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Prefaces

Preface to the arXiv edition

The purpose of this May 2021 revision is to fix 100+ small typos and er-
rors present in the first edition, and to make the result available on arXiv.
The numbering of all theorems, definitions, exercises, etc. is unchanged; there
are only slight pagination differences. Essentially no new mathematical con-
tent has been added, despite plenty of progress in the field; the book can be
considered a “snapshot” of analysis of Boolean functions circa 2014.

Preface to the first edition

The subject of this textbook is the analysis of Boolean functions. Roughly
speaking, this refers to studying Boolean functions f :{0,1}* — {0, 1} via their
Fourier expansion and other analytic means. Boolean functions are perhaps
the most basic object of study in theoretical computer science, and Fourier
analysis has become an indispensable tool in the field. The topic has also
played a key role in several other areas of mathematics, from combinatorics,
random graph theory, and statistical physics, to Gaussian geometry, met-
ric/Banach spaces, and social choice theory.

The intent of this book is both to develop the foundations of the field and
to give a wide (though far from exhaustive) overview of its applications. Each
chapter ends with a “highlight” showing the power of analysis of Boolean
functions in different subject areas: property testing, social choice, cryptog-
raphy, circuit complexity, learning theory, pseudorandomness, hardness of
approximation, concrete complexity, and random graph theory.

1X
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X Prefaces

The book can be used as a reference for working researchers or as the basis
of a one-semester graduate-level course. The author has twice taught such a
course at Carnegie Mellon University, attended mainly by graduate students
in computer science and mathematics but also by advanced undergraduates,
postdocs, and researchers in adjacent fields. In both years most of Chapters 1-
5 and 7 were covered, along with parts of Chapters 6, 8, 9, and 11, and
some additional material on additive combinatorics. Nearly 500 exercises are
provided at the ends of the book’s chapters.
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o entry-wise multiplication of vectors
\Y the gradient: Vf(x) = (D1f(x),...,D,f(x))
- logical NOT
3 S 3iisequivalenttoieS
@ logical XOR (exclusive-or)
£, (e FIPVP
A symmetric difference of sets;
i.e., SAT ={i:i is in exactly one of S, T}
v logical OR
A logical AND
* the convolution operator
[2*1F(z) coefficient on z* in the power series F(z)
14 0-1 indicator function for A
1z 0-1 indicator random variable for event B
24 the set of all subsets of A
#a if @ is a multi-index, denotes the number of nonzero com-
ponents of a
|| if @ is a multi-index, denotes )_; ;
AND, the logical AND function on n bits: False unless all inputs
are True
At {y:y-x=0forallxe A}
Aut(f) the group of automorphisms of Boolean function f
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BitsToGaussiansj, on input the bit matrix x € {-1, 1}9M hag output z € R4
equal to \/LM times the column-wise sum of x; if d is omitted
it’s taken to be 1

C the complex numbers

1 () when b € IF’zl, denotes (1)’ € R

xs(x) when x € R”, denotes [];cg xi, where S < [n]; when x € F7,
denotes (—1)Xies¥i

codim H for a subspace H <", denotes n —dim H

Covlf, gl the covariance of f and g, Covlf]1=El[fg]l-EI[f]1Elg]

. . . . f(x(iHl)),f(x(iH—l))

D; the ith discrete derivative: D;f(x) = =—————

dy2(,1) chi-squared distance of the distribution with density ¢ from
the uniform distribution

deg(f) the degree of f; the least k£ such that f is a real linear
combination of 2-juntas

degp,(f) for Boolean-valued f, the degree of its [F'o-polynomial rep-
resentation

Alx,y) the Hamming distance, #{i : x; # y;}

AD(f) the expected number of queries made by the best decision
tree computing f when the input bits are chosen from the
distribution 7

5(f) the revealment of f;i.e., min{max; 55”)(3~ ): 9 computes f}

AT the expected number of queries made by randomized deci-
sion tree 9 when the input bits are chosen from the distri-
bution 7

5?”(3~ ) the probability randomized decision tree 9 queries coor-
dinate i when the input bits are chosen from the distribu-
tion

Ayf for f:F§ — g, the function 'y — o defined by A, f(x) =
flx+y)—f(x)

dist(g,h) the relative Hamming distance; i.e., the fraction of inputs
on which g and A disagree

DNFgi.e(f) least possible size of a DNF formula computing f

DNFyigin(f) least possible width of a DNF formula computing f

DT(f) least possible depth of a decision tree computing f

DTyize(f) least possible size of a decision tree computing [

drv(p,v) total variation distance between the distributions with den-

sities ¢, v
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XV
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E;
Ent[f]

E;,[']
feg

feg

f®d
f

f+z
i

o

feven

(f.e
fu
@)
ng

the ith expectation operator:
Elf(x) = Exi [f(x17 e Xi—1,X0, X415 - - 1xn))]
the expectation over coordinates I operator

for a nonnegative function on a probability space, denotes

E[fInf]-E[f]InE[f]
an abbreviation for ExN,,gn [-]

if f:{-1,1} - {-1,1} and g : {-1,1}* — {-1,1}, denotes
the function A : {-1,1}"*" — {-1,1} defined by A(x,y) =
f(x)g(y)

if f:{-1,1Y" - {-1,1} and g : {-1,1}* — {—1,1}, denotes the
function A : {~1,1}"" — {-1,1} defined by A(x,...,x™) =
FlgD),..., gx™))

if f:{-1,1}" — {-1,1}, then f®d : {—l,l}nd — {-1,1} is de-
fined inductively by f&1 = f, fo@+D = f g f&d

the n-fold convolution, f * f *---x f

the Boolean dual defined by fT(x) = —f(-x)

if f:F} — R, z€F}, denotes the function f**(x) = f(x +2)
denotes (f %)y

the finite field of size 2

the group (vector space) indexing the Fourier characters of
functions f: g — R

the even part of f, (f(x) + f(—x))/2

Eylf (x)g(x)]

if f: IE‘; —-R,H=< IE"21, denotes the restriction of f to H
shorthand for ({i}) when i € N

the function (depending only on the ¢/ coordinates) defined

by f</(x) = E. [f(xg,%0)]; in particular, it’s Yscs f(S)xs
J

when f:{-1,1}" - R

if f:Q"—>R,J<[n],and z € Qj, denotes the restriction of

[ given by fixing the coordinates in </ to z

if f:Q" >R, J<cIn],and z € Qj, denotes the restriction
of f given by fixing the coordinates in ¢/ to z

Y51k F(S)xs
Yisi<k F(S)xs
the odd part of f, (f(x)— f(—x))/2
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F(9) the Fourier coefficient of f on character yg

Fsﬁf(z) for S € J <[n], denotes fJTz(S)

f the randomization/symmetrization of f, defined by f(r,x) =
Ysrif=S)

Y*(0A) the Gaussian Minkowski content of A

4(v,p) the Erdés—Rényi random graph distribution, nz(Z)

h; the jth (normalized) Hermite polynomial, A ; = #H F

hqg for @ € N” a multi-index, the n-variate (normalized) Her-
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H; tlh(; jth probzlibilists’ Hermite polynomial, defined by exp(tz—
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L2(Q,n) the inner product space of (square-integrable) functions
Q — R with inner product (f,g) = Ex_.[f(x)g(x)]
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defined by Lf =3 " ;| L;f (or, the Ornstein—Uhlenbeck oper-
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Chapter 1

Boolean functions and
the Fourier expansion

In this chapter we describe the basics of analysis of Boolean functions. We
emphasize viewing the Fourier expansion of a Boolean function as its repre-
sentation as a real multilinear polynomial. The viewpoint based on harmonic
analysis over I} is mostly deferred to Chapter 3. We illustrate the use of basic
Fourier formulas through the analysis of the Blum-Luby—Rubinfeld linearity
test.

1.1. On analysis of Boolean functions
This is a book about Boolean functions,
f:{0,1}"* —{0,1}.

Here f maps each length-n binary vector, or string, into a single binary value,
or bit. Boolean functions arise in many areas of computer science and mathe-
matics. Here are some examples:

e In circuit design, a Boolean function may represent the desired behavior
of a circuit with n inputs and one output.

+ In graph theory, one can identify v-vertex graphs G with length-(3)
strings indicating which edges are present. Then f may represent a
property of such graphs; e.g., f(G) =1 if and only if G is connected.

e In extremal combinatorics, a Boolean function f can be identified with
a “set system” & on [n]={1,2,...,n}, where sets X < [n] are identified
with their 0-1 indicators and X € & if and only if f(X) =1.

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.



20 1. Boolean functions and the Fourier expansion

¢ In coding theory, a Boolean function might be the indicator function for
the set of messages in a binary error-correcting code of length n.

o In learning theory, a Boolean function may represent a “concept” with n
binary attributes.

 In social choice theory, a Boolean function can be identified with a “vot-
ing rule” for an election with two candidates named 0 and 1.

We will be quite flexible about how bits are represented. Sometimes we
will use True and False; sometimes we will use —1 and 1, thought of as real
numbers. Other times we will use 0 and 1, and these might be thought of as
real numbers, as elements of the field IF9 of size 2, or just as symbols. Most
frequently we will use —1 and 1, so a Boolean function will look like

But we won’t be dogmatic about the issue.

We refer to the domain of a Boolean function, {—1,1}", as the Hamming
cube (or hypercube, n-cube, Boolean cube, or discrete cube). The name “Ham-
ming cube” emphasizes that we are often interested in the Hamming distance
between strings x,y € {—1,1}"*, defined by

Alx,y) =#{i:x; # v}

Here we’ve used notation that will arise constantly: x denotes a bit string,
and x; denotes its ith coordinate.

Suppose you have a problem involving Boolean functions with the follow-
ing two characteristics:

e the Hamming distance is relevant;

e you are counting strings, or the uniform probability distribution on

{—1,1}" is involved.

These are the hallmarks of a problem for which analysis of Boolean functions
may help. Roughly speaking, this means deriving information about Boolean
functions by analyzing their Fourier expansion.

1.2. The “Fourier expansion”: functions as multilinear
polynomials

The Fourier expansion of a Boolean function f : {—1,1}" — {—1,1} is simply
its representation as a real, multilinear polynomial. (Multilinear means that
no variable x; appears squared, cubed, etc.) For example, suppose n =2 and

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.



1.2. The “Fourier expansion”: functions as multilinear polynomials 21

f = maxg, the “maximum” function on 2 bits:

maxo(+1,+1) = +1,
maxo(—1,+1)=+1,
maxo(+1,-1)=+1,
maxo(—1,-1)=-1.
Then maxg can be expressed as a multilinear polynomial,
maxo(x1,x9) = % +%x1+%x2— %xlxz; 1.1)
this is the “Fourier expansion” of maxs. As another example, consider the
majority function on 3 bits, Majs : {~1,1}> — {~1,1}, which outputs the +1 bit

occurring more frequently in its input. Then it’s easy to verify the Fourier
expansion

Majs(x1,2x9,x3) = %xl + %xz + %x3 - %xlxgxg. (1.2)
The functions maxg and Maj; will serve as running examples in this chapter.

Let’s see how to obtain such multilinear polynomial representations in
general. Given an arbitrary Boolean function f : {-1,1}" — {-1,1} there is a
familiar method for finding a polynomial that interpolates the 2" values that
f assigns to the points {—1,1}" c R"™. For each point a =(a1,...,a,)€{-1,1}"
the indicator polynomial

L (@) = (L ) (L) . (L )

takes value 1 when x = a and value 0 when x € {-1,1}* \ {a}. Thus f has the
polynomial representation

f@= Y f@lg).

ae{-1,1}*

IMustrating with the f = maxs example again, we have

maxp(o) = (+1)(352) (552
+ (+1)(1_2"1)(1+2x2) (1.3)
(i)
+ (—1)(%)(1‘2&) = L4dxi+lag - Luqas.

Let us make two remarks about this interpolation procedure. First, it works
equally well in the more general case of real-valued Boolean functions, f :
{—1,1}* — R. Second, since the indicator polynomials are multilinear when
expanded out, the interpolation always produces a multilinear polynomial.
Indeed, it makes sense that we can represent functions f :{—1,1}* — R with
multilinear polynomials: since we only care about inputs x where x; = +1, any
factor of xl2 can be replaced by 1.
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22 1. Boolean functions and the Fourier expansion

We have illustrated that every f : {—1,1}" — R can be represented by a
real multilinear polynomial; as we will see in Section 1.3, this representation
is unique. The multilinear polynomial for f may have up to 2" terms, corre-
sponding to the subsets S <[n]. We write the monomial corresponding to S
as

xS = []xi (with x? = 1 by convention),
ieS
and we use the following notation for its coefficient:
£(S) = coefficient on monomial x% in the multilinear representation of f.

This discussion is summarized by the Fourier expansion theorem:

Theorem 1.1. Every function f :{—1,1}" — R can be uniquely expressed as a
multilinear polynomial,

fy= Y F(S)S. (1.4)
Scln]

This expression is called the Fourier expansion of f, and the real number f(S)
is called the Fourier coefficient of f on S. Collectively, the coefficients are
called the Fourier spectrum of f.

As examples, from (1.1) and (1.2) we obtain:

maxa(p) = 3, maxp({l}) =3, maxx({2) =3, maxa({1,2})=—3;

Maj;({1}), Maj3({2}), Majy({8) =1, Maj3({1,2,3)=—-1, Majs(S)=0 else.

We finish this section with some notation. It is convenient to think of the

monomial x5 as a function on x = (x1,...,x,) € R"; we write it as
rsx) = H Xj.
ieS

Thus we sometimes write the Fourier expansion of f: {—1,1}" — R as

f@ =Y F(S)xsw.

Scln]
So far our notation makes sense only when representing the Hamming cube
by {-1,1}" < IR". The other frequent representation we will use for the cube
is IF'5. We can define the Fourier expansion for functions f : [F; — R by
“encoding” input bits 0,1 € [F'9 by the real numbers —1,1 € IR. We choose the
encoding y : Fg — R defined by

X(0F2)= +17 X(le)z _1-

This encoding is not so natural from the perspective of Boolean logic; e.g., it
means the function maxy we have discussed represents logical AND. But it’s
mathematically natural because for b € Fs we have the formula y(b) = (-1)°.
We now extend the yg notation:
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1.8. The orthonormal basis of parity functions 23

Definition 1.2. For S c[n] we define ys : 5 — R by

xs@) =[] xlay) = (-1)Fiss ™,
1eS
which satisfies
xs(x+y) = xsx)xs(y). (1.5)

In this way, given any function f : Fj — R it makes sense to write its
Fourier expansion as

f@ =Y F(S)xsw.
Scin]
In fact, if we are really thinking of [y the n-dimensional vector space over
g, it makes sense to identify subsets S < [n] with vectors y € 5. This will
be discussed in Chapter 3.2.

1.3. The orthonormal basis of parity functions

For x € {—1,1}"*, the number yg(x) =[l;cs x; is in {-1,1}. Thus ygs:{-1,1}* —
{—1,1} is a Boolean function; it computes the logical parity, or exclusive-or
(XOR), of the bits (x;);cs. The parity functions play a special role in the
analysis of Boolean functions: the Fourier expansion
f=3% fSurs (1.6)
Sclnl]

shows that any f can be represented as a linear combination of parity func-
tions (over the reals).

It’s useful to explore this idea further from the perspective of linear alge-
bra. The set of all functions f:{-1,1}" — R forms a vector space V, since we
can add two functions (pointwise) and we can multiply a function by a real
scalar. The vector space V is 2"”-dimensional: if we like we can think of the
functions in this vector space as vectors in R2", where we stack the 2" values
f(x) into a tall column vector (in some fixed order). Here we illustrate the
Fourier expansion (1.1) of the maxy function from this perspective:

+1 +1 +1 +1 +1
+1 +1 -1 +1 -1

maxg = 41l = (1/2) +1 +(1/2) +1 +(1/2) 1 +(-1/2) 1 a.7
-1 +1 -1 -1 +1

More generally, the Fourier expansion (1.6) shows that every function
f:{-1,1* - R in V is a linear combination of the parity functions; i.e., the
parity functions are a spanning set for V. Since the number of parity functions
is 2" =dimV, we can deduce that they are in fact a linearly independent basis
for V. In particular this justifies the uniqueness of the Fourier expansion
stated in Theorem 1.1.
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24 1. Boolean functions and the Fourier expansion

We can also introduce an inner product on pairs of function f,g: {-1,1}* —
R in V. The usual inner product on R?" would correspond to Yref-1,1p F(x)g(x),
but it’s more convenient to scale this by a factor of 27", making it an average
rather than a sum. In this way, a Boolean function f : {—1,1}" — {—1,1} will
have (f,f) =1, i.e., be a “unit vector”.

Definition 1.3. We define an inner product (:,-) on pairs of function f,g :
{-1,1}* - R by

(f.eo=2" ) [fwgw= E [flx)g)]. (1.8)

ve(T 1 a~{-1,1j
We also use the notation [|fllz = \/{f, ), and more generally,
11, =ELf @17

Here we have introduced probabilistic notation that will be used heavily
throughout the book:

Notation 1.4. We write x ~ {—1, 1}" to denote that x is a uniformly chosen ran-
dom string from {—1,1}". Equivalently, the n coordinates x; are independently
chosen to be +1 with probability 1/2 and —1 with probability 1/2. We always
write random variables in boldface. Probabilities Pr and expectations E will
always be with respect to a uniformly random x ~ {—1,1}" unless otherwise
specified. Thus we might write the expectation in (1.8) as E.[f(x)g(x)] or
E[f(x)g(x)] or even E[f g].

Returning to the basis of parity functions for V', the crucial fact underlying
all analysis of Boolean functions is that this is an orthonormal basis.

Theorem 1.5. The 2" parity functions ys :{—1,1}* — {-1, 1} form an orthonor-
mal basis for the vector space V of functions {-1,1}* — IR; i.e,,
1 ifS=T,

<X&XT>:{0 ifS#T.

Recalling the definition (yg, y7) = Elxs(x)x7(x)], Theorem 1.5 follows imme-
diately from two facts:

Fact 1.6. For x € {—1,1}" it holds that ys(x)x7(x) = ysar(x), where SAT
denotes symmetric difference.

Proof. ys(x)yr(x)= Hxi Hxi = 1_[ x; H xl2 = H X = xsar(x). O

ieS ieT ieSAT ieSNT ieSAT
1 ifS=g,
Fact 1.7. E[ys(x)]=E x:| =
ws(n=E{[] = {0 ifS#0.
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1.4. Basic Fourier formulas 25

Proof. If S = ¢ then E[ys(x)] = E[1] = 1. Otherwise,
E|[[] ] = []Elx:]
ieS ieS

because the random bits x1,...,x, are independent. But each of the factors
Elx;] in the above (nonempty) product is (1/2)(+1) +(1/2)(—-1) = 0. [l

1.4. Basic Fourier formulas

As we have seen, the Fourier expansion of f : {—1,1}" — R can be thought
of as the representation of f over the orthonormal basis of parity functions
(xs)scrn1- In this basis, f has 2" “coordinates”, and these are precisely the
Fourier coefficients of f. The “coordinate” of f in the yg “direction” is (f, ys);
i.e., we have the following formula for Fourier coefficients:

Proposition 1.8. For f:{—1,1}* — R and S <[nl, the Fourier coefficient of f
on S is given by
fS)=(fxs)= E [fx)ys)]
x~{-1,1}"

>

We can verify this formula explicitly:

<f,xS>=< Y f(T)xT,xS>= Y ATyt xs) = F(S), (1.9)

T<lnl T<cln]
where we used the Fourier expansion of f, the linearity of {-,-), and finally
Theorem 1.5. This formula is the simplest way to calculate the Fourier coef-
ficients of a given function; it can also be viewed as a streamlined version of
the interpolation method illustrated in (1.3). Alternatively, this formula can
be taken as the definition of Fourier coefficients.

The orthonormal basis of parities also lets us measure the squared “length”
(2-norm) of f : {-1,1}" — R efficiently: it’s just the sum of the squares of f’s
“coordinates” —i.e., Fourier coefficients. This simple but crucial fact is called
Parseval’s Theorem.

Parseval’s Theorem. Forany f :{-1,1}" - R,

0= E U@= 3 f97

> Scln]
In particular, if f : {-1,1)* — {—1,1} is Boolean-valued then
Y f8)2=1.
Scln]

As examples we can recall the Fourier expansions of maxg and Majs:
1.1 1 1 . 1 1 1 1
maxp(x) = 5 + 51 + %2 — 5X1%2, Majg(x) = 5x1 + 5x2 + 5%3 — 5X1%2%X3.
In both cases the sum of squares of Fourier coefficients is 4 x (1/4) = 1.
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26 1. Boolean functions and the Fourier expansion

More generally, given two functions f,g : {—1,1}* — R, we can compute
{f,g) by taking the “dot product” of their coordinates in the orthonormal basis
of parities. The resulting formula is called Plancherel’s Theorem.

Plancherel’s Theorem. Forany f,g:{-1,1}* = R,

(f.e)= E _[fwg®l= Y F(S)ES).
x~{=1,1} Sclnl

We can verify this formula explicitly as we did in (1.9):

f.80=( Y fOrs, ¥ &Drr)= Y FOEDUs.xr)= Y. FSIES).
Scin] T<ln] S,T<ln] Scln]

Now is a good time to remark that for Boolean-valued functions f,g :
{—1,1}" — {-1,1}, the inner product {f,g) can be interpreted as a kind of “cor-
relation” between f and g, measuring how similar they are. Since f(x)g(x) =1
if f(x) = g(x) and f(x)g(x) = -1 if f(x) # g(x), we have:

Proposition 1.9. If f,g:{-1,1}" - {-1,1},
(f,g =Prlf(x) = g(x)] - Pr[f(x) # g(x)] = 1 - 2dist(f, g).

Here we are using the following definition:

Definition 1.10. Given f,g:{-1,1}" — {—1, 1}, we define their (relative Ham-
ming) distance to be
dist(f,g) = I;r[f (x) # g(x)],

the fraction of inputs on which they disagree.

With a number of Fourier formulas now in hand we can begin to illustrate
a basic theme in the analysis of Boolean functions: interesting combinatorial
properties of a Boolean function f can be “read off” from its Fourier coeffi-
cients. Let’s start by looking at one way to measure the “bias” of f:

Definition 1.11. The mean of f : {—1,1}" — R is E[f]. When f has mean 0 we
say that it is unbiased, or balanced. In the particular case that f : {-1,1}" —
{—1,1} is Boolean-valued, its mean is

E[f]1=Prlf =1]-Pr[f = -1];

thus f is unbiased if and only if it takes value 1 on exactly half of the points
of the Hamming cube.

Fact 1.12. If f : {-1,1)" — R then E[f]1= f().

This formula holds simply because E[f]= (f,1) = f (@) (taking S = @ in
Proposition 1.8). In particular, a Boolean function is unbiased if and only if
its empty-set Fourier coefficient is 0.

Next we obtain a formula for the variance of a real-valued Boolean func-
tion (thinking of f(x) as a real-valued random variable):
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1.4. Basic Fourier formulas 27

Proposition 1.13. The varianceof f :{-1,1}" - R is

Var(f]=(f —-Elf1,f -Elf]) =E[f21-E[f = Y f(S)*.
S#p

The above Fourier formula follows immediately from Parseval’s Theorem and
Fact 1.12. We also have:

Fact 1.14. For f:{-1,1}" —{-1,1},
Var(f]=1-E[f? = 4Prlf(x) = 1]Pr[f(x) = 1] € [0,1].

In particular, a Boolean-valued function f has variance 1 if it’s unbiased
and variance 0 if it’s constant. More generally, the variance of a Boolean-
valued function is proportional to its “distance from being constant”.

Proposition 1.15. Let f:{-1,1}" — {—1,1}. Then 2¢ <Varlf]< 4e, where
€ = min{dist(f, 1),dist(f,—1)}.

The proof of Proposition 1.15 is an exercise. See also Exercise 1.17.

By using Plancherel in place of Parseval, we get a generalization of Propo-
sition 1.13 for covariance:

Proposition 1.16. The covariance of f,g:{—1,1}" — R is

Covlf,gl=(f ~Elfl,g~Elgl) =Elfg]-EIf]Elgl= Y F(S)&(S).
S#p

We end this section by discussing the Fourier weight distribution of Boolean
functions.

Definition 1.17. The (Fourier) weight of f : {—1,1}" — R on set S is defined
to be the squared Fourier coefficient, f(S)?.

Although we lose some information about the Fourier coefficients when
we square them, many Fourier formulas only depend on the weights of f.
For example, Proposition 1.13 says that the variance of f equals its Fourier
weight on nonempty sets. Studying Fourier weights is particularly pleasant
for Boolean-valued functions f : {-1,1}* — {—1,1} since Parseval’s Theorem
says that they always have total weight 1. In particular, they define a proba-
bility distribution on subsets of [n].

Definition 1.18. Given f : {—1,1}* — {—1,1}, the spectral sample for f, de-
noted Sy, is the probability distribution on subsets of [n] in which the set S
has probability £(S)%. We write S ~ 8 7 for a draw from this distribution.

For example, the spectral sample for the maxy function is the uniform
distribution on all four subsets of [2]; the spectral sample for Maj; is the
uniform distribution on the four subsets of [3] with odd cardinality.
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28 1. Boolean functions and the Fourier expansion

Given a Boolean function it can be helpful to try to keep a mental picture
of its weight distribution on the subsets of [n], partially ordered by inclu-
sion. Figure 1.1 is an example for the Maj; function, with the white circles
indicating weight 0 and the shaded circles indicating weight 1/4.

(1)
(1) (23
o @

Figure 1.1. Fourier weight distribution of the Majg function

@'@

Finally, as suggested by the diagram we often stratify the subsets S c[n]
according to their cardinality (also called “height” or “level”). Equivalently,
this is the degree of the associated monomial x5.

Definition 1.19. For f:{—1,1}* — R and 0 <k < n, the (Fourier) weight of f
at degree k is
W= Y F(S)2
Sclnl
IS|=F
If f:{-—1,1}" — {-1,1} is Boolean-valued, an equivalent definition is

WX 1= Pr[|S|=El.
S~S¢

By Parseval’s Theorem, Wk [F1=1f =k IIS where
=% FS)ys
|S|=Fk

is called the degree k part of f. We will also sometimes use notation like
W2Hf1= Y5151 F(S)? and f=F = ¥ <, F(S) x5

1.5. Probability densities and convolution

For variety’s sake, in this section we write the Hamming cube as IFj rather
than {—1,1}". In developing the Fourier expansion, we have generalized from
Boolean-valued Boolean functions f : F5 — {—1,1} to real-valued Boolean func-
tions f : Iy — IR. Boolean-valued functions arise more often in combinatorial
problems, but there are important classes of real-valued Boolean functions.
One example is probability densities.
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Definition 1.20. A (probability) density function on the Hamming cube 3
is any nonnegative function ¢ : [F§ — R>9 satisfying

LB Jp@l=1

We write y ~ ¢ to denote that y is a random string drawn from the associated
probability distribution, defined by

1
yfil(‘l)[y =N=0g; Vye IFy.

Here you should think of ¢(y) as being the relative density of y with
respect to the uniform distribution on 5. For example, we have:

Fact 1.21. If ¢ is a density function and g :IF§ — IR, then

ylji(p[g(y)] ={(p,8) = x}%g[(p(x)g(x)].

The simplest example of a probability density is just the constant func-
tion 1, which corresponds to the uniform probability distribution on 5. The
most common case arises from the uniform distribution over some subset
AcTF?

cTFg.

Definition 1.22. If A c F§ we write 14 : Fj — {0,1} for the 0-1 indicator
function of A;i.e.,
1 ifxeA,

14(x) =
A {o ifx¢A.

Assuming A # @ we write @4 for the density function associated to the uni-
form distribution on A;i.e.,

_ 1
PA = El14] 14.
We typically write y ~ A rather than y ~ 4.
A simple but useful example is when A is the singleton set A = {0}. (Here 0
is denoting the vector (0,0,...,0) € F7.) In this case the function ¢ takes

value 2" on input 0 € I'j and is zero elsewhere on I'j. In Exercise 1.1 you will
verify the Fourier expansion of ¢q:

Fact 1.23. Every Fourier coefficient of @) is 1; i.e., its Fourier expansion is

P (=Y. xs).
Scin]

We now introduce an operation on functions that interacts particularly
nicely with density functions, namely, convolution.
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30 1. Boolean functions and the Fourier expansion

Definition 1.24. Let f,g:F5 — R. Their convolution is the function f x g:
5 — R defined by

(fxg)x)= E [f(y)glx—y]= E [f(x—y)g(y)].
y~IFg y~IFg

Since subtraction is equivalent to addition in Iy we may also write

(fxg)x)= E [f(y)glx+y)]= E [f(x+y)g(y]l
y~IFg y~IFg

If we were representing the Hamming cube by {-1,1}" rather than '5 we
would replace x + y with x oy, where o denotes entry-wise multiplication.

Exercise 1.25 asks you to verify that convolution is associative and com-
mutative:

frgxh)=(fxg)xh, fxg=g*f.
Using Fact 1.21 we can deduce the following two simple results:
Proposition 1.25. If ¢ is a density function on g and g : ' — R then
p*xgx)= E [glx—y)]= E [glx+y)]
y~¢ y~¢
In particular, Ey_,[g(y)] = ¢ * g(0).

