK91], has the same relation
to the Hales–Jewett theorem [HJ63] as Szemerédi’s theorem [Sze75] has to van der Waerden’s
theorem [vdW27]. Before we go any further, let us state all four theorems. We shall use the
notation [k] to stand for the set {1, 2, . . . , k}. If X is a set and r is a positive integer, then an
r-colouring of X will mean a function κ : X → [r]. A subset Y of X is called monochromatic if
κ(y) is the same for every y ∈ Y .

First, let us state van der Waerden’s theorem and Szemerédi’s theorem.

van der Waerden’s Theorem. For every pair of positive integers k and r there exists N such
that for every r-colouring of [N ] there is a monochromatic arithmetic progression of length k.

Szemerédi’s Theorem. For every positive integer k and every δ > 0 there exists N such that
every subset A ⊆ [N ] of size at least δN contains an arithmetic progression of length k.

It is usually better to focus on the density |A| /N of a subset A ⊆ [N ] rather than on its
cardinality, since this gives us a parameter that we can think of independently of N . Szemerédi’s
theorem is often referred to as the density version of van der Waerden’s theorem.

To state the Hales–Jewett theorem, we need a little more terminology. The theorem is concerned
with subsets of [k]n, elements of which we refer to as points (or strings). Instead of looking for
∗http://michaelnielsen.org/polymath1/index.php?title=Polymath1
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arithmetic progressions, the Hales–Jewett theorem looks for combinatorial lines. A combinatorial
line in [k]n is a set of k points {x(1), . . . , x(k)} formed as follows: Given a line template, which is a
string λ ∈ ([k] ∪ {?})n, the associated combinatorial line is formed by setting x(i) to be the point
given by changing each“wildcard symbol” ‘?’ in λ to symbol ‘i’. For instance, when k = 3, n = 8,
and λ = 13??221?, the associated combinatorial line is the following set of 3 points:

{13112211, 13222212, 13332213}.

(We exclude degenerate combinatorial lines, those that arise from templates with no ?’s. More
formal definitions are given in Section 2.1.)

We are now ready to state the Hales–Jewett theorem.

Hales–Jewett theorem. For every pair of positive integers k and r there exists a positive number
HJk(r) such that for every r-colouring of the set [k]n there is a monochromatic combinatorial line,
provided n ≥ HJk(r).

As with van der Waerden’s theorem, we may consider the density version of the Hales–Jewett
theorem, where the density of A ⊆ [k]n is |A| /kn. The following theorem was first proved by
Furstenberg and Katznelson [FK91].

Density Hales–Jewett theorem. For every positive integer k and real δ > 0 there exists a
positive number DHJk(δ) such that every subset of [k]n of density at least δ contains a combinatorial
line, provided n ≥ DHJk(δ).

We sometimes write “DHJk” to mean the k case of this theorem. The first nontrivial case,
DHJ2, is a weak version of Sperner’s theorem [Spe28]; we discuss this further in Section 3. We
also remark that the Hales–Jewett theorem immediately implies van der Waerden’s theorem, and
likewise for the density versions. To see this, temporarily interpret [m] as {0, 1, . . . ,m− 1} rather
than {1, 2, . . . ,m}, and identify integers in [N ] with their base-k representation in [k]n. It’s then
easy to see that a combinatorial line in [k]n is a length-k arithmetic progression in [N ]; specifically,
if the line’s template is λ, with S = {i : λi = ?}, then the progression’s common difference is∑

i∈S k
n−i.

In this paper, we give a new, elementary proof of the density Hales–Jewett theorem, achieving
quantitative bounds:

Theorem 1.1. In the density Hales–Jewett theorem, one may take DHJ3(δ) = 2 � O(1/δ2). For
k ≥ 4, the bound DHJk(δ) we achieve is of Ackermann type.

Here we use the notation x ↑ y for xy, x ↑(`) y for x ↑ x ↑ · · · ↑ x ↑ y (with ` many ↑’s, associating
right-to-left), and x � y for x ↑(y) x.

Another way of phrasing our result is in terms of the number cn,3, the cardinality of the largest
subset of [3]n without a combinatorial line. Theorem 1.1 states that cn,3/3n ≤ O(1/

√
log∗ n).

The only known lower bound appears in a work concurrent to this one by an overlapping set of
authors [Pol09]: therein it is shown that cn,3 = 2, 6, 18, 52, 150, 450 for n = 1, 2, 3, 4, 5, 6, and for
large n that cn,3/3n ≥ exp(−O(

√
log n)). Generalizing to DHJk, the authors show that cn,k/kn ≥

exp(−O(log n)1/dlog2 ke), using ideas from recent work on the construction of Behrend [Beh46].

As Furstenberg and Katznelson observed [FK91], given DHJk it is not hard to deduce the
following extensions of DHJk:
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• a multidimensional version, in which one finds higher-dimensional combinatorial subspaces
in the subset (cf. the multidimensional Szemerédi Theorem [FK78]);

• a probabilistic version, in which one shows that a randomly chosen combinatorial line (from
a suitable distribution) is in the subset with positive probability depending only on k and δ
(cf. Varnavides’s extension [Var59] of Szemerédi’s Theorem);

• the combined probabilistic multidimensional version.

In fact, to prove Theorem 1.1 we found it necessary to obtain these extensions in passing. See
Section 2 for more detailed statements.

1.2 Some discussion

Why is it interesting to give a new proof of the density Hales–Jewett theorem? There are two main
reasons. The first is connected with the history of results and techniques in this area. One of the
main benefits of Furstenberg’s proof of Szemerédi’s theorem was that it introduced a technique—
ergodic methods—that could be developed in many directions, which did not seem to be the case
with Szemerédi’s proof. As a result, several far-reaching generalizations of Szemerédi’s theorem
were proved [BL96, FK78, Fur85, FK91], and for a long time nobody could prove them in any
other way than by using Furstenberg’s methods. In the last few years that has changed, and a
programme has developed to find new and finitary proofs of the results that were previously known
only by infinitary ergodic methods; see, e.g., [RS04, NRS06, RS06, RS07b, RS07a, Gow06, Gow07,
Tao06, Tao07]. Giving a non-ergodic proof of the density Hales–Jewett theorem was seen as a
key goal for this programme, especially since Furstenberg and Katznelson’s ergodic proof seemed
significantly harder than the ergodic proof of Szemerédi’s theorem. Having given a purely finitary
proof, we are able to obtain explicit bounds for how large n needs to be as a function of δ and k
in the density Hales–Jewett theorem. Such bounds could not be obtained via the ergodic methods
even in principle, since these proofs rely on the Axiom of Choice. Admittedly, our explicit bounds
are not particularly good: tower-type dependence for k = 3, and Ackermann-type dependence for
k ≥ 4. Still, Ackermann-type bounds are all that is known even for the multidimensional Szemerédi
theorem [Gow07, NRS06], and it is our hope that our work may spur improvements in this direction.

A second reason that a new proof of the density Hales–Jewett theorem is interesting is that it
immediately implies Szemerédi’s theorem, and finding a new proof of Szemerédi’s theorem seems
always to be illuminating—or at least this has been the case for the four main approaches dis-
covered so far (combinatorial [Sze75], ergodic [Fur77, FKO82], Fourier [Gow01], hypergraph re-
moval [Gow06, Gow07, RS04, NRS06]). In fact, quite surprisingly, the new proof we have discov-
ered is arguably simpler than the previous approaches to Szemerédi’s theorem; the most advanced
notion we need is that of the total variation distance between discrete probability distributions. It
seems that by looking at a more general problem we have removed some of the difficulty. Related
to this is another surprise. We started out by trying to prove the first difficult case of the theo-
rem, DHJ3. The experience of all four of the earlier proofs of Szemerédi’s theorem has been that
interesting ideas are needed to prove results about progressions of length 3, but significant extra
difficulties arise when one tries to generalize an argument from the length-3 case to the general case.
Unexpectedly, it turned out that once we had proved the case k = 3 of the density Hales–Jewett
theorem, it was straightforward to generalize the argument to the k ≥ 4 cases.

Before we start working towards the proof of the theorem, we would like briefly to mention that
it was proved in a rather unusual “open source” way, which is why it is being published under a
pseudonym. The work was carried out by several researchers, who wrote their thoughts, as they had

3



them, in the form of blog comments at http://gowers.wordpress.com. Anybody who wanted to
could participate, and at all stages of the process the comments were fully open to anybody who was
interested. (Indeed, taking some inspiration from a few of these blog comments, Austin provided
another new (ergodic) proof of the density Hales–Jewett theorem [Aus09].) This open process
was in complete contrast to the usual way that results are proved in private and presented in a
finished form. The blog comments are still available, so although this paper is a polished account
of the DHJk argument, it is possible to read a record of the entire thought process that led to the
proof. The constructions of new lower bounds for the DHJk problem, mentioned in Section 1.1,
are being published by a partially overlapping set of researchers [Pol09]. The participants in the
project also created a wiki, http://michaelnielsen.org/polymath1/, which contains sketches of
the arguments, links to the blog comments, and a great deal of related material.

1.3 Outline of the paper

Very briefly, our proof of DHJk follows the density increment method, as pioneered by Roth [Rot53]
in his proof of the k = 3 case of Szemerédi’s theorem. Given A ⊆ [k]n of density δ, we show that
either A contains a combinatorial line or else it has a “density increment” within a somewhat struc-
tured subset of [k]n (specifically, an “intersection of ab-insensitive sets”). To iterate this increment
we need to replace the somewhat structured subset by a copy of [k]n

′
. This is achieved by a second

iteration argument, relying on DHJk−1, which shows that the somewhat structured subsets can
essentially be partitioned into copies of [k]n

′
. This double-iteration proof structure was previously

used by Shkredov [Shk06a, Shk06b] to obtain strong bounds for the so-called “Corners Problem”,
a simplified version of DHJ3.

The remainder of the paper is organized as follows:

§2 Basic definitions, and formal statements of our theorems.
§3 Proofs for DHJ2: Sperner’s theorem, and the Gunderson–Rödl–Sidorenko theorem.
§4 A detailed outline of our proof of DHJ3.
§5 Definitions of the equal-slices distributions, used in the probabilistic DHJ theorem.
§6 Some technical calculations which will let us pass freely between probability distributions.
§7 Straightforward deductions of the probabilistic/multidimensional DHJk from the basic DHJk.
§8 A key lemma showing how to obtain a density increment on a somewhat structured subset.
§9 A theorem showing that somewhat structured subsets can be partitioned into large subspaces.
§10 The proof of our main theorem, deducing DHJk from DHJk−1.

2 Basic concepts and theorem statements

In this section we introduce some basic concepts around the density Hales–Jewett theorem, and
also state formally the extensions of DHJk that we will prove.

2.1 Points, lines, and line templates

In the density Hales–Jewett theorem the arithmetic properties of [k] = {1, 2, . . . , k} play no role.
It is only important that this set has k elements; this dictates the length of a combinatorial line.
Therefore we can equivalently replace [k] by any other alphabet Ω of k symbols, treating the elements
of Ωn as strings. We will typically use letters a, b, . . . for symbols, x, y, . . . for strings/points, and
i, j, . . . for coordinates; e.g., xj = b means the jth coordinate of string x is symbol b.
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We have already seen that it was convenient to use a different alphabet Ω when we took
Ω = {0, 1, . . . , k− 1} to deduce van der Waerden’s theorem from Hales–Jewett. A more interesting
observation is that a combinatorial line template over [k]n, i.e. a string in ([k]∪{?})n, is again just
a string over an alphabet of size k + 1. If we use the symbol ‘k + 1’ in place of ‘?’, we see that
a point in [k + 1]n can be interpreted as a line in [k]n. For example, the point 13332213 ∈ [3]8

corresponds to the length-2 line {11112211, 12222212} ⊂ [2]8. We introduce the notation xb→a

for the string formed by changing all occurrences of symbol b to symbol a in string x. Thus a line
template λ ∈ ([3] ∪ {?})n corresponds to the line {λ?→1, λ?→2, λ?→3} ⊆ [3]n.

Let us give some formal definitions, taking care of the somewhat tedious possibility of degenerate
line templates:

Definition 2.1. We say that x ∈ Ωn is a degenerate string if it is missing at least one symbol
from Ω. A line template over Ωn with wildcard symbol c ( 6∈ Ω) is a string λ ∈ (Ω∪ {c})n. We say z
is a degenerate line template if z contains no ‘c’ symbols. If λ is nondegenerate, we associate to it
the combinatorial line {λc→a : a ∈ Ω} ⊆ Ωn, which has cardinality |Ω|.

We will often blur the distinction between a line template and a line; however, please note that
for us a “line” is always nondegenerate, whereas a line template may not be.

2.2 Subspaces

As mentioned, we will find it useful to think of lines over [k]n as points in [k + 1]n, with k + 1
serving as the wildcard symbol. It’s natural then to ask for an interpretation of a point in, say,
[k + 2]n. This can be thought of as a combinatorial plane over [k]n. For example, let’s consider
k = 3 and replace [k + 2] with [3] ∪ {?1, ?2}. A string in ([3] ∪ {?1, ?2})n such as

σ = 13?1?221?1?13?21

(here n = 11) corresponds to the following 9-point combinatorial plane:

{13112111311, 13212122311, 13312133311,
13122111321, 13222122321, 13322133321,
13132111331, 13232122331, 13332133331} ⊂ [3]11.

More generally:

Definition 2.2. For d ≥ 1, a d-dimensional subspace template over Ωn with wildcard symbols
c1, . . . , cd (distinct symbols not in Ω) is a string σ ∈ (Ω ∪ {c1, . . . , cd})n. We say σ is a degenerate
template if σ is missing any of the ci symbols. If σ is nondegenerate, we associate to it the
d-dimensional combinatorial subspace {σ(c1,...,cd)→(a1,...,ad) : (a1, . . . , ad) ∈ Ωd} ⊆ Ωn, which has
cardinality |Ω|d.

Here we have introduced the extended notation x(c1,...,cd)→(a1,...,ad) for the string in Ωn formed by
changing all occurrences of symbol ci to symbol ai in string x, for all i ∈ [d].

The multidimensional density Hales–Jewett theorem states that dense subsets of [k]n contain
not just lines but combinatorial subspaces:

Multidimensional density Hales–Jewett theorem. For every real δ > 0 and every pair of
positive integers k and d, there exists a positive number MDHJk(δ, d) such that every subset of [k]n

of density at least δ contains a d-dimensional combinatorial subspace, provided n ≥ MDHJk(δ, d).
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Indeed, as Furstenberg and Katznelson [FK91] showed, it is easy to deduce the multidimensional
DHJk from the basic DHJk:

Proposition 2.3. For a given k, the multidimensional density Hales–Jewett theorem follows from
the density Hales–Jewett theorem.

Proof. By induction on d. Suppose we have proven the multidimensional DHJk theorem for d− 1,
and let A ⊆ [k]n have density at least δ. Let m = MDHJk(δ/2, d − 1), and write a generic string
z ∈ [k]n as (x, y), where x ∈ [k]m, y ∈ [k]n−m. Call a string y ∈ [k]n−m “good” if Ay = {x ∈ [k]m :
(x, y) ∈ A} has density at least δ/2 within [k]m. Let G ⊆ [k]n−m be the set of good y’s. By a
simple argument, the density of G within [k]n−m must be at least δ/2; otherwise, A could not have
density at least δ in [k]n.

By induction, for any good y the set Ay contains a (d− 1)-dimensional combinatorial subspace.
There are at most M = (k + d − 1)m such subspaces (since each is defined by a template in
[k + (d− 1)]m). Hence there must be a particular subspace σ ⊆ [k]m such that the set

Gσ = {y ∈ [k]n−m : (x, y) ∈ A ∀x ∈ σ}

has density at least (δ/2)/M within [k]n−m. Finally, provided n ≥ m+ DHJk(δ/2M), we conclude
from DHJk that Gσ contains a combinatorial line, λ. Now σ×λ ⊆ [k]n is the desired d-dimensional
subspace contained in A.

The argument in Proposition 2.3 gives a (seemingly) poor bound for large d. We note that in
the k = 2 case, Gunderson, Rödl, and Sidorenko [GRS99] have established a much superior bound:

Gunderson–Rödl–Sidorenko theorem. One may take MDHJ2(δ, d) = (10d)d2d · (1/δ)2d.

(To see this from [GRS99], combine that paper’s Theorem 4.2 and equation 8, and note that its
“c(d)” is at most (10d)d.) The authors also showed that their result is fairly tight: they proved

that MDHJ2(δ, d) needs to be at least (1/δ)
2d+1−2

d
(1−oδ(1)). This significant improvement for k = 2

over the generic Proposition 2.3 is ultimately the reason our quantitative bounds for DHJ3 are only
tower-type, whereas our bounds for the general DHJk case are Ackermann-type. In Section 3.2
we slightly sharpen the Gunderson–Rödl–Sidorenko upper bound to 25 · (1/δ)2d ; this improvement
makes no difference whatsoever to our bounds for DHJ3, but including it has the virtue of making
our overall argument self-contained.

2.2.1 Passing to a subspace

A useful aspect of combinatorial subspaces is that they “look like” the original space. More precisely,
a d-dimensional subspace {σ(c1,...,cd)→(a1,...,ad) : (a1, . . . , ad) ∈ Ωd} ⊆ Ωn is isomorphic to Ωd, in the
sense that d′-dimensional subspaces of σ map to d′-dimensional subspaces of Ωn. This identification
is easiest to see when the subspace template σ has exactly one copy of each wildcard symbol ci. In
this case, writing J for the set of d wildcard coordinates, we will call σ ∼= ΩJ a restriction to the
coordinates J (see Definition 4.1).

This isomorphism is useful because it allows us to “pass to subspaces” when looking for a
combinatorial line (or subspace) in a subset A ⊆ [k]n. By this we mean the following: Given a
d-dimensional subspace σ of [k]n, “passing to σ” means considering A′ = A ∩ σ as a subset of
[k]d. Note that if we manage to find a line (or subspace) contained in A′, this maps back to a
line (subspace) contained in A. This is helpful if A′ has some kind of improved “structure”; e.g., a
higher density (within [k]d). Indeed, finding density increments on subspaces is the basic strategy
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for our proof of DHJk; see Section 4.2. We have also seen this technique of passing to a restriction
already, in the proof of Proposition 2.3.

When passing to a subspace, we will often not make a distinction between A and A′, writing A
for both.

2.3 Probabilistic DHJ

To show that a certain combinatorial object exists, the Probabilistic Method suggests choosing it
at random. Could this work for the density Hales–Jewett theorem? A difficulty is that it is not
immediately clear how one should choose a random combinatorial line. The most obvious way to
choose a line over, say, [3]n is to simply choose a line template λ ∈ [4]n uniformly at random (taking
care of the extremely unlikely chance of a degenerate template). Unfortunately this has no real
chance of working because the uniform distribution on lines is not “compatible” with the uniform
distribution on points.

Before clarifying this point, let us introduce some notation. We will be concerned with proba-
bility distributions on the set Ωn, where Ω is a finite alphabet. We will use letters such as γ, ξ for
generic such distributions, and if A ⊆ Ωn we write γ(A) = Prx∼γ [x ∈ A] for the γ-density of A.
This coincides with our usual notion of a set’s density in the case that γ is the uniform probability
distribution on Ωn. Indeed, we will often be concerned with product distributions on Ωn; if π is a
distribution on Ω we write π⊗n for the associated product distribution on Ωn. We reserve µ for the
uniform distribution, writing µ⊗nΩ for the uniform distribution on Ωn and simply µ⊗nk when Ω = [k].
We may abbreviate this further to simply µk or even µ if the context is clear.

Let us now return to the difficulty with choosing lines uniformly at random. To clarify, suppose
we choose λ ∈ [4]n according to the uniform distribution µ⊗n4 . Then the distribution on the point
λ4→1 ∈ [3]n will be a product distribution π⊗n in which symbol 1 has probability 1/2 under π
and symbols 2 and 3 have probability 1/4 each. However this distribution is very “far” from the
uniform distribution on [3]n, meaning that even if µ⊗n3 (A) ≥ δ, the probability that λ4→1 ∈ [3]n

may be a negligibly small function of n.
Even for other natural distributions on lines, it seems inevitable that λ4→1 will tend to have more

1’s than 2’s or 3’s, and similarly for λ4→2, λ4→3. To evade this difficulty we take inspiration from
the probabilistic proof of Sperner’s theorem (see, e.g., [Spe90]) and introduce a new non-uniform,
non-product distribution on points in [k]n. We call this distribution the equal-slices distribution
and denote it by νnk . We will discuss νn2 in Section 3 on Sperner’s theorem, and its generalization
νnk in Section 5. For now we simply explain the name. Thinking of Ω = {0, 1}, one draws a string
x ∈ {0, 1}n from νn2 as follows: first choose an integer s ∈ {0, 1, . . . , n} uniformly at random; then
choose x uniformly at random from the sth “slice” of the discrete cube, i.e., the set of strings with
exactly s many 1’s. The more general νnk involves first picking the symbol-counts for the final string
x ∈ [k]n in a uniformly random manner, then choosing x uniformly at random from the strings
with the given symbol-counts.

As we will demonstrate, equal-slices is the natural distribution to use for a probabilistic version
of DHJk. There is a small catch, which is that a line template λ ∼ νnk has a very tiny chance
of being degenerate. To evade this, we introduce the very closely related distribution ν̃nk (“equal-
nondegenerate-slices”), which is νnk conditioned on λ being a nondegenerate string (i.e., having at
least one of each symbol in [k]). For more details, see Section 5. We then prove the following two
theorems:

Theorem 2.4. (Equal-slices density Hales–Jewett theorem.1) For every positive integer k and real
1We write this instead of “equal-nondegenerate-slices density Hales–Jewett theorem” for brevity.
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δ > 0 there exists a positive number EDHJk(δ) such that every A ⊆ [k]n with ν̃nk (A) ≥ δ contains
a combinatorial line, provided n ≥ EDHJk(δ).

Theorem 2.5. (Probabilistic density Hales–Jewett theorem.) For every positive integer k and real
δ > 0 there exists a positive number PDHJk(δ) and a positive real εk(δ) such that every A ⊆ [k]n

with ν̃nk (A) ≥ δsatisfies
Pr

λ∼ν̃nk+1

[λ ⊆ A] ≥ εk(δ),

provided n ≥ PDHJk(δ). Here we are interpreting λ as both a (nondegenerate) line template and
as a line.

Theorem 2.4 follows from the density Hales–Jewett theorem by playing around with probability
distributions; see Proposition 7.1. Theorem 2.5 follows almost immediately from Theorem 2.4,
thanks to some nice properties of the equal-nondegenerate-slices distribution; see Proposition 7.2.
Finally, the same two deductions also apply to the multidimensional DHJ, yielding the “equal-slices
multidimensional density Hales–Jewett theorem” (with parameter “EMDHJk(δ, d)”) and also the
following:

Theorem 2.6. (Probabilistic multidimensional density Hales–Jewett theorem.) For every real δ > 0
and every pair of positive integers k and d, there exists a positive number PMDHJk(δ, d) and a
positive real εk(δ, d) such that every A ⊆ [k]n with ν̃nk (A) ≥ δ satisfies

Pr
σ∼ν̃nk+d

[σ ⊆ A] ≥ εk(δ, d),

provided n ≥ PMDHJk(δ, d). Here we are interpreting σ as both a (nondegenerate) d-dimensional
template in [k + d]n and also as a d-dimensional subspace of [k]n.

3 k = 2: Sperner’s theorem and Gunderson–Rödl–Sidorenko

The first nontrivial case of Szemerédi’s theorem is the case of arithmetic progressions of length 3.
However, for the density Hales–Jewett theorem even the case k = 2 is interesting. DHJ2 follows
from a basic result in extremal combinatorics: Sperner’s theorem. In this section we review a
standard probabilistic proof of Sperner’s theorem. Besides suggesting the equal-slices distribution,
this proof can also be extended to give the k = 2 case of the probabilistic density Hales–Jewett
theorem, a key component in our proof of DHJ3.

To investigate DHJ2 it slightly more convenient to take the alphabet to be Ω = {0, 1}. Then a
combinatorial line in {0, 1}n is a pair of distinct binary strings x and y such that y can be obtained
from x by changing some 0’s to 1’s. If we think of the strings x and y as the indicators of two
subsets X and Y of [n], then this is saying that X is a proper subset of Y . Therefore, when k = 2
we can formulate the density Hales-Jewett theorem as follows: there exists DHJ2(δ) such that for
n ≥ DHJ2(δ), if A is a collection of at least δ2n subsets of [n], then there must exist two distinct
sets X,Y ∈ A with X ⊂ Y . In the language of combinatorics, this is saying that A is not an
antichain. (Recall that an antichain is a collection A of sets such that no set in A is a proper
subset of any other.) Sperner’s theorem gives something somewhat stronger: a precise lower bound
on the cardinality of any antichain.

Sperner’s theorem. For every positive integer n, the largest cardinality of any antichain of subsets
of [n] is

(
n
bn/2c

)
.
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As the bound suggests, the best possible example is the collection of all subsets of [n] of size
bn/2c. (It can be shown that this example is essentially unique: the only other example is to
take all sets of size dn/2e, and even this is different only when n is odd.) It is well known that(

n
bn/2c

)
2−n ≥ 1/(2

√
n) for all n; hence Sperner’s theorem implies that one may take DHJ2(δ) = 4/δ2.

Let us present a standard probabilistic proof of Sperner’s theorem (see, e.g., [Spe90]):

Proof. (Sperner’s theorem.) Consider the following way of choosing a random subset of [n]. First,
we choose, uniformly at random, a permutation τ of [n]. Next, we choose, uniformly at random
and independently of τ , an integer s from the set {0, 1, . . . , n}. Finally, we set X = {τ(1), . . . , τ(s)}
(where this is interpreted as the empty set if s = 0).

Let A be an antichain. Then the probability that a set X that is chosen randomly in the
above manner belongs to A is at most 1/(n+ 1), since whatever τ is at most one of the n+ 1 sets
{τ(1), . . . , τ(s)} can belong to A.

However, what we are really interested in is the probability that X ∈ A if X is chosen uniformly
from all subsets of [n]. Let us write ν2[X] for the probability that we choose X according to
the distribution defined above, and µ2[X] for the probability that we choose it uniformly. Then
µ2[X] = 2−n for every X, whereas ν2[X] = 1

n+1

(
n
|X|
)−1, since there is a probability 1/(n+ 1) that

s = |X|, and all sets of size |X| are equally likely to be chosen. Therefore, the largest ratio of µ2[X]
to ν2[X] occurs when |X| = bn/2c or dn/2e. In this case, the ratio is (n+ 1)

(
n
bn/2c

)
2−n.