Proposition 1.26. If g = v is itself a probability density function then so is
@ = y; it represents the distribution on x € 'y given by choosing y ~ ¢ and
2z ~ ¥ independently and setting x =y + z.

The most important theorem about convolution is that it corresponds to
multiplication of Fourier coefficients:

Theorem 1.27. Let f,g:F5 — R. Then for all S c[n],
f+g(S) = F(S)&(s).

Proof. We have

——

f*g(8)= E]an[(f * g)(x)xs(x)] (the Fourier formula)
X~y
= E | E [f(y)glx—y)]xs(x) (by definition)
x~Ig [ y~IFg
= EIF” [f(y)g(2)xs(y+2)] (as x — y is uniform on F§ Vx)
2~
indgpende2ntly
= . zEFn[f(y))(s(y)g(z))(s(z)] (by identity (1.5))
"~y
= f(8)8(S) (Fourier formula, independence),
as claimed. O

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.



1.6. Highlight: Almost linear functions and the BLR Test 31

1.6. Highlight: Almost linear functions and the BLR Test

In linear algebra there are two equivalent definitions of what it means for a
function to be linear:

Definition 1.28. A function f : ¥ — Iy is linear if either of the following
equivalent conditions hold:

(1) fx+y)=f(x)+f(y) for all x,y e FT;

(2) f(x)=a-x for some a e F};i.e., f(x) =) ;c5x; for some S S[n].

Exercise 1.26 asks you to verify that the conditions are indeed equivalent.
If we encode the output of f by +1 € R in the usual way then the “linear”
functions f : IF§ — {—1,1} are precisely the 2" parity functions (ys)sc[n]-

Let’s think of what it might mean for a function f : ¥y — 2 to be approx-
imately linear. Definition 1.28 suggests two possibilities:

(1) fx+y)=f(x)+ f(y) for almost all pairs x,y € [F'?;

(2') there is some S < [n] such that f(x) = ¥ ;cg x; for almost all x € F}.

Are these equivalent? The proof of (2) = (1) in Definition 1.28 is “robust”: it
easily extends to show (2') = (1) (see Exercise 1.26). But the natural proof
of (1) = (2) in Definition 1.28 does not have this robustness property. The
goal of this section is to show that (1') = (2’) nevertheless holds.

Motivation for this problem comes from an area of theoretical computer
science called property testing, which we will discuss in more detail in Chap-
ter 7. Imagine that you have “black-box” access to a function f : F§j — IFg,
meaning that the function f is unknown to you but you can “query” its value
on inputs x € IF§ of your choosing. The function f is “supposed” to be a linear
function, and you would like to try to verify this.

The only way you can be certain f is indeed a linear function is to query
its value on all 2" inputs; unfortunately, this is very expensive. The idea
behind “property testing” is to try to verify that f has a certain property —in
this case, linearity — by querying its value on just a few random inputs. In
exchange for efficiency, we need to be willing to only approximately verify the
property.

Definition 1.29. If f and g are Boolean-valued functions we say they are
e-close if dist(f,g) <€; otherwise we say they are e-far. If & is a (nonempty)
property of n-bit Boolean functions we define dist(f,2?) = mingeg{dist(f, g)}.
We say that f is e-close to &2 if dist(f,2?) <e¢; i.e., [ is e-close to some g
satisfying &.
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In particular, in property testing we take property (2') above to be the no-
tion of “approximately linear”: we say f is e-close to being linear if dist(f,g) <€
for some truly linear g(x) =) ;cq ;.

In 1990 Blum, Luby, and Rubinfeld [BLR90] showed that indeed (1') —
(2') holds, giving the following “test” for the property of linearity that makes
just 3 queries:

BLR Test. Given query access to f :IFg — Fa:
» Choose x ~IF5 and y ~ IF§ independently.
e Query f at x, y, and x+ y.
o Accept”if f(x)+f(y)=[f(x+y).

We now show that if the BLR Test accepts f with high probability then
f is close to being linear. The proof works by directly relating the acceptance
probability to the quantity Y g £(S)?; see equation (1.10) below.

Theorem 1.30. Suppose the BLR Test accepts f : V5 — IFy with probability
1—¢. Then f is e-close to being linear.

Proof. In order to use the Fourier transform we encode f’s output by +1 € RR;
thus the acceptance condition of the BLR Test becomes f(x)f(y) = f(x + ).
Since

1 if fx)f(y)=f(x+y),

s +3f@ffx+y) =
2t 2l @I DFED=9 00 it o) f o) # fla+ 9,

we conclude

1-¢=Pr[BLR accepts f]= Py[% +2F (N (x+ )]

1
2
— % + %]3[ Fx)-(f * f)@)] (by definition)
1
2

=141 Y FSF«FS) (Plancherel)
Scin]

= % + % Y F($)3 (Theorem 1.27).
Scin]

We rearrange this equality and then continue:

1-2¢= Y f(S) (1.10)
Scin]
<max{f(S)}- Y F(S)
Seln] Sein]
= gl{[ix]{ F(SR (Parseval).
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But £(S) = (f,xs)=1-2dist(f, xs) (Proposition 1.9). Hence there exists some
S* c[n] such that 1-2¢ < 1-2dist(f, ys-); i.e., f is e-close to the linear function
xS*- O

In fact, for small € one can show that f is more like (¢/3)-close to linear,
and this is sharp. See Exercise 1.28.

The BLR Test shows that given black-box access to f : ' — {—1,1}, we can
“test” whether f is close to some linear function yg using just 3 queries. The
test does not reveal which linear function yg is close to (indeed, determining
this takes at least n queries; see Exercise 1.27). Nevertheless, we can still
determine the value of yg(x) with high probability for every x € 3 of our
choosing using just 2 queries. This property is called local correctability of
linear functions.

Proposition 1.31. Suppose f : ' — {—1,1} is e-close to the linear function xs.
Then for every x € I3, the following algorithm outputs ys(x) with probability
at least 1—2e:

o Choose y ~TF3.
e Query f at y and x+ y.
e Output f(¥)f (x+y).

We emphasize the order of quantifiers here: if we just output f(x) then this
will equal ygs(x) for most x; however, the above “local correcting” algorithm
determines ys(x) (with high probability) for every x.

Proof. Since y and x + y are both uniformly distributed on I} (though not
independently) we have Pr[f(y) # ys(¥)]1 <€ and Pr[f(x+y) # ys(x+y)l <¢€
by assumption. By the union bound, the probability of either event occurring
is at most 2¢; when neither occurs,

ffx+y) =xsyysx+y)=xsx)

as desired. O

1.7. Exercises and notes

1.1 Compute the Fourier expansions of the following functions:

(@) minyg :{-1, 1)2 - {—1,1}, the minimum function on 2 bits (also known
as the logical OR function);

(b) ming:{-1,1}> — {-1,1} and maxz: {-1,1}> — {-1,1};

(c) the indicator function 1;4) : F§ — {0,1}, where a € [F5;

(d) the density function ¢4 : F} — R>°, where a € F2;

(e) the density function @ g+e; @ G — R>°, where a € 3 and e; =
,...,0,1,0,...,0) with the 1 in the ith coordinate;
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() the density function corresponding to the product probability distri-
bution on {—1,1}" in which each coordinate has mean p €[-1,1];
(g) the inner product mod 2 function, 1P, : IF%” — {—1,1} defined by
P2, (x1,..., %0, ¥1,.--,90) = (=1)*Y;
(h) the equality function Equ,, : {-1,1}" — {0, 1}, defined by Equ,,(x) =1 if
and only if x; =x9 =+ = xy,;
() the not-all-equal function NAE,, : {—1,1}* — {0, 1}, defined by NAE,,(x) =
1 if and only if the bits x1,...,x, are not all equal;
() the selection function, Sel: {—1,1}> — {—1,1}, which outputs xg if x; =
—1 and outputs x3 if x1 = 1;
(k) mods : IE‘% — {0,1}, which is 1 if and only if the number of 1’s in the
input is divisible by 3;
() OXR: ng — {0, 1} defined by OXR(x1,x2,x3) =x1 V (x2 ® x3). Here v de-
notes logical OR, @ denotes logical XOR,
(m) the sortedness function Sorty : {—1,1}* — {—1,1}, defined by Sort4(x) =
—1ifand only if x1 < x9 <x3 <x4 Or x1 = x2 = x3 = x4;
(n) the hemi-icosahedron function HI : {—1,1}% — {-1,1} (also known as
the Kushilevitz function), defined to be the number of facets labeled
(+1,+1,+1) in Figure 1.2, minus the number of facets labeled (-1,—1,-1),

modulo 3.
X4
X5 X6
x6! x5
X4

Figure 1.2. The hemi-icosahedron

(Hint: First compute the real multilinear interpolation of the ana-
logue HI: {0,1}% — {0,1}.)

(o) the majority functions Majs : {-1,1)5 - {-1,1} and Maj; : {-1, 1}7 —
{—1,1};

(p) the complete quadratic function CQ,, : IFg — {-1,1} defined by CQ,,(x) =
X (X1<i<j<nxix;). (Hint: Determine CQ, (x) as a function of the num-
ber of 1’s in the input modulo 4. You’ll want to distinguish whether n
is even or odd.)
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1.2

1.3

14

1.5

1.6
1.7

1.8

1.9

How many Boolean functions f : {-1,1}" — {-1,1} have exactly 1 nonzero
Fourier coefficient?

Let f : 75 —{0,1}, n > 1, and suppose #{x : f(x) = 1} is odd. Prove that all
of f’s Fourier coefficients are nonzero.

Let f :{-1,1}" — R have Fourier expansion f(x) = Y sc[n] F(S)xS. Let F:
R™ — IR be the extension of f which is also defined by F'(x) = ¥ gc[,1 f(S )xS.
Show that if u = (u1,...,u,) €[-1,1]" then

F(u) = Fyl[f ],

where y is the random string in {—1,1}" defined by having E[y;] = y;
independently for all i € [n].

Prove that any f : {—1,1}" — {—1,1} has at most one Fourier coefficient
with magnitude exceeding 1/2. Is this also true for any f:{-1,1}* — R
with [ fllg =1?

Use Parseval’s Theorem to prove uniqueness of the Fourier expansion.

Let f:{-1,1}* — {-1,1} be a random function (i.e., each f(x) is +1 with
probability 1/2, independently for all x € {—1,1}*). Show that for each
S < [n], the random variable ?(S ) has mean 0 and variance 27". (Hint:
Parseval.)

The (Boolean) dual of f :{-1,1}* — R is the function /' defined by f'(x) =

—f(=x). The function f is said to be odd if it equals its dual; equivalently,

if f(—x) = —f(x) for all x. The function f is said to be even if f(—x) = f(x)

for all x. Given any function f : {—1,1}" — R, its odd part is the function

Fodd .11 1} — R defined by £°4(x) = (f(x) - f(—x))/2, and its even part

is the functio/rl feVe  {—1,1}* — R defined by f*V"(x) = (f(x) + f(—x))/2.

(a) Express £(S) in terms of 7(S).

(b) Verify that f = £°d9 4 feven apnd that f is odd (respectively, even) if and
only if £ = £°44 (respectively, f = feVe").

(c) Show that

U= N fS)ys, = Y F(S)ys.

Sclnl] Scln]
IS| odd IS| even
In this problem we consider representing False, True as 0,1 € R.
(a) Using the interpolation method from Section 1.2, show that every f :
{False, True}* — {False, True} can be represented as a real multilinear
polynomial

q)= ) cs ][], (1.11)
Scln] ieS

“over {0,1}”, meaning mapping {0,1}"* — {0,1}.
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1.10

1.11

1.12

(b) Show that this representation is unique. (Hint: If ¢ as in (1.11) has
at least one nonzero coefficient, consider gq(a) where a € {0,1}" is the
indicator vector of a minimal S with ¢g #0.)

(c) Show that all coefficients cg in the representation (1.11) will be inte-
gers in the range [-2",2"].

(d) Let f :{False, True}” — {False, True}. Let p(x) be f’s multilinear rep-
resentation when False, True are 1,—-1 € R (i.e., p is the Fourier ex-
pansion of f) and let q(x) be f’s multilinear representation when
False, True are 0,1 € R. Show that q(x) = % - %p(l —-2x1,...,1—2x,).

Let f:{-1,1}" — IR be not identically 0. The (real) degree of f, denoted
deg(f), is defined to be the degree of its multilinear (Fourier) expansion;
i.e., max{|S|: F(S) #0}.

(a) Show that deg(f) = deg(a + bf) for any a,b € R (assuming b #0, a +
bf #0).

(b) Show that deg(f) <k if and only if f is a real linear combination of
functions g1,...,85, each of which depends on at most % input coordi-
nates.

(¢) Which functions in Exercise 1.1 have “nontrivial” degree? (Here f :
{—1,1}* — R has “nontrivial” degree if deg(f) <n.)

Suppose that f:{—1,1}* — {-1,1} has deg(f) =%k = 1.

(a) Show that f’s real multilinear representation over {0,1} (see Exer-
cise 1.9), call it g(x), also has deg(q) = k.

(b) Using Exercise 1.9(c),(d), deduce that f’s Fourier spectrum is
granular”, meaning each f(S) is an integer multiple of 217%.

(¢) Show that Ygc 1F(S)] < 251,

“21_k -

A Hadamard Matrix is any N x N real matrix with +1 entries and orthog-

onal rows. Particular examples are the Walsh—-Hadamard Matrices Hy,

inductively defined for N = 2" as follows: Hy = [1], Hont1 = gzn an ]
2?1 - 2n

(a) Let’sindex the rows and columns of Hg» by the integers {0,1,2,...,2" —
1} rather than [2"]. Further, let’s identify such an integer i with its
binary expansion (ig,i1,...,in-1) € 5, where i is the least significant
bit and i,,_1 the most. For example, if n = 3, we identify the index
i =6 with (0,1,1). Now show that the (y,x) entry of Ha is (—1)"*.

(b) Show that if f: 5 — IR is represented as a column vector in R?" (ac-
cording to the indexing scheme from part (a)) then 27" Hon f = f . Here
we think of f as also being a function [Fj — IR, identifying subsets
S <{0,1,...,n— 1} with their indicator vectors.

(c) Show how to compute Ho-f using just n2" additions and subtractions
(rather than 22* additions and subtractions as the usual matrix-vector
multiplication algorithm would require). This computation is called
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the Fast Walsh-Hadamard Transform and is the method of choice
for computing the Fourier expansion of a generic function f :IF5 — R
when n is large.

(d) §how that taking the Fourier transform is essentially an “involution”:

f = 27" f (using the notations from part ()).

1.13 Let f:{~1,1}" — R and let 0 < p < g <oco. Show that [, <[ flly. (Hint:
Use Jensen’s inequality with the convex function ¢ — t%P.) Extend the in-
equality to the case g = 0o, where | f |« is defined to be max,e(—1 1) {|f(x)[}.

1.14 Compute the mean and variance of each function from Exercise 1.1.

1.15 Let f: {-1,1}* = R. Let K c[n] and let z € {-1,1}X. Suppose g: {-1,1}I"I'\K
R is the subfunction of f gotten by restricting the K-coordinates to be z.
Show that Elg]l = Y ek F(T)2T.

1.16 If f:{-1,1}* — {—1,1}, show that Var[f] =4 dist(f,1)-dist(f,—1). Deduce
Proposition 1.15.

1.17 Extend Fact 1.14 by proving the following: If F is a {—1, 1}-valued random
variable with mean u then

Var[F] = E[(F - p®] = %E[(F ~F')?1=2Pr[F #F'1=E[|F - ull,
where F’ is an independent copy of F. (The first two equalities do not
require F to be {—1,1}-valued.)
1.18 For any f :{-1,1}* — IR, show that

b w* if k=2,
<f‘k,f">={ L

0 ifk#/.
1.19 Let f:{-1,1}" — {-1,1}.
(a) Suppose W1[f]=1. Show that f(x) = +yg for some |S|=1.
(b) Suppose W=1[f]=1. Show that f depends on at most 1 input coordi-
nate.
(¢) Suppose W=2[f]=1. Must f depend on at most 2 input coordinates?
At most 3 input coordinates? What if we assume W2[f]=1?
1.20 Let f:{~1,1)" — R satisfy f = f~'. Show that Var[f2]=2Y,,; F(i)?F ().
1.21 Prove that there are no functions [ : {-1,1}" — {-1,1} with exactly 2
nonzero Fourier coefficients. What about exactly 3 nonzero Fourier coeffi-
cients?
1.22 Verify Propositions 1.25 and 1.26.

1.23 In this exercise you will prove some basic facts about “distances” between
probability distributions. Let ¢ and ¥ be probability densities on IF5.
(a) Show that the total variation distance between ¢ and v, defined by

drvi(e,y) =£ng%)§{’ylzt(;[y€A]—yljﬁ[y€A]|},
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is equal to %Ilcp —-vli.
(b) Show that the collision probability of ¢, defined to be

Pr [y=y,
independently
is equal to ||(p||§/2”.
(¢) The y2-distance of ¢ from v is defined by
(551
Y (y)
assuming v has full support. Show that the y2-distance of ¢ from

uniform is equal to Var[¢].
(d) Show that the total variation distance of ¢ from uniform is at most
% v/ Var[g].
1.24 Let A < {-1,1}" have “volume” §, meaning E[14] = . Suppose ¢ is a
probability density supported on A, meaning ¢(x) = 0 when x ¢ A. Show
that [ @[|2 = 1/6 with equality if ¢ = ¢4, the uniform density on A.

d (e, y) = yI:]w

1.25 Show directly from the definition that the convolution operator is associa-
tive and commutative.

1.26 Verify that (1) < (2) in Definition 1.28.

1.27 Suppose an algorithm is given query access to a linear function f : g5 —
[F9 and its task is to determine which linear function f is. Show that
querying f on n inputs is necessary and sufficient.

1.28 (a) Generalize Exercise 1.5 as follows: Let f : ' — {—1,1} and suppose
that dist(f, ys+) = 6. Show that If(S)I <26 for all S #S*. (Hint: Use
the union bound.)

(b) Deduce that the BLR Test rejects f with probability at least 36 —
1052 +853.

(¢c) Show that this lower bound cannot be improved to ¢§ — O(52) for any
c>3.

1.29 (a) Wecall f:F§ — I3 an affine function if f(x) =a-x+b for some a € [Fg,
b € Fo. Show that f is affine if and only if f(x)+f(y)+f(2) = f(x+y+2)
for all x,y,z,e Iy

(b) Let f : F; — R. Suppose we choose x,y,z ~ [' independently and
uniformly. Show that E[f(x)f (y)f(2)f(x+y+2)]=2g f(S)4.

(c) Give a 4-query test for a function f : 'y — I’y with the following prop-
erty: if the test accepts with probability 1 —e€ then f is e-close to being
affine. All four query inputs should have the uniform distribution
on IF§ (but of course need not be independent).

(d) Give an alternate 4-query test for being affine in which three of the
query inputs are uniformly distributed and the fourth is not random.
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(Hint: Show that f is affine if and only if f(x)+ f(y)+ f(0) = f(x + y)
for all x,y e F3.)

1.30 Permutations 7 € S, act on strings x € {—1,1}" in the natural way: (x"); =
Xn(;)- They also act on functions f : {-1,1}" — R via f™(x) = f(«") forall x €
{—1,1}*. We say that functions g, A :{-1,1}" — {—1,1} are (permutation-
Jisomorphic if g = h™ for some 7€ S,,. We call Aut(f) ={neS, :f" = f}
the (permutation-)automorphism group of f.

(a) Show that 77(S) = f(x~X(S)) for all S [n].

For future reference, when we write ( ]? (S))s|=%, we mean the sequence
of degree-k Fourier coefficients of f, listed in lexicographic order of the
k-sets S.

Given complete truth tables of some g and 2 we might wish to deter-
mine whether they are isomorphic. One way to do this would be to define
a canonical form can(f):{-1,1}" — {-1,1} for each f : {-1,1}" — {-1,1},
meaning that: (i) can(f’) is isomorphic to f; (ii) if g is isomorphic to A then
can(g) = can(h). Then we can determine whether g is isomorphic to 4 by
checking whether can(g) = can(k). Here is one possible way to define a
canonical form for f:

1. Set P() =S n-

2. Foreach £ =1,2,3,...,n,

3. Define P}, to be the set of all 7 € P;,_1 that make the sequence
(ﬁ(S ))s|=x maximal in lexicographic order on R®.

4. Let can(f) = f" for (any) n € P,,.

(b) Show that this is well-defined, meaning that can(f) is the same func-
tion for any choice of 7 € P,,.

(¢) Show that can(f) is indeed a canonical form,; i.e., it satisfies (i) and (ii)
above.

(d) Show that if }?({1}), ... ,f({n}) are distinct numbers then can(f) can be
computed in O(2") time.

(e) We could more generally consider g,A : {—1,1}* — {—1, 1} to be isomor-
phic if g(x) = A(£x,),- .., £Xxn)) for some permutation 7 on [n] and
some choice of signs. Extend the results of this exercise to handle this
definition.

Notes. The Fourier expansion for real-valued Boolean functions dates back
to Walsh [Wal23] who introduced a complete orthonormal basis for L2([0, 1D
consisting of +1-valued functions, constant on dyadic intervals. Using the or-
dering introduced by Paley [Pal32], the nth Walsh basis function w, :[0,1] —
{—1,1} is defined by w,(x) = H‘i’iori(x)”i, where n = Z‘i’zonﬂi and r;(x) (the
“ith Rademacher function at x”) is defined to be (—1)*, with x =} x;2-0+D
for non-dyadic x € [0,1]. Walsh’s interest was in comparing and contrasting
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the properties of this basis with the usual basis of trigonometric polynomials
and also Haar’s basis [Haal0].

The first major study of the Walsh functions came in the remarkable paper
of Paley [Pal32], which included strong results on the L?-norms of truncations
of Walsh series. Sadly, Paley died in an avalanche one year later (at age 26)
while skiing near Banff. The next major development in the study of Walsh
series was conceptual, with Vilenkin [Vil47] and Fine [Fin49] independently
suggesting the more natural viewpoint of the Walsh functions as characters
of the discrete group Zg. There was significant subsequent work in the 1950s
and 1960s, but it’s somewhat unnatural from our point of view because it
relies fundamentally on ordering the Rademacher and Walsh functions ac-
cording to binary expansions. Bonami [Bon68] and Kiener [Kie69] seem to
have been the first authors to take our viewpoint, treating bits x1,x9,x3,...
symmetrically and ordering Fourier characters ys according to |S| rather
than max(S). Bonami also obtained the first Aypercontractivity result for the
Boolean cube. This proved to be a crucial tool for analysis of Boolean func-
tions; see Chapter 9. For an early survey on Walsh series, see Balashov and
Rubinshtein [BR73].

Turning to Boolean functions and computer science, the idea of using
Boolean logic to study “switching functions” (as engineers originally called
Boolean functions) dates to the late 1930s and is usually credited to Naka-
shima [Nak35], Shannon [Sha37], and Shestakov [She38]. Muller [Mul54b]
seems to be the first to have used Fourier coefficients in the study of Boolean
functions; he mentions computing them while classifying all functions f :
{0,1}* — {0,1} up to certain equivalences. The first publication devoted to
Boolean Fourier coefficients was by Ninomiya [Nin58], who expanded on
Muller’s use of Fourier coefficients for the classification of Boolean functions
up to various isomorphisms. Golomb [Gol59] independently pursued the
same project (his work is the content of Exercise 1.30); he was also the first to
recognize the connection to Walsh series. The use of “Fourier—Walsh analysis”
in the study of Boolean functions quickly became well known in the early
1960s. Several symposia on applications of Walsh functions took place in the
early 1970s, with Lechner’s 1971 monograph [Lec71] and Karpovsky’s 1976
book [Kar76] becoming the standard references. However, the use of Boolean
analysis in theoretical computer science seemed to wane until 1988, when the
outstanding work of Kahn, Kalai, and Linial [KKL88] ushered in a new area
of sophistication.

The original analysis by Blum, Luby, and Rubinfeld [BLR90] for their
linearity test was combinatorial; our proof of Theorem 1.30 is the elegant an-
alytic one due to Bellare, Coppersmith, Hastad, Kiwi, and Sudan [BCH*96].
In fact, the essence of this analysis appears already in the 1953 work of
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Roth [Rot53] (in the context of the cyclic group Zy rather than I5). The
work of Bellare et al. also gives additional analysis improving the results of
Theorem 1.30 and Exercise 1.28. See also the work of Kaufman, Litsyn, and
Xie [KLX10] for further slight improvement.

In Exercise 1.1, the sortedness function was introduced by Ambainis [Amb03,
LLSO06]; the hemi-icosahedron function was introduced by Kushilevitz [NW95].
The fast algorithm for computing the Fourier transform mentioned in Exer-
cise 1.12 is due to Lechner [Lec63].
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Chapter 2

Basic concepts and
social choice

In this chapter we introduce a number of important basic concepts including
influences and noise stability. Many of these concepts are nicely motivated
using the language of social choice. The chapter is concluded with Kalai’s
Fourier-based proof of Arrow’s Theorem.

2.1. Social choice functions

In this section we describe some rudiments of the mathematics of social choice,
a topic studied by economists, political scientists, mathematicians, and com-
puter scientists. The fundamental question in this area is how best to ag-
gregate the opinions of many agents. Examples where this problem arises
include citizens voting in an election, committees deciding on alternatives,
and independent computational agents making collective decisions. Social
choice theory also provides very appealing interpretations for a number of
important functions and concepts in the analysis of Boolean functions.

A Boolean function f :{—1,1}* — {—1,1} can be thought of as a voting rule
or social choice function for an election with 2 candidates and n voters; it
maps the votes of the voters to the winner of the election. Perhaps the most
familiar voting rule is the majority function:

Definition 2.1. For n odd, the majority function Maj,, : {-1,1}" — {-1,1} is
defined by Maj,,(x) = sgn(x1 + x9 + - +x,). (Occasionally, for n even we say
that f is @ majority function if f(x) equals the sign of x; +--- + x, whenever
this number is nonzero.)
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The Boolean AND and OR functions correspond to voting rules in which
a certain candidate is always elected unless all voters are unanimously op-
posed. Recalling our somewhat nonintuitive convention that —1 represents
True and +1 represents False:

Definition 2.2. The function AND,, : {-1,1}* — {—1,1} is defined by AND, (x) =
+1 unless x =(-1,-1,...,—1). The function OR,, : {—1,1}" — {—1,1} is defined
by OR,(x) = -1 unless x =(+1,+1,...,+1).

Another voting rule commonly encountered in practice:

Definition 2.3. The ith dictator function y; : {—1,1}" — {-1,1} is defined by
xi(x) =x;.

Here we are simplifying notation for the singleton monomial from y; to
xi- Even though they are extremely simple functions, the dictators play a very
important role in analysis of Boolean functions; to highlight this we prefer
the colorful terminology “dictator functions” to the more mathematically staid
“projection functions”. Generalizing:

Definition 2.4. A function f :{-1,1}" — {-1,1} is called a k-junta for k € N
if it depends on at most % of its input coordinates; i.e., f(x) = g(x;,,...,x;,) for
some g : {-1,1}* - {-1,1} and i1,...,1; € [n]. Informally, we say that f is a
“junta” if it depends on only a “constant” number of coordinates.

For example, the number of functions f : {—1,1}" — {—1, 1} which are 1-juntas
is precisely 2n +2: the n dictators, the n negated-dictators, and the 2 constant
functions +1.

The European Union’s Council of Ministers adopts decisions based on a
weighted majority voting rule:

Definition 2.5. A function f:{-1,1}* — {-1,1} is called a weighted majority
or (linear) threshold function if it is expressible as f(x) =sgn(ag+aix1+---+
an,xy) for some ag,a1,...,a, €R.

Exercise 2.2 has you verify that majority, AND, OR, dictators, and constants
are all linear threshold functions.

The leader of the United States (and many other countries) is elected via
a kind of “two-level majority”. We make a natural definition along these lines:

Definition 2.6. The depth-d recursive majority of n function, denoted Majfd,

is the Boolean function of n? bits defined inductively as follows: Majg1 =

Maj,,, and Maj®@ D(xD ... 1) = Maj,(Maj®¢(xD),...,Maj®?(x™)) for ¥ €
d

{-1,1)*.
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In our last example of a 2-candidate voting rule, the voters are divided into
“tribes” of equal size and the outcome is True if and only if at least one tribe is
unanimously in favor of True. This rule is only somewhat plausible in practice,
but it plays a very important role in the analysis of Boolean functions:

Definition 2.7. The tribes function of width w and size s, Tribes,, c : {—1,1}*¥ —
{~1,1}, is defined by Tribes,, s(x'V,...,x®) = ORg(AND,, (x1),...,AND,, (x®)),
where x® € {-1,1}%.

Here are some natural properties of 2-candidate social choice functions
which may be considered desirable:

Definition 2.8. We say that a function f:{-1,1}" — {-1,1} is:
o monotone if f(x) < f(y) whenever x < y coordinate-wise;
e odd if f(-x)=—f(x);
e unanimous if f(1,...,1)=1and f(-1,...,-1)=-1;

o symmetric if f(x™) = f(x) for all permutations 7 € S,, (using the notation
from Exercise 1.30); i.e., f(x) only depends on the number of 1’s in x.