Since we showed ν2(A) ≤ 1/(n+ 1), it follows that |A| = µ2(A)2n ≤
(

n
bn/2c

)
, which proves the

theorem.

As one sees from the proof, it is very natural to consider two different probability distributions
on the set of all subsets of [n], or equivalently, on {0, 1}n. The first is the uniform distribution µ2,
which is forced on us by the way the question is phrased. The second is what we called ν2; the
reader will note that this is precisely the “equal-slices” distribution νn2 described in Section 2.3.
After seeing the above proof, one might take the attitude that the “correct” statement of Sperner’s
theorem is that if A is an antichain, then ν2(A) ≤ 1/(n + 1), and that the statement given above
is a slightly artificial and strictly weaker consequence.

3.1 Probabilistic DHJ(2)

Indeed, what the preceding proof of Sperner’s theorem (essentially) establishes is the “equal-slices
DHJ2 theorem”; i.e., that in Theorem 2.4 one may take EDHJ2(δ) = (1/δ) − 1. We say “essen-
tially” because of the small distinction between the equal-slices distribution νn2 used in the proof
and the equal-nondegenerate-slices distribution ν̃n2 in the statement. It will be convenient in this
introductory discussion of Sperner’s theorem to casually ignore this. We will introduce ν̃nk and be
more careful about its distinction with νnk in Section 5.

To further bolster the claim that νn2 is natural in this context we will show an easy proof of
the probabilistic DHJ2 theorem. Looking at the statement of Theorem 2.5, the reader will see it
requires defining νn3 (or, more precisely, ν̃n3 ). We will make this definition in the course of the proof.

Lemma 3.1. For every real δ > 0, every A ⊆ {0, 1}n with νn2 -density at least δ satisfies

Pr
λ∼νn3

[λ ⊆ A] ≥ δ2.

Note that there is no lower bound necessary on n; this is because a template λ ∼ νn3 may be
degenerate.

9



Proof. As in our proof of Sperner’s theorem, let us choose a permutation τ of [n] uniformly at
random. Suppose we now choose s ∈ {0, 1, . . . , n} and also t ∈ {0, 1, . . . , n} independently. Let
x(τ, s) ∈ {0, 1}n denote the string which has 1’s in coordinates τ(1), . . . , τ(s) and 0’s in coordinates
τ(s+1), . . . , τ(n), and similarly define x(τ, t). These two strings both have the distribution νn2 , but
are not independent.

A key observation is that {x(τ, s), x(τ, t)} is a combinatorial line in {0, 1}n, unless s = t in
which case the two strings are equal. The associated line template is λ ∈ {0, 1, ?}n, with

λi =


1 if i ≤ min{s, t},
? if min{s, t} < i ≤ max{s, t},
0 if i > max{s, t}.

This gives the definition of how to draw λ ∼ νn3 (with alphabet {0, 1, ?}). We remark that λ is a
degenerate template with probability only 1/(n+ 1).

Assuming Prx∼νn2 [x ∈ A] ≥ δ, our goal is to show that Pr[x(τ, s), x(τ, t) ∈ A] ≥ δ2. But

Pr[x(τ, s), x(τ, t) ∈ A] = E
τ

[
Pr
s,t

[x(τ, s), x(τ, t) ∈ A]
]

= E
τ

[
Pr
s

[x(τ, s) ∈ A] Pr
t

[x(τ, s) ∈ A]
]

(independence of s, t)

= E
τ

[
Pr
s

[x(τ, s) ∈ A]2
]

≥ E
τ

[
Pr
s

[x(τ, s) ∈ A]
]2

(Cauchy-Schwarz)

= Pr
τ,s

[x(τ, s) ∈ A]2,

and this equals δ2 since x(τ, s) has the distribution νn2 , completing the proof.

Having proved the probabilistic DHJ2 theorem rather easily, an obvious question is whether we
can generalize the proof to k = 3. The answer seems to be no; there is no obvious way to generate
random length-3 lines in which the points are independent, or even partially independent as in the
previous proof. Nevertheless, the equal-slices distribution remains important for our proof of the
general case of DHJk; in Section 5 we shall introduce both νnk and ν̃nk and prove some basic facts
about them.

3.2 Multidimensional DHJ(2)

As described in Section 2.2, the multidimensional DHJ2 theorem follows generically from the basic
DHJ2 (i.e., Sperner), using Proposition 2.3. However this technique yields a very poor bound, of the
shape 2 ↑(d−1) O(1/δ2). The Gunderson–Rödl–Sidorenko theorem greatly improves on this bound.
To conclude this section of the paper, we give a streamlined version of their proof using the ideas in
the preceding Lemma 3.1. Our theorem improves their bound slightly, but the improvement makes
no difference to the bounds we obtain for DHJ3. Thus the reader may skip the result with no loss
of continuity.

Theorem 3.2. We may take MDHJ2(δ, d) = 25 · (1/δ)2d for δ ≤ 1/2. In other words, suppose
A ⊆ {0, 1}n has positive uniform density µ⊗n2 (A) = δ ≤ 1/2, and d is a positive integer. Then A

contains a d-dimensional combinatorial subspace, provided n ≥ 25 · (1/δ)2d.
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Proof. Partition [n] = J1 ∪ J2 ∪ · · · ∪ Jd−1 ∪E, where |Ji| = bn/4d−ic; it follows that |E| ≥ (2/3)n.
For a set J = J1 ∪ J2 ∪ · · · ∪ Ji, we will use the notation J for [n] \ J . We will also write simply µ
for the uniform distribution on a set; the set in question will be be clear from context.

Let τ be a random permutation of [n] as in Lemma 3.1, but now let s and t be independent
Binomial(|J1| , 1/2) random variables. Recalling the notation x(τ, s) from Lemma 3.1, we have that
x(τ, s) and x(τ, t) are uniformly distributed strings in {0, 1}J1 . They are not independent, though;
in particular, {x(τ, s), x(τ, t)} is always a combinatorial line in {0, 1}J1 unless s = t. Let Ax(τ,s)

denote {y ∈ {0, 1}J1 : (x(τ, s), y) ∈ A}, and similarly for t. If z denotes a uniformly random string
in {0, 1}J1 , then

E
τ,s,t

[µ(Ax(τ,s) ∩Ax(τ,t))] = Pr
τ,s,t,z

[(x(τ, s), z), (x(τ, t), z) ∈ A] = E
τ,z

[
Pr
s,t

[(x(τ, s), z), (x(τ, t), z) ∈ A]
]

= E
τ,z

[
Pr
s

[(x(τ, s), z) ∈ A]2
]
≥ E

τ,z

[
Pr
s

[(x(τ, s), z) ∈ A]
]2

= Pr
τ,s,z

[(x(τ, s), z) ∈ A]2 = Pr
x∼µ

[x ∈ A] = δ2,

where on the second line we used the fact that s and t are independent and identically distributed,
and we then used Cauchy-Schwarz. The line {x(τ, s), x(τ, t)} degenerates with probability

Pr[s = t] = Pr[Binomial(2 |J1| , 1/2) = |J1|] ≤
1√

n/4d−1
=

2d−1

√
n
,

where the first equality is an easy observation and the inequality uses the estimate

Pr[Binomial(2bxc, 1/2) = bxc] ≤ 1√
x
,

which is valid for all x > 0. Hence

E
τ,s,t

[µ(Ax(τ,s) ∩Ax(τ,t)) | s 6= t] ≥ δ2 − 2d−1

√
n
.

We may therefore fix a particular (nondegenerate) combinatorial line {x(0)
1 , x

(1)
1 } ⊆ {0, 1}J1 and

pass to a subset A′ ⊆ {0, 1}J1 such that (x(i)
1 , z) ∈ A for all i = 0, 1 and z ∈ A′, and such that

µ(A′) ≥ δ2 − 2d−1/
√
n.

We now repeat this argument for the index set J2. This will give us another combinatorial line
{x(0)

2 , x
(1)
2 } ⊆ {0, 1}J2 , and let us pass to a subset A′ ⊆ {0, 1}J1∪J2 with

µ(A′) ≥
(
δ2 − 2d−1

√
n

)2

− 2d−2

√
n
≥ δ4 − 2δ2 · 2d−1

√
n
− 2d−2

√
n
≥ δ4 − 2d−1

√
n
,

where we used δ ≤ 1/2. Continuing the argument yields the line {x(0)
3 , x

(1)
3 } ⊆ {0, 1}J3 and

µ(A′) ≥
(
δ4 − 2d−1

√
n

)2

− 2d−3

√
n
≥ δ8 − 2δ4 · 2d−1

√
n
− 2d−3

√
n
≥ δ8 − 2d−2

√
n
.

Etc. Having repeated the argument d− 1 times, we obtain a (d− 1)-dimensional subspace

σ = {x(0)
1 , x

(1)
1 } × {x

(0)
2 , x

(1)
2 } × · · · × {x

(0)
d−1, x

(1)
d−1} ⊆ {0, 1}

J1∪···∪Jd−1

along with a subset A′ ⊆ {0, 1}E , such that (x, y) ∈ A for all x ∈ σ, y ∈ A′, and such that µ(A′) ≥
δ2d−1 − 4/

√
n. Now if this last quantity is at least 1/(2

√
|E|) then A′ contains a combinatorial line
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by Sperner’s theorem, and we consequently obtained the required d-dimensional subspace in A.
But

1
2
√
|E|
≤ 1

2
√

(2/3)n
≤ 1√

n
,

and even this quantity is at most δ2d−1 − 4/
√
n provided n ≥ 52/δ2d .

4 Outline of the proof

In this section we sketch our proof of DHJ3, which involves reducing it to DHJ2. The general
deduction of DHJk+1 from DHJk is not much more difficult.

4.1 Passing between distributions, via subspaces

According to the statement of DHJ3, we are a given a subset A ⊆ [3]n with uniform density
µ3(A) ≥ δ, and would like to find a combinatorial line contained in A, assuming n is large enough.
It is helpful to think of δ as a fixed explicit constant such as 1% and to think of n as enormous, so
that any function on(1) is negligible compared with δ.

As we saw with Sperner’s theorem, it is often more natural to think of the DHJ problem under
the equal-(nondegenerate-)slices distribution. Our first task therefore is to reduce to proving the
equal-slices DHJ3 Theorem 2.4, by “embedding” the equal-nondegenerate-slices distribution ν̃3 in
the uniform distribution µ⊗n3 . To describe this embedding we will need to define more explicitly
the notion of restrictions:

Definition 4.1. A restriction on [k]n is a pair (J, xJ), where J ⊆ [n] and xJ ∈ [k]J , where
J = [n] \ J . It is thought of as a “partial string”, where the J-coordinates are “fixed” according
to xJ and the J-coordinates are still “free”. Given a fixing yJ ∈ [k]J , we write (xJ , yJ) for the
complete composite string in [k]n.

Definition 4.2. Given a set A ⊆ [k]n and a restriction (J, xJ), we sometimes write AxJ for the
subset of [k]J defined by AxJ = {y ∈ [k]J : (xJ , yJ) ∈ A}.

Remark 4.3. As mentioned in Section 2.2.1, a restriction (J, xJ) can be identified with a particular
kind of combinatorial subspace. Specifically, it corresponds to the |J |-dimensional subspace whose
template is (xJ , wJ), where wJ consists of |J | distinct wildcard symbols. The set AxJ is renamed
“A” when we “pass to” this subspace.

Having defined restrictions, let’s warm up by seeing how to embed the uniform distribution in
the uniform distribution. (This was implicitly done in our deduction of multidimensional DHJk from
DHJk, Proposition 2.3.) Suppose we have µ⊗n3 (A) ≥ δ. Fix an arbitrary subset of the coordinates
J ⊂ [n] with |J | = r. Since µ⊗n3 is a product distribution, if we draw xJ ∼ µ⊗J3 and yJ ∼ µ⊗J3

independently then the composite string z = (xJ , yJ) is distributed as µ⊗n3 . Hence

δ ≤ µ⊗n3 (A) = Pr
z

[z ∈ A] = Pr
xJ ,yJ

[(xJ , yJ) ∈ A] = E
xJ

[
Pr
yJ

[(xJ , yJ) ∈ A]
]

= E
xJ

[
µ⊗J3 (AxJ )

]
.

It follow that there must exist a particular substring xJ for which µ⊗J3 (AxJ ) ≥ δ as well. We
can then pass to the subspace defined by (J, xJ), and we have constructed as new instance of the
original problem: “n” has decreased to r = |J |, and “A” (i.e., AxJ ) still has µ3(A) ≥ δ.

Of course this hasn’t gained us anything, but it illustrates the basic technique of passing to
a subspace. We can now explain how to use this technique to pass to a different distribution;
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namely, equal-nondegenerate-slices. Suppose we construct strings z ∈ [3]n as follows: we choose r
coordinates J ⊂ [n] randomly, we choose the substring xJ according to the uniform distribution
µ⊗J3 , and we choose the substring yJ according to equal-nondegenerate-slices ν̃J3 . Write µ̃n3 for the
resulting distribution on the composite string z = (xJ , yJ). Now the count of each symbol in a
draw from µ⊗n3 tends to fluctuate within a range of size roughly

√
n; thus if r �

√
n, we may hope

that the “corrupted distribution” µ̃n3 is still close to the original distribution µn3 . In Section 6 we
do some technical calculations to show that this is indeed the case; essentially, the total variation
distance between distributions µ⊗n3 and µ̃n3 is at most O(r/

√
n). Thus by taking, say, r ≈ n1/4, we

may conclude ∣∣µ⊗n3 (A)− µ̃n3 (A)
∣∣ ≤ O(1/n1/4)� δ ⇒ µ̃n3 (A) ' δ.

Hence
δ / µ̃n3 (A) = Pr

J,xJ ,yJ
[(xJ , yJ) ∈ A] = E

J,xJ

[
Pr
yJ

[(xJ , yJ) ∈ A]
]

= E
J,xJ

[
ν̃J3 (AxJ )

]
,

and so again there must exist a particular J and xJ such that ν̃J3 (AxJ ) ' δ. If we pass to the
associated subspace, we get a set A with equal-nondegenerate-slices density at least δ (essentially),
and “n” has only decreased to r ≈ n1/4, which is rather affordable (especially in light of the
quantitative bounds we ultimately have in Theorem 1.1). Now we may try to find a combinatorial
line in this new A.

4.2 The density increment strategy

As we have seen, given a set A of density at least δ, it is not difficult to pass to a subspace and
maintain density essentially δ (and we may even switch between probability distributions, if we
wish). Our overall strategy for proving DHJ3 involves passing to subspaces on which A’s density
increases by a noticeable amount; specifically, from δ to δ+ Ω(δ3). (Here δ3 represents δ times the
quantity δ2 = ε2(δ) from Lemma 3.1.) More precisely, we will show the following result:

Theorem 4.4. Assume n ≥ 2 ↑(7) (1000/δ). If ν̃n3 (A) ≥ δ, then either A contains a combinatorial
line, or we may pass to a subspace of dimension at least log(7) n on which ν̃3(A) ≥ δ + Ω(δ3).

Here and throughout log n denotes max{2, log2 n}; log(7) is this function iterated 7 times.
Using such a “density increment” theorem is a well-known strategy [Rot53, Gow01, Shk06a],

and yields the equal-slices DHJ3 theorem as follows: Assuming n is “sufficiently large” to begin
with, we either find a combinatorial line or we pass to a log(7)(n)-dimensional subspace on which
A has density at least δ + Ω(δ3). Repeating this C/(7δ2) times, for C a sufficiently large absolute
constant, we either find a combinatorial line somewhere along the way, or pass to a log(C/δ2)(n)-
dimensional subspace on which A has density at least 2δ. (All the while we are assuming the
dimension is still “sufficiently large”.) Schematically,

δ
C/δ2 many logs−−−−−−−−−−→ 2δ.

Iterating this scheme, we get:

δ
C/δ2 many logs−−−−−−−−−−→ 2δ

C/(2δ)2 many logs−−−−−−−−−−−→ 4δ
C/(4δ)2 many logs−−−−−−−−−−−→ 8δ −→ · · ·

Of course the density cannot exceed 1, so eventually we must find a combinatorial line, after at
most C/δ2 + C/8δ2 + C/64δ2 + · · · ≤ 2C/δ2 many logs. All the while we have assumed that the
dimension is sufficiently large that the hypothesis of Theorem 4.4 holds; to ensure this, it certainly
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suffices to ensure that the “last” dimension, log(2C/δ2) n, is at least 2 ↑(7) (1000/δ). And this holds
presuming the initial dimension, n, is at least 2 � O(1/δ2). Thus we obtain the quantitative bound
for n given in our main Theorem 1.1 (noting that the fourth-root arising in the previous section’s
reduction from DHJ3 to equal-slices DHJ3 is indeed negligible).

4.3 Extending length-2 lines to length-3 lines

We will now begin to describe how we establish the density increment Theorem 4.4. First, we will
explain a basic strategy for finding lines in a subset A ⊆ [3]n with ν̃3(A) = δ. We will argue that
if the strategy does not work, we can obtain some kind of density increment, although not yet the
one described in Theorem 4.4.

The strategy begins with what we already know: probabilistic DHJ2, i.e., Lemma 3.1. At a
high level, this can give us a large number of length-2 lines in A, one of which we hope to extend to
a length-3 line. There is a difficulty in getting started with probabilistic DHJ2, however: we only
know that ν̃3(A) = δ, whereas Lemma 3.1 requires ν̃2(A) be large. Indeed, since ν̃n3 is supported on
nondegenerate strings, we might have ν̃3(A) ≥ δ and yet ν̃n2 (A) = 0. To evade this difficulty we will
embed ν̃2 into ν̃n3 on n1/4 random coordinates, in the manner described in Section 4.1. This will let
us pass to a subspace on which ν̃2(A) ' δ. But we need to take some extra care: if ν̃3(A) becomes
tiny after this embedding, we’ll have no hope of extending a length-2 line in A into a length-3 line.

Looking at the argument in Section 4.1, we see that for a random restriction (J, xJ) to some
n1/4 coordinates J , the expected ν̃2-density of A is essentially δ and so is the expected ν̃3-density.
What we would like is for both densities to be ' δ simultaneously. This can be arranged with
a density increment trick. The idea is to look at the variance of the ν̃3-density of A under the
random restriction. There are two cases. First, suppose this variance is somewhat high, say at least
δC for some large constant C. Then it must happen that there is some restriction under which
the ν̃3-density of A increases a little above its mean, to at least δ + Ω(δC−1). In this case, we
have a density increment which is almost good enough for Theorem 4.4 (we can repeat the present
argument some poly(1/δ) more times to get the full density increment claimed). Otherwise, the
variance is quite low. This means that for “almost every” restriction (J, xJ), the ν̃3-density of A is
very close to δ. Since we know that the expected ν̃2-density of A is δ, it follows that for a noticeable
fraction of restrictions the ν̃2-density is ' δ. Thus we can find a restriction with both ν̃2(A) ' δ
and ν̃3(A) ≈ δ, as desired.

Having essentially arranged for both ν̃2(A), ν̃3(A) ≥ δ, we are in a position to use probabilistic
DHJ2. The following is a key idea in the proof: Suppose we pick a random z ∼ ν̃n3 . On one hand,
we can think of z as a point, which will be in A with probability at least δ. On the other hand, we
can think of z as a line template over [2]n with wildcard symbol ‘3’; then the probabilistic DHJ2

tells us that the associated length-2 line is in A with probability at least δ2. If both events happen,
we have a length-3 line in A: {z3→1, z3→2, z}.

To rephrase this, let L ⊆ [3]n be the set of line templates over [2]n for which the associated line
is in A. Lemma 3.1 implies that ν̃3(L) ≥ δ2. If L ∩A 6= ∅ then we have found a combinatorial line
in A. Unfortunately, we only know ν̃3(A) ≥ δ, and there is plenty of room for a density-δ2 set and
a density-δ set to not intersect.

However, if A does not intersect L then we have that

ν̃3(A)
ν̃3(L)

'
δ

1− δ2
≥ δ + δ3,

where L denotes [3]n \ L. In other words, A has a “relative” density increment on the set L.
Unfortunately, L is not a combinatorial subspace of [3]n, so we have not established the density
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increment Theorem 4.4. Still, as we will see, L is not a completely arbitrary subset; it has just
enough structure that we will be able to convert A’s density increment on it to a density increment
on a subspace.

4.4 ab-insensitive sets

Let us look more closely at the “shape” of the set L. Recall that

L = {z ∈ [3]n : z3→1 ∈ A, z3→2 ∈ A},

and hence

L = B1 ∪B2, where B1 = {z ∈ [3]n : z3→1 6∈ A}, B2 = {z ∈ [3]n : z3→2 6∈ A}.

Consider, e.g., B1. It has an important structural property: it is “13-insensitive”.

Definition 4.5. Let a, b ∈ Ω be distinct symbols. We say that C ⊆ Ωn is ab-insensitive if the
following condition holds: x ∈ C iff xa→b ∈ C.

The notion of ab-insensitivity also played an essential role in Shelah’s proof [She88] of the
Hales–Jewett theorem.

Remark 4.6. The definition is symmetric in a and b. It is perhaps easier to understand the
condition as follows: “altering some a’s to b’s and some b’s to a’s does not affect presence/absence
in C”.

Remark 4.7. Suppose C and C ′ are ab-insensitive subsets of Ωn. Then so too are C and C ∩ C ′.
Further, if σ is a d-dimensional subspace of Ωn, and we view C ∩ σ as a subset of σ ∼= Ωd, then
C ∩ σ is ab-insensitive.

It is clear from the definition that B1 is a 13-insensitive set and B2 is a 23-insensitive set. Let
us temporarily pretend that there is no B1 and we simply have L = B2. (This simplification will
ultimately prove easy to patch up.) Thus we have a density increment of roughly δ3 for A on the
23-insensitive set B2. To complete the proof of Theorem 4.4, our last task will be to convert this
to an equally good density increment on a combinatorial subspace of dimension at least log(7) n. It
turns out to be convenient to carry out this task under the uniform distribution, rather than under
the equal-slices distribution; we can arrange for this by another distribution-embedding argument.

Sets which are ab-insensitive are very useful, for the following reason: for such sets, we can
“boost” DHJk to DHJk+1, and similarly for the multidimensional version. Suppose the 23-insensitive
set B2 has µ3(B2) ≥ η. By “conditioning on the location of the 3’s”, it is easy to find a restriction
under which µ2(B2) ≥ η as well. Hence we can apply the multidimensional DHJ2 theorem find a
“length-2” d-dimensional combinatorial subspace σ contained in B2. This σ will only be an iso-
morphic copy of {1, 2}d, not {1, 2, 3}d. But now we may use the 23-insensitivity of B2 to deduce
that z2→3 ∈ B2 for all z ∈ σ. Hence the full “length-3” d-dimensional subspace (copy of {1, 2, 3}d)
is contained in B2 as well.

4.5 Completing the proof: partitioning ab-insensitive sets

We now come to perhaps the key step in the proof: We show that a 23-insensitive set can be
almost completely partitioned into a disjoint union S of d-dimensional combinatorial subspaces,
where d ≈ log(7) n. Thus if A has a density increment on the 23-insensitive set B2, it must have an
equally good density increment on one of the d-dimensional subspaces in S.
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Let us explain this slightly more carefully. Suppose we have some 23-insensitive set B ⊆ [3]n and
we wish to partition it into a collection of disjoint d-dimensional subspaces S, along with an “error”
set E satisfying µ3(E) ≤ δ3/100, say. If µ3(B) ≤ δ3/100 already, we are done. Otherwise, using
the density and 23-insensitivity of B, we use the multidimensional DHJ2 to find a d-dimensional
subspace contained in B. (We will describe later why we may take d ≈ log(7) n.)

We can do even better than simply finding a single d-dimensional subspace in B. By an
argument similar to Proposition 2.3, we can ensure that there is a set of coordinates J ⊆ [n]
with |J | = m = MDHJ2(δ3/100, d) and a particular d-dimensional subspace σ ⊆ [3]J such that
σ × {y} ⊆ B for at least some τ = τ(δ, d) > 0 fraction of all strings y ∈ [3]J . These sets σ × {y}
are disjoint d-dimensional subspaces that we may remove from B and place into the collection S.
The total probability mass of these subspaces is crudely bounded below by τ(δ, d)3−m.

We now wish to iterate this argument, but there is a catch; having removed from B the sets
σ×{y}, it is likely no longer 23-insensitive. Fortunately, B’s 23-insensitivity is only spoiled on the
m coordinates J :

Definition 4.8. Let a, b ∈ Ω be distinct symbols. We say that C ⊆ Ωn is ab-insensitive on I ⊆ [n]
if the following condition holds: given a string x, altering some a’s to b’s and some b’s to a’s within
coordinates I does not affect x’s presence/absence in C. If I is unspecified we take it to be all
of [n].

We can thus remove a collection of disjoint d-dimensional subspaces from B of probability mass
at least τ(δ, d)3−m, at the expense of making B 23-insensitive only on coordinates [n] \ J . We now
iterate the argument. Since |J | depends only on δ and d, we may assume that n� |J |. Thus B still
has plenty of 23-insensitive coordinates, and we can find another d-dimensional subspace, localized
to some new m coordinates J2, which has many extensions in B. Again, we can remove another
collection of d-dimensional subspaces from B of mass at least τ(δ, d)3−m, while only spoiling B’s 23-
sensitivity on m more coordinates. By iterating this argument T (δ, d) = (3m/τ(δ, d)) ·O(log(1/δ))
times, B’s total density will drop below δ3/100, at which point we may call what remains the error
set E, completing the partitioning argument. To ensure that we can iterate the argument T (δ, d)
times, we must assume that n ≥ T (δ, d)m so that B never “runs out” of 23-insensitive coordinates
along the way.

It remains to calculate how large d can be so that the assumption n ≥ T (δ, d)m is valid. Accord-
ing to the Gunderson-Rödl-Sidirenko theorem (or our version Theorem 3.2), m = MDHJ2(δ3/100, d)
is, roughly speaking, doubly-exponential in d. It follows that T (δ, d)m ≈ 3m/τ(δ, d) is triply-
exponential in d. In fact, we need to iterate this argument once more, leading to a six-fold expo-
nential, because L was not just the single 23-insensitive set B2 but was rather B1 ∪B2. Finally, to
cover the slack in various arguments, we ultimately require roughly n ≥ 2 ↑(7) d. Thus we are able
to take d = log(7) n as needed in Theorem 4.4.