The definitions of monotone, odd, and symmetric are also natural for [ :
{-1,1}* - R.

Example 2.9. The majority function (for n odd) has all four properties in
Definition 2.8; indeed, May’s Theorem (Exercise 2.3) states that it is the only
monotone, odd, symmetric function. The dictator functions have the first
three properties above, as do recursive majority functions. The AND and OR
functions are monotone, unanimous, and symmetric, but not odd. The tribes
functions are monotone and unanimous; although they are not symmetric
they have an important weaker property:

Definition 2.10. A function [ :{-1,1}" — {—1,1} is transitive-symmetric if for
all i,i’ € [n] there exists a permutation 7 € S,, taking i to i’ such f(x") = f(x)
for all x € {—-1,1}".

Intuitively, a function is transitive-symmetric if any two coordinates i, j € [n]
are “equivalent”.

One more natural desirable property of a 2-candidate voting rule is that
it be unbiased as defined in Chapter 1.4, i.e., “equally likely” to elect +1. Of
course, this presupposes the uniform probability distribution on votes.

Definition 2.11. The impartial culture assumption is that the n voters’ pref-
erences are independent and uniformly random.

Although this assumption might seem somewhat unrealistic, it gives a
good basis for comparing voting rules in the absence of other information.
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One might also consider it as a model for the votes of just the “undecided” or
“party-independent” voters.

2.2. Influences and derivatives

Given a voting rule f : {-1,1}" — {—1,1} it’s natural to try to measure the
“influence” or “power” of the ith voter. One can define this to be the “probability
that the ith vote affects the outcome”.

Definition 2.12. We say that coordinate i € [n] is pivotal for f : {-1,1}" —
{—1,1} on input x if f(x) # f(x®"). Here we have used the notation x® for the
string (x1,...,%i—1, =X, Xi+1,.+-,%n)-

Definition 2.13. The influence of coordinate i on f :{-1,1}* — {-1,1} is de-
fined to be the probability that i is pivotal for a random input:

Infilfl1=_Pr [f@#/@&").

x~{—

Influences can be equivalently defined in terms of “geometry” of the Ham-
ming cube:

Fact 2.14. For f :{-1,1}" — {—1,1}, the influence Inf;[f] equals the fraction
of dimension-i edges in the Hamming cube which are boundary edges. Here
(x,y) is a dimension-i edge if y = x®'; it is a boundary edge if f(x) # f(y).

(+1,+1,+1)

Figure 2.1. Boundary edges of the Maj3 function

Example 2.15. For the ith dictator function y; we have that coordinate i
is pivotal for every input x; hence Inf;[y;]1 = 1. On the other hand, if j # i
then coordinate j is never pivotal; hence Inf;[y;] = 0 for j # i. Note that
the same two statements are true about the negated-dictator functions. For
the constant functions +1, all influences are 0. For the OR,, function, coordi-
nate 1 is pivotal for exactly two inputs, (-1,1,1,...,1) and (1,1, 1,...,1); hence
Inf;[OR,] = 21", Similarly, Inf;[OR,] = Inf;,[AND,,] = 21" for all i € [n].
The Majs is depicted in Figure 2.1; the points where it’s +1 are colored gray
and the points where it’s —1 are colored white. Its boundary edges are high-
lighted in black; there are 2 of them in each of the 3 dimensions. Since there
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are 4 total edges in each dimension, we conclude Inf;[Majs] = 2/4 = 1/2 for all
i €[3]. For majority in higher dimensions, Inf;[Maj, ] equals the probability

that among n — 1 random bits, exactly half of them are 1. This is roughly Vain

vn
for large n; see Exercise 2.22 or Chapter 5.2.
Influences can also be defined more “analytically” by introducing the de-
rivative operators.

Definition 2.16. The ith (discrete) derivative operator D; maps the function
f:{-1,1}" — R to the function D;f : {—1,1}* — R defined by
f(x(i~—>1)) _ f(x(i—»—l))

5 .

Here we have used the notation x (x1,...,%i-1,b,%i41,...,%,). Notice
that D; f(x) does not actually depend on x;. The operator D; is a linear opera-
tor: i.e., D;(f +g)=D;f +D;g.

D;f(x)=

(i—b) _

If f:{-1,1}" — {—1,1} is Boolean-valued then

0 if coordinate i is not pivotal for x,

D;f(x)= { (2.1

+1 if coordinate i is pivotal for x.

Thus D;f(x)? is the 0-1 indicator for whether i is pivotal for x and we con-
clude that Inf;[f] = E[D;f(x)?]. We take this formula as a definition for the
influences of real-valued Boolean functions.

Definition 2.17. We generalize Definition 2.13 to functions f : {-1,1}" - R
by defining the influence of coordinate i on f to be
Infi[f1= E [Dif(x)’]1=ID;fI3.
x~{—1,1})
Definition 2.18. We say that coordinate i € [n] is relevant for f : {-1,1}* - R
if and only if Inf;[f1> 0; i.e., f(x~ D) # f(x%~~D) for at least one x € {-1,1}".

The discrete derivative operators are quite analogous to the usual partial
derivatives. For example, f : {—1,1}" — IR is monotone if and only if D; f(x) =0
for all i and x. Further, D; acts like formal differentiation on Fourier expan-
sions:

Proposition 2.19. Let f : {—1,1}" — R have the multilinear expansion f(x) =
Y.scin F(S)xS. Then

Difx)= Y F(S)x5M. (2.2)

Scin]
Sai

Proof. Since D; is a linear operator, the claim follows immediately from the
observation that

O

Do M ifies,
S =
' 0 ifigs.
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By applying Parseval’s Theorem to the Fourier expansion (2.2), we obtain
a Fourier formula for influences:

Theorem 2.20. For f :{-1,1}" - R and i € [n],

Inf;[f]1=) F(S).
Sai
In other words, the influence of coordinate i on f equals the sum of f’s
Fourier weights on sets containing i. This is another good example of being
able to “read off” an interesting combinatorial property of a Boolean function
from its Fourier expansion. In the special case that f :{-1,1}" — {-1,1} is
monotone there is a much simpler way to read off its influences: they are the
degree-1 Fourier coefficients. In what follows, we write 7(i) in place of 7({i}).

Proposition 2.21. If f : {—1,1}* — {-1,1} is monotone, then Inf;[f]1= F().

Proof. By monotonicity, the +1 in (2.1) is always 1; i.e., D;f(x) is the 0-1
indicator that i is pivotal for x. Hence Inf;[f]=E[D,; f1=D;f(®) = f(i), where
the third equality used Proposition 2.19. [l

This formula allows us a neat proof that for any 2-candidate voting rule
that is monotone and transitive-symmetric, all of the voters have small influ-
ence:

Proposition 2.22. Let f : {—1,1}" — {—1, 1} be transitive-symmetric and mono-
tone. Then Inf;[f1<1/\/n for all i €[n].

Proof. Transitive-symmetry of f implies that F@) = F@@") for all i,i' € [n]
(using Exercise 1.30(a)); thus by monotonicity, Inf;[f] = f@) = f(Q) for all
i € [n]. But by Parseval, 1= Ygf(S)? = X", f(i)? = nf(1)% hence f(1) <
1/v/n. O

This bound is slightly improved in Proposition 2.58 and Exercise 2.24.

The derivative operators are very convenient for functions defined on
{—1,1}*. However they are less natural if we think of the Hamming cube
as {True,False}”; for the more general domains we’ll look at in Chapter 8
they don’t even make sense. We end this section by introducing some useful
definitions that will generalize better later.

Definition 2.23. The ith expectation operator E; is the linear operator on
functions f :{—1,1}* — R defined by

Eif(x) =E[f(x1,...,%i-1,%i,%iv 15, %n)].
Whereas D, f isolates the part of f depending on the ith coordinate, E; f

isolates the part not depending on the ith coordinate. Exercise 2.15 asks you
to verify the following:
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Proposition 2.24. For f:{-1,1}" - R,

(i—1) (i—-1)
c B =D
« Eif(0) =) f(S)x5,
S7i

o f(x)=x;D;f(x)+E;f(x).

Note that in the decomposition f = x;D;f + E; f, neither D;f nor E; f de-
pends on x;. This decomposition is very useful for proving facts about Boolean
functions by induction on n.

Finally, we will also define an operator very similar to D; called the ith
Laplacian:

Definition 2.25. The ith coordinate Laplacian operator L; is defined by
Lif =f - Eif.
Notational warning: Elsewhere you might see the negated definition, E;f — f.
Exercise 2.16 asks you to verify the following:
Proposition 2.26. For f :{-1,1}* - R,

_ &1

e Lif0)=xDif(x) =Y F(S)«5,
Sai

o (f,Lif) =(Lif,Lif) =Inf;[f]
2.3. Total influence

A very important quantity in the analysis of a Boolean function is the sum of
its influences.

Definition 2.27. The total influence of f :{—1,1}" — R is defined to be

I[f1=) Infi[f].
i=1

For Boolean-valued functions f : {—1,1}* — {—1, 1} the total influence has
several additional interpretations. First, it is often referred to as the average
sensitivity of f because of the following proposition:

Proposition 2.28. For f:{-1,1}" —{-1,1}
I[f1=Elsensy(x)],

where sensy(x) is the sensitivity of f at x, defined to be the number of pivotal
coordinates for f on input x.
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Proof.

1f1= Y Infilf1= Y Prif(x) # f(x®)]
=1 i=1

n n
=2 Bl epeen] =B | ) lf(x)#(x“)} =Elsens;(x). U
i=1 =1

The total influence of f : {—1,1}" — {—1,1} is also closely related to the size
of its edge boundary; from Fact 2.14 we deduce:

Fact 2.29. The fraction of edges in the Hamming cube {—1,1}"* which are
boundary edges for f :{-1,1}* —{—1,1} is equal to %I[f].

Example 2.30. (Recall Example 2.15.) For Boolean-valued functions f :
{—1,1}* — {—1, 1} the total influence ranges between 0 and n. It is minimized
by the constant functions +1 which have total influence 0. It is maximized by
the parity function y[,] and its negation which have total influence n; every
coordinate is pivotal on every input for these functions. The dictator functions
(and their negations) have total influence 1. The total influence of OR,, and
AND,, is very small: n217". On the other hand, the total influence of Maj,, is
fairly large: roughly v2/m/n for large n.

By virtue of Proposition 2.21 we have another interpretation for the total
influence of monotone functions:

Proposition 2.31. If f : {—1,1}" — {—1,1} is monotone, then
n
If1=) fQ.
i=1

This sum of the degree-1 Fourier coefficients has a natural interpretation
in social choice:

Proposition 2.32. Let f :{—1,1}* — {—1,1} be a voting rule for a 2-candidate

election. Given votes x = (x1,...,X,), let w be the number of votes that agree
with the outcome of the election, f(x). Then

n 1& .
Elwl==+- ).
[w] 53 i§:1f(l)
Proof. By the formula for Fourier coefficients,

Y. FG) = ) Elf @] = BIf ()@ +az+ -+ x,)]. (2.3)
=1 i=1

Now x1 + -+ &, equals the difference between the number of votes for can-
didate 1 and the number of votes for candidate —1. Hence f(x)(x1+ -+ x,)
equals the difference between the number of votes for the winner and the
number of votes for the loser; i.e., w — (n —w) = 2w — n. The result follows. [
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Rousseau [Rou62] suggested that the ideal voting rule is one which max-
imizes the number of votes that agree with the outcome. Here we show that
the majority rule has this property (at least when n is odd):

Theorem 2.33. The unique maximizers of Y7, F@) among all f:{-1,1}" —
{-1,1} are the majority functions. In particular, I[f]1<I[Maj,] = vV2/n\/n +
O(n=Y2) for all monotone f.

Proof. From (2.3),
n
> F@)=E[f @)y + 22+ +xp)] <Ellxy + 09 + -+ + 205 ],
i=1
since f(x) € {—1,1} always. Equality holds if and only if f(x) = sgn(xq +---+x,)
whenever x1 +---+x, #0. The second statement of the theorem follows from
Proposition 2.31 and Exercise 2.22. O

Let’s now take a look at more analytic expressions for the total influence.
By definition, if f :{-1,1}" — IR, then

3 . 2.4)

Iif1=} Infilf]1= ) EID:f(x)*]=E

i=1 =1

Y Dif (&)
i=1

This motivates the following definition:

Definition 2.34. The (discrete) gradient operator V maps the function f :
{—1,1}* — R to the function Vf :{—1,1}* — IR" defined by

Vf(x)=D1f(x),Daf (x),...,D,f(x)).

Note that for f: {—1,1}" — {—1,1} we have IIVf(x)Ilg = sensy(x), where || - [|2
is the usual Euclidean norm in R”. In general, from (2.4) we deduce:

Proposition 2.35. For f :{-1,1}* = IR,
If1=ELVf@)I3].

An alternative analytic definition involves introducing the Laplacian:

Definition 2.36. The Laplacian operator L is the linear operator on functions
f:{-1,1}" - R defined by L=%" | L.

Exercise 2.17 asks you to verify the following:
Proposition 2.37. For f :{-1,1}* = R,
o Lf(x) = (n/2)(f(x) - avg{f x®)}),

i€[n]

e Lf(x)=f(x)-senss(x) if f:{-1,1}" —{-1,1},

« Lf= Y ISIf(S)ys,
Scln]
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« (f,LN =1If1

We can obtain a Fourier formula for the total influence of a function using
Theorem 2.20; when we sum that theorem over all i € [n] the Fourier weight
f(S )2 is counted exactly |S| times. Hence:

Theorem 2.38. For f :{-1,1}" - R,

If1= Y ISIF(S*=Y k-WF[f1. (2.5)
Scln] k=0

For f:{—1,1}* — {—1,1} we can express this using the spectral sample:

I(7] =Sl*38f[|SI].

Thus the total influence of f : {—1,1}* — {—1,1} also measures the average
“height” or degree of its Fourier weights.

Finally, from Proposition 1.13 we have Var[f]= Y ;-o W*[f]; comparing
this with (2.5) we immediately deduce a simple but important fact called the
Poincaré Inequality.

Poincaré Inequality. For any f :{-1,1}" — R, Var[f]1<I[f]

Equality holds in the Poincaré Inequality if and only if all of f’s Fourier
weight is at degrees 0 and 1; i.e., W=I[f] = E[f2]. For Boolean-valued f :
{—1,1}* — {—1,1}, Exercise 1.19 tells us this can only occur if f =+1or f = +y;
for some i.

For Boolean-valued f : {—1,1}* — IR, the Poincaré Inequality can be viewed
as an (edge-)isoperimetric inequality, or (edge-)expansion bound, for the Ham-
ming cube. If we think of f as the indicator function for a set A < {-—1,1}"
of “measure” a = |A|/2", then Var[f]=4a(1 - a) (Fact 1.14) whereas I[f]is n
times the (fractional) size of A’s edge boundary. In particular, the Poincaré
Inequality says that subsets A < {—1,1}" of measure a = 1/2 must have edge
boundary at least as large as those of the dictator sets.

For a ¢ {0,1/2,1} the Poincaré Inequality is not sharp as an edge-isoperimetric
inequality for the Hamming cube; for small a even the asymptotic depen-
dence is not optimal. Precisely optimal edge-isoperimetric results (and also
vertex-isoperimetric results) are known for the Hamming cube. The following
simplified theorem is optimal for @ of the form 27:

Theorem 2.39. For f :{—1,1}" — {-1,1} with a = min{Pr[f = 1],Pr[f = —1]},
2alog(l/a) <I[f].
This result illustrates an important recurring concept in the analysis of
Boolean functions: The Hamming cube is a “small-set expander”. Roughly

speaking, this is the idea that “small” subsets A < {—1,1}" have unusually
large “boundary size”.
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2.4. Noise stability

Suppose f :{-1,1}* — {—1,1} is a voting rule for a 2-candidate election. Mak-
ing the impartial culture assumption, the n voters independently and uni-
formly randomly choose their votes x = (x1,...,2,). Now imagine that when
each voter goes to the ballot box there is some chance that their vote is mis-
recorded. Specifically, say that each vote is correctly recorded with probability
p €10,1] and is garbled — i.e., changed to a random bit — with probability
1-p. Writing y = (y4,...,,,) for the votes that are finally recorded, we may
ask about the probability that f(x) = f(y), i.e., whether the misrecorded votes
affected the outcome of the election. This has to do with the noise stability
of f.

Definition 2.40. Let p € [0,1]. For fixed x € {-1,1}" we write y ~ N,(x) to
denote that the random string y is drawn as follows: for each i € [n] indepen-
dently,
IES with probability p,
Yi= {uniformly random with probability 1—p.
We extend the notation to all p € [-1,1] as follows:

{xi with probability % + %p,
Yi=

—x; with probability % - %p.

We say that y is p-correlated to x.

Definition 2.41. If x ~ {—1,1}" is drawn uniformly at random and then
¥y~ N,(x), we say that (x,y) is a p-correlated pair of random strings. This def-
inition is symmetric in x and y; it is equivalent to saying that independently
for each i € [n], the pair of random bits (x;, y;) satisfies E[x;] = E[y;]1 =0 and
Elx;y;1=p.

With these definitions in hand we can now define the important concept
of noise stability, which measures the correlation between f(x) and f(y) when
(x,y) is a p-correlated pair.

Definition 2.42. For f :{-1,1}* — R and p €[-1, 1], the noise stability of f at
p is
Stab,[f1= (E) [f (x)f (p)].

5

p-correlated
If f:{-1,1}" — {-1,1} we have
Stab,[f]= (Pr) [fx)=f(p] - (Pr) [f(x) # f(3)]

) >

p-correlated p-correlated
=2 Pr [f®=Ffy]-1.
(x,3)
p-correlated
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In the voting scenario described above, the probability that the misrecord-
ing of votes doesn’t affect the election outcome is % + %Stabp[f 1.

When p is close to 1 (i.e., the “noise” is small) it’s sometimes more natu-
ral to ask about the probability that reversing a small fraction of the votes
reverses the outcome of the election.

Definition 2.43. For f:{-1,1}" — {—1,1} and ¢ € [0, 1] we write NSs[f] for
noise sensitivity of f at &, defined to be the probability that f(x) # f(y) when
x ~{—1,1}" is uniformly random and y is formed from x by reversing each bit
independently with probability 6. In other words,

NS5[f1= Stabi_s5[f1.

DN | =
DN | =

Example 2.44. The constant functions +1 have noise stability 1 for ev-
ery p. The dictator functions y; satisfy Stab,[y;] = p for all p (equivalently,
NSslyil =06 for all §). More generally,

= [[Elxiy;1=[[p=0",
ieS ieS

[Ty

Stab,[ysl= E_ [xSy°1=E
(=.9) ieS

>

p-correlated

where we used the fact that the bit pairs (x;,y;) are independent across i to
convert the expectation of a product to a product of an expectation.

There is no convenient expression for the noise stability of the major-
ity function Stab,[Maj,]. However, for a fixed noise rate, the noise stabil-
ity/sensitivity tends to a nice limit as n — oo:

Theorem 2.45. For any pe[-1,1],

’}1_%10 Stab,[Maj,] = % arcsinp =1- % arccos p.
n odd

Equivalently, for 6 €[0,1],

. . _ 1
r}LrgloNS5[MaJn] = 2 arccos(1 —26).
n odd

Using cos(z)=1- %zz +0(z*%), hence arccos(1 —26) = 2v/6 + 0(6°2), we deduce

lim NS;[Maj,]=2v5+0(5”).
n odd

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.



2.4. Noise stability 55

+1

-1 -

Figure 2.2. Plot of % arcsin p as a function of p

We prove Theorem 2.45 in Chapter 5.2.

There is a simple Fourier formula for the noise stability of a Boolean
function; it’s one of the most powerful links between the combinatorics of
Boolean functions and their Fourier spectra. To determine it, we begin by
introducing the most important operator in analysis of Boolean functions: the
noise operator, denoted T, for historical reasons.

Definition 2.46. For p € [-1,1], the noise operator with parameter p is the
linear operator T, on functions f :{—1,1}" — R defined by
Tofx)= E [f(y]
pf y~N,(x) fly
Proposition 2.47. For f :{—1,1}" — IR, the Fourier expansion of T,f is given
by

Tof= 3 p®FS)xs =3 o*f".
Scln] k=0

Proof. Since T, is a linear operator, it suffices to verify that T,ys = p'S!

Toxs@= E 1= E [y]1=[](px)=p"ys).
prs@=_E Ty il;[SyNNp(x)yl L_Ellpl P xs

Xs:

Here we used the fact that for y ~ N,(x) the bits y; are independent and
satisfy Ely;] = px;. [l

Exercise 2.25 gives an alternate way of looking at this proof. Yet another proof
using probability densities and convolution is outlined in Exercise 2.30.
The connection between T, and noise stability is that

= E :E E ;
Staby[f1= E [f@fWI=E|fw E [fG);

P

)

y~N,(x)
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hence:

Fact 2.48. Stab,[f]= (f,T,f).

From Plancherel’s Theorem and Proposition 2.47 we deduce the Fourier
formula for noise stability:

Theorem 2.49. For f :{-1,1}" - R,

Stab,[f1= Y. pSIf(S)?=Y p* - WE[f1.
k=0

Scln]
Hence for f :{-1,1}* — {-1,1} we have
Stab,[f1= E [p'], (2.6)
S~8¢
NSs[f1=1 Y (-1 -28"%) W[FL. 2.7
k=0

Thus the noise stability of f at p is equal to the sum of its Fourier weights,
attenuated by a factor which decreases exponentially with degree. A simple
but important corollary is that dictators (and their negations) maximize noise
stability:

Proposition 2.50. Let p € (0,1). If f:{-1,1}" — {-1,1} is unbiased, then
Stab,[f]= p, with equality if and only if f = £x; for some i € [n].

Proof. For unbiased f we have WO[f]= 0 and hence Stab,[f1=Y1>1 pFWEF1.
Since p* < p for all £ > 1, noise stability is maximized if all of f’s Fourier

weight is on degree 1. This occurs if and only if f = +y;, by Exercise 1.19(a).
O

For a fixed function f, it’s often interesting to see how Stab,[f] varies
as a function of p. From Theorem 2.49 we see that Stab,[f] is a (univari-
ate) polynomial with nonnegative coefficients; in particular, it’s an increasing
function of p on [0,1]. The derivatives of this polynomial at 0 and 1 have nice
interpretations, as can be immediately deduced from Theorem 2.49:

Proposition 2.51. For f:{-1,1}" - R,

d _ 1
2, 5tabolf1|_, =WIr)

-

d
2, Stabylf1] _ =171

For f:{-1,1}* — {-1,1} we have that NS;s[f]is an increasing function of § on
[0,1/2], and the second identity is equivalent to

d
=NSsIf1|_
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We conclude this section by introducing a version of influences that also
incorporates noise.

Definition 2.52. For f :{-1,1}" = R, p€[0,1] and i € [n], the p-stable influ-
ence of i on f is

Inf’[f]=Stab,[D;f1= Y p'S"'f(S)?,
S3i

with 0° interpreted as 1. We also define I”)[f]= ;‘zllnf(ip ) [f1

Exercise 2.40 asks you to verify the following:

Fact 2.53. I?[f]= %Stabp[f] =yr_ kp"1-WE[f]

The p-stable influence Inf;p )[f ] increases from F(i)? up to Inf;[f] as 0
increases from 0 to 1. For 0 < p <1 there isn’t an especially natural combi-
natorial interpretation for Infi.p )[ f1beyond Stab,[D; f]; however, we will see
later that the stable influences are technically very useful. One reason for
this is that every function f:{-1,1}" — {—1,1} has at most “constantly” many
“stably-influential” coordinates:

Proposition 2.54. Suppose f :{—1,1}" — R has Var[f]1< 1. Given 0<d,e<1,
let J ={i € [n]:Inf""V[f]1=€}. Then |J|< L.

Proof. Certainly |J| < I 9[f)/e so it remains to verify I9-9[f]1< 1/5. Com-
paring Fact 2.53 with Var[f]= 3} W[ £] term by term, it suffices to show
that (1 —6)* 1% < 1/6 for all £ = 1. This is the easy Exercise 2.45. [l

It’s good to think of the set J in this proposition as the “notable” coor-
dinates for function f. Had we used the usual influences in place of stable
influences, we would not have been guaranteed a bounded number of “notable”
coordinates (since, e.g., the parity function y, has all n of its influences equal
to 1).

2.5. Highlight: Arrow’s Theorem

When there are just 2 candidates, the majority function possesses all of the
mathematical properties that seem desirable in a voting rule (e.g., May’s
Theorem and Theorem 2.33). Unfortunately, as soon as there are 3 (or more)
candidates the problem of social choice becomes much more difficult. For
example, suppose we have candidates a, b, and ¢, and each of n voters has
a ranking of them. How should we aggregate these preferences to produce a
winning candidate?

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.



58 2. Basic concepts and social choice

In his 1785 Essay on the Application of Analysis to the Probability of Ma-
Jority Decisions [dC85], Condorcet suggested using the voters’ preferences to
conduct the three possible pairwise elections, a vs. b, b vs. ¢, and ¢ vs. a. This
calls for the use of a 2-candidate voting rule f : {-1,1}" — {-1,1}; Condorcet
suggested f = Maj,, but we might consider any such rule. Thus a “3-candidate
Condorcet election” using f is conducted as follows:

Voters’ Preferences
#1 #2 #3 - Societal Aggregation
a+ny vs. beny|+1 +1 -1 -+ =x f(x)
by vs. cn|+1 -1 +1 -+ =y f(y)
c+nvs.a-n|-1 -1 41 -+ =z f(2)

In the above example, voter #1 ranked the candidates a > b > ¢, voter #2
ranked them a > ¢ > b, voter #3 ranked them b > ¢ > a, etc. Note that the ith
voter has one of 3! = 6 possible rankings, and these translate into a triple of
bits (x;,y;,2;) from the following set:

{(+1,+1,—1),(+1,—1,—1),(—1,+1,—1),(—1,+1,+1),(+1,—1,+1),(—1,—1,+1)}.

These are precisely the triples satisfying the not-all-equal predicate NAEg
(see Exercise 1.1(7)).

In the example above, if n = 3 and f = Maj; then the societal outcome
would be (+1,+1,—-1), meaning that society elects a over b, b over ¢, and
a over c. In this case it is only natural to declare a the overall winner.

Definition 2.55. In an election employing Condorcet’s method with voting
rule f:{-1,1}* — {-1,1}, we say that a candidate is a Condorcet winner if it
wins all of the pairwise elections in which it participates.

Unfortunately, as Condorcet himself noted, there may not be a Condorcet
winner. In the example above, if voter #2’s ranking was instead ¢ >a > b
(corresponding to (+1,—-1,+1)), we would obtain the “paradoxical” outcome
(+1,+1,+1): society prefers a over b, b over ¢, and ¢ over a! This lack of a
Condorcet winner is termed Condorcet’s Paradox; it occurs when the outcome
(f(x), f(y), f(2)) is one of the two “all-equal” triples {(—1,-1,—-1),(+1,+1,+1)}.

One might wonder if the Condorcet Paradox can be avoided by using a
voting rule f : {-1,1}" — {-1,1} other than majority. However, in 1950 Ar-
row [Arr50] famously showed that the only means of avoidance is an unap-
pealing one:

Arrow’s Theorem. Suppose [ :{—1,1}" —{-1,1} is a unanimous voting rule
used in a 3-candidate Condorcet election. If there is always a Condorcet winner,
then f must be a dictatorship.
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(In fact, Arrow’s Theorem is slightly stronger than this; see Exercise 2.51.)

In 2002 Kalai gave a new proof of Arrow’s Theorem; it takes its cue from
the title of Condorcet’s work and computes the probability of a Condorcet
winner. This is done under the “impartial culture assumption” for 3-candidate
elections: each voter independently chooses one of the 6 possible rankings
uniformly at random.

Theorem 2.56. Consider a 3-candidate Condorcet election using f :{-1,1}" —
{—1,1}. Under the impartial culture assumption, the probability of a Condorcet
winner is precisely ?I - %Stab,l/g,[f 1.

Proof. Let x,y,2 € {—1,1}" be the votes for the elections a vs. b, b vs. ¢, and
¢ vs. a, respectively. Under impartial culture, the bit triples (x;,y;,2;) are
independent and each is drawn uniformly from the 6 triples satisfying the
not-all-equal predicate NAEj3 : {—1,1}% — {0, 1}. There is a Condorcet winner if
and only if NAE3(f(x), f(y),f(2)) = 1. Hence

Pr[3 Condorcet winner] = E[NAE3(f(x), f(y), f(2))]. (2.8)
The multilinear (Fourier) expansion of NAEg is
NAEs(w1,we,ws) = 3 — Jwiws — jwiws — Jwaws;

thus

(2.8) = 2 - LEIf(@)f ()] - LEIf@)f (2)] - LEIF (0)f (2)].
In the joint distribution of x, y the n bit pairs (x;, y;) are independent. Further,
by inspection we see that E[x;] = E[y;] = 0 and that E[x;y;] = (2/6)(+1) +
(4/6)(—1) = —1/3. Hence E[f(x)f (y)] is precisely Stab_y/3[f]. Similarly we
have E[f(x)f(2)] = E[f(y)f(2)] = Stab_y/3[f] and the proof is complete. |

Arrow’s Theorem is now an easy corollary:

Proof of Arrow’s Theorem. By assumption, the probability of a Condorcet
winner is 1; hence

1=3_38tab_y5[f]1=

B~ w
A~ w

Y (~1/3)"Wr[f1.
k=0

Since (—1/3)% = —1/3 for all %, the equality above can only occur if all of /’s
Fourier weight is on degree 1;i.e., Wl[f]=1. By Exercise 1.19(a) this implies
that f is either a dictator or a negated-dictator. Since f is unanimous, it must
in fact be a dictator. O

An advantage of Kalai’s analytic proof of Arrow’s Theorem is that we can
deduce several more interesting results about the probability of a Condorcet
winner. For example, combining Theorem 2.56 with Theorem 2.45 we get
Guilbaud’s Formula:
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Guilbaud’s Formula. In a 3-candidate Condorcet election using Maj,,, the
probability of a Condorcet winner tends to

% arccos(—1/3) = 91.2%.

as n — oQ.