5 Equal-slice distributions

In this section we describe the equal-slices distribution νnk and the equal-nondegenerate-slices dis-
tribution ν̃nk . It will actually be more convenient to begin with the latter. Before proceeding, we
briefly introduce some probability notions.

Definition 5.1. Given a probability distribution γ on a set Ωn, we write min(γ) = minx∈Ωn γ[x].

Definition 5.2. Given probability distributions γ and ξ on Ωn, their total variation distance
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dTV(γ, ξ) is defined by

dTV(γ, ξ) =
1
2

∑
x∈Ωn

|γ[x]− ξ[x]| = max
A⊆Ωn

|γ(A)− ξ(A)| .

If dTV(γ, ξ) ≤ τ we say that γ and ξ are τ -close.

5.1 Equal-nondegenerate-slices

Definition 5.3. Given a vector s ∈ Nk whose components sum to n, the associated slice of [k]n is
the set

{x ∈ [k]n : x has s1 many 1’s, s2 many 2’s, . . . , sk many k’s}.

We call s the slice vector. A slice (vector) is nondegenerate when sa 6= 0 for all a ∈ [k].

In enumerative combinatorics, the slice vectors are known as the “weak k-compositions of n”;
the nondegenerate slice vectors are the “k-compositions of n”. It is a simple “dots and bars” com-
binatorics exercise to show that there are

(
n+k−1
k−1

)
distinct slices, of which

(
n−1
k−1

)
are nondegenerate;

see, e.g., [Sta00]. It will useful for us to see this in a slightly different way:

Definition 5.4. Let 2 ≤ k ≤ n. The equal-nondegenerate-slices distribution on [k]n, denoted ν̃nk ,
generates a string x ∈ [k]n as follows: First, points q1, . . . , qn are arranged on a circle according to
a uniformly random permutation. This also forms n “gaps” between the qi’s. Second, a set of k
gaps are chosen, uniformly from the

(
n
k

)
possibilities; points r1, . . . , rk are put into the chosen gaps,

in random order. This divides the qi’s into “arcs”, with the “ra arc” consists of those qi’s whose
nearest r-point counterclockwise is ra. Finally, x is defined by setting xi = a for all i such that qi
in the ra arc. See Figure 1 for an example.

Figure 1: An example of the two stages in drawing from ν̃10
3 . The resulting string is 1131232213.

Remark 5.5. The distribution is symmetric with respect to the k symbols in [k], and thus we may
naturally extend it to any alphabet Ω with |Ω| = k.
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Remark 5.6. If x ∼ ν̃nk then x always belongs to a nondegenerate slice.

Remark 5.7. Drawing x ∼ ν̃nk is equivalent to first choosing a nondegenerate slice vector s uni-
formly from the

(
n−1
k−1

)
possibilities, then choosing x uniformly from the associated slice. To see this

we view the choices made in Definition 5.4 in an alternate but equivalent way. First, we arrange n
indistinguishable q-points on the circle without yet labeling them according to a random permuta-
tion. Next, we choose a random permutation ρ on [k]. We then choose one of the n gaps uniformly
at random and place rρ(1) there. Following this we choose a subset of k − 1 of the remaining n− 1
gaps, uniformly from among the

(
n−1
k−1

)
possibilities. We place points rρ(2), . . . , rρ(k) in the chosen

gaps, in clockwise order from the gap rρ(1) sits in. Finally, we label the q-points according to a
random permutation, and the string x is defined.

Consider this procedure just after rρ(1) has been placed in the first-chosen gap. There is now
an obvious bijection between the

(
n−1
k−1

)
choices for the remaining gaps and the resulting slice vector

of x. Further, once the remaining gaps are chosen and the slice is fixed, there is a one-to-one
correspondence between the permutations of the q-points and the strings in the slice.

The idea of viewing Definition 5.4’s steps in an alternate but equivalent way also leads to the
following important lemma (which essentially arose already in Lemma 3.1):

Lemma 5.8. For k ≥ 2, let x ∼ ν̃nk , and let a be chosen uniformly at random from [k − 1]. Then
xk→a is distributed as ν̃nk−1.

Proof. Suppose we are drawing x ∼ ν̃nk and have chosen the arrangement of q1, . . . , qn and also the
k gaps to be filled with r-points. To fill these gaps, we may do the following. First, choose one of
the k gaps at random to contain rk. Next, take the first gap counterclockwise from rk and let it
contain ra, where a ∼ [k − 1] is uniformly chosen. Finally, fill the remaining k − 2 gaps according
to a uniform ordering of [k− 1] \ {a}. But having chosen x in this way, xk→a is obtained simply by
“deleting” rk and interpreting the result as a (correctly distributed) draw from ν̃nk−1.

We end our discussion of the equal-nondegenerate-slices distribution with a handy lemma (which
is not true of “equal-slices” distribution we define next). First, one more piece of notation:

Definition 5.9. Let x ∈ [m]n, y ∈ [k]m. We write y ◦ x for the string x(1,...,m)→(y1,...,ym) ∈ [k]n.
For example, if n = 6, m = 4, k = 3, x = 4124332, y = 3132, then y ◦ x = 2312331. This operation
is indeed function composition if one thinks of a string in Ωn as a map [n]→ Ω.

Lemma 5.10. Let x ∼ ν̃nm and let y ∼ ν̃mk . Then y ◦ x ∈ [k]n is distributed as ν̃nk .

Proof. The effect of forming y ◦ x can be thought of as follows: First the points q1, . . . , qn and
r1, . . . , rm are randomly arranged as usual to form x. Next, we think of the arcs of qi’s as being
the m objects circularly permuted in the initial stage of drawing y; we then choose k out of the m
gaps between the arcs at random and place points r′1, . . . , r

′
k into them in a random order. Then

z = y ◦ x is given by setting zi = a for all i such that qi is in the r′a “super-arc”.
But since ν̃nm is symmetric under permutations of [m], the middle stage in this composite

process—i.e., permuting the arcs—is superfluous. Eliminating it, we see that the r′j ’s are ultimately
placed by first choosing m out of n gaps at random, and then further choosing k out of these m
choices at random. This is equivalent to simply choosing k out of the n gaps at random; hence z
is indeed distributed as ν̃nk .
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5.2 Equal-slices

We now define the closely related variant, the equal-slices distribution:

Definition 5.11. Let k ≥ 2 and let n be a positive integer. The equal-slices distribution on [k]n,
denoted νnk , generates a string x in a manner similar to that of equal-nondegenerate-slices. The
only distinction is that the points r1, . . . , rk are placed into random gaps one-by-one, and once a
point ra is placed, it is considered to split the gap into two occupiable gaps. Thus when placing
ra, there are n+ a− 1 gaps to choose from. As a consequence, some of the resulting r-arcs may be
empty of q-points.

Remark 5.12. The process in the definition of ν̃nk is identical to the process in νnk conditioned on
no ra’s ending up adjacent.

Remark 5.13. It is not hard to see that the process in Definition 5.11 yields a uniformly random
(circular) ordering of the n + k points {q1, . . . , qn, r1, . . . , rk}. This observation shows that the
definition of νnk is symmetric with respect to the symbols [k].

Let’s first show that the two distributions ν̃nk and νnk are very close:

Proposition 5.14. For 2 ≤ k ≤ n we have dTV(ν̃nk , ν
n
k) ≤ k(k − 1)/n.

Proof. As ν̃nk is equivalent to νnk conditioned on the event that no ra’s end up adjacent, it suffices
to show this event occurs with probability at most k(k − 1)/n. In a draw from νnk , the probability
that ra is placed adjacent to one of r1, . . . , ra−1 is at most 2(a−1)/(n+a−1) ≤ 2(a−1)/n. Hence
the probability of having any adjacent ra’s is at most

∑k
a=1 2(a−1)/n = k(k−1)/n, as desired.

It is also quite helpful to observe that equal-slices is a mixture of product distributions.

Definition 5.15. Given k points r1, . . . , rk on the the circle of unit circumference, dividing it into
arcs, the associated spacing is the vector ν ∈ Rk

≥0 defined by setting ν[a] to be the length of the
arc emanating clockwise from ra. We identify a spacing ν with a probability distribution on [k] in
the natural way. We say that ν is a (uniformly) random k-spacing if it is derived by choosing the
points r1, . . . , rk independently and uniformly at random on the circle.2

Proposition 5.16. The equal-slices distribution νnk can equivalently be defined as follows: First,
draw a random k-spacing ν; then, draw a string from the product distribution ν⊗n on [k]n.

Proof. In the original definition of a draw x ∼ νnk , the string x only depends on the joint ordering
of the n+k points {q1, . . . , qn, r1, . . . , rk} around the circle. As noted in Remark 5.13, this ordering
is just a uniform (circular) permutation of n+ k objects. Hence we can also obtain it by choosing
all n + k points independently from the continuous uniform distribution on the circle of unit
circumference (neglecting the probability-0 event that some points coincide). Further, in this
continuous distribution, we may choose the ra’s first, and then the qi’s next, one-by-one. The
choice of ra’s gives a random k-spacing ν, and then the formation of x by choice of qi’s is clearly
equivalent to drawing x from the product distribution ν⊗n.

2Strictly speaking our proof ceases to be entirely finitary at this point, as we are using continuous probability
distributions. This is only to simplify subsequent probability calculations involving the discrete distributions νnk and
ν̃nk , and could be eliminated, albeit with additional inconvenience.
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Remark 5.17. Drawing x ∼ νnk is equivalent to first choosing a slice vector s uniformly from the(
n+k−1
k−1

)
possibilities (nondegenerate and degenerate) possibilities, then choosing x uniformly from

the associated slice. We give a brief justification similar to the one in Remark 5.7: Start with n+k
indistinguishable points arranged on a circle. Let ρ be a random permutation on [k], and choose
one of the n + k points randomly to be rρ(1). Next, choose a subset of k − 1 of the remaining
n+ k − 1 points, uniformly at random, and define them be rρ(2), . . . , rρ(k), in clockwise order from
the point rρ(1). The

(
n+k−1
k−1

)
choices here are in bijective correspondence with the possible slice

vectors. Finally, labeling the remaining n points q1, . . . , qn in a random order yields a uniformly
random string from the chosen slice.

It follows from this remark that for a particular string x ∈ [k]n with slice vector s, we have

νnk [x] = 1
/ ( n+ k − 1

k − 1, s1, . . . , sk

)
. (1)

Finally, we will occasionally need the following technical bounds:

Proposition 5.18. If ν is a random k-spacing as in Definition 5.15, then

Pr[min(ν) ≤ θ] ≤ k(k − 1)θ.

Proof. By a union bound and symmetry, Pr[min(ν) ≤ θ] ≤ kPr[ν[1] ≤ θ]. The event ν[1] ≤ θ
occurs only if one of r2, . . . , rk falls within the arc of length θ clockwise from r1. By another union
bound, this has probability at most (k − 1)θ.

Proposition 5.19. Assume k ≥ 2, n ≥ 2k2. Then we may crudely bound min(νnk) ≥ k−2n.

Proof. Define α = k(k − 1)/n and apply the multinomial theorem:

(α+ k)n+k−1 = (α+ 1 + · · ·+ 1)n+k−1 =
∑

t0+t1+···tk
=n+k−1

(
n+ k − 1
t0, t1, . . . , tk

)
αt0 ≥

(
n+ k − 1

k − 1, s1, . . . , sk

)
αk−1.

Hence we can lower-bound the expression (1) by

αk−1

(α+ k)n+k−1
=

(k − 1)k−1

(1 + k−1
n )n+k−1nk−1kn

≥ (k − 1)k−1

exp(k − 1 + (k−1)2

n )nk−1kn
≥ (k − 1)k−1

exp(k)nk−1kn
, (2)

where the first step used the definition of α, the second used 1 + x ≤ exp(x), and the last used
(k − 1)2/n ≤ 1/2 ≤ 1, by assumption. For fixed k and large n we have nk−1 � kn, and hence one
expects the expression on the right in (2) to be at least k−2n. It is a calculus exercise to verify that
when k ≥ 2 and n ≥ 2k2, this indeed holds.

Since ν̃nk is just νnk conditioned on nondegenerate strings, we conclude:

Corollary 5.20. Assume k ≥ 2, n ≥ 2k2. Then for each nondegenerate string x ∈ [k]n we have
ν̃nk [x] ≥ k−2n.
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6 Passing between probability measures

The goal of this section is to work out bounds for the error arising when passing back and forth
between the uniform distribution µk and the equal-nondegenerate-slices distribution ν̃k, as described
in Section 4.1. Lemma 6.3 below gives the bounds we need. The reader will not lose much by just
reading its statement; the proof is just technical calculations.

Before stating Lemma 6.3 we need some definitions.

Definition 6.1. For 0 ≤ p ≤ 1, we say that J is a p-random subset of [n] if J is formed by including
each coordinate i ∈ [n] independently with probability p. Assuming r ≤ n/2, we say that J is an
[r, 4r]-random subset of [n] if J is a p-random subset of [n], p = 2r/n, conditioned on r ≤ |J | ≤ 4r.