This is already a fairly high probability. Unfortunately, if we want to
improve on it while still using a reasonably fair election scheme, we can only
set our hopes higher by a sliver:

Theorem 2.57. In a 3-candidate Condorcet election using an f :{-1,1}" —
{—1,1} with all (i) equal, the probability of a Condorcet winner is at most
T+ E+0,(1)~91.9%.

The condition in Theorem 2.57 seems like it would be satisfied by most
reasonably fair voting rules [ : {-1,1}* — {—1,1} (e.g., it is satisfied if f is
transitive-symmetric or is monotone with all influences equal). In fact, we will
show that Theorem 2.57’s hypothesis can be relaxed in Chapter 5.4; we will
further show in Chapter 11.7 that % + % can be improved to the tight value
% arccos(—1/3) of majority. To return to Theorem 2.57, it is an immediate
consequence of the following two results, the first being Exercise 2.24 and the

second being an easy corollary of Theorem 2.56.

Proposition 2.58. Suppose [ :{-1,1}" — {-1,1} has all f(i) equal. Then
WIf1< 2/ +0,(1).

Corollary 2.59. In a 3-candidate Condorcet election using [ : {-1,1}" —
{—1,1}, the probability of a Condorcet winner is at most % + %Wl[f 1
Proof. From Theorem 2.56, the probability is
3 _3Stab_13[f1=2 - 3(WOIF1- W' I£1+ SW2LF1- W21+
<34 W1+ ZWRLF1+ S WOLF 1+
<3 AW A1+ ZOWPIF1+ WOLF1+--0)
+IWHAI+ SA-WIFD) = T+ZWfFL O

FNTTRFN

=

Finally, using Corollary 2.59 we can prove a “robust” version of Arrow’s
Theorem, showing that a Condorcet election is almost paradox-free only if it
is almost a dictatorship (possibly negated).

Corollary 2.60. Suppose that in a 3-candidate Condorcet election using f :
{—1,1}* — {-1,1}, the probability of a Condorcet winner is 1—¢c. Then f is
O(e)-close to ty; for some i €[n].

Proof. From Corollary 2.59 we obtain that W[f]=>1— %e. The conclusion
now follows from the FKN Theorem. U
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Friedgut-Kalai-Naor (FKN) Theorem. Suppose f :{-1,1}* — {—1,1} has
WLf1=1-6. Then f is O(5)-close to +y; for some i € [n].

We will see the proof of the FKN Theorem in Chapter 9.1. We'll also show
in Chapter 5.4 that the O(5) closeness can be improved to §/4 + O(521og(2/5)).

2.6. Exercises and notes

2.1 For each function in Exercise 1.1, determine if it is odd, transitive-symmetric,
and/or symmetric.

2.2 Show that the n-bit functions majority, AND, OR, +y;, and +1 are all
linear threshold functions.

2.3 Prove May’s Theorem:

(a) Show that f:{-1,1}* — {-1,1} is symmetric and monotone if and only
if it can be expressed as a weighted majority with a1 =ag=---=a, =
1.

(b) Suppose f :{—1,1}" — {-1,1} is symmetric, monotone, and odd. Show
that n must be odd, and that f = Maj,,.

2.4 Subset A € {-1,1}" is called a Hamming ball if A = {x : A(x,z) < r} for some
z €{-1,1}"* and real r. Show that f :{—1,1}" — {-1,1} is the indicator of a
Hamming ball if and only if it’s expressible as a linear threshold function
f(x)=sgn(ag+ai1x1+- - +a,x,) with |a1| =lag|=---=|ayl.

2.5 Let f:{-1,1}" - {—1,1} and i € [n]. We say that f is unate in the ith direc-
tion if either f(x~V) < f(x#~D) for all x (monotone in the ith direction)
or f(x=D) = f(x"D) for all x (antimonotone in the ith direction). We
say that f is unate if it is unate in all n directions.

(a) Show that | ]? (1) = Inf;[f] with equality if and only if f is unate in the
ith direction.

(b) Show that the second statement of Theorem 2.33 holds even for all
unate f.

2.6 Show that linear threshold functions are unate.
2.7 For each function f in Exercise 1.1, compute Infi[f].

2.8 Let f:{-1,1}Y* — {-1,1}. Without using Fourier formulas, show that
Inf;[f] < Var[f] for each i € [n]. (Hint: Show Inf;[f] < 2min{Pr[f =
1L, Prlf =11})

2.9 Let f:{0,1}% — {—1,1} be given by the weighted majority f(x) = sgn(—58 +
31x1 +31xg + 28x3 + 21x4 + 2x5 + 2x6). Compute Inf;[f] for all i € [6].

2.10 Given b € {—1,1}, say that coordinate i is b-pivotal for f:{—1,1}* — {-1,1}
on input x if f(x) = b and f(x®*) # b. Show that Pr,[i is b-pivotal on x] =
%Infi[ f1. Deduce that I[f]1=2E,[# b-pivotal coordinates on x].
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211

2.12

2.13

2.14

2.15
2.16
2.17
2.18

2.19

2.20

2.21

2.22

Let f:{-1,1}" — {-1,1} and suppose f(S) # 0. Show that each coordinate

i €S is relevant for f.

Let f:{-1,1}* — {—1,1} be a random function (as in Exercise 1.7). Com-

pute E[Inf{[f1] and E[I[£]].

Let w e N, n =w2", and write f for Tribes,, o» : {—1,1}" — {-1,1}.

(a) Compute E[f]and Var[f], and estimate them asymptotically in terms
of n.

(b) Describe the function Df.

(¢c) Compute Inf1[f] and I[f] and estimate them asymptotically.

Let f:{-1,1}" — R, and write g = |f|. Show that |D;g| < |D;f| pointwise.

Deduce that Inf;[g] < Inf;[f] and I[g] <I[f].

Prove Proposition 2.24.

Prove Proposition 2.26.

Prove Proposition 2.37.

Let f:{-1,1}" — R. Show that

d
= —aTe—tf(x) re .

d
L@ = - Tof )] _ ,

1

Suppose f,g:{—1,1}" — R have the property that f does not depend on
the ith coordinate and g does not depend on the jth coordinate (i # j).
Show that E[x;x;f(x)g(x)] = E[D;f(x)D; g(x)].

For f:{-1,1}" — {-1,1} we have that E[sens;(x)] = Eg.g [IS|]. Show that
also E[sens,»(x)z] =E[|S|?]. (Hint: Use Proposition 2.37.) Is it true that
E[senSf(x)3] =E[IS|?1?

Let f:{-1,1}" - R and i € [n].

(a) Define Var;f :{—1,1}" — R by

Var; f(x) = Varlf (x1,...,%i-1,%i,%i+1,-- -, %n)].

Show that Inf;[f] = E,[Var; f(x)].
(b) Show that
whifi= E-full]
RPN | Kl PY
independent
where f|; denotes the function of n — 1 variables gotten by fixing the
ith input of f to bit b.
(@) Show that Inf;[Maj,] = (3=1)2'~" for all i € [n].
(b) Show that Inf;[Maj, ] is azdecreasing function of (odd) n.
(¢) Use Stirling’s Formula m! = (m/e)™(v2nm + O(m~12)) to deduce that

Inf;[Maj, | = % +0(n~%2). (Here the O(-) terms are nonnegative.)

(d) Deduce that 2/7 < W![Maj, 1< 2/m+O0(n1).
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(e) Deduce that v2/r\/n <I[Maj,]1< vV2/my/n+0(n~12),
(f) Suppose n is even and f : {-1,1}" — {-1,1} is a majority function.
Show that I[f]=I[Maj,_1= V2/my/n+0(n~12).

2.23 Using only Cauchy—Schwarz and Parseval, give a very simple proof of the
following weakening of Theorem 2.33: If f: {—1,1}* — {—1,1} is monotone
then I[f]< /n. Extend also to the case of f unate (see Exercise 2.5).

2.24 Prove Proposition 2.58 with O(n™!) in place of 0,(1). (Hint: Show f(i) <

% +0(n~%2) using Theorem 2.33.)

2.25 Deduce T, f(x) = X5 p'S!f(S)x% using Exercise 1.4.
2.26 For each function f in Exercise 1.1, compute I[f].
2.27 Which functions f : {-1,1}" — {—1, 1} with #{x : f(x) = 1} = 3 maximize I[f]?
2.28 Suppose f :{—1,1}* — R is an even function (recall Exercise 1.8). Show
the improved Poincaré Inequality Var[f] < %I[ 1
2.29 Let f:{-1,1}* — {—1,1} be unbiased, E[f]= 0, and let MaxInf[f] denote
maxie[n]{lnfi [f]}
(a) Use the Poincaré Inequality to show MaxInflf]= 1/n.
(b) Prove that I[f] = 2 — nMaxInf[f]12. (Hint: Prove I[f]1=W![f]+2(1 -
WI[f]) and use Exercise 2.5.) Deduce that MaxInf[f] > % -4

n?*

2.30 Use Exercises 1.1(e),(f) to deduce the formulas E;f = Y g f(S)Xs and
Tof =Xsp¥1F(S)xs.

2.31 Show that T, is positivity-preserving for p € [-1,1];i.e., f 20 = T,f = 0.
Show that T, is positivity-improving for p € (-1,1); i.e., f 20,f #0 =
Tof >0.

2.32 Show that T, satisfies the semigroup property: Ty, Tp, =Ty, p,.

2.33 For p €[-1,1], show that T, is a contraction on LP({-1,1}"*) for all p = 1;
ie, [Tofllp <Iflp forall f:{-1,1}" — R.

2.34 Show that [T, f| < T,|f| pointwise for any f :{-1,1}" — R. Further show
that for —1 < p < 1, equality occurs if and only if f is everywhere nonneg-
ative or everywhere nonpositive.

2.35 Foriec[n]and pe R, let Tf) be the operator on functions f : {-1,1}" - R
defined by

T;f: of +(1-p)E;f =E;f +pL;f.
(a) Show that for p €[-1,1] we have
Tlpf(x): E )[f(xl,---,xi—l,yi,xi+1>---,xn)]-

¥i~IVplX;

(b) Show that T“Ol.T:)2 = T;lm

tors Tfo and Ti), commute.

(cf. Exercise 2.32) and that any two opera-
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(c) For (p1,...,pn) € R" we define T, ,,) = TélT%Z---TZn. Show that
T, 0 is simply T, and that T(;, 1,,1,.,1) (with the p in the ith
position) is T;').

(d) For py,...,p, €[—1,1], show that T,,
for all p = 1 (cf. Exercise 2.33).

2.36 Show that Stab_,[f]=—Stab,[f]if f is odd and Stab_,[f]= Stab,[f]if
f is even.

p) 18 @ contraction on L?({-1,1}")

.....

2.37 For each function f in Exercise 1.1, compute Stab,[f].
2.38 Compute Stab,[Tribes,, ;].

2.39 Suppose [ : {—1,1}* — {—1,1} has min(Pr[f = 1],Pr[f = —1]) = a. Show
that NSs[f]1< 2a for all § €[0,1].

2.40 Verify Fact 2.53.
2.41 Fix f :{-1,1}" — R. Show that Stab,[f]is a convex function of p on [0, 1].
2.42 Let f :{-1,1}* — {-1,1}. Show that NSs[f]1<6I[f] for all § €[0,1].
2.43 (a) Define the average influence of f : {—1,1}" — R tobe &[f]1= %I[f]. Now
for f:{-1,1}* - {-1,1}, show
8if1=_ Pr [f@#/@™)] and 15-81f1=NSilf1=8If]
i~[n]

(b) Given f :{—1,1}" — {-1,1} and integer % = 2, define

1 > > >
Ap= E(W‘l[f] +W22[£1+ -+ WER[F]),

the “average of the first £ tail weights”. Generalizing the second
statement in part (a), show that 1_2272 A, <NSy[f1<Ap.

2.44 Suppose f1,...,[s:{—1,1}" —{-1,1} satisfy NSs[f;1<¢;. Let g:{-1,1}* —
{—1,1} and define A : {-1,1}* — {-1,1} by & = g(f1,...,fs). Show that
NS5[h] = Z?Zl €;.

2.45 Complete the proof of Proposition 2.54 by showing that (1 - 51k <1/5
forall0< 6 <1and keN*. (Hint: Compare both sides with 1+(1-5)+
A-62+---+(1-6)F1L)

2.46 Fixing f :{-1,1}" — IR, show the following Lipschitz bound for Stab,[f]
whenO0<p-e<p<1:

1
[Stab, (1~ Stab,_[f1| < —— - Varlf].

(Hint: Use the Mean Value Theorem and Exercise 2.45.)

2.47 Let f:{—1,1}" — {—1,1} be a transitive-symmetric function; in the nota-
tion of Exercise 1.30, this means the group Aut(f) acts transitively on [n].
Show that Pr; . aup)[(i) = j1=1/n for all i, j € [n].
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2.48

2.49

2.50

2.51

2.52

2.53

Suppose that F is a functional on functions f : {-1,1}" — R expressible
as Flf1=Yg csf(S)? where cg = 0 for all S < [n]. (Examples include Var,
W Inf;, 1, Inf‘il_&, and Stab, for p = 0.) Show that F is convex, meaning
FIAf+(1-1)gl<AF[f1+(1-A)Figlfor all f, g, and A €[0,1].

Extend the FKN Theorem as follows: Suppose f : {-1,1}* — {—1,1} has
W=1[f]1=1-5. Show that f is O(5)-close to a 1-junta. (Hint: Consider
8(xo,%) =xof (x0x).)

Compute the precise probability of a Condorcet winner (under impartial
culture) in a 3-candidate, 3-voter election using f = Majs.

(a) Arrow’s Theorem for 3 candidates is slightly more general than what
we stated: it allows for three different unanimous functions f,g,h :
{—1,1}* — {—1,1} to be used in the three pairwise elections. But show
that if using f, g, h always gives rise to a Condorcet winner then
f =g =h. (Hint: First show g(x) = —f(—x) for all x by using the fact
that x, y = —x, and z = (f(x),..., f(x)) is always a valid possibility for
the votes.)

(b) Extend Arrow’s Theorem to the case of Condorcet elections with more
than 3 candidates.

The polarizations of f : {—1,1}" — R (also known as compressions, down-
shifts, or two-point rearrangements) are defined as follows. For i € [n],
the i-polarization of f is the function £ :{-1,1}" — R defined by

max({f (x"~ V), f@i= D) iy = +1,
min {f(x(i"’+1)),f(x(i’_'_1))} if x; = 1.

f‘”(x)={

(@) Show that E[f?]1=E[f]and |[f? |, = fl, for all p.

(b) Show that Inf;[f?/] < Inf;[f] for all j € [n].

(c) Show that Stab,[f!] = Stab,[f]forall0<p=<1.

(d) Show that ¢ is monotone in the ith direction (recall Exercise 2.5).
Further, show that if f is monotone in the jth direction for some
J €[n] then f7 is still monotone in the jth direction.

(e) Let f* = f219279» Show that f* is monotone, E[f*] = E[f], Inf;[f*] <
Inf;[f] for all j € [n], and Stab,[f*]= Stab,[f]for all 0 <p <1.

The Hamming distance A(x,y) = #{i : x; # y;} on the discrete cube {-1,1}"
is an example of an ¢ metric space. For D = 1, we say that the discrete
cube can be embedded into ¢o with distortion D if there is a mapping
F:{-1,1}" - R™ for some m € N such that:
1F(x)—F(y)le = A(x,y) for all x, y; (“no contraction”)
|1F(x)—F(y)la <D -Ax,y) for all x, y. (“expansion at most D”)

In this exercise you will show that the least distortion possible is D = /7.
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2.54
2.55

2.56

(a) Recalling the definition of £°4 from Exercise 1.8, show that for any
f:{-1,1}" - R we have ||f°dd||§ <I[f] and hence

EL(f(0) - f(-x)*1 < Y E[(F@) - f*)°).
i=1

(b) Suppose F :{—1,1}* - R™, and write F(x) = (f1(x), fo(x),..., fm(x)) for
functions f; : {-1,1}* — R. By summing the above inequality over
i € [m], show that any F' with no contraction must have expansion at

least /n.
(c) Show that there is an embedding F' achieving distortion /7.

Give a Fourier-free proof of the Poincaré Inequality by induction on n.

Let V be a vector space with norm | | and fix wy,...,w, € V. Define
g:{-1,1}" - R by g(x) = | X7_; x;w;].

(a) Show that Lg < g pointwise. (Hint: Triangle inequality.)

(b) Deduce 2Var[g] < E[g?] and thus the following Khintchine-Kahane

Inequality:
]

(Hint: Exercise 2.28.)
(c) Show that the constant \/ig above is optimal, even if V = R.
In the correlation distillation problem, a source chooses x ~ {—1,1}" uni-
formly at random and broadcasts it to ¢ parties. We assume that the
transmissions suffer from some kind of noise, and therefore the players
receive imperfect copies yU, ..., y9 of x. The parties are not allowed to
communicate, and despite having imperfectly correlated information they
wish to agree on a single random bit. In other words, the jth party will
output a bit fj(y(j)) € {~1,1}, and the goal is to find functions f1,...,f; that
maximize the probability that f1(y'") = fa(y®) = -+ = f,(5'?). To avoid
trivial deterministic solutions, we insist that E[f/( ¥ be 0 for all j € [q].
(a) Suppose ¢ =2, p €(0,1), and yV ~ N,(x) independently for each ;.

Show that the optimal solution is f1 = fo = y; for some i € [n]. (Hint:

You’ll need Cauchy—Schwarz.)
(b) Show the same result for g = 3.

(c) Let g =2 and p € (%,1). Suppose that yV = x exactly, but y? ¢
(2)

i

12
n

XiWi
i=1

xX;Wwj

5|
x 1

n

1

{—1,0,1}* has erasures: it’s formed from x by setting y*’ = x; with

probability p and ygz) = 0 with probability 1— p, independently for
all i € [n]. Show that the optimal success probability is % + % p and
there is an optimal solution in which f; = +y; for any i € [n]. (Hint:

Eliminate the source, and introduce a fictitious party 1'...)
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(d) Consider the previous scenario but with p € (0,1). Show that if 7 is
sufficiently large, then the optimal solution does not have f1 = +y;.

2.57 (a) Let g:{-1,1}* — R=° have E[g] = 6. Show that for any p € [0,1],

n n
p Y 1EMNI<6+ Y 0 le oo
=1 k=2

(Hint: Exercise 2.31.)

(b) Assume further that g:{—1,1}" — {0,1}. Show that ||g:k loo < \/5\/(;?)
(Hint: First bound IIg:k II%.) Deduce pZ;.Lzl 18] < 6+2p2 Vén, assum-
ingp< ﬁ

(c) Show that ¥_, 18())] < 2v/26%,/n (assuming & < 1/4). Deduce W![g] <
2v2-67*/n. (Hint: show |3(j)| <6 for all j.)

(d) Suppose f :{—1,1}* — {—1,1} is monotone and MaxInflf] < 6. Show
W2[f1<v2.-6%4 1[f]1- /n.

(e) Suppose further that f is unbiased. Show that MaxInf[/] < o(n~%3)
implies I[f]= 3—o0(1); conclude MaxInf[f] = % —o0(1/n). (Hint: Extend
Exercise 2.29.) Use Exercise 2.52 to remove the assumption that f is
monotone for these statements.

2.58 Let V be a vector space (over R) with norm |- |y. If f:{-1,1}" -V we
can define its Fourier coefficients f (S) € V by the usual formula f S) =
Exe(-1,1[f ()x5]. We may also define £, = Exe(-1,12 LI F(0)[I5,1VP. Fi-
nally, if the norm | - ||y arises from an inner product {-,-)y on V we
can define an inner product on functions f,g : {—1,1}* — V by (f,g) =
Eiei-1,117[{f(x),gx))v]. The material developed so far in this book has
used V =R with (-, -)y being multiplication. Explore the extent to which
this material extends to the more general setting.

Notes. The mathematical study of social choice began in earnest in the late
1940s; see Riker [Rik61] for an early survey or the compilation [BGR09]
for some modern results. Arrow’s Theorem was the field’s first major re-
sult; Arrow proved it in 1950 [Arr50] under the extra assumption of mono-
tonicity (and with a minor error [Bla57]), with the refined version appearing
in 1963 [Arr63]. He was awarded the Nobel Prize for this work in 1972.
May’s Theorem is from 1952 [May52]. Guilbaud’s Formula is also from
1952 [Gui52], though Guilbaud only stated it in a footnote and wrote that it is
computed “by the usual means in combinatorial analysis”. The first published
proof appears to be due to Garman and Kamien [GK68]; they also introduced
the impartial culture assumption. The term “junta” appears to have been
introduced by Parnas, Ron, and Samorodnitsky [PRS01].

The notion of influence Inf;[f] was originally introduced by the geneticist

Penrose [Pen46], who observed that Inf;[Maj,] ~ % It was rediscovered
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by the lawyer Banzhaf in 1965 [Ban65]; he sued the Nassau County (NY)
Board after proving that the voting system it used (the one in Exercise 2.9)
gave some towns zero influence. Influence is sometimes referred to as the
Banzhaf, Penrose—Banzhaf, or Banzhaf—Coleman index (Coleman being an-
other rediscoverer [Col71]). Influences were first studied in the computer
science literature by Ben-Or and Linial [BL85]; they introduced also intro-
duced “tribes” as an example of a function with constant variance yet small
influences. The Fourier formulas for influence may have first appeared in the
work of Chor and Geréb-Graus [CGG87].

Total influence of Boolean functions has long been studied in combina-
torics, since it is equivalent to edge-boundary size for subsets of the Ham-
ming cube. For example, the edge-isoperimetric inequality was first proved
by Harper in 1964 [Har64]. In the context of Boolean functions, Karpovsky
[Kar76] proposed I[f] as a measure of the computational complexity of f,
and Hurst, Miller, and Muzio [HMMS82] gave the Fourier formula } g |S]| f (S)2.
The terminology “Poincaré Inequality” comes from the theory of functional
inequalities and Markov chains; the inequality is equivalent to the spectral
gap for the discrete cube graph.

The noise stability of Boolean functions was first studied explicitly by
Benjamini, Kalai, and Schramm in 1999 [BKS99], though it plays an impor-
tant role in the earlier work of Hastad [Has97]. See O’Donnell [0’D03] for a
survey. The noise operator was introduced by Bonami [Bon70] and indepen-
dently by Beckner [Bec75], who used the notation T, which was standardized
by Kahn, Kalai, and Linial [KKL88]. For nonnegative noise rates it’s often
natural to use the alternate parameterization T,-: for ¢ € [0,00].

The Fourier approach to Arrow’s Theorem is due to Kalai [Kal02]; he
also proved Theorem 2.57 and Corollary 2.60. The FKN Theorem is due to
Friedgut, Kalai, and Naor [FKNO02]; the observation from Exercise 2.49 is
due to Kindler.

The polarizations from Exercise 2.52 originate in Kleitman [Kle66]. Exer-
cise 2.53 is a theorem of Enflo from 1970 [Enf70]. Exercise 2.55 is a theorem
of Latala and Oleszkiewicz [LO94]. In Exercise 2.56, part (b) is due to Mos-
sel and O’Donnell [MOO05]; part (c) was conjectured by Yang [Yan04] and
proved by O’Donnell and Wright [OW12]. Exercise 2.57 is a polishing of the
1987 work by Chor and Geréb-Graus [CGG87, CGGS88], a precursor of the
KKL Theorem. The weaker Exercise 2.29 is also due to them and Noga Alon
independently.
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Chapter 3

Spectral structure and
learning

One reasonable way to assess the “complexity” of a Boolean function is in
terms how complex its Fourier spectrum is. For example, functions with
sufficiently simple Fourier spectra can be efficiently learned from examples.
This chapter will be concerned with understanding the location, magnitude,
and structure of a Boolean function’s Fourier spectrum.

3.1. Low-degree spectral concentration

One way a Boolean function’s Fourier spectrum can be “simple” is for it to be
mostly concentrated at small degree.

Definition 3.1. We say that the Fourier spectrum of f : {-1,1}* — IR is e-
concentrated on degree up to k if

Wif1= Y f(S)? <e.
Scln]
ISI>k
For f :{-1,1}Y* — {-1,1} we can express this condition using the spectral
sample: Prg_g.[IS|> k] <e.

It’s possible to show such a concentration result combinatorially by show-
ing that a function has small total influence:

Proposition 3.2. For any [ :{-1,1}* — R and ¢ > 0, the Fourier spectrum of
f is e-concentrated on degree up to I[f/e.

69
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70 3. Spectral structure and learning

Proof. This follows immediately from Theorem 2.38, I[f1=% % “WE[F].
For f:{-1,1}* — {-1,1}, this is Markov’s inequality applied to the cardinality
of the spectral sample. O

For example, in Exercise 2.13 you showed that I[Tribes,, o«] < O(logn),
where n = w2%; thus this function’s spectrum is .01-concentrated on degree
up to O(logn), a rather low level. Proving this by explicitly calculating Fourier
coefficients would be quite painful.

Another means of showing low-degree spectral concentration is through
noise stability/sensitivity:

Proposition 3.3. For any f : {—1,1}Y* — {-1,1} and 6 € (0,1/2], the Fourier
spectrum of f is e-concentrated on degree up to 1/6 for

¢ = 72> NSslf1= 3NS;[f1.

Proof. Using the Fourier formula from Theorem 2.49,

2NS;[f1= E [1-(1-26)5"]
S~8;
> (1-(1-26)9). Pr[|S|= 1/5]
S~8;
>(1-e72)- Pr[IS|> 1/5],
S~8;

where the first inequality used that 1-(1-26 )* is a nonnegative nondecreasing
function of £. The claim follows. [l

As an example, Theorem 2.45 tells us that for 6§ > 0 sufficiently small and n
sufficiently large (as a function of §), NSs[Maj,,] < V8. Hence the Fourier
spectrum of Maj, is 3v/6-concentrated on degree up to 1/8; equivalently, it
is e-concentrated on degree up to 9/¢2. (We will give sharp constants for
majority’s spectral concentration in Chapter 5.3.) This example also shows
there is no simple converse to Proposition 3.2; although Maj,, has its spectrum
.01-concentrated on degree up to O(1), its total influence is O(y/n).

Finally, suppose a function f : {-1,1}" — {—1,1} has its Fourier spectrum
0-concentrated up to degree k; in other words, f has real degree deg(f) <k. In
this case f must be somewhat simple; indeed, if & is a constant, then f is a
junta:

Theorem 3.4. Suppose [ :{-1,1}" — {-1,1} has deg(f) < k. Then [ is a k2"~ 1
junta.

The bound %2*~! cannot be significantly improved; see Exercise 3.24. The
key to proving Theorem 3.4 is the following lemma, the proof of which is
outlined in Exercise 3.4:
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Lemma 3.5. Suppose deg(f) <k, where f :{—1,1}Y* — R is not identically 0.
Then Prlf(x) # 0] = 27%.

Since deg(D;f) <k —1 when deg(f) <k (by the “differentiation” formula)
and since Inf;[f]=Pr[D;f (x) # 0] for Boolean-valued [, we immediately infer:

Proposition 3.6. If f : {-1,1}" — {—1,1} has deg(f) < k then Inf;[f]is either 0
or at least 217 for all i € [n].

We can now give the proof of Theorem 3.4. From Proposition 3.6 the
number of coordinates which have nonzero influence on f is at most I[f1/21 7%,
and this in turn is at most 22*~! by the following fact:

Fact 3.7. For f:{-1,1}" — {-1,1}, I[f] < deg(/).

Fact 3.7 is immediate from the Fourier formula for total influence.

We remark that the FKN Theorem (stated in Chapter 2.5) is a “robust”
version of Theorem 3.4 for 2 = 1. In Chapter 9.6 we will see Friedgut’s Junta
Theorem, a related robust result showing that if I[f]< % then f is e-close to a
20%/e) junta.

3.2. Subspaces and decision trees

In this section we will treat the domain of a Boolean function as I, an n-
dimensional vector space over the field 3. As mentioned in Chapter 1.2, it
can be natural to index the Fourier characters ys : F5 — {-1,1} not by subsets
S c[n] but by their 0-1 indicator vectors y € IF}; thus

xy(x) = (=1,

with the dot product y-x being carried out in 5. For example, in this notation
we’d write yo for the constantly 1 function and y., for the ith dictator. Fact 1.6
now becomes

XpXy =Xp+y VB,7. (3.1
Thus the characters form a group under multiplication, which is isomorphic
to the group IF; under addition. To distinguish this group from the input

domain we write it as IE/‘ZL; we also tend to identify the character with its index.
Thus the Fourier expansion of f : ' — R can be written as

f@) =Y Fxy ).

yel;

The Fourier transform of f can be thought of as a function }? : IE/‘\Z —R. We
can measure its complexity with various norms.
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72 3. Spectral structure and learning

Definition 3.8. The Fourier (or spectral) p-norm of f : {-1,1}* - R is

1/p
£, = ( Y |f(y)|P) .

yeF;

Note that we use the “counting measure” on ]ﬁl, and hence we have a nice
rephrasing of Parseval’s Theorem: ||f||g = i f ﬂg. We make two more definitions
relating to the simplicity of f:

Definition 3.9. The Fourier (or spectral) sparsity of f :{—1,1}* - R is
sparsity(f) = |supp(7)| = #{y e F} : f(y) # 0}.

Definition 3.10. We say that f is e-granular if f (y) is an integer multiple
of € for all y e IF§.

To gain some practice with this notation, let’s look at the Fourier trans-
forms of some indicator functions 14 : IFj — {0,1} and probability density
functions ¢4, where A c IF7. First, suppose A <IF'j is a subspace. Then one
way to characterize A is by its perpendicular subspace A*:

AL:{yelﬁ;‘:y-x:OforallxeA}.

It holds that dim A+ = n —dim A (this is called the codimension of A) and that
A=(ANH*
Proposition 3.11. If A < has codimA = dimA~L = £, then

14 = Z 2_k?(y, PA = Z Xy
yeAL yeAl

Proof. Let yy,...,y; form a basis of A1. Since A = (A1)~ it follows that x € A
if and only if yy,(x) = 1 for all i € [k]. We therefore have

k
L@=[[[{+inw=2" ¥ o
i=1 yespan{yi,...,yr}
as claimed, where the last equality used (3.1). The Fourier expansion of ¢4

follows because E[14]1=27%. O

More generally, suppose A is affine subspace (or coset) of F7;ie., A=H+a
for some H <IFj and a € Iy, or equivalently

A={xeF}:y-x=y-aforallye H}.

Then it is easy (Exercise 3.11) to extend Proposition 3.11 to:

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.



3.2. Subspaces and decision trees 73

Proposition 3.12. If A = H +a is an affine subspace of codimension k, then

x(@27* ifyeH*

0 else;

1AA(y)={

hence pa = Lyem: xy(@yy. We have sparsity(14) = 2%, 14 is 2 *-granular,
11aleo=27%, and 140, = 1.

In computer science terminology, any f : ['5 — {0, 1} that is a conjunction
of parity conditions is the indicator of an affine subspace (or the zero function).
In the simple case that the parity conditions are all of the form “x; = a;”, the
function is a logical AND of literals, and we call the affine subspace a subcube.

Another class of Boolean functions with simple Fourier spectra are the
ones computable by simple decision trees:

Definition 3.13. A decision tree T is a representation of a Boolean function
f :F5 — R. It consists of a rooted binary tree in which the internal nodes are
labeled by coordinates i € [n], the outgoing edges of each internal node are
labeled 0 and 1, and the leaves are labeled by real numbers. We insist that no
coordinate i € [n] appears more than once on any root-to-leaf path.

On input x € IF7, the tree T constructs a computation path from the root
node to a leaf. Specifically, when the computation path reaches an internal
node labeled by coordinate i € [n] we say that T queries x;; the computation
path then follows the outgoing edge labeled by x;. The output of T (and
hence f) on input x is the label of the leaf reached by the computation path.
We often identify a tree with the function it computes.

For decision trees, a picture is worth a thousand words; see Figure 3.1.

Figure 3.1. Decision tree computing Sortg

(It’s traditional to write x; rather than i for the internal node labels.) For
example, the computation path of the above tree on input x =(0,1,0) € IF%
starts at the root, queries x1, proceeds left, queries x3, proceeds left, queries
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74 3. Spectral structure and learning

x9, proceeds right, and reaches a leaf labeled 0. In fact, this tree computes the
function Sortg defined by Sortg(x) = 1 if and only if x1 < x9 < x3 or x1 = x9 = x3.

Definition 3.14. The size s of a decision tree T is the total number of leaves.
The depth k of T is the maximum length of any root-to-leaf path. For decision
trees over ' we have £ <n and s < 2k Given [ : F5 — R we write DT(f)
(respectively, DTgi,.(f)) for the least depth (respectively, size) of a decision
tree computing f. (Note that these are not necessarily achieved by the same
tree.)

The example decision tree above has size 6 and depth 3.

Let T be a decision tree computing f : ['g — R and let P be one of its
root-to-leaf paths. The set of inputs x that follow computation path P in T is
precisely a subcube of IF7, call it Cp. The function f is constant on Cp; we
will call its value there f(P). Further, since every input x follows a unique
path in T, the subcubes {Cp : P a path in T} form a partition of IF;. These
observations yield the following “spectral simplicity” results for decision trees:

Fact 3.15. Let f:IF; — R be computed by a decision tree T. Then
f= Z f(P)-1¢,.

paths P of T

Proposition 3.16. Let f :IF) — R be computed by a decision tree T of size s
and depth k. Then:

o deg(f)<k;

o sparsity(f) < s2* < 4*;

e 1Fli<1flloo-s < 1flloo- 2%

e fis 27 granular assuming f : Fg — 7.

Proposition 3.17. Let f : F§ — {—1,1} be computable by a decision tree of
size s and let € €(0,1]. Then the spectrum of f is e-concentrated on degree up
to log(s/e).

You are asked to prove these propositions in Exercises 3.21 and 3.22. Sim-
ilar spectral simplicity results hold for some generalizations of the decision

tree representation (“subcube partitions”, “parity decision trees”); see Exer-
cise 3.26.

3.3. Restrictions

A common operation on Boolean functions f : {-1,1}* — R is restriction to
subcubes. Suppose [n] is partitioned into two sets, J and J = [n]\ J. If the
inputs bits in J are fixed to constants, the result is a function {-1,1}Y — R.
For example, if we take the function Majs : {—1,1}° — {~1,1} and restrict the
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4th and 5th coordinates to be 1 and —1 respectively, we obtain the function
Majs : {1, 1)3 — {—1,1}. If we further restrict the 3rd coordinate to be —1, we
obtain the two-bit function which is 1 if and only if both input bits are 1.

We introduce following notation:

Definition 3.18. Let f : {—1,1}" — R and let (J,J) be a partition of [n]. Let
ze{-1, 1}Y. Then we write faz -1, 1Y - R (pronounced “the restriction
of f to J using z”) for the subfunction of f given by fixing the coordinates
in J to the bit values z. When the partition (J ,J) is understood we may
write simply f|,. If ye {-1, 1}¥ and z € {-1,1}Y we will sometimes write (y,z)
for the composite string in {—1,1}", even though y and z are not literally
concatenated; with this notation, f.(y) = f(y,2).

Let’s examine how restrictions affect the Fourier transform by considering
an example.

Example 3.19. Let f :{—1,1}* — {—1,1} be the function defined by

f(x)=1 <= x3=x4=-1o0r x1=x2=x3=%4 Or x1 <x9 <x3<2x4.

(3.2)
You can check that f has the Fourier expansion
_,1_1 1 1 1
f(x)—+§—§x1+gx2—§x3—§x4
3 1 3 3 1 5
+ gX1x2 + §X1X3 — gX1X4 + gX2X3 — gX2X4 + §X3%4 3.3)

+ %xlxzxg + %x1x2x4 - %x1x3x4 + %x2x3x4 - %x1x2x3x4.

Consider the restriction x3 = 1, x4 = —1, and let ' = f{1 9j/1,-1) be the restricted
function of x; and x9. From the original definition (3.2) of f we see that
f'(x1,%2) is 1 if and only if x1 = x9 = 1. This is the miny function of x1 and xo,
which we know has Fourier expansion

' . 1,1 1 1
f(x1,%2) = ming(x1,x2) = —5 + 5%1 + 52 + 5x1X2. 3.4)

We can of course obtain this expansion simply by plugging x3 = 1,x4 = —1
into (3.3). Now suppose we only wanted to know the coefficient on x; in the
Fourier expansion of f'. We can find it as follows: Consider all monomials
in (3.3) that contain x1 and possibly also x3, x4; substitute x3 =1, x4 = —1 into
the associated terms; and sum the results. The relevant terms in (3.3) are

—%xl, +%x1x3, —%x1x4, —%x1x3x4, and substituting in x3 = 1,x4 = —1 gives us

-1 % + % + % = %, as expected from (3.4).

Now we work out these ideas more generally. In the setting of Defini-
tion 3.18 the restricted function fj, has {-1,1}Y as its domain. Thus its
Fourier coefficients are indexed by subsets of JJ. Let’s introduce notation for
the Fourier coefficients of a restricted function:
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Definition 3.20. Let f:{-1,1}" — R and let (J ,J) be a partition of [n]. Let
S < J. Then we write Fg7f :{-1,1}/ — R for the function f;1.(S); i.e.,

Fg7f (@) = Fr(S).
When the partition (J,J) is understood we may write simply Fgf.

In Example 3.19 we considered J =1{3,4}, S = {1}, and z = (1,—1). See
Figure 3.2 for an illustration of a typical restriction scenario.

input: 1 y | z |
coordinate partition: J J
ul ul
S T

Figure 3.2. Notation for a typical restriction scenario. Note that J and
need not be literally contiguous.

In general, for a fixed partition (J,) of [n] and a fixed S € J, we may wish
to know what fJTz(S )is as a function of z € {-1, l}j. This is precisely asking for
the Fourier transform of Fsﬁf . Since the function FSl? f has domain {-1, 1}7,
its Fourier transform has coefficients indexed by subsets of /. The formula

for this Fourier transform generalizes the computation we used at the end of
Example 3.19:

Proposition 3.21. In the setting of Definition 3.20 we have the Fourier expan-
sion
Fogf@= 3 FSuT)T;
T<d
ie.,

Fgz/(T)=F(SUT).

Proof. (The S = @ case here is Exercise 1.15.) Every U < [n] indexing f’s
Fourier coefficients can be written as a disjoint union U =S UT, where S cJ
and T < J. We can also decompose any x € {—1,1}" into two substrings y €

{-1,1}Y and z e {-1, l}j. We have xU = ySzT and so

fw= Y fn¥=Y fisumyS"= Y (X fisumaT)ys.
Ucln] Sed Scd T<d
Tcd
Thus when z is fixed, the resulting function of y indeed has }_,_5 FSuT)T
as its Fourier coefficient on the monomial y°. U
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Corollary 3.22. Let f:{-1,1}" — R, let (J,J) be a partition of [n], and fix
S cJ. Suppose z ~{-1,1}? is chosen uniformly at random. Then

EIf7:(9)] = F(S),

Elf7:(8P1= ) f(SuT).
Tcd

Proof. The first statement is immediate from Proposition 3.21, taking T'= @
and unraveling the definition. As for the second statement,

E[E}Tz(s)z] = IE[FS|Jf(z)2] (by definition)
=) F/Sg\f(T)2 (Parseval)

Tcd
- Z f(SuT)2 (Proposition 3.21) [

Tcd

We move on to discussing a more general kind of restriction; namely,
restricting a function f : 'y — R to an affine subspace H +z. This generalizes
restriction to subcubes as we've seen so far, by considering H = span{e; : i € J}
for a given subset J < [n]. For restrictions to a subspace H < Ij we have a
natural definition:

Definition 3.23. If f : Fj — R and H < IF§ is a subspace, we write fi : H — R
for the restriction of f to H.

For restrictions to affine subspaces, we run into difficulties if we try to
extend our notation for restrictions to subcubes. Unlike in the subcube case
of H = span{e; : i € J}, we don’t in general have a canonical isomorphism
between H and a coset H +z. Thus it’s not natural to introduce notation
such as fg|, : H — R for the function 2 — f(h +z), because such a definition
depends on the choice of representative for H + z. As an example consider
H ={(0,0),(1,1)} < F2, a 1-dimensional subspace (which satisfies H- = H).
Here the nontrivial coset is H +(1,0) = H +(0,1) ={(1,0),(0, 1)}, which has no
canonical representative.

To get around this difficulty we can view restriction to a coset H +z as
consisting of two steps: first, translation of the domain by a fixed representa-
tive z, and then restriction to the subspace H. Let’s introduce some notation
for the first operation:

Definition 3.24. Let f :Fj; — R and let z € Fj. We define the function
f2:F§ — Rby f(x)=f(x+2).

By substituting x = x + z into the Fourier expansion of f, we deduce:
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Fact 3.25. The Fourier coefficients of f*# are given by ]ﬁ;(y) =(-1r* }?(y); ie.,
FR@= Y 1y@F @) 1y ).

yelFy

(This fact also follows by noting that % = ¢, * f'; see Exercise 3.31.)

We can now give notation for the restriction of a function to an affine
subspace:

Definition 3.26. Let / : F) — R, z € F}, H < F;. We write f;;,z :H - R
for the function (f"?)g; namely, the restriction of f to coset H +z with the
representative z made explicit.

Finally, we would like to consider Fourier coefficients of restricted func-
tions f;f . These can be indexed by the cosets of H* in I@l However, we again
have a notational difficulty since the only coset with a canonical representa-
tive is H itself, with representative 0. There is no need to introduce extra
notation for }T;?(O), the average value of f on coset H + z, since it is just

B [f(h+2)]= (o, ).

Applying Plancherel on the right-hand side, as well as Proposition 3.11 and
Fact 3.25, we deduce the following classical fact:

Poisson Summation Formula. Let f:F; — R, H <, z€F}. Then

E[f(h+2)]= ) Xy @F ().

yeH*

3.4. Learning theory

Computational learning theory is an area of algorithms research devoted to
the following task: Given a source of “examples” (x, f(x)) from an unknown
function f, compute a “hypothesis” function A that is good at predicting f(y)
on future inputs y. In this book we will focus on just one possible formulation
of the task:

Definition 3.27. In the model of PAC (“Probably Approximately Correct”)
learning under the uniform distribution on {—1,1}", a learning problem is
identified with a concept class €, which is just a collection of functions f :
{—1,1}* — {-1,1}. A learning algorithm A for ¢ is a randomized algorithm
which has limited access to an unknown target function f € 6. The two access
models, in increasing order of strength, are:

o random examples, meaning A can draw pairs (x, f(x)) where x € {—1,1}"
is uniformly random;
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e queries, meaning A can request the value f(x) for any x € {—1,1}" of its
choice.

In addition, A is given as input an accuracy parameter € € [0,1/2]. The output
of A is required to be (the circuit representation of) a Aypothesis function
h:{-1,1}" — {-1,1}. We say that A learns € with error ¢ if for any f € €,
with high probability A outputs an A which is e-close to f: i.e., satisfies
dist(f,h) <e.

In the above definition, the phrase “with high probability” can be fixed
to mean, say, “except with probability at most 1/10”. (As is common with
randomized algorithms, the choice of constant 1/10 is unimportant; see Exer-
cise 3.40.)

For us, the main desideratum of a learning algorithm is efficient running
time. One can easily learn any function f to error 0 in time O(2") (see Exer-
cise 3.33); however, this is not very efficient. If the concept class ¥ contains
very complex functions, then such exponential running time is necessary;
however, if € contains only relatively “simple” functions, then more efficient
learning may be possible. For example, the results of Section 3.5 show that
the concept class

€ =1{f: ]Fg — {=1,1} | DTize(f) < s}

can be learned with queries to error € by an algorithm whose running time is
poly(s,n,1/e).

A common way of trying to learn an unknown target f : {—1,1}* — {-1,1}
is by discovering “most of” its Fourier spectrum. To formalize this, let’s gener-
alize Definition 3.1:

Definition 3.28. Let & be a collection of subsets S € [n]. We say that the
Fourier spectrum of f : {—1,1}* — R is e-concentrated on & if
Y F(S)P <e.

Scin]
S¢eF

For f :{-1,1}" — {-1,1} we can express this condition using the spectral
sample: Prg.g.[S ¢ F]=<e.

Most functions don’t have their Fourier spectrum concentrated on a small
collection (see Exercise 3.35). But for those that do, we may hope to discover
“most of” their Fourier coefficients. The main result of this section is a kind of
“meta-algorithm” for learning an unknown target f. It reduces the problem of
learning f to the problem of identifying a collection of characters on which f’s
Fourier spectrum is concentrated.

Theorem 3.29. Assume learning algorithm A has (at least) random example
access to target f :{—1,1}" — {-1,1}. Suppose that A can —somehow —identify a
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collection & of subsets on which f’s Fourier spectrum is e/2-concentrated. Then
using poly(|%|,n,1/e) additional time, A can with high probability output a
hypothesis h that is e-close to f.

The idea of the theorem is that A will estimate all of f’s Fourier coeffi-
cients in &, obtaining a good approximation to f’s Fourier expansion. Then
A’s hypothesis will be the sign of this approximate Fourier expansion.

The first tool we need to prove Theorem 3.29 is the ability to accurately
estimate any fixed Fourier coefficient:

Proposition 3.30. Given access to random examples from [ :{-1,1}* —
{—1,1}, there is a randomized algorithm which takes as input S <[n], 0 <
0,€ < 1/2, and outputs an estimate f(S) for f(S) that satisfies

If(S)-F(S)| <e

except with probability at most 6. The running time is poly(n,1/e)-log(1/6).

Proof. We have f (S) =E4[f(x)ys(x)]. Given random examples (x, f(x)), the
algorithm can compute f(x)ys(x) € {—1,1} and therefore empirically estimate
E;[f(x)ys(x)]. A standard application of the Chernoff bound implies that
O(log(1/5)/e?) examples are sufficient to obtain an estimate within +e with
probability at least 1. 0

The second observation we need to prove Theorem 3.29 is the following:

Proposition 3.31. Suppose that f :{-1,1}* - {-1,1} and g :{-1,1}* - R
satisfy ||f—g||§ <e. Let h:{-1,1}Y* — {-1,1} be defined by h(x) = sgn(g(x)),
with sgn(0) chosen arbitrarily from {—1,1}. Then dist(f,h) <e.

Proof. Since |f(x)— g(x)|?> = 1 whenever f(x) # sgn(g(x)), we conclude

dist(f,h) = I;r[f(x) #h(x)] = Ellf@)#sgn(g@n] = P;[If(x)—g(x)l2] =|f-gl3. O

(See Exercise 3.34 for an improvement to this argument.)

We can now prove Theorem 3.29:

Proof of Theorem 3.29. For each S € & the algorithm uses Proposition 3.30
to produce an estimate f(S) for £(S) which satisfies |F(S)— £(S)| < Ve/(2V]ZF])
except with probability at most 1/(10|.%]). Overall this requires poly(|Z|,n,1/€)
time, and by the union bound, except with probability at most 1/10 all ||
estimates have the desired accuracy. Finally, A forms the real-valued function
£=YScx f(S)XS and outputs hypothesis 2 = sgn(g). By Proposition 3.31, it
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suffices to show that || f — gllg <e¢. And indeed,
I f —g||% =) f-g(S)y? (Parseval)
Scln]
= Y (F®-FS)*+ Y. F(S)?
SeF S¢eF

Ve 2

< +€e/2 (estimates, concentration assumption)
Zlww)

=€e/d+e/2 < g

as desired. O

As we described, Theorem 3.29 reduces the algorithmic task of learning f
to the algorithmic task of identifying a collection % on which f’s Fourier
spectrum is concentrated. In Section 3.5 we will describe the Goldreich—Levin
algorithm, a sophisticated way to find such an & assuming query access to f.
For now, though, we observe that for several interesting concept classes we
don’t need to do any algorithmic searching for %; we can just take & to be
all sets of small cardinality. This works whenever all functions in ¢ have
low-degree spectral concentration.

The “Low-Degree Algorithm”. Let £ = 1 and let € be a concept class for
which every function [ :{—1,1}Y* — {—1,1} in ¥ is €/2-concentrated up to de-
gree k. Then € can be learned from random examples only with error € in time
poly(n*, 1/e).

Proof. Apply Theorem 3.29 with & = {S < [n]: |S| < k}. We have || =
Y5 (5) =0@mh). O

The Low-Degree Algorithm reduces the algorithmic problem of learning €
from random examples to the analytic task of showing low-degree spectral
concentration for the functions in 4. Using the results of Section 3.1 we can
quickly obtain some learning-theoretic results. For example:

Corollary 3.32. Fort=1, let € ={f :{-1,1}" - {-1,1} | I[f1< t}). Then €6 is
learnable from random examples with error € in time n®®©.

Proof. Use the Low-Degree Algorithm with % = 2¢/¢; the result follows from
Proposition 3.2. O

Corollary 3.33. Let € ={f : {—1,1}* — {=1,1} | f is monotone}. Then € is
learnable from random examples with error € in time nOWnle),

Proof. Follows from the previous corollary and Theorem 2.33. U
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You might be concerned that a running time such as n%Wn does not
seem very efficient. Still, it’s much better than the trivial running time of
O(2"). Further, as we will see in the next section, learning algorithms are
sometimes used in attacks on cryptographic schemes, and in this context even
subexponential-time algorithms are considered dangerous.

Continuing with applications of the Low-Degree Algorithm:

Corollary 3.34. For 6 €(0,1/2], let € ={f : {-1,1}" — {-1,1} | NSs[f] < ¢/6}.
Then € is learnable from random examples with error ¢ in time poly(n'/®, 1/e).

Proof. Follows from Proposition 3.3. [l

Corollary 3.85. Let € = {f : {-1,1}* — {-1,1} | DTgjse(f) < s}. Then € is
learnable from random examples with error € in time n©1086/€),

Proof. Follows from Proposition 3.17. U

With a slight extra twist one can also exactly learn the class of degree-%
functions in time poly(nk); see Exercise 3.36:

Theorem 3.36. Let k= 1and let € ={f :{-1,1}" - {-1,1} | deg(f) <k} (e.g., €
contains all depth-k decision trees). Then €6 is learnable from random exam-
ples with error 0 in time n* - poly(n, 2%).

3.5. Highlight: the Goldreich-Levin Algorithm

We close this chapter by briefly describing a topic which is in some sense the
“opposite” of learning theory: cryptography. At the highest level, cryptography
is concerned with constructing functions which are computationally easy to
compute but computationally difficult to invert. Intuitively, think about the
task of encrypting secret messages: You would like a scheme where it’s easy
to take any message x and produce an encrypted version e(x), but where it’s
hard for an adversary to compute x given e(x). Indeed, even with examples
e(xD), ..., e(x'™) of several encryptions, it should be hard for an adversary
to learn anything about the encrypted messages, or to predict (“forge”) the
encryption of future messages.

A basic task in cryptography is building stronger cryptographic functions
from weaker ones. Often the first example in “Cryptography 101” is the
Goldreich—Levin Theorem, which is used to build a “pseudorandom generator”
from a “one-way permutation”. We sketch the meaning of these terms and
the analysis of the construction in Exercise 3.45; for now, suffice it to say that
the key to the analysis of Goldreich and Levin’s construction is a learning
algorithm. Specifically, the Goldreich—Levin learning algorithm solves the
following problem: Given query access to a target function f : Fj — IF, find
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all of the linear functions (in the sense of Chapter 1.6) with which f is at
least slightly correlated. Equivalently, find all of the noticeably large Fourier
coefficients of f.

Goldreich-Levin Theorem. Given query access to a target f :{-1,1}" —
{—1,1} as well as input 0 <1 <1, there is a poly(n,1/t)-time algorithm that
with high probability outputs a list L ={U1,...,U,} of subsets of [n] such that:

e Ifz1 = UeL;
e UecLl = |f(U)=1/2

(By Parseval’s Theorem, the second guarantee implies that |L| < 4/72.)

Although the Goldreich—-Levin Theorem was originally developed for cryp-
tography, it was soon put to use for learning theory. Recall that the “meta-
algorithm” of Theorem 3.29 reduces learning an unknown target f : {-1,1}* —
{—1,1} to identifying a collection & of sets on which f’s Fourier spectrum is
e/2-concentrated. Using the Goldreich—Levin Algorithm, a learner with query
access to f can “collect up” its largest Fourier coefficients until only ¢/2 Fourier
weight remains unfound. This strategy straightforwardly yields the following
result (see Exercise 3.39):

Theorem 3.37. Let 6 be a concept class such that every f :{-1,1}" — {-1,1}
in 6 has its Fourier spectrum e/4-concentrated on a collection of at most M
sets. Then 6 can be learned using queries with error € in time poly(M,n, 1/¢).

The algorithm of Theorem 3.37 is often called the Kushilevitz—Mansour Al-
gorithm. Much like the Low-Degree Algorithm, it reduces the computational
problem of learning 6 (using queries) to the analytic problem of proving that
the functions in 6 have concentrated Fourier spectra. The advantage of the
Kushilevitz—Mansour Algorithm is that it works so long as the Fourier spec-
trum of f is concentrated on some small collection of sets; the Low-Degree
Algorithm requires that the concentration specifically be on the low-degree
characters. The disadvantage of the Kushilevitz—Mansour Algorithm is that
it requires query access to f, rather than just random examples. An example
concept class for which the Kushilevitz—Mansour Algorithm works well is the
set of all f for which [ £]l; is not too large:

Theorem 3.38. Let € = {f : {-1,1}" — {-1,1} | [fil1 < s} (e.g., € contains
any f computable by a decision tree of size at most s). Then 6 is learnable
from queries with error € in time poly(n,s, 1/¢).

This is proved in Exercise 3.38.
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Let’s now return to the Goldreich—Levin Algorithm itself, which seeks
the Fourier coefficients £(U) with magnitude at least 7. Given any candi-
date U < [n], Proposition 3.30 lets us easily distinguish whether the associ-
ated coefficient is large, | f {U)| =7, or small, If (U)| = 1/2. The trouble is that
there are 2" potential candidates. The Goldreich—Levin Algorithm overcomes
this difficulty using a divide-and-conquer strategy that measures the Fourier
weight of f on various collections of sets. Let’s make a definition:

Definition 3.39. Let f:{—1,1}* = R and S € J <[n]. We write
WS r1= Y ASuTy?
T<d
for the Fourier weight of f on sets whose restriction to </ is S.

The crucial tool for the Goldreich—Levin Algorithm is Corollary 3.22,
which says that

WS [F1=  E  [F7R(9)2. (3.5)
z~{-1,1}/

This identity lets a learning algorithm with query access to f efficiently esti-
mate any WS[£] of its choosing. Intuitively, query access to f allows query
access to fg|, for any z € {-1, 1}/; with this one can estimate any fJTZ(S) and
hence (3.5). More precisely:

Proposition 3.40. For any S c J < [n] an algorithm with query access to
f:{-1,1}* - {-1,1} can compute an estimate of WS [F] that is accurate to
within +e (except with probability at most §) in time poly(n,1/e)-log(1/5).

Proof. From (3.5),

WS If1= E [f7.82l= E | E [f(y,2)rs(»?
z~{—1,1}" z~{—1,1}J y~{—1,1}J
= E E [fiy,2xs &, 2)xs()],

2~(-11Y yy~(-1,1}7

where y, y' are independent. As in Proposition 3.30, f(y,2)xs(y)-f(y',2)xs(y")
is a +1-valued random variable that the algorithm can sample from using
queries to f. A Chernoff bound implies that O(log(1/5)/e?) samples are suffi-
cient to estimate its mean with accuracy € and confidence 1-6. [l

We’re now ready to prove the Goldreich—Levin Theorem.

Proof of the Goldreich-Levin Theorem. We begin with an overview of
how the algorithm works. Initially, all 2" sets U are (implicitly) put in a
single “bucket”. The algorithm then repeats the following loop:

o Select any bucket 98 containing 2™ sets, m = 1.

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.



3.6. Exercises and notes 85

e Split it into two buckets %81, %B9 of 2m-1 gets each.
o “Weigh” each %;, i = 1,2; i.e., estimate } y7cg, f(U)z.
e Discard %; or % if its weight estimate is at most 72/2.

The algorithm stops once all buckets contain just 1 set; it then outputs the
list of these sets.

We now fill in the details. First we argue the correctness of the algorithm,
assuming all weight estimates are accurate (this assumption is removed later).
On one hand, any set U with | f (U)| = T will never be discarded, since it
always contributes weight at least 72 = 72/2 to the bucket it’s in. On the other
hand, no set U with | f (U)| = 1/2 can end up in a singleton bucket because
such a bucket, when created, would have weight only 72/4 < 72/2 and thus
be discarded. Notice that this correctness proof does not rely on the weight
estimates being exact; it suffices for them to be accurate to within +72/4.

The next detail concerns running time. Note that any “active” (undis-
carded) bucket has weight at least 72/4, even assuming the weight estimates
are only accurate to within +72/4. Therefore Parseval tells us there can only
ever be at most 4/72 active buckets. Since a bucket can be split only n times, it
follows that the algorithm repeats its main loop at most 4n/t2 times. Thus as
long as the buckets can be maintained and accurately weighed in poly(n,1/7)
time, the overall running time will be poly(n,1/7) as claimed.