Definition 6.2. A distribution family (γm)m∈N over [k] is a sequence of probability distributions,
where γm is a distribution on [k]m. In this paper the families we consider will either be the equal-
(nondegenerate-)slices families γm = ν̃mk or γm = νmk , or will be the product distributions based on
a single distribution π on [k], γm = π⊗m.

Lemma 6.3 concerns passing from the distribution family (γm) to the distribution family (ξm):

Lemma 6.3. Let 2 ≤ ` ≤ k and n be integers, and assume 2 lnn ≤ r ≤ n/2. Consider any of the
following scenarios for the distribution families (γm) and (ξm):

1. (Uniform to equal-slices.) γm = µ⊗mk and ξm = νm` ;

2. (Equal-slices to product.) γm = νmk and ξm = π⊗m, where π is a distribution on [k];

3. (Equal-slices to equal-slices.) γm = νmk and ξm = νm` .

Let J be an [r, 4r]-random subset of [n], let x be drawn from [k]J according to γ|J|, and let y be drawn
from [k]J according to ξ|J |. Then the resulting distribution on the composite string (x, y) ∈ [k]n has
total variation distance from γn which is at most 4k · r/

√
n.

(Although Lemma 6.3 mentions only the equal-slices distribution, one can replace this with
equal-nondegenerate-slices if desired by using Proposition 5.14.) Since νnk is a mixture of product
distributions (Proposition 5.16), the main work in proving Lemma 6.3 involves comparing product
distributions.

6.1 Comparing product distributions

Definition 6.4. For γ and ξ probability distributions on Ωn, the χ2 distance dχ2(π, ν) is defined
by

dχ2(γ, ξ) =

√
Var
x∼γ

[
ξ[x]
γ[x]

]
.

Note that dχ2(γ, ξ) is not symmetric in γ and ξ.

The χ2 distance is introduced to help us prove the following fact:

Proposition 6.5. Let π be a distribution on Ω with full support; i.e., min(π) 6= 0. Suppose π
is slightly mixed with ξ, forming π̂; specifically, π̂ = (1 − p)π + pξ. Then the associated product
distributions π⊗n, π̂⊗n on Ωn satisfy

dTV(π⊗n, π̂⊗n) ≤ dχ2(π, ξ) · p
√
n.
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Proof. It is a straightforward consequence of Cauchy-Schwarz (see, e.g. [Rei89, p. 101]) that

dTV(π⊗n, π̂⊗n) ≤ dχ2(π, π̂) ·
√
n,

and the identity dχ2(π, π̂) = p · dχ2(π, ξ) follows easily from the definitions.

This can be bounded independently of ξ, as follows:

Corollary 6.6. In the setting of Proposition 6.5,

dTV(π⊗n, π̂⊗n) ≤
√

1
min(π) − 1 · p

√
n,

Proof. It is easy to check that the distribution ξ maximizing dχ2(π, ξ) is the one putting all its

mass on the x minimizing π[x]. In this case one calculates dχ2(π, ξ) =
√

1
min(π) − 1.

6.2 Proof of Lemma 6.3

Definition 6.7. Let 0 ≤ p ≤ 1 and let (γm), (ξm) be distribution families. Drawing from the
(p, γ, ξ)-composite distribution on [k]n entails the following: J is taken to be a p-random subset
of [n]; x is drawn from [k]J according to γ|J|; and, y is drawn from [k]J according to ξ|J |. We
sometimes think of this distribution on J , x, and y as just being a distribution on composite
strings z = (x, y) ∈ [k]n.

Note that the distribution described in Lemma 6.3 is very similar to the (p, γ, ξ)-composite
distribution, except that it uses an [r, 4r]-random subset rather than a p-random subset. We can
account for this difference with a standard Chernoff bound (see, e.g., [AS08, App. A]):

Fact 6.8. If J is a p-random subset of [n] with p = 2r/n as in Definition 6.1, then r ≤ |J | ≤ 4r
holds except with probability at most 2 exp(−r/4).

The utility of using p-random subsets in Definition 6.7 is the following observation:

Fact 6.9. If π and ξ are distributions on [k], thought of also as product distribution families, then
the (p, π, ξ)-composite distribution on [k]n is precisely the product distribution π̂⊗n, where π̂ is the
mixture distribution (1− p)π + pξ on [k].

Because of this, we can use Corollary 6.6 to bound the total variation distance between π⊗n

and a composite distribution. We conclude:

Proposition 6.10. Let π and ξ be any distributions on [k], thought of also as product distribution
families. Writing π̃ for the (p, π, ξ)-composite distribution on strings in [k]n, we have

dTV(π⊗n, π̃) ≤
√

1
min(π) − 1 · p

√
n.

Recall that for any 2 ≤ ` ≤ k, the equal-slices distribution νm` on m coordinates is a mixture of
product distributions ν⊗m on [k]m. We can therefore average Proposition 6.10 over ξ to obtain:

Proposition 6.11. Let π be any distribution on [k], thought of also as a product distribution family.
Writing π̃ for the (p, π, ν`)-composite distribution on strings in [k]n, where ` ≤ k, we have

dTV(π⊗n, π̃) ≤
√

1
min(π) − 1 · p

√
n.
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Here we have used the following basic bound, based on the triangle inequality:

Fact 6.12. Let (ξκ)κ∈K be a family of distributions on Ωn, let ς be a distribution on K, and let ξ
denote the associated mixture distribution, given by drawing κ ∼ ς and then drawing from ξκ. Then

dTV(γ, ξ) ≤ E
κ∼ς

[dTV(γ, ξκ)].

If we instead use this fact to average Proposition 6.10 over π, we can obtain:

Proposition 6.13. Let ξ be any distribution on [k], thought of also as a product distribution family.
Writing γ for the (p, νk, ξ)-composite distribution on strings in [k]n, we have

dTV(νnk , γ) ≤ (2k − 1)p
√
n.

Proof. Thinking of νnk as the mixture of product distributions ν⊗n, where ν is a random k-spacing,
Fact 6.12 and Proposition 6.10 imply

dTV(νnk , γ) ≤ E
ν

[√
1

min(ν) − 1
]
· p
√
n.

We can upper-bound the expectation above by

E
ν

[√
1

min(ν)

]
=

∫ ∞
0

Pr
ν

[√
1

min(ν) ≥ t
]
dt =

∫ ∞
0

Pr
ν

[min(ν) ≤ 1/t2] dt

≤ k +
∫ ∞
k

Pr
ν

[min(ν) ≤ 1/t2] dt ≤ k +
∫ ∞
k

(k(k − 1)/t2) dt = 2k − 1,

where in the second-to-last step we used Proposition 5.18.

Averaging now once more in the second component, we obtain the following:

Proposition 6.14. Let 2 ≤ ` ≤ k and let γ′ denote the (p, νk, ν`)-composite distribution on strings
in [k]n. Then

dTV(νnk , γ
′) ≤ (2k − 1)p

√
n.

We can now obtain the proof of Lemma 6.3:

Proof. The claimed bound of 4k · r/
√
n for each of the three scenarios essentially follows from

Propositions 6.11, 6.13, and 6.14, taking p = 2r/n. These propositions each imply a total variation
bound of (4k−2) · r/

√
n. (In the case of the first scenario, uniform to equal-slices, Proposition 6.11

gives the bound
2
√

1
min(µk) − 1 · r/

√
n = 2

√
k − 1 · r/

√
n,

which is indeed at most (4k−2) ·r/
√
n.) However we need to account for conditioning on r ≤ |J | ≤

4r. By Fact 6.8, this conditioning increases the total variation distance by at most 2 exp(−r/4).
Using the lower bound r ≥ 2 lnn ≥ 1 from the lemma’s hypothesis, this increase is at most
2/
√
n ≤ 2r/

√
n, completing the proof.
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7 Easy reductions

In this section we collect some easy reductions between various DHJ problems for use in our main
proof.

Proposition 7.1. For a given k ≥ 2, the DHJk theorem is equivalent to the equal-slices DHJk
theorem.

Proof. The fact that DHJ follows from equal-slices DHJ was sketched in Section 4.1; we give the full
proof here, using Lemma 6.3.1 and Proposition 5.14. The other direction has a virtually identical
proof using Lemma 6.3.2 and we omit it. We do not bother to optimize the bounds in this reduction,
as they have a negligible effect on the overall proof.

Suppose then that we have proven the equal-slices DHJk. Let µ⊗nk (A) ≥ δ. We use Lemma 6.3.1,
taking r = n1/4, letting J be an [r, 4r]-random subset of [n], x ∼ µ⊗Jk , y ∼ νJk . (Note that
2 lnn ≤ r ≤ n/2 provided n is at least a certain universal constant.) According to the lemma, the
resulting distribution on the composite string (x, y) is τ -close to µ⊗nk , where τ = 4k·r/

√
n = 4k/n1/4.

This is at most δ/3 provided that n ≥ (12k/δ)4. In that case we conclude

E
J,x

[νJk (Ax)] ≥ δ − δ/3

and so there must exist a restriction (J, x) with |J | ≥ r and νJk (Ax) ≥ 2δ/3. By Proposition 5.14
the distributions νJk and ν̃Jk have total variation distance at most k(k − 1)/r ≤ k2/n1/4, and this
quantity is also at most δ/3 provided n ≥ (3k2/δ)4. In that case ν̃Jk (Ax) ≥ 2δ/3 − δ/3 = δ/3.
Finally, if r ≥ EDHJk(δ/3) then we may use equal-slices DHJk to find a combinatorial line in
Ax, and hence in A. This holds provided n ≥ EDHJk(δ/3)4. Thus we may take DHJk(δ) =
max{EDHJk(δ/3)4, O(k8/δ4)}.

The deduction of probabilistic multidimensional DHJ from the equal-slices version uses the
composition property of equal-nondegenerate-slices, Lemma 5.10; we remark that we only need the
d = 1 case for our overall proof:

Proposition 7.2. For a given k, the probabilistic multidimensional DHJ theorem follows from the
equal-slices multidimensional DHJ theorem.

Proof. Assuming the EMDHJk theorem, write m = max{dEMDHJk(δ/2, d)e, k}. We will show
that one can take PMDHJk(δ, d) = m and εk(δ, d) = (δ/2)(k + d)−2m. Let x ∼ ν̃nm and y ∼ ν̃mk .
By Lemma 5.10, y ◦ x ∼ ν̃nk . Hence if A ⊆ [k]n satisfies ν̃nk (A) ≥ δ, we get that ν̃mk (Ax) ≥ δ/2 with
probability at least δ/2 over x, where Ax denotes {z ∈ [k]m : z ◦ x ∈ A}. Call such x’s “good”.
By our choice of m, the EMDHJk theorem implies that for all good x we have that Ax contains a
d-dimensional subspace. In fact, we may assume these subspaces have templates σ ∈ [k+d]m which
are nondegenerate strings, meaning that they contain at least one copy of each symbol in [k + d].
(To ensure this one can remove from each Ax all degenerate strings; this does not change ν̃mk (Ax).
Then any subspace found in Ax must have a template which is a nondegenerate string.) Thus by
Corollary 5.19, a randomly drawn subspace w ∼ ν̃mk+d is in Ax with probability at least (k+ d)−2m.
We conclude that with probability at least (δ/2)(k + d)−2m = εk(δ, d) over the choice of x and w,
the d-dimensional subspace w ◦ x is in A. This completes the proof, since w ◦ x is distributed as
ν̃nk+d by Lemma 5.10.

As we saw in Section 3.1, there is an elementary proof of probabilistic DHJ(2). For completeness,
we observe here that Lemma 3.1 and Proposition 5.14 straightforwardly yield the following:
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Lemma 7.3. One may take PDHJ2(δ) = 12/δ2 and ε2(δ) = δ2/2.

The following observation was sketched in Section 4.4:

Proposition 7.4. The multidimensional DHJk theorem for ab-insensitive sets follows from the
multidimensional DHJk−1 theorem. More precisely, let k ≥ 3, d ≥ 1, and assume we have estab-
lished the multidimensional DHJk−1 theorem. Suppose B ⊆ [k]n is ab-insensitive on I ⊆ [n] and
has µ⊗nk (B) ≥ δ. Then B contains a d-dimensional subspace, provided |I| ≥ 48MDHJk−1(δ/2, d).

Proof. We may assume without loss of generality that b = k, by renaming symbols. We may also
assume I = [n] without loss of generality; this is because we can always pass to a restriction (I, xI)
on which B has uniform density at least δ. So from now on we assume B is an ak-insensitive subset
of [k]n, with n ≥ 48MDHJk−1(δ/2, d).

Think of conditioning a draw from µ⊗nk on the location of the symbols k. In other words, draw
z ∼ µ⊗nk as follows: first choose a (1 − 1/k)-random subset J ⊆ [n], form the restriction (J, xJ)
where xJ is the all-k’s substring, and finally draw y ∼ µ⊗Jk−1 and take z = (xJ , y). We have µk(B) =
EJ [µk−1(BxJ )] ≥ δ (where we may think of BxJ ⊆ [k− 1]J). We also have E[|J |] = (1− 1/k)n, and
Pr[|J | < n/2] ≤ exp(−n/48) by a standard Chernoff bound. Thus there must exist a particular
restriction (J, xJ) where |J | ≥ n/2 ≥ MDHJk−1(δ/2, d) and µ⊗Jk−1(BxJ ) ≥ δ − exp(−n/48) ≥ δ/2.
(Here we used n/48 ≥ ln(2/δ), which holds because MDHJk−1(δ/2, d) ≥ MDHJ2(δ/2, 1) ≥ (2/δ)2,
by Sperner’s theorem.) By the multidimensional DHJk−1 theorem, BxJ contains a nondegenerate
d-dimensional subspace of [k − 1]J . Let us write the template for this subspace as σ ∈ ([k − 1] ∪
{k + 1, . . . , k + d})J , meaning that σ(k+t)→` ∈ BxJ for each t ∈ [d] and ` ∈ [k − 1].