Finally, we describe the bucketing system. The buckets are indexed (and
thus maintained implicitly) by an integer 0 < k2 < n and a subset S < [k]. The
bucket %, s is defined by

gak,s:{8uT:Tg{k+1,k+z,...,n}}.

Note that |9 g| = 2"k The initial bucket is Py ¢. The algorithm always
splits a bucket %, g into the two buckets 9,15 and %Bi.1,suk+1y- The
final singleton buckets are of the form %, s = {S}. Finally, the weight of
bucket %, s is precisely WSIk+L.n}[ £] Thus it can be estimated to accuracy
+72/4 with confidence 1§ in time poly(n, 1/7)-1og(1/5) using Proposition 3.40.
Since the main loop is executed at most 4n/72 times, the algorithm overall
needs to make at most 8n/r? weighings; by setting § = v2/(80n) we ensure that
all weighings are accurate with high probability (at least 9/10). The overall
running time is therefore indeed poly(n,1/7). O

3.6. Exercises and notes

3.1 Let M :IF§ — IFJ be an invertible linear transformation. Given f :[F§ — R,
let f oM : T2 — R be defined by £ o M(x) = f(Mx). Show that foM(y) =
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3.2

3.3

3.4

3.5

3.6
3.7

3.8

3.9

3.10

3.11
3.12

3.13

3.14

3.15

FM ~Ty). What if M is an invertible affine transformation? What if M is
not invertible?

Show that 1%_2 is smallest constant (not depending on § or n) that can

be taken in Proposition 3.3.

Generalize Proposition 3.3 by showing that any f : {-1,1}" — R is e-
concentrated on degree up to 1/ for € = (E[f2] - Stab;_s[f1/(1 - 1/e).

Prove Lemma 3.5 by induction on n. (Hint: If one of the subfunctions
f(x1,...,x,,+1) is identically 0, show that the other has degree at most & —
1.)

Verify for all p € [1,00] that - || p 1s anorm on the vector space of functions
f:F5—R.
Show that ifglly <iifilgl, for all f,g: F3 — R.

Let £:{-1,1)" = R and let J [n], z € (-1,1}7.

(a) Show that restriction reduces spectral 1-norm: i fJ|Zﬂ1 < f ﬂl.

(b) Show that it also reduces Fourier sparsity: sparsity(f|;) < sparsity(f).
Let f:{-1,1}" - R and let 0 < p < g <oo. Show that fif]l, = fl,. (Cf. Ex-
ercise 1.13.)

Let £ :{-1,1})" — R. Show that il < IIfll1 and | flle < [i7l1. (These are
easy special cases of the Hausdorff-Young Inequality.)

Suppose f :{—1,1}* — {—1,1} is monotone. Show that If(S)I < f(i) when-
ever i € S € [n]. Deduce that ﬂfﬂoo =maxg{|f(S)|} is achieved by an S of
cardinality O or 1. (Hint: Apply the previous exercise to f’s derivatives.)
Prove Proposition 3.12.

Verify Parseval’s Theorem for the Fourier expansion of subspaces given
in Proposition 3.11.

Let f:IF§ — {0,1} be the indicator of A < ;. We know that ifili=1ifA

is an affine subspace. So assume that A is not an affine subspace.

(a) Show that there exists an affine subspace B of dimension 2 on which f
takes the value 1 exactly 3 times.

(b) Let b be the point in B where f is 0 and let v = ¢p — (1/2)¢. Show
that [y = 1/2.

(¢) Show that (v, f) = 3/4 and deduce /] = 3/2.

Suppose [ : {-1,1}* — R satisfies E[f2] < 1. Show that |f]; < 272 and
show that for any even n the upper bound can be achieved by a function
f:-1,1}"—-{-1,14

Given f :F5 — R, define its (fractional) sparsity to be
sparsity(f) = |supp(f)I/2" = Pr [f(x) # 0.
xelFy
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3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

In this exercise you will prove the uncertainty principle: If f is nonzero,

then sparsity(f) - sparsity(f) = 1.

(a) Show that we may assume | f]1 = 1.

(b) Suppose F = {y: f(y) # 0}. Show that ﬂfﬂg <|Z|.

(c) Suppose ¥ = {x : f(x) # 0}. Show that ||f||§ > 2"/|1%4|, and deduce the
uncertainty principle.

(d) Identify all cases of equality.

Let f:{-1,1}" — R and let ¢ > 0. Show that f is e-concentrated on a
collection & < 21" with || < ﬂfﬂ?/c.

Suppose the Fourier spectrum of f : {—1,1}" — R is €1-concentrated on &
and that g:{-1,1}* — R satisfies |f —gllg < €9. Show that the Fourier
spectrum of g is 2(e1 + €2)-concentrated on .

Show that every function f : ' — IR is computed by a decision tree with
depth at most n and size at most 2".

Let f :IFj — R be computable by a decision tree of size s and depth %
Show that —f and the Boolean dual /T are also computable by decision
trees of size s and depth &.

For each function in Exercise 1.1 with 4 or fewer inputs, give a decision
tree computing it. Try primarily to use the least possible depth, and
secondarily to use the least possible size.

Prove Proposition 3.16.

Let f:IF5 — {—1,1} be computed by a decision tree T of size s and let € €
(0,1]. Suppose each path in T is truncated (if necessary) so that its length
does not exceed log(s/e); new leaves with labels —1 and 1 may be created
in an arbitrary way as necessary. Show that the resulting decisions tree
T’ computes a function that is e-close to f. Deduce Proposition 3.17.

A decision list is a decision tree in which every internal node has an
outgoing edge to at least one leaf. Show that any function computable by
a decision list is a linear threshold function.

A read-once decision tree is one in which every internal node queries a
distinct variable. Bearing this in mind, show that the bound £2%~1 in
Theorem 3.4 cannot be reduced below 2% — 1.

Suppose that f is computed by a read-once decision tree in which every
root-to-leaf path has length % and every internal node at the deepest level
has one child (leaf) labeled —1 and one child labeled 1. Compute the
influence of each coordinate on f, and compute I[f].

The following are generalizations of decision trees:
Subcube partition: This is defined by a collection Cj,...,Cs of sub-
cubes that form a partition of IF?, along with values b1,...,b; € R. It
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3.27

3.28

3.29

computes the function f : 5 — R which has value b; on all inputs in C;.
The subcube partition’s size is s and its “codimension” & (analogous to
depth) is the maximum codimension of the cubes C;.

Parity decision tree: This is similar to a decision tree except that
the internal nodes are labeled by vectors y € . At such a node the
computation path on input x follows the edge labeled y-x. We insist that
for each root-to-leaf path, the vectors appearing in its internal nodes are
linearly independent. Size s and depth % are defined as with normal
decision trees.

Affine subspace partition: This is similar to a subcube partition except
the subcubes C; may be arbitrary affine subspaces.

(a) Show that subcube partition size/codimension and parity decision
tree size/depth generalize normal decision tree size/depth, and are
generalized by affine subspace partition size/codimension.

(b) Show that Proposition 3.16 holds also for the generalizations, except
that the statement about degree need not hold for parity decision
trees and affine subspace partitions.

(c) Show that the class of functions with affine subspace partition size at
most s is learnable from queries with error € in time poly(n, s, 1/¢).

Define Equy : {~1,1}3 — {~1,1} by Equg(x) = —1 if and only if x1 = x5 = x3.

(a) Show that deg(Equg) = 2.

(b) Show that DT(Equg) = 3.

(¢) Show that Equg is computable by a parity decision tree of codimen-
sion 2.

(d) For d € N, define £{~1,1}3" — {~1,1} by f = Equ®? (using the notation
from Definition 2.6). Show that deg(f) = 2¢ but DT(f) = 3¢.

Let f:{-1,1} — R and J < [n]. Define ng H{-1L,1Y* - R by f(x) =
EyN{_1 1}j[f(xJ,y)], where xs € {-1,1}Y is the projection of x to coordi-
nates J. Verify the Fourier expansion

7= FS)ys.

Scd

Let ¢ :IF5 — R>° be a probability density function corresponding to prob-

ability distribution ¢ on 5. Let J S [n].

(a) Consider the marginal probability distribution of ¢» on coordinates J.
What is its probability density function (a function ]FzJ — R*%) in
terms of ¢?

(b) Consider the probability distribution of ¢ conditioned on a substring
zZE€ Fg Assuming it’s well defined, what is its probability density
function in terms of ¢?
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3.30

3.31
3.32

3.33

3.34

3.35

3.36

3.37

3.38
3.39
3.40

Suppose f :{—1,1}" — R is computable by a decision tree that has a leaf
at depth % labeled b. Show that [fll. = |6//2%. (Hint: You may find
Exercise 3.28 helpful.)

Prove Fact 3.25 by using Theorem 1.27 and Exercise 1.1(d).

(a) Suppose f : 5 — R has sparsity(f) < 2". Show that for any Y €
supp( f ) there exists nonzero € @ such that f4. has f (y) as a Fourier
coefficient.

(b) Prove by induction on n that if f : F§ — {—1,1} has sparsity(f) =s>1
then f is 2171°8s)_granular. (Hint: Distinguish the cases s = 2" and
s < 2", In the latter case use part (a).)

(¢) Prove that there are no functions f : {-1,1}* — {—1, 1} with sparsity(f)
{2,3,5,6,7,9}.

Show that one can learn any target f : {—1,1}" — {—1, 1} with error 0 from
random examples only in time O(2").

Improve Proposition 3.31 as follows. Suppose f :{-1,1}* — {—1,1} and
g :{-1,1}" — R satisfy ||f —gll1 <e. Pick 0 € [-1,1] uniformly at ran-
dom and define A : {—1,1}* — {—1,1} by h(x) = sgn(g(x) —0). Show that
Eldist(f,h)] <€/2.

(a) For n even, find a function f :{-1,1}" — {—1,1} such that f is not 1/2-
concentrated on any & < olnl with | #| < 2" 1. (Hint: Exercise 1.1.)

(b) Let f:{-1,1}* — {-1,1} be a random function as in Exercise 1.7. Show
that with probability at least 1/2, f is not 1/4-concentrated on degree
up to (n/2].

Prove Theorem 3.36. (Hint: In light of Exercise 1.11 you may round off
certain estimates with confidence.)

Show that each of the following classes ¢ (ordered by inclusion) can be
learned exactly (i.e., with error 0) using queries in time poly(n, 2):

(@) €=1{f :{-1,1}" - {-1,1} | f is a k-junta}. (Hint: Estimate influences.)
) €=1{f:{-1,1}" - {-1,1} | DT(f) < k}.

(¢) € =1{f:{-1,1}" - {-1,1} | sparsity(f) < 20®)}. (Hint: Exercise 3.32.)

Prove Theorem 3.38. (Hint: Exercise 3.16.)
Deduce Theorem 3.37 from the Goldreich—Levin Algorithm.

Suppose A learns ¢ from random examples with error ¢/2 in time T —

with probability at least 9/10.

(a) After producing hypothesis & on target f : {—1,1}* — {—1,1}, show that
A can “check” whether 4 is a good hypothesis in time poly(n,T,1/¢)-
log(1/6). Specifically, except with probability at most §, A should out-
put ‘YES if dist(f, k) < €/2 and ‘NO’ if dist(f, ) > €. (Hint: Time poly(T")
may be required for A to evaluate h(x).)
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(b) Show that for any 6 € (0,1/2], there is a learning algorithm that learns
% with error ¢ in time poly(n,T,€)-log(1/6) — with probability at least
1-6.

3.41 (a) Our description of the Low-Degree Algorithm with degree £ and er-
ror € involved using a new batch of random examples to estimate each
low-degree Fourier coefficient. Show that one can instead simply draw
a single batch & of poly(n*,1/c) examples and use & to estimate each
of the low-degree coefficients.

(b) Show that when using the above form of the Low-Degree Algorithm,
the final hypothesis A : {—1,1}* — {—1, 1} is of the form

h(y)=sgn| >  w(A(y,x) fx)|,
(x,f(x))e&
for some function w : {0,1,...,n} — IR. In other words, the hypothe-
sis on a given y is equal to a weighted vote over all examples seen,
where an example’s weight depends only on its Hamming distance
to y. Simplify your expression for w as much as you can.

3.42 Extend the Goldreich-Levin Algorithm so that it works also for functions
f:{-1,1Y* = [-1,1]. (The learning model for targets [ : {-1,1}" —[-1,1]
assumes that f(x) is always a rational number expressible by poly(n)

bits.)
3.43 (a) Assumey,y' € IE/‘;L are distinct. Show that Pryly-x=7y"-x]=1/2.
(b) Fix y € ]P/‘\g and suppose &1, ... ™ ~ [F§ are drawn uniformly and

independently. Show that if m = Cn for C a sufficiently large constant
then with high probability, the only y’ € @ satisfying 7' -2 =y - 2®
forallie[mlisy =v.

(c) Essentially improve on Exercise 1.27 by showing that the concept
class of all linear functions 'y — [F3 can be learned from random
examples only, with error 0, in time poly(n). (Remark: If w € R is such
that n x n matrix multiplication can be done in O(n®) time, then the
learning algorithm also requires only O(n®) time.)

3.44 Let 7 = 1/2 + ¢ for some constant € > 0. Give an algorithm simpler than
Goldreich and Levin’s that solves the following problem with high proba-
bility: Given query access to f :{—1,1}" — {—1,1}, in time poly(n, 1/¢) find
the unique U < [n] such that | ]? (U)| = 7, assuming it exists. (Hint: Use
Proposition 1.31 and Exercise 1.27.)

3.45 Informally: a “one-way permutation” is a bijective function f : F§ — IFj
that is easy to compute on all inputs but hard to invert on more than a
negligible fraction of inputs; a “pseudorandom generator” is a function g:
ng — IFg! for m > k whose output on a random input “looks unpredictable”
to any efficient algorithm. Goldreich and Levin proposed the following
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construction of the latter from the former: for 2 =2n, m =2n + 1, define
g(r,s)=(r,f(s),r-s),

where r,s € 5. When g’s input (7, s) is uniformly random, then so is the

first 2n bits of its output (using the fact that f is a bijection). The key to

the analysis is showing that the final bit, r - s, is highly unpredictable to

efficient algorithms even given the first 2n bits (r, f(s)). This is proved by

contradiction.

(a) Suppose that an adversary has a deterministic, efficient algorithm A
good at predicting the bit r-s:

1
Pr [A =r-slz-+vy.
r,s~lﬁ?g[ (r.f(s)=r-s] 5TV
Show there exists B < ]Fg with |B|/2" = %}f such that

1 1
rlf]%'g[A(r,f(S)) =r-slz 3tgY

for all s € B.
(b) Switching to +1 notation in the output, deduce Az ()(s) =y for all
s€B.

(c) Show that the adversary can efficiently compute s given f(s) (with
high probability) for any s € B. If y is nonnegligible, this contradicts
the assumption that f is “one-way”. (Hint: Use the Goldreich—Levin
Algorithm.)

(d) Deduce the same conclusion even if A is a randomized algorithm.

Notes. The fact that the Fourier characters yy, : F5 — {—1,1} form a group
isomorphic to IF; is not a coincidence; the analogous result holds for any finite
abelian group and is a special case of the theory of Pontryagin duality in
harmonic analysis. We will see further examples of this in Chapter 8.

Regarding spectral structure, Karpovsky [Kar76] proposed sparsity(f)
as a measure of complexity for the function f. Brandman’s thesis [Bra87]
(see also [BOH90]) is an early work connecting decision tree and subcube
partition complexity to Fourier analysis. The notation introduced for restric-
tions in Section 3.3 is not standard; unfortunately there is no standard nota-
tion. The uncertainty principle from Exercise 3.15 dates back to Matolcsi and
Sziics [MS73]. The result of Exercise 3.13 is due to Green and Sanders [GS08],
with inspiration from Saeki [Sae68]. The main result of Green and Sanders
is the sophisticated theorem that any f : [ — {0,1} with Ifll1 = s can be

expressed as Zle +1p,, where L < 22" and each H i <IFg.
Theorem 3.4 is due to Nisan and Szegedy [NS94]. That work also showed

a nontrivial kind of converse to the first statement in Proposition 3.16: Any f :
{—1,1}* — {—1,1} is computable by a decision tree of depth at most poly(deg(f)).
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The best upper bound currently known is deg(f)? due to Midrijanis [Mid04].
Nisan and Szegedy also gave the example in Exercise 3.27 showing the depen-
dence cannot be linear.

The field of computational learning theory was introduced by Valiant
in 1984 [Val84]; for a good survey with focus on learning under the uni-
form distribution, see the thesis by Jackson [Jac95]. Linial, Mansour, and
Nisan [LMN93] pioneered the Fourier approach to learning, developing the
Low-Degree Algorithm. We present their strong results on constant-depth
circuits in Chapter 4. The noise sensitivity approach to the Low-Degree Al-
gorithm is from Klivans, O’'Donnell, and Servedio [KOS04]. Corollary 3.33
is due to Bshouty and Tamon [BT96] who also gave certain matching lower
bounds. Goldreich and Levin’s work dates from 1989 [GL89]. Besides its
applications to cryptography and learning, it is important in coding theory
and complexity as a local list-decoding algorithm for the Hadamard code. The
Kushilevitz—Mansour algorithm is from their 1993 paper [KM93]; they also
are responsible for the results of Exercise 3.37(b) and 3.38. The results of
Exercise 3.32 and 3.37(c) are from Gopalan et al. [GOS'11].
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Chapter 4

DNF formulas and
small-depth circuits

In this chapter we investigate Boolean functions representable by small DNF
formulas and constant-depth circuits; these are significant generalizations
of decision trees. Besides being natural from a computational point of view,
these representation classes are close to the limit of what complexity theorists
can “understand” (e.g., prove explicit lower bounds for). One reason for this is
that functions in these classes have strong Fourier concentration properties.

4.1. DNF formulas

One of the commonest ways of representing a Boolean function f :{0,1}* —
{0,1} is by a DNF formula:

Definition 4.1. A DNF (disjunctive normal form) formula over Boolean vari-
ables x1,...,x, is defined to be a logical OR of terms, each of which is a logi-
cal AND of literals. A literal is either a variable x; or its logical negation x;.
We insist that no term contains both a variable and its negation. The number
of literals in a term is called its width. We often identify a DNF formula with
the Boolean function f :{0,1}" — {0, 1} it computes.

Example 4.2. Recall the function Sorts, defined by Sorts(x1,x9,x3) =1 if and
only if x1 < x9 < x3 or x1 = x9 = x3. We can represent it by a DNF formula as
follows:

Sortg(x1,x2,%3) = (x1Ax2) V (X2 AX3) V (X1 Ax3) V (x1 AX3).

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.



94 4. DNF formulas and small-depth circuits

The DNF representation says that the bits are sorted if either the first two
bits are 1, or the last two bits are 0, or the first bit is 0 and the last bit is 1, or
the first bit is 1 and the last bit is 0.

The complexity of a DNF formula is measured by its size and width:

Definition 4.3. The size of a DNF formula is its number of terms. The width
is the maximum width of its terms. Given f : {-1,1}" — {—1,1} we write
DNFg;,e(f) (respectively, DNFy;iqin(f)) for the least size (respectively, width)
of a DNF formula computing f.

The DNF formula for Sortg from Example 4.2 has size 3 and width 2.
Every function f :{0,1}" — {0,1} can be computed by a DNF of size at most 2"
and width at most n (Exercise 4.1).

There is also a “dual” notion to DNF formulas:

Definition 4.4. A CNF (conjunctive normal form) formulas is a logical AND
of clauses, each of which is a logical OR of literals. Size and width are defined
as for DNFs.

Some functions can be represented much more compactly by CNF's than
DNF's (see Exercise 4.14). On the other hand, if we take a CNF computing f
and switch its ANDs and ORs, the result is a DNF computing the dual func-
tion fT (see Exercises 1.8 and 4.2). Since f and /T have essentially the same
Fourier expansion, there isn’t much difference between CNFs and DNFs when
it comes to Fourier analysis. We will therefore focus mainly on DNF's.

DNF's and CNF's are more powerful than decision trees for representing
Boolean-valued functions, as the following proposition shows:

Proposition 4.5. Let f :{0,1}* — {0,1} be computable by a decision tree T of
size s and depth k. Then f is computable by a DNF (and also a CNF) of size
at most s and width at most k.

Proof. Take each path in T from the root to a leaf labeled 1 and form the
logical AND of the literals describing the path. These are the terms of the
required DNF. (For the CNF clauses, take paths to label 0 and negate all
literals describing the path.) O

Example 4.6. If we perform this conversion on the decision tree computing
Sorts in Figure 3.1 we get the DNF

(x1 /\53 AX2) V (x1 Ax3) V (x1 AXg /\53) V (x9 /\x3).

This has size 4 (indeed at most the decision tree size 6) and width 3 (indeed
at most the decision tree depth 3). It is not as simple as the equivalent DNF
from Example 4.2, though; DNF representation is not unique.
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4.1. DNF formulas 95

The class of functions computable by small DNFs is intensively studied
in learning theory. This is one reason why the problem of analyzing spectral
concentration for DNFs is important. Let’s begin with the simplest method
for this: understanding low-degree concentration via total influence. We will
switch to +1 notation.

Proposition 4.7. Suppose that f : {-1,1}" — {-1,1} has DNFyign(f) < w.
Then I[f] < 2w.

Proof. We use Exercise 2.10, which states that
I[f1=2 {El " [# (—1)-pivotal coordinates for f on x],
X n

where coordinate i is “(—1)-pivotal” on input x if f(x) = —1 (logical True) but
f(x®) =1 (logical False). It thus suffices to show that on every input x there
are at most w coordinates which are (—1)-pivotal. To have any (—1)-pivotal
coordinates at all on x we must have f(x) = —1 (True); this means that at least
one term 7T in f’s width-w DNF representation must be made True by x. But
now if i is a (—1)-pivotal coordinate then either x; or x; must appear in T';
otherwise, T would still be made true by x®. Thus the number of (—1)-pivotal
coordinates on x is at most the number of literals in 7', which is at most w. [

Since I[fT]1=1I[f] the proposition is also true for CNFs of width at most w.
The proposition is very close to being tight: The parity function y[,;:{-1,1}" —
{-1,1} has I[y,1] = w and DNF y;gqth (X17) < w (the latter being true for all w-
juntas). In fact, the proposition can be improved to give the tight upper
bound w (Exercise 4.17).

Using Proposition 3.2 we deduce:

Corollary 4.8. Let f :{—1,1}" — {—1,1} have DNF;qn(f) <w. Then for € >0,
the Fourier spectrum of f is e-concentrated on degree up to 2wl/e.

The dependence here on w is of the correct order (by the example of the
parity xp,) again), but the dependence on € can be significantly improved as
we will see in Section 4.4.

There’s usually more interest in DNF size than in DNF width; for example,
learning theorists are often interested in the class of n-variable DNF's of size
poly(n). The following fact (similar to Exercise 3.22) helps relate the two,
suggesting O(logn) as an analogous width bound:

Proposition 4.9. Let f :{-1,1}" — {-1,1} be computable by a DNF (or CNF)
of size s and let € € (0,1]. Then f is e-close to a function g computable by a
DNF of width log(s/e).

Proof. Take the DNF computing f and delete all terms with more than log(s/e)
literals; let g be the function computed by the resulting DNF. For any deleted
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term T, the probability a random input x ~ {—1,1}* makes T true is at most
2-10g(s/e) = ¢/, Taking a union bound over the (at most s) such terms shows
that Prig(x) # f(x)] <e. (A similar proof works for CNF's.) O

By combining Proposition 4.9 and Corollary 4.8 we can deduce (using Exer-
cise 3.17) that DNF's of size s have Fourier spectra e-concentrated up to degree
O(log(s/e)/e). Again, the dependence on € will be improved in Section 4.4. We
will also later show in Section 4.3 that size-s DNF's have total influence at
most O(logs), something we cannot deduce immediately from Proposition 4.7.

In light of the Kushilevitz—Mansour learning algorithm it would also be
nice to show that poly(n)-size DNFs have their Fourier spectra concentrated
on small collections (not necessarily low-degree). In Section 4.4 we will show
they are e-concentrated on collections of size n01°81°6™) for any constant e > 0.
It has been conjectured that this can be improved to poly(n):

Mansour’s Conjecture. Let f :{—1,1}" — {—1,1} be computable by a DNF
of size s > 1 and let € € (0,1/2]. Strong conjecture: f’s Fourier spectrum is €-
concentrated on a collection F with |F| < s108) Weaker conjecture: if s <
poly(n) and € > 0 is any fixed constant, then we have the bound || < poly(n).

4.2. Tribes

In this section we study the ¢ribes DNF formulas, which serve as an important
examples and counterexamples in analysis of Boolean functions. Perhaps the
most notable feature of the tribes function is that (for a suitable choice of
parameters) it is essentially unbiased and yet all of its influences are quite
tiny.

Recall from Chapter 2.1 that the function Tribes,, s : {—1,1}** — {-1,1} is
defined by its width-w, size-s DNF representation:

Tribes, s(X1,...,%w, - s X(s=1)w+1s- - > Xsw)
=(X1A-AXxy) V o= V (x(s_l)w+1A---Axsw).

(We are using the notation where —1 represents logical True and 1 represents
logical False.) As is computed in Exercise 2.13 we have:

Fact 4.10. Pr,[Tribes, s(x)=-1]=1-(1-27%)".

The most interesting setting of parameters makes this probability as close
to 1/2 as possible (a slightly different choice than the one in Exercise 2.13):

Definition 4.11. For w € N*, let s = s, be the largest integer such that
1-(1-27%)5 =1/2. Then for n = n,, = sw we define Tribes, : {-1,1}" — {-1,1}
to be Tribes,, ;. Note this is only defined only for certain n: 1, 4, 15, 40, ...
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Here s = In(2)2%, hence n = In(2)w2” and therefore w = logn —loglnn and
s =n/logn. A slightly more careful accounting (Exercise 4.5) yields:

Proposition 4.12. For the Tribes,, function as in Definition 4.11:

e s=In(2)2% - 0,(1);
e n=1n(2)w2% — O(w), thus ny+1=2+o0(1))ny;
e w=logn-loglnn+0,(1), and 2% = Z2=(1+ 0,(1));

Inn

o Pr[Tribes,(x)=-11=1/2-0 (lo%)

Thus with this setting of parameters Tribes, is essentially unbiased. Re-
garding its influences:

Proposition 4.13. Inf;[Tribes,] = lnT”(l + 0(1)) for each i € [n] and hence
I[Tribes,] = (Inn)(1 £ 0(1)).

Proof. Thinking of Tribes, = Tribes,, s as a voting rule, voter i is pivotal if
and only if: (a) all other voters in i’s “tribe” vote —1 (True); (b) all other tribes
produce the outcome 1 (False). The probability of this is indeed

9~w-1) (] _g-wys-1_ 2w2_1 -Pr[Tribes, = 1] = an(l +o(1)),

where we used Fact 4.10 and then Proposition 4.12. O

Thus if we are interested in (essentially) unbiased voting rules in which
every voter has small influence, Tribes, is a much stronger example than
Maj,, where each voter has influence @(1/y/n). You may wonder if the max-
imum influence can be even smaller than @(h‘T") for unbiased voting rules.
Certainly it can’t be smaller than %, since the Poincaré Inequality says that
I[f1=1 for unbiased f. In fact the famous KKL Theorem shows that the

Tribes,, example is tight up to constants:

Kahn-Kalai-Linial (KKL) Theorem. For any f :{—1,1}" — {-1,1},
logn)

MaxInflf] = max{Inf(f]} = Var(f] Q(

We prove the KKL Theorem in Chapter 9.
We conclude this section by recording a formula for the Fourier coefficients
of Tribes,, ;. The proof is Exercise 4.6.
Proposition 4.14. Suppose we index the Fourier coefficients of the function
Tribes, ¢{—1,1}** — {-1,1} by sets T = (T",...,Ts) S [sw], where T; is the in-
tersection of T with the ith “tribe”. Then
_— 21-27%)y -1 if T =g,
Tribes,, o(T') = ( k T) k k L.f ¢.
2-1)FHTIg-kw( g wys—k  ifp =#{i:T; # ¢} > 0.
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4.3. Random restrictions

In this section we describe the method of applying random restrictions. This is
a very “Fourier-friendly” way of simplifying a Boolean function. As motivation,
let’s consider the problem of bounding total influence for size-s DNFs. One
plan is to use the results from Section 4.1: size-s DNF's are .01-close to width-
O(logs) DNFs, which in turn have total influence O(logs). This suggests that
size-s DNFs themselves have total influence O(logs). To prove this though
we’ll need to reverse the steps of the plan; instead of truncating DNFs to a
fixed width and arguing that a random input is unlikely to notice, we’ll first
pick a random (partial) input and argue that this is likely to make the width
small.

Let’s formalize the notion of a random partial input, or restriction:

Definition 4.15. For § € [0, 1], we say that o is a 6-random subset of N if it
is formed by including each element of N independently with probability &.
We define a §-random restriction on {—1,1}" to be a pair (¢ | 2), ‘where first

J is chosen to be a §-random subset of [r] and then z ~ {—-1,1}¥ is chosen
uniformly at random. We say that coordinate i € [n] is free if i € J and is fixed
if i ¢ J. An equivalent definition is that each coordinate i is (independently)
free with probability 6 and fixed to +1 with probability (1 —0)/2 each.