We can extend σ from coordinates J to all of [n] in the natural way, filling in the J coordinates
with k’s, and the resulting template has σ(k+t)→` ∈ B for all ` ∈ [k − 1]. But B is ak-sensitive
by assumption, so each string σ(k+t)→k is in B because σ(k+t)→a is. Thus σ is a nondegenerate
d-dimensional subspace template in the usual sense, with all its strings in B.

8 Line-free sets correlate with insensitive set intersections

The essence of our proof of DHJk begins with this section. Herein we make rigorous the argument
described in Section 4.3: we show that a dense set A either contains a combinatorial line, or it has
slight correlation with an intersection of ab-insensitive sets. We begin with a reduction to the case
where the set is dense under both νk and νk−1.

Lemma 8.1. Let k ≥ 3 and let A ⊆ [k]n satisfy νk(A) ≥ δ. Supposing θ satisfies

8k
lnn√
n
≤ θ ≤ δ,

there exists a restriction (J, xJ) with |J | ≥ (θ/4k)
√
n such that one of the following two conditions

holds:

1. νJk (AxJ ) ≥ δ + θ; or,

2. both νJk (AxJ ) ≥ δ − 3θ1/4δ1/2 and νJk−1(AxJ ) ≥ δ − 3θ1/2.

Proof. Let r = (θ/4k)
√
n. As in Lemma 6.3, let J be an [r, 4r]-random subset of [n] and let x

be drawn from νJk . If EJ,x[νk(Ax)2] ≥ (δ + θ)2, then there must exist some restriction (J, x) with
|J | ≥ r and νJk (Ax) ≥ δ + θ. In this case, conclusion 1 above holds. We henceforth assume

E
J,x

[νk(Ax)2] < (δ + θ)2 (3)
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and show that conclusion 2 holds.
Since νk(A) ≥ δ, two applications of Lemma 6.3.3 yield

E
J,x

[νk(Ax)] ≥ δ − 4k · r/
√
n ≥ δ − θ, (4)

E
J,x

[νk−1(Ax)] ≥ δ − 4k · r/
√
n ≥ δ − θ, (5)

where we’ve used our definition of r (and the hypothesis θ ≥ (8k lnn)/
√
n ensures that r ≥ 2 lnn

as required for the lemma). Combining (3), (4) gives

Var
J,x

[νk(Ax)] < (δ + θ)2 − (δ − θ)2 = 4θδ.

Thus Chebyshev’s inequality implies that except with probability at most θ1/2 over the choice of
(J, x), we have that νk(Ax) is within θ−1/4 · (4θδ)1/2 = 2θ1/4δ1/2 of its expectation. When this
happens,

νk(Ax) ≥ δ − θ − 2θ1/4δ1/2 ≥ δ − 3θ1/4δ1/2 (6)

(using θ ≤ δ). On the other hand, from (5) we immediately deduce that with probability at least
2θ1/2 over the choice of (J, x) we have

νk−1(Ax) ≥ δ − θ − 2θ1/2 ≥ δ − 3θ1/2. (7)

Thus with probability at least 2θ1/2 − θ1/2 > 0 over the choice of (J, x), we have both (6), (7),
establishing conclusion 2 of the lemma.

We now come to the main theorem in this section, deducing a key step in the proof of DHJk
from the probabilistic DHJk−1 theorem.

Theorem 8.2. Let k ≥ 3 and suppose we have established the probabilistic DHJk−1 theorem. Fur-
ther suppose A ⊆ [k]n has ν̃k(A) ≥ δk and ν̃k−1(A) ≥ δk−1. Finally, assume n ≥ PDHJk−1(δk−1).
Then either A contains a combinatorial line (of length k), or there exists B ⊆ [k]n with ν̃k(B) ≥ δk
and

ν̃k(A ∩B)
ν̃k(B)

≥ δk + δk · εk−1(δk−1)

such that
B = B1 ∪B2 ∪ · · · ∪Bk−1,

where for each a ∈ [k − 1], Ba is ak-insensitive.

Proof. For a ∈ [k − 1], let La = {x ∈ [k]n : xk→a ∈ A}, an ak-insensitive set. Let L = L1 ∩ L2 ∩
· · · ∩ Lk−1. In other words, L is the set line templates over [k − 1]n (possibly degenerate) whose
corresponding lines are entirely in A. Let L′ ⊆ L be the nondegenerate such line templates; i.e.,
L′ = {x ∈ L : ∃j ∈ [n] s.t. xj = k}. Note that ν̃k(L \ L′) = 0.

The key observation is that if A ∩ L′ 6= ∅, we have a (nondegenerate) combinatorial line of
length k entirely in A. So assume otherwise; hence A ⊆ L′ = [k]n \ L′. Since ν̃k−1(A) ≥ δk−1 and
n ≥ PDHJk−1(δk−1), the probabilistic DHJk−1 theorem implies that ν̃k(L′) = ν̃k(L) ≥ εk−1(δk−1).
It follows that

ν̃k(A ∩ L)
ν̃k(L)

=
ν̃k(A ∩ L′)
ν̃k(L′)

=
ν̃k(A)
ν̃k(L′)

≥ δk
1− εk−1(δk−1)

≥ δk + δk · εk−1(δk−1).

The proof is completed by taking B = L; this has ν̃k(B) = ν̃k(L′) ≥ δk because L′ ⊇ A, and has
the required form as a union of insensitive sets because each La is ak-insensitive.
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We will prefer to obtain this relative density increment under the uniform distribution, rather
than under equal-nondegenerate-slices:

Lemma 8.3. Let k ≥ 2 and n ≥ k2 be integers. Suppose A ⊆ B ⊆ [k]n satisfy ν̃k(B) = β > 0
and ν̃k(A) ≥ δ · ν̃k(B), where 0 < δ < 1. Let 0 < η < δ be a parameter, define r = (βη/15k)

√
n,

and assume 2 lnn ≤ r ≤ n/2. Then there exists a restriction (J, xJ) with |J | ≥ r under which
µk(BxJ ) ≥ (η/3)β and µk(AxJ ) ≥ (δ − η)µk(BxJ ).

Proof. Let J be an [r, 4r]-random subset of [n], let x ∼ νJk , and let y ∼ µJk . From Lemma 6.3.2, the
distribution on the composite string (x, y) is (4kr/

√
n)-close to νnk . Further, from Proposition 5.14

the total variation distance between νnk and ν̃nk is at most k(k− 1)/n ≤ kr/
√
n (using n ≥ k2). By

choice of r, the combined distance bound 5kr/
√
n is at most (η/3)β. We therefore have

E
J,x

[µk(Ax)] ≥ δβ − (η/3)β, E
J,x

[µk(Bx)] ≤ β + (η/3)β. (8)

Let H be the event that µk(Bx) ≥ (η/3)β. Since we also have EJ,x[µk(Bx)] ≥ β− (η/3)β ≥ (η/3)β,
it follows that Pr[H] > 0. Now on one hand, since Ax ⊆ Bx always holds we have

E
J,x

[µk(Ax)] ≤ E
J,x

[µk(Ax) | H] Pr[H] + (η/3)β.

On the other hand, we have

E
J,x

[µk(Bx)] ≥ E
J,x

[µk(Bx) | H] Pr[H].

Combining these two deductions with (8) yields

E
J,x

[µk(Bx) | H] Pr[H] ≤ β(1 + η/3), (δ − 2η/3)β ≤ E
J,x

[µk(Ax) | H] Pr[H].

Thus
δ − 2η/3
1 + η/3

· E
J,x

[µk(Bx) | H] Pr[H] ≤ E
J,x

[µk(Ax) | H] Pr[H],

whence
0 ≤ E

J,x
[µk(Ax)− (δ − η)µk(Bx) | H] Pr[H],

where we used (δ− 2η/3)/(1 + η/3) ≥ δ− η. As Pr[H] > 0, it follows that there exists some (J, x)
for which H occurs and also µk(Ax) ≥ (δ − η)µk(Bx). This completes the proof.

Finally, the set B we get from Theorem 8.2 is a union of insensitive sets. We would prefer for
this to be a disjoint union; we can achieve this if we settle for intersections of insensitive sets.

Lemma 8.4. Suppose B = B1 ∪ B2 ∪ · · ·Bk−1 ⊆ [k]n, where Ba is ak-insensitive. Then B is
a disjoint union of k − 1 sets C1, . . . , Ck−1, where Cb is an intersection of ak-insensitive sets,
a = 1 . . . b.

Proof. Take Cb = Bb \ (B1 ∪ · · · ∪Bb−1).
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9 Partitioning ab-insensitive sets

The last tool we need is the result described in Section 4.5; given the multidimensional DHJk−1

theorem, we show that ab-insensitive subsets of [k]n can be almost completely partitioned into
disjoint d-dimensional subspaces.

Theorem 9.1. Let k ≥ 3 and d ≥ 1 be integers and let 0 < η < 1/2. Suppose C ⊆ [k]n is
ab-insensitive on I ⊆ [n], where a, b ∈ [k] are distinct symbols. Assume

|I| ≥ m
(
k(k + d)

)m ln(1/η),

where m is an integer satisfying

m ≥ 48MDHJk−1(η/4, d).

Then C can be partitioned into a collection S of disjoint d-dimensional subspaces, along with an
error set E having uniform-distribution density µ⊗nk (E) ≤ η.

Proof. The proof proceeds in “rounds”, t = 1, 2, 3, . . . . In each round, we remove some disjoint
d-dimensional subspaces from C and put them into S; and, the set I shrinks by m coordinates. We
will show that after the tth round,

µ⊗nk (C) ≤
(

1−
(
k(k + d)

)−m)t
. (9)

We continue the process until µ⊗nk (C) ≤ η, at which point we may stop and set E = C. Because
of (9), the process stops after at most T =

(
k(k+ d)

)m ln(1/η) rounds. Since we insisted |I| ≥ mT
initially, the set I never “runs out of coordinates”.

Suppose we are about to begin the tth round; hence, writing α = µ⊗nk (C) we have

η < α ≤
(

1−
(
k(k + d)

)−m)t−1
.

The round begins by choosing an arbitrary J ⊆ I with |J | = m. We have

α = Pr
x∼µ⊗nk

[x ∈ C] = E
y∼µ⊗Jk

[µ⊗Jk (Cy)],

where we have written Cy = {z ∈ [k]J : (y, z) ∈ C}. Hence µ⊗Jk (Cy) ≥ α/2 for at least an α/2
probability mass of y’s (under µ⊗Jk ); call these y’s “good”. Since J ⊆ I and C is ab-insensitive
on I, it follows that each Cy is ab-insensitive on J . Since

|J | = m ≥ 48MDHJk−1((η/2)/2, d) ≥ 48MDHJk−1((α/2)/2, d),

it follows from Proposition 7.4 that for each good y there must exist a d-dimensional subspace
ρ ⊆ Cy. Since the number of d-dimensional subspaces in [k]m is at most (k+ d)m, there must exist
a fixed d-dimensional subspace ρ0 ⊆ [k]J such that

Pr
y∼µ⊗Jk

[ρ0 ⊆ Cy] ≥
α

2(k + d)m
. (10)

Let R ⊆ [k]J be the set of y’s with ρ0 ⊆ Cy. Since C is ab-insensitive on I, it is easy to see that
R is ab-insensitive on I \ J . Thus R × ρ0 is ab-insensitive on I \ J ; hence so too is C \ (R × ρ0).
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We therefore complete the round by setting I = I \ J and transferring R × ρ0 (a disjoint union of
d-dimensional subspaces {y} × ρ0) from C into S. This shrinks the number of coordinates in I by
m, as promised. And since we can crudely bound µ⊗Jk (ρ0) = kd−m ≥ 2k−m, we conclude

µ⊗nk (R× ρ0) ≥ α(
k(k + d)

)m ,
as required to establish (9) inductively.

We conclude this section by simplifying parameters slightly, then deducing Theorem 9.1 for
intersections of ab-insensitive sets.

Corollary 9.2. Let d ≥ k ≥ 3, 0 < η < 1/2, and define m as in Theorem 9.1. If C ⊆ [k]n is
ab-insensitive and n ≥ d3m, then the conclusion of Theorem 9.1 holds.

Proof. We only need check that d3m ≥ m
(
k(k + d)

)m ln(1/η). We use the bounds k ≤ d and
m ≥ 4/η (which is certainly necessary, just by Sperner’s theorem), and hence must show d3m ≥
m ln(m/4)(2d2)m. This is easily verified for every d ≥ 3 and m > 4.

Corollary 9.3. Let d, k, η,m be as in Corollary 9.2, and write f(d) = d3m(d), treating m as a
function of d, with k and η fixed. Let C ⊆ [k]n be expressible as C = C1 ∩ · · · ∩ C`, where each
Cs is asbs-insensitive for some pair of distinct symbols as, bs ∈ [k]. If n ≥ f (`)(d) (meaning the `th
iteration of f at d) then the conclusion of Theorem 9.1 holds with error bound `η.