Given f : {—1,1}* — R and a random restriction (J | 2), we can form the re-
stricted function £, : {-1, 1}Y — R as usual. However, it’s inconvenient that
the domain of this function depends on the random restriction. Thus when
dealing with random restriction we usually invoke the following convention:

Definition 4.16. Given f :{—1,1}* — R, I <[n], and z € {-1, 1}7, we may iden-
tify the restricted function f7, : {-1, 1 - R with its extension f7, : {-1,1}" —
R in which the input coordinates {—1,1}! are ignored.

As mentioned, random restrictions interact nicely with Fourier expan-
sions:

Proposition 4.17. Fix f :{-1,1}" - R and S <[n]. Then if (J | 2) is a 6-
random restriction on {—1,1}*,

E[}Tn\z(S)] =Pr[S c J1-F(S)=6'SI£(S),
and

Elf7:(8%= Y PrlUnd=S1-fU)2=Y s50-8USIFU,
Ucln] UxS

where we are treating fg|. as a function {-1,1}* — R.
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Proof. Suppose first that J <[n] is fixed. When we think of restricted func-
tions f, as having domain {-1,1}"*, Corollary 3.22 may be stated as saying
that for any S < [n],

E [f7:(91=F(S) 15cs,

2~(-1,1¢
E [f7:8%1= Y fU? 1yns=s.
z~{-1,1}Y Ucln]
The proposition now follows by taking the expectation over «J. [l

Corollary 4.18. Fix f :{-1,1}* - R and i € [n]. If (J | 2) is a §-random
restriction, then E[Inf;[fj .11 = 6Inf;[f]. Hence also E[I[fj.11=06I[f].

Proof. We have

Ellnf;[f7.11=E|Y f7.(8?%| =Y Y PrlUnd =S1f(U)>?
Sai S>iUg(n]
= Y PrlUnd 3ilf(U)? =Y 6f(U)?=5Inf;[f],
U<inl Usi
where the second equality used Proposition 4.17. O

(Proving Corollary 4.18 via Proposition 4.17 is a bit more elaborate than
necessary; see Exercise 4.9.)

Corollary 4.18 lets us bound the total influence of a function f by bounding
the (expected) total influence of a random restriction of f. This is useful if f
is computable by a DNF formula of small size, since a random restriction is
very likely to make this DNF have small width. This is a consequence of the
following lemma:

Lemma 4.19. Let T be a DNF term over {—1,1}" and fix w € N*. Let (J | 2) be
a (1/2)-random restriction on {—1,1}". Then Prlwidth(T ;) = w] < (3/4)*.

Proof. We may assume the initial width of T is at least w, as otherwise its
restriction under (J | 2) cannot have width at least w. Now if any literal
appearing in T is fixed to False by the random restriction, the restricted term
T . will be constantly False and thus have width 0 < w. Each literal is fixed
to False with probability 1/4; hence the probability no literal in T is fixed to
False is at most (3/4)”. [l

We can now bound the total influence of small DNF formulas.

Theorem 4.20. Let f : {-1,1}" — {—1,1} be computable by a DNF of size s.
Then I[f1< O(logs).
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Proof. Let (J | 2) be a (1/2)-random restriction on {—1,1}"* and write w =
DNFyigth(fJ)2)- By a union bound and Lemma 4.19 we have that Pr{w =z w] <
s(3/4)*. Hence

Elw]= Z Priw =w]<3logs+ Z s(3/4)¥

w=1 w>3logs
< 3logs +4s(3/4)%1°8% < 81logs + 4/s°2 = O(log s).

From Proposition 4.7 we obtain E[I[f7.]] = 2-O(logs) = O(logs). And so from
Corollary 4.18 we conclude I[f] = 2E[I[f.]] = O(ogs). U

4.4. Hastad’s Switching Lemma and the spectrum of DNFs

Let’s further investigate how random restrictions can simplify DNF formulas.
Suppose f is computable by a DNF formula of width w, and we apply to it a
0-random restriction with 6 < 1/w. For each term T in the DNF, one of three
things may happen to it under the random restriction. First and by far most
likely, one of its literals may be fixed to False, allowing us to delete it. If this
doesn’t happen, the second possibility is that all of T”s literals are made True,
in which case the whole DNF reduces to the constantly True function. With
6 < 1/w, this is in turn much more likely than the third possibility, which is
that at least one of 7T"s literals is left free, but all the fixed literals are made
True. Only in this third case is 7" not trivialized by the random restriction.

This reasoning might suggest that f is likely to become a constant func-
tion under the random restriction. Indeed, this is true, as the following theo-
rem shows:

Baby Switching Lemma. Let f:{—1,1}* — {-1,1} be computable by a DNF
or CNF of width at most w and let (J | 2) be a §-random restriction. Then

Pr(f;., is not a constant function] < 56w.

This is in fact the £ = 1 case of the following much more powerful theorem:

Hastad’s Switching Lemma. Let f:{-1,1}" — {—1,1} be computable by a
DNF or CNF of width at most w and let (J | 2) be a §-random restriction. Then
for any k € N,

Pr[DT(f,) = k] < 56w)".

What is remarkable about this result is that it has no dependence on the
size of the DNF, or on n. In words, Hastad’s Switching Lemma says that when
0 <« 1/w, it’s exponentially unlikely (in k) that applying a -random restriction
to a width-w DNF does not convert (“switch”) it to a decision tree of depth
less than k. The result is called a “lemma” for historical reasons; in fact, its
proof requires some work. You are asked to prove the Baby Switching Lemma
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4.4. Hastad’s Switching Lemma and the spectrum of DNFs 101

in Exercise 4.19; for Hastad’s Switching Lemma, consult Hastad’s original
proof [Has87] or the alternate proof of Razborov [Raz93, Bea94].

Since we have strong results about the Fourier spectra of decision trees
(Proposition 3.16), and since we know random restrictions interact nicely with
Fourier coefficients (Proposition 4.17), Hastad’s Switching Lemma allows us
to prove some strong results about Fourier concentration of narrow DNF
formulas. We start with an intermediate result which will be of use:

Lemma 4.21. Let f : {-1,1}" — {—1,1} and let (J | z) be a 6-random restriction,
8> 0. Fix k € N* and write ¢ = Pr[DT(f.y),) = k). Then the Fourier spectrum of
f is 3e-concentrated on degree up to 3k/0.

Proof. The key observation is that DT(f),) < k implies deg(f.) < % (Propo-
sition 3.16), in which case the Fourier weight of f7, at degree £ and above
is 0. Since this weight at most 1 in all cases we conclude

E [ y fJTz(S)Z] <e.

12)gcpn)
|S|=k

Using Proposition 4.17 we have
E[Y fu®?]= ¥ E[fa= Y Privndi=zk-fa?

12 gy Scin] Ucin] 12
|S|=k IS|=k

The distribution of random variable |U N ¢J| is Binomial(|U|,5). When |U| =
3k/6 this random variable has mean at least 3%, and a Chernoff bound shows
Pr{|UnJ| <k]<exp(-2k) < 2/3. Thus

e= Y PrUnd|zkl-fUP= Y 1-2/3)-fU)
Ucinl12) U|=8k/5

and hence ¥ 7|>3%/s F(U)? < 3¢ as claimed. ([

We can now improve the dependence on € in Corollary 4.8’s low-degree
spectral concentration for DNF's:

Theorem 4.22. Suppose [ : {-1,1}" — {-1,1} is computable by a DNF of
width w. Then f’s Fourier spectrum is e-concentrated on degree up to O(w log(1/€)).

Proof. This follows immediately from Hastad’s Switching Lemma together
with Lemma 4.21, taking § = ﬁ and %k = Clog(1/e) for a sufficiently large
constant C. U

In Lemma 4.21, instead of using the fact that depth-% decision trees have
no Fourier weight above degree %, we could have used the fact that their
Fourier 1-norm is at most 2%, As you are asked to show in Exercise 4.11, this
would yield:
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102 4. DNF formulas and small-depth circuits

Lemma 4.23. Let f :{-1,1}" — {—1,1} and let (J | z) be a 6-random restriction.
Then

Z sl If(U)I < [2DT(f72)].

E
Ucin] (J|2)

We can combine this with the Switching Lemma to deduce that width-w
DNFs have small Fourier 1-norm at low degree:

Theorem 4.24. Suppose [ : {-1,1}" — {—1,1} is computable by a DNF of
width w. Then for any k,

Y IR @) <2-20w)*.
|U|<k

Proof. Apply Hastad’s Switching Lemma to f with § = ﬁ to deduce

(e0)
E [2DT(fJ\z)] < i d .zd =92.
E, dgo(m)

Thus from Lemma 4.23 we get

2> Y (i) IF )= ()" Y IF @,
Ucln] U<k

as needed. O

Our two theorems about the Fourier structure of DNF are almost enough
to prove Mansour’s Conjecture:

Theorem 4.25. Let f :{—1,1}" — {—1,1} be computable by a DNF of width w =
2. Then for any € € (0,1/2], the Fourier spectrum of [ is e-concentrated on a
collection F with |F| < wOwlog(/e)),

Proof. Let £ = Cwlog(4/¢) and let g = f=*. If C is a large enough constant,
then Theorem 4.22 tells us that ||f — gllg < ¢/4. Furthermore, Theorem 4.24
gives flgfl; = wO®lose) By Exercise 3.16, g is (¢/4)-concentrated on some
collection & with |F| < 4ﬂgﬂ§/€ < wOwlog/e) = Anq g0 by Exercise 3.17, f is
e-concentrated on this same collection. O

For the interesting case of DNF's of width O(logn) and constant ¢, we get
concentration on a collection of cardinality O(logn)0108") = p0loglogn) ‘neqyly
polynomial. Using Proposition 4.9 (and Exercise 3.17) we get the same deduc-
tion for DNF's of size poly(n); more generally, for size s we have e-concentration
on a collection of cardinality at most (s/e)0oglog(s/o)log(1/e))
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4.5. Highlight: LMN’s work on constant-depth circuits

Having derived strong results about the Fourier spectrum of small DNF's and
CNF's, we will now extend to the case of constant-depth circuits. We begin
by describing how Hastad applied his Switching Lemma to constant-depth
circuits. We then describe some Fourier-theoretic consequences coming from
a very early (1989) work in analysis of Boolean functions by Linial, Mansour,
and Nisan (LMN).

To define constant-depth circuits it is best to start with a picture. Here is
an example of a depth-3 circuit:

X1 X1 X2 X9 X3 X3 X4 X4

Figure 4.1. Example of a depth-3 circuit, with the layer 0 nodes at the
bottom and the layer 3 node at the top

This circuit computes the function
x1x2 A (X1x3 V x3x4) A (x3%4 V X2),
where we suppressed the A in concatenated literals. To be precise:

Definition 4.26. For an integer d = 2, we define a depth-d circuit over
Boolean variables x1,...,x, as follows: It is a directed acyclic graph in which
the nodes (“gates”) are arranged in d + 1 layers, with all arcs (“wires”) going
from layer j— 1 to layer j for some j € [d]. There are exactly 2n nodes in
layer 0 (the “inputs”) and exactly 1 node in layer d (the “output”). The nodes
in layer O are labeled by the 2n literals. The nodes in layers 1, 3, 5, etc. have
the same label, either A or v, and the nodes in layers 2, 4, 6, etc. have the
other label. Each node “computes” a function {-1,1}" — {—1,1}: the literals
compute themselves and the A (respectively, v) nodes compute the logical
AND (respectively, OR) of the functions computed by their incoming nodes.
The circuit itself is said to compute the function computed by its output node.

In particular, DNFs and CNF's are depth-2 circuits. We extend the defini-
tions of size and width appropriately:
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104 4. DNF formulas and small-depth circuits

Definition 4.27. The size of a depth-d circuit is defined to be the number of
nodes in layers 1 through d — 1. Its width is the maximum in-degree of any
node at layer 1. (As with DNFs and CNFs, we insist that no node at layer 1 is
connected to a variable or its negation more than once.)

The layering we assume in our definition of depth-d circuits can be achieved
with a factor-2d size overhead for any “unbounded fan-in AND/OR/NQOT cir-
cuit”. We will not discuss any other type of Boolean circuit in this section.

We now show that Hastad’s Switching Lemma can be usefully applied not
just to DNFs and CNF's but more generally to constant-depth circuits:

Lemma 4.28. Let [ :{—1,1}* — {—1,1} be computable by a depth-d circuit of
size s and width w, and let € € (0,1]. Set

= W (W) , where ¢ = 10g(28/€)
w

Then if (J | 2) is a 6-random restriction, Pr[DT(f,) = log(2/e)] <e.

Proof. The d =2 case is immediate from Hastad’s Switching Lemma, so we
assume d = 3.

The first important observation is that random restrictions “compose”.
That is, making a §1-random restriction followed by a §2-random restriction
to the free coordinates is equivalent to making a §162-random restriction.
Thus we can think of (J | 2) as being produced as follows:

(1) make a ﬁ-random restriction;
(2) make d — 3 subsequent ﬁ-random restrictions;
(3) make a final 1%Z-random restriction.

Without loss of generality, assume the nodes at layer 2 of the circuit are
labeled v. Thus any node g at layer 2 computes a DNF of width at most w.
By Hastad’s Switching Lemma, after the initial ﬁ-random restriction g can
be replaced by a decision tree of depth at most ¢ except with probability at
most 27¢. In particular, it can be replaced by a CNF of width at most ¢, using
Proposition 4.5. If we write sg for the number of nodes at layer 2, a union
bound lets us conclude:

Pr [not all nodes at layer 2 replaceable by width-¢ CNFs] < s9 27,

1
o -Tandom

restriction
4.1)
We now come to the second important observation: If all nodes at layer 2
can be switched to width-¢ CNFs, then layers 2 and 3 can be “compressed”,
producing a depth-(d — 1) circuit of width at most ¢. More precisely, we can
form an equivalent circuit by shortening all length-2 paths from layer 1 to
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4.5. Highlight: LMN’s work on constant-depth circuits 105

layer 3 into single arcs, and then deleting the nodes at layer 2. We give an
illustration of this in Figure 4.2:

X1 X1 X2 X2 X4 X4

Figure 4.2. At top is the initial circuit. Under the restriction fixing xg =
True, all three DNF's at layer 2 may be replaced by CNFs of width at most 2.
Finally, the nodes at layers 2 and 3 may be compressed.

Assuming the event in (4.1) does not occur, the initial ﬁ—random restric-
tion reduces the circuit to having depth-(d — 1) and width at most ¢. The
number of A-nodes at the new layer 2 is at most s3, the number of nodes at
layer 3 in the original circuit.

Next we make a ﬁ-random restriction. As before, by Hastad’s Switching
Lemma this reduces all width-¢ CNFs at the new layer 2 to depth-¢ decision
trees (hence width-¢ DNFs), except with probability at most s3-27¢. We may
then compress layers and reduce depth again.

Proceeding for all ﬁ-random restrictions except the final one, a union
bound gives

Pr [circuit does not reduce to depth 2 and width #]
(5% )d_3 -random
restriction

1

10w S82-2_[+S3-2_[+"'+Sd_1'2_[58'2_[:6‘/2.
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106 4. DNF formulas and small-depth circuits

Assuming the event above does not occur, Hastad’s Switching Lemma tells us
that the final Wli—random restriction reduces the circuit to a decision tree of
depth less than log(2/¢) except with probability at most €/2. This completes
the proof. O

We may now obtain the main theorem of Linial, Mansour, and Nisan:

LMN Theorem. Let f:{-1,1}" — {—1,1} be computable by a depth-d circuit
of size s > 1 and let € € (0,1/2]. Then f’s Fourier spectrum is e-concentrated up
to degree O(log(s/e))?1 -1log(1/e).

Proof. If the circuit for f also had width at most w, we would be able to
deduce 3e-concentration up to degree 30w -(10log(2s/e))? 2 -log(2/€) by combin-
ing Lemma 4.28 with Lemma 4.21. But if we simply delete all layer-1 nodes
of width at least log(s/e), the resulting circuit computes a function which is
e-close to f, as in the proof of Proposition 4.9. Thus (using Exercise 3.17) f’s
spectrum is O(e)-concentrated up to degree O(log(2s/e))? 1 -1og(2/e), and the
result follows by adjusting constants. [l

Remark 4.29. Hastad [Has01la] has slightly sharpened the degree in the
LMN Theorem to O(log(s/e))? 2 -1log(s) - log(1/e).

In Exercise 4.20 you are asked to use a simpler version of this proof, along
the lines of Theorem 4.20, to show the following:

Theorem 4.30. Let f:{-1,1}" — {—1,1} be computable by a depth-d circuit of
size s. Then I[f]1< O(logs)? 1.

These rather strong Fourier concentration results for constant-depth cir-
cuits have several applications. By introducing the Low-Degree Algorithm for
learning, Linial-Mansour—Nisan gave as their main application:

Theorem 4.31. Let €6 be the class of functions f : {—1,1}* — {—1,1} computable
depth-d poly(n)-size circuits. Then €6 can be learned from random examples
with error any € = 1/poly(n) in time pOllogn)”

In complexity theory the class of poly-size, constant-depth circuits is re-
ferred to as AC’. Thus the above theorem may be summarized as “AC° is
learnable in quasipolynomial time”. In fact, under a strong enough assump-
tion about the intractability of factoring certain integers, it is known that
quasipolynomial time is required to learn AC? circuits, even with query ac-
cess [Kha93].

The original motivation of the line of work leading to Hastad’s Switching
Lemma was to show that the parity function y[,; cannot be computed in ACP.
Hastad even showed that AC? cannot even approximately compute parity. We
can derive this result from the LMN Theorem:
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Corollary 4.32. Fix any constant €9 > 0. Suppose C is a depth-d circuit

over {—1,1}* with Pry[C(x) = y[n)(x)] = 1/2 + €9. Then the size of C is at least
2Q(n1/(d_1))'

Proof. The hypothesis on C implies C([n]) = 2¢o. The result then follows by
taking € = 26(2) in the LMN Theorem. [l

This corollary is close to being tight, since the parity y[,;j can be com-
puted by a depth-d circuit of size 720" for any d = 2; see Exercise 4.12.
The simpler result Theorem 4.30 is often handier for showing that certain
functions can’t be computed by AC? circuits. For example, we know that
I[Maj, ] = ©(y/n); hence any constant-depth circuit computing Maj,, must have

. Q1)
size at least 2" .

Finally, Linial, Mansour, and Nisan gave an application to cryptography.
Informally, a function £ : {-1,1}" x{-1,1}* — {-1,1} is said to be a “pseudoran-
dom function generator with seed length m” if, for any efficient algorithm A,

Pr [A(f(s,-))=“accept”]— Pr [A(g)=“accept”]| < 1/n®D,
s~{-1,1}m g~{-1,pt-nur

Here the notation A(h) means that A has query access to target function A,
and g ~ {-1,1}"11" means that g is a uniformly random n-bit function. In
other words, for almost all “seeds” s the function f(s,-):{-1,1}" — {-1,1} is
nearly indistinguishable (to efficient algorithms) from a truly random func-
tion. Theorem 4.30 shows that pseudorandom function generators cannot be
computed by AC? circuits. To see this, consider the algorithm A(h) which
chooses x ~ {—1,1}* and i € [n] uniformly at random, queries h(x) and h(x®%),
and accepts if these values are unequal. If 4 is a uniformly random function,
A(h) will accept with probability 1/2. In general, A(h) accepts with probability
I[2)/n. Thus Theorem 4.30 implies that if A is computable in AC then A(k)
accepts with probability at most polylog(n)/n < 1/2.

4.6. Exercises and notes

4.1 Show that every function f : {0,1}"* — {0, 1} can be represented by a DNF
formula of size at most 2" and width at most n.

4.2 Suppose we have a certain CNF computing f : {0,1}" — {0,1}. Switch
ANDs with ORs in the CNF. Show that the result is a DNF computing the
Boolean dual £7:{0,1}" — {0, 1}.

4.3 A DNF formula is said to be monotone if its terms contain only unnegated
variables. Show that monotone DNFs compute monotone functions and
that any monotone function can be computed by a monotone DNF, but
that a nonmonotone DNF may compute a monotone function.

4.4 Let f:{—1,1}" — {-1,1} be computable by a DNF of size s.
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108 4. DNF formulas and small-depth circuits

(a) Show there exists S < [n] with |S| < log(s)+ O(1) and If(S)I > Q(1/s).
(Hint: Use Proposition 4.9 and Exercise 3.30.)

(b) Let ¥ be the concept class of functions : {—1,1}" — {—1, 1} computable
by DNF formulas of size at most s. Show that ¥ is learnable using
queries with error % —Q(1/s) in time poly(n,s). (Such a result, with
error bounded away from %, is called weak learning.)

4.5 Verify Proposition 4.12.
4.6 Verify Proposition 4.14.

4.7 For each n that is an input length for Tribes,, show that there exists a
function f :{-1,1}" — {—1,1} that is truly unbiased (E[f] = 0) and has
Infi[f1< O(*%2) for all i € [nl.

4.8 Suppose f : {—1,1}" — {—1,1} is computed by a read-once DNF (mean-
ing no variable is involved in more than one term) in which all terms
have width exactly w. Compute ﬂf ﬂ1 exactly. Deduce that ﬂTribesnﬂl =
27en 120 2114 that there are n-variable width-2 DNFs with Fourier 1-

norm Q(\/3/2n).

4.9 Give a direct (Fourier-free) proof of Corollary 4.18. (Hint: Condition on
whether i e dJ.)

4.10 Tighten the constant factor on logs in Theorem 4.20 as much as you can
(avenues of improvement include the argument in Lemma 4.19, the choice
of 6, and Exercise 4.17).

4.11 Prove Lemma 4.23.

4.12 (a) Show that the parity function yp,;:{-1,1}* — {-1,1} can be computed
by a DNF (or a CNF) of size 2" 1.
(b) Show that the bound 2”71 above is exactly tight. (Hint: Show that
every term must have width exactly n.)
(¢) Show that there is a depth-3 circuit of size O(n' 2)~2nl/2 computing x[,.
(Hint: Break up the input into 712 blocks of size n/2 and use (a) twice.
How can you compress the result from depth 4 to depth 3?)
(d) More generally, show there is a depth-d circuit of size O(n

U(d-1

1-1/d-1)y.
: computing yn]-

4.13 In this exercise we define the most standard class of Boolean circuits. A
(De Morgan) circuit C over Boolean variables x1,...,x, is a directed acyclic
graph in which each node (“gate”) is labeled with either an x; or with A,
v, or = (logical NOT). Each x; is used as label exactly once; the associated
nodes are called “input” gates and must have in-degree 0. Each A and v
node must have in-degree 2, and each - node must have in-degree 1. Each
node “computes” a Boolean function of the inputs as in Definition 4.26.
Finally, one node of C is designated as the “output” gate, and C itself is
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4.14
4.15

4.16

4.17

4.18

said to compute the function computed by the output node. For this type

of circuit we define its size, denoted size(C), to be the number of nodes.
Show that each of the following n-input functions can be computed by

De Morgan circuits of size O(n):

(a) The logical AND function.

(b) The parity function.

(¢) The complete quadratic function from Exercise 1.1.

Show that computing Tribes,, s by a CNF formula requires size at least w?.

Show that there is a universal constant ¢y > 0 such that the following
holds: Every %n-junta g:{-1,1}* - {-1,1} is ¢g-far from Tribes, (assum-
ing n > 1). (Hint: Letting J denote the coordinates on which g depends,
show that if / has non-full intersection with at least % of the tribes/terms
then when x ~ {-1,1}”, there is a constant chance that Var(f,]=Q(1).)

Using the KKL Theorem, show that if f: {—1,1}* — {-1,1} is a transitive-
symmetric function with Var[f] = Q(1), then I[f] = Q(logn).

Let f : {True, False}® — {True, False} be computable by a CNF C of width w
over variables x1,...,x,. In this exercise you will show that I[f]< w.
Consider the following algorithm «f, which takes as input a permu-
tation 7 € S,, and a “seed” r € {True, False}”, and which “tries” to output a
string z satisfying C:
A (m,r):
For i =n(1),7n(2),...,n(n):
If C contains the clause (x;) and the clause (x;), abort.
Else if C contains just the clause (x;), set z; = True.
Else if C contains just the clause (x;), set z; = False.
Else set z; = r; and say coordinate i was “unforced”.
Syntactically simplify C under the restriction x; = z;.
Output z.
We write Fj(n,r) for the 0-1 indicator that coordinate j was forced in the
execution of < (7,r).
(a) Show that if </ (,r) does not abort, then its output z satisfies C.
(b) Fix any y satisfying C and write p(y) = Pry [/ (7,r) = y], where &
and r are uniformly random. Show that p(y) = E”[]_[;?ZI(I/Z)I‘FJ'(”J)].
(c) Deduce 2" p(y) =2 Z;‘zl E;[F;(x,y)].
(d) Suppose further that y®/ does not satisfy C. Show E[F ()= 1w.
(e) Deduce I[f]1=w.

Given Boolean variables x1,...,x,, a “random monotone term of width w €
IN*” is defined to be the logical AND of x;,,...,x;,, where i1, ..., i, are
chosen independently and uniformly at random from [n]. (If the i;’s are
not all distinct then the resulting term will in fact have width strictly
less than w.) A “random monotone DNF of width w and size s” is defined
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110 4. DNF formulas and small-depth circuits

to be the logical OR of s independent random monotone terms. For this

exercise we assume n is a sufficiently large perfect square, and we let ¢

be a random monotone DNF of width /n and size ovn,

(@) Fix an input x € {~1,1}" and define u = (X", x;)/v/n € [-v/n,V/nl.
Let V; be the event that the jth term of ¢ is made 1 (logical False)
by x. Compute Pr[V ;] and Pr[¢(x) = 1], and show that the latter is
at least 1072 assuming |u| < 2.

(b) Let U, be the event that the jth term of ¢ has exactly one 1 on input x.
Show that Pr(U; | V] = Q(w2™%) assuming |u| < 2.

(c) Suppose we condition on ¢(x) = 1;i.e., N;V ;. Argue that the events U
are independent. Further, argue that for the U ’s that do occur, the
indices of their uniquely-1 variables are independent and uniformly
random among the 1’s of x.

(d) Show that Pr[sens,(x) = cy/n | @(x) = 11=1-10"1 for ¢ > 0 a suffi-
ciently small constant.

(e) Show that Pry[|(X"_ x;)/v/n| <2]1=Q(1).

(f) Deduce that there exists a monotone function f : {-1,1}" — {-—1,1}
with the property that Pry[senss(x) = ¢'\/n] = ¢ for some universal
constant ¢’ > 0.

(g) Both Maj,, and the function f from the previous exercise have average
sensitivity ©(y/n). Contrast the “way” in which this occurs for the two
functions.

4.19 In this exercise you will prove the Baby Switching Lemma with constant 3
in place of 5. Let ¢ =Ty vToV:---vTs be a DNF of width w = 1 over
variables x1,...,x,. We may assume 6 < 1/3, else the theorem is trivial.
(a) Suppose R =(J | z) is a “bad” restriction, meaning that ¢, is not a

constant function. Let i be minimal such that (T';)j|, is neither con-
stantly True or False, and let j be minimal such that x; or x; appears in
this restricted term. Show there is a unique restriction R’ = (J\{j} | 2)
extending R that doesn’t falsify T;.

(b) Suppose we enumerate all bad restrictions R, and for each we write
the associated R’ as in (a). Show that no restriction is written more
than w times.

(c) If (J | 2) is a 6-random restriction and R and R’ are as in (a), show
that Pr[(J |2)=R]= %Pr[(J |z)=R'l.

(d) Complete the proof by showing Pr[(¢J | 2) is bad] < 36w.

4.20 In this exercise you will prove Theorem 4.30. Say that a “(d,w, s)-circuit”
is a depth-d circuit with width at most w and with at most s’ nodes at
layers 2 through d (i.e., excluding layers 0 and 1).

(a) Show by induction on d =2 that any f :{—1,1}" — {—1, 1} computable
by a (d,w,s’)-circuit satisfies I[f] < wO(logs")?~2.
(b) Deduce Theorem 4.30.
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Notes. Mansour’s Conjecture dates from 1994 [Man94]. Even the weaker
version would imply that the Kushilevitz—Mansour algorithm learns the class
of poly(n)-size DNF with any constant error, using queries, in time poly(n). In
fact, this learning result was subsequently obtained in a celebrated work of
Jackson [Jac97], using a different method (which begins with Exercise 4.4).
Nevertheless, the Mansour Conjecture remains important for learning theory
since Gopalan, Kalai, and Klivans [GKKO08] have shown that it implies the
same learning result in the more challenging and realistic model of “agnostic
learning”. Theorems 4.24 and 4.25 are also due to Mansour [Man95].

The method of random restrictions dates back to Subbotovskaya [Sub61].
Héastad’s Switching Lemma [Has87] and his Lemma 4.28 are the culmina-
tion of a line of work due to Furst, Saxe, and Sipser [FSS84], Ajtai [Ajt83],
and Yao [Yao85]. Linial, Mansour, and Nisan [LMN89, LMN93] proved
Lemma 4.21, which allowed them to deduce the LMN Theorem and its con-
sequences. An additional cryptographic application of the LMN Theorem
is found in Goldmann and Russell [GRO00]. The strongest lower bound cur-
rently known for approximately computing parity in AC° is due to Impagli-
azzo, Matthews, and Paturi [IMP12] and independently to Hastad [Has12].