Proof. The proof is an induction on `, with Corollary 9.2 serving as the base case. In the general
case, since n ≥ f (`−1)(f(d)), by induction we can partition C ′ = (C1 ∩ · · · ∩C`−1) into a collection
S ′ of disjoint nondegenerate f(d)-dimensional subspaces, along with an error set E′ satisfying
µ⊗nk (E′) ≤ (` − 1)η. For each σ ∈ S ′, define Dσ = C` ∩ σ. If we identify σ with [k]f(d) then we
may think of Dσ as an a`b`-insensitive subset of [k]f(d). Thus we may apply Corollary 9.2 and
partition Dσ into a collection Sσ of d-dimensional subspaces, along with an error set Eσ of small
probability mass. The elements of Sσ are d-dimensional subspaces of σ ∼= [k]f(d); note that these are
also d-dimensional subspaces of the original space [k]n. As for Eσ, Corollary 9.2 guarantees it has
uniform density at most η when viewed as a subset of σ ∼= [k]f(d); thus in the original space [k]n we
have µ⊗nk (Eσ) ≤ η · µ⊗nk (σ). We may now complete the induction by taking S to be {Dσ : σ ∈ S ′}
and E to be E′ ∪

⋃
{Eσ : σ ∈ S ′}, observing that

µ⊗nk (E) ≤ (`− 1)η + η

(∑
σ∈S′

µ⊗nk (σ)

)
≤ (`− 1)η + η = `η

as required.

10 Completing the proof

In this section, we show how to deduce DHJk from DHJk−1. We will treat k = 3 separately, since
we have better bounds in this case thanks to the Gunderson-Rödl-Sidirenko theorem (and to a
lesser extent the probabilistic Sperner theorem).
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10.1 The k = 3 case

We establish the bound DHJ3(δ) = 2 � O(1/δ2) in Theorem 1.1 via the density increment argument
described in Section 4.2. As explained in that section, once we have the reduction from DHJ3 to
the equal-slices version (Proposition 7.1), it remains to establish the following density increment
theorem:

Theorem 4.4. Assume n ≥ 2 ↑(7) (1000/δ). If ν̃n3 (A) ≥ δ, then either A contains a combinatorial
line, or we may pass to a subspace of dimension at least log(7) n on which ν̃3(A) ≥ δ + Ω(δ3).

Proof. Throughout the proof we may assume δ ≤ 2/3; otherwise DHJ3 is trivial, because [3]n can
be partitioned into disjoint combinatorial lines. We will use the assumption n ≥ 2 ↑(7) (1000/δ)
without comment in most of the proof, and we will not be especially economical when it comes to
choosing parameters that do not affect the final bound.

By Proposition 5.14, we have νn3 (A) ≥ δ− 6/n ≥ δ− δ50. Let θ = 2δ50. It is easy to check that
the hypotheses of Lemma 8.1 are satisfied; hence we may pass to subspace of dimension at least
(δ50/6)

√
n ≥ n1/3 on which either ν3(A) ≥ δ + δ50, or both

ν3(A) ≥ δ − δ50 − 3(2δ50)1/4(δ − δ50)1/2 ≥ δ − 4δ13,

and ν2(A) ≥ δ − δ50 − 3(2δ50)1/2 ≥ δ − 4δ25.

We repeatedly use Lemma 8.1 until either the second conclusion obtains or until we have repeated
b1/δ47c times. In either case, the dimension n becomes some n′ satisfying n′ ≥ n ↑ 3 ↑ (−1/δ47).
Having done this, we either have ν3(A) ≥ δ + Ω(δ3) and may stop (as n′ � log(7) n, by the
assumption on n), or we have ν3(A), ν2(A) ≥ δ−4δ13. With another application of Proposition 5.14
we may obtain ν̃3(A), ν̃2(A) ≥ δ − 5δ13.

Next, we apply Theorem 8.2, taking δk = δk−1 = δ − 5δ13. Note that we have proved the
probabilistic DHJ2 theorem in Lemma 7.3. We certainly have n′ ≥ PDHJ2(δk−1) = Θ(1/δ2), and
thus we either obtain a combinatorial line in A, or a set B ⊆ [3]n

′
with ν̃3(B) ≥ δ − 5δ13 and

ν̃3(A ∩B)
ν̃3(B)

≥ δ − 5δ13 + (δ − 5δ13)(δ − 5δ13)2/2 ≥ δ + δ3/2− 12.5δ13 ≥ δ + δ3/4,

where we used ε2(δk−1) = δ2
k−1/2. Also, B may be written as B1 ∪B2, where Ba is a3-insensitive.

We henceforth write A instead of A ∩B.
We now return to the uniform distribution by applying Lemma 8.3. Its β satisfies β ≥ δ− 5δ13,

and its δ needs (crucially) to be replaced by δ + δ3/4. We choose its η = δ3/8. It is easy to check
that the resulting r = (βη/15k)

√
n′ indeed satisfies 2 lnn′ ≤ r ≤ n′/2, using n′ ≥ n ↑ 3 ↑ (−1/δ47).

We now pass to a restriction on some

n′′ ≥ r ≥ n ↑ 3 ↑ (−1/δ48) (11)

coordinates on which we have, say,

µ3(B) ≥ δ4/50, µ3(A) ≥ (δ + δ3/8)µ3(B). (12)

Crucially, since B was the union of a 13-insensitive set and a 23-insensitive set before, it remains
so in the restriction. We also now apply Lemma 8.4 to partition B into sets C1 and C2, where C1

is 13-insensitive and C2 is an intersection of 13- and 23-insensitive sets.
Nearing the end, we now apply Corollary 9.3 twice; once with C = C1 and once with C = C2.

We choose η = δ7/4000, and for simplicity we take ` = 2 both times. We will select the parameter d
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later, at which point we will verify that n′′ is large enough for our choice of d. We thereby partition
each of C1, C2 into disjoint d-dimensional combinatorial subspaces, along with error sets E1, E2.
Writing E = E1 ∪ E2 we have

µ3(E) ≤ 2η + 2η ≤ δ7

1000
≤ δ3

20
µ3(B), (13)

using the first inequality (12). The second inequality in (12) implies

µ3(A \ E)
µ3(B \ E)

≥ µ3(A)− µ3(E)
µ3(B)

≥ δ + δ3/8− µ3(E)
µ3(B)

≥ δ + δ3/8− δ3/20 ≥ δ + δ3/20,

where we also used (13). Thus if we simply discard the strings in E from A and B, we still have
µ3(A)/µ3(B) ≥ δ+δ3/20, and now B is perfectly partitioned into disjoint d-dimensional subspaces.
It follows that we can pass to at least one d-dimensional subspace on which µ3(A) ≥ δ + δ3/20.

We come now to the final setting of parameters. To use the partitioning argument, Corollary 9.3,
we require that

n′′ ≥ f(f(d)), where f(d) = 3m(d) (14)

and m(d) ≥ 48MDHJ2(δ7/16000, d). By Theorem 3.2, our improvement to Gunderson-Rödl-
Sidirenko theorem, we may take

m(d) = d48 · 25 · (16000/δ7)2de ≤ (106/δ7)2d .

We will ensure that
d ≥ 1/δ48 ≥ 106/δ7, (15)

so that we may bound m(d) ≤ d2d . This yields

f(d) = 3m(d) ≤ 3 ↑ d ↑ 2 ↑ d ≤ 3 ↑(3) d ⇒ f(f(d)) ≤ 3 ↑(6) d.

Combining our lower bound (11) on n′′ with the assumption in (15), we have n′′ ≥ n1/3d ; thus the
main constraint (14) is satisfied so long as

n1/3d ≥ 3 ↑(6) d, which is implied by n ≥ 4 ↑(6) d. (16)

We may therefore set
d ≈ (log(7) n)50;

this satisfies both (15) and (16), using the fact that n ≥ 2 ↑(7) (1000/δ).
It remains to note that, having passed to a (log(7) n)50-dimensional subspace on which µ3(A) ≥

δ + δ3/20, we can pass to a further subspace of dimension at least the claimed log(7) n on which
ν̃3(A) ≥ δ + δ3/40; we need only use one more embedding argument of the type described in
Section 4.1 and justified by Lemma 6.3.1 and Proposition 5.14.

10.2 The general k case

For general k ≥ 4 we will need to use the inductive deduction of the multidimensional DHJk−1

theorem from the DHJk−1 theorem, given in Proposition 2.3. Because the overall argument then
becomes a double induction, the resulting bounds for DHJk are of Ackermann-type, and we do not
work them out precisely.

Theorem 10.1. For k ≥ 4, the DHJk theorem follows from the DHJk−1 theorem.

31



Proof. (Sketch.) As DHJk is equivalent to the equal-slices version (Proposition 7.1), we may begin
with a subset A ⊆ [k]n satisfying ν̃k(A) ≥ δ. Assuming DHJk−1, we deduce the multidimensional
DHJk−1 via Proposition 2.3, the equal-slices DHJk−1 via Proposition 7.1, and the probabilistic
DHJk−1 via Proposition 7.2. We henceforth think of δ and k as “constants”, and by contrast we
think of n→∞. Hence even, say, PDHJk−1(δ) and 1/εk−1(δ) are to be thought of as “constants”
(albeit very large ones), depending only on δ and k.

The overall goal for proving DHJk is, as in the k = 3 case, to show that for n sufficiently large
as a function of δ and k, we can either find a line in A or can obtain a density increment of Ω(ε) on
a combinatorial subspace of dimension d′. Here ε = δ · εk−1(δ/2) is a positive “constant” depending
only on δ and k, whereas d′ = d′(n) is a function of n alone satisfying d′(n)→∞ as n→∞.

Beginning with ν̃k(A) ≥ δ, we choose θ = 2εC for some large universal constant C; note that θ
only depends on δ and k. We change from ν̃k(A) to νk(A) via Proposition 5.14, incurring density loss
only εC by assuming n large enough. We next apply Lemma 8.1, passing to a subspace of dimension
roughly n1/3, say, assuming n large enough. This gives us either a density increment of εC , or
achieves νk(A), νk−1(A) ≥ δ −O(εc) for some smaller but still large universal constant c. We can
repeat this application of Lemma 8.1 b1/εCc many times: if the first outcome always happens we
obtain the desired density increment of Ω(ε); otherwise, we achieve νk(A), νk−1(A) ≥ δ − O(εc).
This brings the dimension n down to some fractional power n′, but the fraction depends only
on εC and hence on δ and k. Thus we can assume in future arguments that n′ is sufficiently
large as a function of δ and k. With another application of Proposition 5.14 we ensure that
ν̃k(A), ν̃k−1(A) ≥ δ −O(εc).

We now apply Theorem 8.2, taking δk = ν̃k(A) and δk−1 = δ/2 for simplicity (without loss
of generality, δ − O(εc) ≥ δ/2). This requires n′ to be larger than PDHJk−1(δ/2), a “constant”
depending only on δ and k. Having applied the theorem, we either get a combinatorial line, or
a relative density increment of δk · εk−1(δ/2) = Ω(ε) on some set B (where we use the fact that
ε � O(εc)). The set B has ν̃k(B) ≥ δ/2 and is a union of ak-insensitive sets, as in the theorem
statement. We can preserve this relative density increment under the uniform distribution by
passing to another subspace according to Lemma 8.3 with η = εC . The new dimension n′′ is still
just some fractional power of n, where the fraction depends only on the constants δ and k. As in
the DHJ3 proof, B still has the special structure as a union of ak-insensitive sets. We again apply
Lemma 8.4 to write it as a disjoint union of k sets, each of which is an intersection of up to k many
ak-insensitive sets.

We now apply Corollary 9.3 to each of these sets, taking η = εC again and ` = k each time
for simplicity. It suffices now to analyze what parameter d we may choose; the remainder of the
proof is essentially the same as in the DHJ3 case. The function m(d) arising in the corollary is
O(MDHJk−1(η/4, d)), which depends on the “constant” η as well as on d. As we will eventually
take d = d(n) to be a function of n alone, by assuming n sufficiently large we can ensure d is larger
than any constant function. Hence we can upper-bound m(d) by a function of d alone. With this
upper bound, f(d) = d3m(d) and also f (`)(d) = f (k)(d) are some other (huge) functions of d alone.

Now Corollary 9.3 demands n′′ ≥ f (k)(d); we may satisfy this demand by taking d = d(n) to be
some function of n alone, with d(n)→∞ as n→∞. Notice this allows us to make d(n) larger than
any function of the constants δ and k, by requiring n sufficiently large. Thus we get the required
density increment of Ω(ε) under the uniform distribution, on a subspace of dimension d(n). As in
the proof of DHJ3, we convert this to a density increment under ν̃k by passing to a further subspace
of dimension d′ = dΘ(1), requiring once more that d is a sufficiently large function of δ and k.
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[FK89] Hillel Furstenberg and Yitzhak Katznelson. A density version of the Hales-Jewett Theo-
rem for k = 3. Discrete Mathematics, 75:227–241, 1989.

[FK91] Hillel Furstenberg and Yitzhak Katznelson. A density version of the Hales-Jewett Theo-
rem. Journal d’Analyse Mathématique, 57:64–119, 1991.
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