Theorem 4.20 and its generalization Theorem 4.30 are from the work of
Boppana [Bop97]; Linial, Mansour, and Nisan had given the weaker bound
O(logs)®. Exercise 4.17 is due to Amano [Amall], and Exercise 4.18 is due
to Talagrand [Tal96].
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Chapter 5

Majority and threshold
functions

This chapter is devoted to linear threshold functions, their generalization
to higher degrees, and their exemplar the majority function. The study of
LTFs leads naturally to the introduction of the Central Limit Theorem and
Gaussian random variables — important tools in analysis of Boolean functions.
We will first use these tools to analyze the Fourier spectrum of the Maj,,
function, which in some sense “converges” as n — oco. We'll then extend to
analyzing the degree-1 Fourier weight, noise stability, and total influence of
general linear threshold functions.

5.1. Linear threshold functions and polynomial threshold
functions

Recall from Chapter 2.1 that a linear threshold function (abbreviated LTF) is
a Boolean-valued function f : {—1,1}" — {—1,1} that can be represented as

f(x)=sgn(apg+aix1+---+a,xy,) (5.1)

for some constants ag,a1,...,a, € R. (For definiteness we’ll take sgn(0) = 1.
If we’re using the representation f : {—1,1}" — {0,1}, then f is an LTF if it
can be represented as f(x) = 1{4)+q,x,+-+a,x,>0}-) Examples include majority,
AND, OR, dictators, and decision lists (Exercise 3.23). Besides representing
“weighted majority” voting schemes, LTFs play an important role in learning
theory and in circuit complexity.

There is also a geometric perspective on LTFs. Writing /(x) =ag+a1x1 +
-+ anx,, we can think of ¢ as an affine function R"” — R. Then sgn(¢(x)) is

113
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114 5. Majority and threshold functions

the +1-indicator of a halfspace in R"™. A Boolean LTF is thus the restriction of
such a halfspace-indicator to the discrete cube {—1,1}* cR”. Equivalently, a
function f : {—1,1}* — {-1,1} is an LTF if and only if it has a “linear separator”;
i.e., a hyperplane in R" that separates the points f labels 1 from the points f
labels —1.

An LTF f :{-1,1}* — {-1,1} can have several different representations
as in (5.1) — in fact it always has infinitely many. This is clear from the
geometric viewpoint; any small enough perturbation to a linear separator will
not change the way it partitions the discrete cube. Because we can make
these perturbations, we may ensure that ag +a1x1+---+a,x, # 0 for every
x € {—1,1}". We'll usually insist that LTF representations have this property
so that the nuisance of sgn(0) doesn’t arise. We also observe that we can scale
all of the coefficients in an LTF representation by the same positive constant
without changing the LTF. These observations can be used to show it’s always
possible to take the a;’s to be integers (Exercise 5.1). However, we will most
often scale so that Z?zla? = 1; this is convenient when using the Central
Limit Theorem.

The most elegant result connecting LTF's and Fourier expansions is Chow’s
Theorem, which says that a Boolean LTF is completely determined by its
degree-0 and degree-1 Fourier coefficients. In fact, it’s determined not just
within the class of LTFs but within the class of all Boolean functions:
Theorem 5.1. Let f :{—1,1}" — {—1,1} be an LTF and let g : {—1,1}" — {-1,1}

~

be any function. If g(S) = f(S) for all |S| <1, then g =f.

Proof. Let f(x) = sgn(¢(x)), where ¢:{-1,1}" — R has degree at most 1 and
is never 0 on {—1,1}*. For any x € {—1,1}" we have f(x)¢(x) = |{(x)| = g(x){(x),
with equality if and only if f(x) = g(x) (here we use ¢(x) # 0). Using this
observation along with Plancherel’s Theorem (twice) we have

Y F($)U(S) =Elf(x)¢(x)] = Elg@)(x)] = Y §(S)US).
IS|=1 IS|=1

But by assumption, the left-hand and right-hand sides above are equal. Thus
the inequality must be an equality for every value of x; i.e., f(x) = g(x) Vx. [

In light of Chow’s Theorem, the n + 1 numbers g(@), g({1}),...,8({n}) are some-
times called the Chow parameters of the Boolean function g.

As we will show in Section 5.5, linear threshold functions are very noise-
stable; hence they have a lot of their Fourier weight at low degrees. Here is a
simple result along these lines:

Theorem 5.2. Let f :{—1,1}" — {—1,1} be an LTF. Then W=1[f]1=1/2.
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5.1. Linear threshold functions and polynomial threshold functions 115

Proof. Writing f(x) = sgn(¢(x)) we have

101l = ELE@I = (f, 0 = (F=1,0 < I F= 2l 2lle =\ WSLFT- 111,

where the third equality follows from Plancherel and the inequality is Cauchy—
Schwarz. Assume first that ¢(x) =a1x1+---+a,x, (i.e., £(x) has no constant
term). The Khintchine—-Kahane Inequality (Exercise 2.55) states that ||/]; =
\/ié 14]l2, and hence we deduce

\%nzuz <\/WSLF1- 1 4]lg.

The conclusion WSl[f 1= 1/2 follows immediately (since | £|l2 cannot be 0). The
case when ¢(x) has a constant term is handled in Exercise 5.5. O

From Exercise 2.22 we know that W=1[Maj,]1= W'[Maj,]= 2/x for all n;
it is reasonable to conjecture that majority is extremal for Theorem 5.2. This
is an open problem.

Conjecture 5.3. Let [ :{-1,1}* — {-1,1} be an LTF. Then W=1[f]= 2/n.

A natural generalization of linear threshold functions is polynomial thresh-
old functions:

Definition 5.4. A function f :{—1,1}" — {-1,1} is called a polynomial thresh-
old function (PTF) of degree at most % if it is expressible as f(x) = sgn(p(x))
for some real polynomial p : {—1,1}" — R of degree at most k.

Example 5.5. Let f : {—1,1}* — {—1,1} be the 4-bit equality function, which
is 1 if and only if all input bits are equal. Then f is a degree-2 PTF because it
has the representation f(x) = sgn(—3 + x1x9 + X1x3 +X1X4 + X2X3 + X2X4 + X3%X4).

Every Boolean function f : {—1,1}" — {-1,1} is a PTF of degree at most n,
since we can take the sign of its Fourier expansion. Thus we are usually
interested in the case when the degree % is “small”, say, £ = O,(1). Low-
degree PTF's arise frequently in learning theory, for example, as hypotheses
in the Low-Degree Algorithm and many other practical learning algorithms.
Indeed, any function with low noise sensitivity is close to being a low-degree
PTF; by combining Propositions 3.3 and 3.31 we immediately obtain:

Proposition 5.6. Let f : {-1,1}" — {-1,1} and let 6 € (0,1/2]. Then f is
(BNSs[f1-close to a PTF of degree 1/6.

For a kind of converse to this proposition, see Section 5.5.

PTFs also arise in circuit complexity, wherein a PTF representation

S
ZaixT")

i=1

f(x)=sgn(
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116 5. Majority and threshold functions

is thought of as a “threshold-of-parities circuit”: i.e., a depth-2 circuit with s
“parity gates” xi at layer 1 and a single “(linear) threshold gate” at layer 2.
From this point of view, the size of the circuit corresponds to the sparsity of
the PTF representation:

Definition 5.7. We say a PTF representation f(x) = sgn(p(x)) has sparsity at
most s if p(x) is a multilinear polynomial with at most s terms.

For example, the PTF representation of the 4-bit equality function from Ex-
ample 5.5 has sparsity 7.

Let’s extend the two theorems about LTFs we proved above to the case of
PTFs. The generalization of Chow’s Theorem is straightforward; its proof is
left as Exercise 5.9:

Theorem 5.8. Let f :{—1,1}" — {—1,1} be a PTF of degree at most k and let
g:{-1,1Y* - {-1,1} be any function. If g(S) = f(S) for all |S| <k, then g =f.

We also have the following extension of Theorem 5.2:

Theorem 5.9. Let [ :{—1,1}" — {~1,1} be a degree-k PTF. Then W=F[f]= e 2k,
Proof. Writing f(x) = sgn(p(x)) for p of degree k, we again have

Ipli =Elp@)] = (f,p) = F<F,p) < IF<Fllalipl2 = \/W=E[£1- Ip 2.

To complete the proof we need the fact that ||plle < ek pll1 for any degree-%
polynomial p : {-1,1}" — R. We will prove this much later in Theorem 9.22 of
Chapter 9 on hypercontractivity. O

The e~2* in this theorem cannot be improved beyond 217%; see Exercise 5.11.

We close this section by discussing PTF sparsity. We begin with a (simpler)
variant of Theorem 5.9, which is useful for proving PTF sparsity lower bounds:

Theorem 5.10. Let f : {-1,1}" — {-1,1} be expressible as a PTF over the
collection of monomials F < 2™; ie., f(x) = sgn(p(x)) for some polynomial
p(x) = Y.gez D(S)xS. Then Ygez If(S) = 1.

Proof. Define g : {-1,1}" — R by g(x) = Yges F(S)x°. Since [pls < lIplh
(Exercise 3.9) we have

AA A I\

1Pl < llpli =Elf@p@1= Y f(S)pES)= Y 8SpHS) <lglilp
Scinl SeF

loos

and hence jigf; = 1 as claimed. [l

We can use this result to show that the “inner product mod 2 function”
(see Exercise 1.1) requires huge threshold-of-parities circuits:
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5.1. Linear threshold functions and polynomial threshold functions 117

Corollary 5.11. Any PTF representation of the inner product mod 2 function
1Py, :]Fg” — {=1,1} has sparsity at least 2".

Proof. This follows immediately from Theorem 5.10 and the fact that Iff’zn(S )| =
27" for all S < [2n] (Exercise 1.1). O

We can also show that any function f : {—1,1}" — {—1, 1} with small Fourier
1-norm f|f|; has a sparse PTF representation. In fact a stronger result holds:
such a function can be additively approximated by a sparse polynomial:

Theorem 5.12. Let f : {—1,1}" — R be nonzero, let 6 >0, and let s = 4nﬂfﬂ§/§2
be an integer. Then there is a multilinear polynomial q : {—1,1}" — R of spar-
sity at most s such that |f — qlleo < 9.

Proof. The proof is by the probabilistic method. Let T < [n] be randomly

chosen according to the distribution Pr[T =T]= % Let T'4,...,Ts be inde-
1
pendent draws from this distribution and define the multilinear polynomial

S

p@) =Y sgn(F(T))«T".
i=1
When x € {—1,1}" is fixed, each monomial sgn( f (T;))xTi becomes a +1-valued
random variable with expectation
Z |f(T)] . Sgn(]?(T))xT — Lﬂl Z fA(T)xT _ f)

T £l If T £l

Thus by a Chernoff bound, for any € > 0,

_f® _e2
TE.I,‘TS Hp(x) T Zes] < 2exp(—€-s/2).
Selecting € = 6/ fi; and using s = 4n|f ﬂ?/ﬁz, the above probability is at most
2exp(—2n) < 27", Taking a union bound over all 2" choices of x € {-1,1}",
we conclude that there exists some p(x) = ?:1 sgn(f (Ti))xTi such that for all
xe{-1,1}",

_f@ -0 Iy ey —
|p(x) [Og ces=rts = | pw-fw)|<s.
Thus we may take g = ﬂfsﬂl -p. O

Corollary 5.13. Let f :{—1,1}Y* — {=1,1}. Then f is expressible as a PTF of
sparsity at most s = [4n||f ﬂi] Indeed, f can be represented as a majority of s
parities or negated-parities.

Proof. Apply the previous theorem with § = 1; we then have f(x) = sgn(q(x)).
Since this is also equivalent to sgn(p(x)), the terms sgn(f(T;))x” are the
required parities/negated-parities. [l
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118 5. Majority and threshold functions

Though functions computable by small DNFs need not have small Fourier
1-norm, it is a further easy corollary that they can be computed by sparse
PTFs: see Exercise 5.13. We also remark that there is no good converse to
Corollary 5.13: the Maj,, function has a PTF (indeed, an LTF) of sparsity n
but has exponentially large Fourier 1-norm (Exercise 5.26).

5.2. Majority, and the Central Limit Theorem

Majority is one of the more important functions in Boolean analysis, and
its study motivates the introduction of one of the more important tools: the
Central Limit Theorem (CLT). In this section we will show how the CLT can be
used to estimate the total influence and the noise stability of Maj,,. Though
we already determined I[Maj,] ~ vV2/7\/n in Exercise 2.22 using binomial
coefficients and Stirling’s Formula, computations using the CLT are more
flexible and extend to other linear threshold functions.

We begin with a reminder about the CLT. Suppose X71,...,X,, are indepen-
dent random variables and S = X1 +---+ X,,. Roughly speaking, the CLT says
that so long as no X; is too dominant in terms of variance, the distribution
of S is close to that of a Gaussian random variable with the same mean and
variance. Recall:

Notation 5.14. We write Z ~ N(0,1) denote that Z is a standard Gaussian
random variable. We use the notation

. t 0
=L—z2/2’ q)t:f dz, at:d)—t:f d
p(2) 75:¢ () _oo</>(z) z (t) = D(-1t) ) P(z)dz

for the pdf, cdf, and complementary cdf of this random variable. More gen-
erally, if € R? and X € R%*? is a positive semidefinite matrix, we write
Z ~N(u,2) to denote that Z is a d-dimensional random vector with mean
and covariance matrix X.

We give a precise statement of the CLT below in the form of the Berry—
Esseen Theorem. The CLT also extends to the multidimensional case (sums
of independent random vectors); we give a precise statement in Exercise 5.33.
In Chapter 11 we will show one way to prove such CLTs.

Let’s see how we can use the CLT to obtain the estimate I[Maj, 1 ~ v2/m\/n.
Recall the proof of Theorem 2.33, which shows that Maj,, maximizes }.7"_, (i)
among all f :{-1,1}" — {—1,1}. In it we saw that

n
I[Maj, ] = Z Maj,, (i) = I*xl[Majn(x)(in )= I;][l 2 xill. (5.2)
i=1 i i
When using the CLT, it’s convenient to define majority (equivalently) as
n
. _ 1 .
Maj,,(x) = sgn(igl \/—ﬁxl).
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5.2. Majority, and the Central Limit Theorem 119

This motivates writing (5.2) as

IMaj,1=vn- B [IX ol (5.3)

If we introduce S =} | \/iﬁxi, then S has mean 0 and variance Y ;(1/\/n)? = 1.

Thus the CLT tells us that the distribution of S is close (for large n) to that of
a standard Gaussian, Z ~N(0,1). So as n — co we have

E[S]]~ E [|Z|]:2f 2?24z = \ome 2 " = Vam, (5.4)
x Z~N(0,1) 0 0

Ver
which when combined with (5.3) gives us the estimate I[Maj, 1~ v2/ny/n.

To make this kind of estimate more precise we state the Berry—Esseen
Theorem, which is a strong version of the CLT giving explicit error bounds
rather than just limiting statements.

Berry-Esseen (Central Limit) Theorem. Let X1,...,X,, be independent

random variables with E[X;]=0 and Var[X;] = af, and assume Z?:l 0'? =1

Let S = Z?le ; and let Z ~N(0,1) be a standard Gaussian. Then for all u € R,
|Pr[S <ul-PrlZ <ul| <cy,
where
n
Y= IX;l3
i=1
and c is a universal constant. (For definiteness, ¢ = .56 is acceptable.)

Remark 5.15. If all of the X;’s satisfy |X;| < ¢ with probability 1, then we
can use the bound

n n n
y=Y ElX;P1<e Y E[X;*1=¢- ) o?=e.
i=1 i=1 i=1

See Exercises 5.16 and 5.17 for some additional observations.

Our most frequent use of the Berry—Esseen Theorem will be in analyzing

random sums .
S = Z a;x;,
i=1

where x ~ {—1,1}" and the constants a; € R are normalized so that }_; a% =1.
For majority, all of the a;’s were equal to in But from Remark 5.15 we see
that S is close in distribution to a standard Gaussian so long as each |a;| is
small. For example, in Exercise 5.31 you are asked to show the following:

Theorem 5.16. Let aq,...,a, € R satisfy Zialz. =1land |a;j| <€ forall i. Then

E [1Xa;x;]1-Vv2/n|<Ce,
x~{—1,1 5
where C is a universal constant.
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120 5. Majority and threshold functions

Theorem 5.16 justifies (5.4) with an error bound of O(1/y/n), yielding the
more precise estimate I[Maj, 1= v2/1y/n +O(1) (cf. Exercise 2.22, which gives
an even better error bound).

Now let’s turn to the noise stability of majority. Theorem 2.45 stated the
formula

. . _ 2 . _ 2
r}lj& Stab,[Maj, ] = £ arcsinp = 1 - £ arccos p. (5.5)

Let’s now spend some time justifying this using the multidimensional CLT.
(For complete details, see Exercise 5.33.) By definition,

F 1= ; .Mai - 1 .. 1 ..
Stabp[MaJn]—(fy)[MaJn(x) MaJn(y)]—(Ey)[sgn(§ \/ﬁx,) sgn(% \/ﬁy,)]. (5.6)

p-correlated p-correlated
For each i € [n] let’s stack \/lﬁxi and \/iﬁ y; into a 2-dimensional vector and
then write
> L = 7}
S=Y |V |er (5.7)
i=1 \/_ﬁyi

We are summing n independent random vectors, so the multidimensional CLT
tells us that the distribution of S is close to that of a 2-dimensional Gaussian
Z with the same mean and covariance matrix, namely (see Exercise 5.19)

o 1o 7))
0]’lp 1))
Continuing from (5.6),
Stab,[Maj,] = E[sgn(S1)-sgn(Ss)]
= Prisgn(S1) = sgn(S2)] - Prisgn(S1) # sgn(Sy)]
=2Pr[sgn(S1) = sgn(Sg)]-1=4Pr[Seq@__1-1,

Z~N(

where @__ denotes the lower-left quadrant of R? and the last step uses the
symmetry Pr[S € @,.+]1=Pr[S e @__]. Since @ __ is convex, the 2-dimensional
CLT lets us deduce

’}LIEOPr[g €Q__1=Pr[ZeqQ__].

So to justify the noise stability formula (5.5) for majority, it remains to verify
7 5 11
APriZe@__1-1=1-2arccosp < PriZeQ__1= 55 arccos p

T

And this in turn is a 19th-century identity known as Sheppard’s Formula:

Sheppard’s Formula. Let 2z, 29 be standard Gaussian random variables
with correlation E[z122]1=p €[-1,1]. Then
1 1arccosp

P < <0]l==-=
r(z1 <0,22<0] 5 3
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5.3. The Fourier coefficients of Majority 121

Proving Sheppard’s Formula is a nice exercise using the rotational symmetry
of a pair of independent standard Gaussians; we defer the proof till Exam-
ple 11.19 in Chapter 11.1. This completes the justification of formula (5.5) for
the limiting noise stability of majority.

You may have noticed that once we applied the 2-dimensional CLT to (5.6),
the remainder of the derivation had nothing to do with majority. In fact,
the same analysis works for any linear threshold function sgn(ajx; +---+
anxn), the only difference being the “error term” arising from the CLT. As in
Theorem 5.16, this error is small so long as no coefficient a; is too dominant:

Theorem 5.17. Let f :{-1,1}* — {-1,1} be an unbiased LTF, f(x) = sgn(aix1+
<t apx,) with Zialz. =1and |a;| <€ forall i. Then for any pe(-1,1),

_2 i €
Stab,[f]-2 arcsmp‘ < O(m).
You are asked to prove Theorem 5.17 in Exercise 5.33. In the particular
case of Maj,, where a; = \/iﬁ for all i we can make a slightly stronger claim
(see Exercise 5.23):

Theorem 5.18. For any p €[0,1), Stab,[Maj,] is a decreasing function of n,
with
2

£ arcsin p < Stab,[Maj,, ] < % arcsinp + O(

1
V1-p2y/n ) ’

We end this section by mentioning another way in which the majority
function is extremal: among all unbiased functions with small influences, it
has (essentially) the largest noise stability.

Majority Is Stablest Theorem. Fix p € (0,1). Then for any f :{-1,1}" —
[—1,1] with E[f]1=0 and MaxInflf]<T,

Stab,[f]= f—rarcsinp +0,(1)=1- % arccos p + o0(1).

For sufficiently small p, we'll prove this in Section 5.4. The proof of the full
Majority Is Stablest Theorem will have to wait until Chapter 11.

5.3. The Fourier coefficients of Majority

In this section we will analyze the Fourier coefficients of Maj,,. In fact, we
give an explicit formula for them in Theorem 5.19 below. But most of the time
this formula is not too useful; instead, it’s better to understand the Fourier
coefficients of Maj,, asymptotically as n — co.

Let’s begin with a few basic observations. First, Maj,, is a symmetric func-
tion and hence Maj,, (S) only depends on |S| (Exercise 1.30). Second, Maj,, is
an odd function and hence Maj,,(S) = 0 whenever |S| is even (Exercise 1.8).
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122 5. Majority and threshold functions

It remains to determine the Fourier coefficients mj\n(S) for |S| odd. By sym-
metry, Maj,(S)? = W*[Maj, J/(}) for all |S| = &, so if we are content to know
the magnitudes of Maj,’s Fourier coefficients, it suffices to determine the
quantities W*(Maj,,).

In fact, for each k& € N the quantity W*(Maj ,,) converges to a fixed constant
as n — oco. We can deduce this using our analysis of the noise stability of
majority. From the previous section we know that for all |p| <1,

. c1_2 2 13,3 5, 5 7
’}LI{}OStabp[MaJn]—;arcs1np—;(p+§p + 360" + 1350 +--~), (5.8)

where we have used the power series for arcsin,

, 2 (k-1) ,
arcsinz = Z —| 5 )-z , 5.9)
Koda R2F ( bt

valid for |p| <1 (see Exercise 5.18). Comparing (5.8) with the formula
Stab,[Maj,]1= ) W*[Maj,]-p"
k=0
suggests the following: For each fixed k2 € N,
4 (k-1 .
— (%) if k odd,
lim W*[Maj,] = [p*1(2 arcsin p) = { "' (i) (5.10)
n—oo 0 if £ even.

(Here [2*1F(z) denotes the coefficient on z* in power series F(z).) Indeed, we
prove this identity below in Theorem 5.22. The noise stability method that
suggests it can also be made formal (Exercise 5.25).

Identity (5.10) is one way to formulate precisely the statement that the
“Fourier spectrum of Maj,, converges”. Introducing notation such as “Wk(Maj)”
for the quantity in (5.10), we have the further asymptotics

for k odd,  W*(Maj) ~ (2)"* k%2, 511
W>E(Maj) ~ (2)2 %12 ask —oo.
(See Exercise 5.27.) The estimates (5.11), together with the precise value
W1 (Maj) = 7%, are usually all you need to know about the Fourier coefficients
of majority.

Nevertheless, let’s now compute the Fourier coefficients of Maj,, exactly.

Theorem 5.19. If |S| is even, then Maj,(S) = 0. If|S| = k is odd,
n-1
()
T _ [ 2 n—1
Ma_]n(S)—(—l) (n—l) 2—,1(%1)
k-1
Proof. The first statement holds because Maj,, is an odd function; henceforth
we assume |S| = k& is odd. The trick will be to compute the Fourier expansion of

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.



5.3. The Fourier coefficients of Majority 123

majority’s derivative D,Maj, = Half,,_1 : {—1, 1)»~1 — {0, 1}, the 0-1 indicator of
the set of (n — 1)-bit strings with exactly half of their coordinates equal to —1.
By the derivative formula and the fact that Maj,, is symmetric, M(S ) =
Half,_1(T) for any T < [n— 1] with |T| =k —1. So writing n—1 = 2m and
k—1=2j, it suffices to show

5 4

Halfy,, (12 = (-1Y L= - L (3m). (5.12)
(5)
By the probabilistic definition of T, for any p € [-1,1] we have
TpHalfy,,(1,1,...,1) = x~Np((1I:,1 ,,,, 1))[Half2m(x)] =Pr[x has m 1’s and m —1’s],

where each coordinate of x is 1 with probability % + %p. Thus
T,Halfyn(L,1,...,1) = (3™)& + 10" G - 1) = 5 (3™M)1 - pH™.  (5.13)

On the other hand, by the Fourier formula for T, and the fact that Halfy,, is
symmetric we have

2m .
T,Halfy,(1,1,...,1)= Y. Halfp,,(@)p"V' =Y (*7")Halfpn(liDp’. (5.14)
Ucl2m] =0

Since we have equality (5.13) = (5.14) between two degree-2m polynomials
of p on all of [-1,1], we can equate coefficients. In particular, for i = 2j we
have

(o) Halfor (127D = 5z (o) - [0¥ 101 = p™)™ = 53z () - (1Y (),
confirming (5.12). O

You are asked to prove the following corollaries in Exercises 5.20, 5.22:

Corollary 5.20. Maj\n(S) = (—1)%an(T) whenever |S|+|T|=n+1. Hence

also W **1[Maj,]= —£& - W*[Maj,].

Corollary 5.21. For any odd k, W [Maj, ] is a strictly decreasing function
of n (for n = k odd).

We can now prove the identity (5.10):
Theorem 5.22. For each fixed odd k,
WHMaj, ]\ [o* 12 aresinp) = 6 (1))

as n = k tends to oo (through the odd numbers). Further, we have the error
bound

[p*1(2 arcsin p) < W*[Maj,, ] < (1 +2k/n)-[p*1(2 arcsin p) (5.15)
for all k <n/2. (For k > n/2 you can use Corollary 5.20.)
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Proof. Corollary 5.21 tells us that W* [Maj, ] is decreasing in n; hence we
only need to justify (5.15). Using the formula from Theorem 5.19 we have

4 (=12 (557 [ (n-12
W*[Maj, ] (k)zzn(nfl) (kz;l) /(k_l) n zk—n(n—k) 21-n(n—1)

= :—n- n— . n— ,
[pk](%arcsinp) 4 (13;11) 2 nok nl

where the second identity is verified by expanding all binomial coefficients

to factorials. By Stirling’s approximation we have 27™(”.) / /-2,

that the ratio of the left side to the right side increases to 1 as m — oco. Thus

meaning

Wk[Majn] n 1ok %)_1/2
[p*1(2arcsinp) © Vn—kvn-1 n T n ’
and the right-hand side is at most 1+2k/n for 1 < £ < n/2 by Exercise 5.24. [

Finally, we can deduce the asymptotics (5.11) from this theorem (see Ex-
ercise 5.27):

Corollary 5.23. Let k € N be odd and assume n =n(k) = 2k2. Then
W*(Maj,) = (2)72 232 (1 £ 0(1/R)),
W7k (Maj,) = (2)" 272 (120(1/k)),

and hence the Fourier spectrum of Maj, is e-concentrated on degree up to
£e724+0.(1).

5.4. Degree-1 weight

In this section we prove two theorems about the degree-1 Fourier weight of
Boolean functions:

n
Wir1=Y FG)%
i=1

This important quantity can be given a combinatorial interpretation thanks
to the noise stability formula Stab,[f]1=3 ;¢ pk Wk [f1:

d

For f:{-1,1}" =R, W![f]l=——Stab,[f]| .
d P p=0

Thinking of | f|l2 as constant and p — 0, the noise stability formula implies
Stab,[f1=E[f1* + W'[f1p+ O(p?),

or equivalently,
Covlf (), f(y)]= Wlflp+0(p?).
x,
p-corrglated

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.



5.4. Degree-1 weight 125

In other words, for f :{-1,1}" — {—1,1} the degree-1 weight quantifies the
extent to which Pr[f(x) = f(y)] increases when x and y go from being uncor-
related to being slightly correlated.

There is an additional viewpoint if we think of f as the indicator of a
subset A € {-1,1}" and its noise sensitivity NSs[f] as a notion of A’s “surface
area”, or “noisy boundary size”. For nearly maximal noise rates — i.e., § =
% - % p where p is small — we have that A’s noisy boundary size is “small” if

and only if WI[f]is “large” (vis-a-vis A’s measure).

Two examples suggest themselves when thinking of subsets of the Ham-
ming cube with small “boundary”: subcubes and Hamming balls.

Proposition 5.24. Let f :IF§ — {0, 1} be the indicator of a subcube of codimen-
sion k =1 (e.g., the AND;, function). Then E[f1=2"% Wl[f]1=k272k

Proposition 5.25. Fix t € R. Consider the sequence of LTFs f, : {—-1,1}* —
{0,1} defined by fn(x) = 1 if and only if Z?zl \/iﬁxi >t. (That is, [, is the
indicator of the Hamming ball {x : A(x,(1,...,1)) < % - %\/ﬁ}.) Then

lim E[f,]=®@),  lim Wf,]= ).

You are asked to verify these facts in Exercises 5.29, 5.30. Regarding
Proposition 5.25, it’s natural for ¢(¢) to arise since W1[f,,]is related to the in-

fluences of f;, and coordinates are influential for f,, if and only if ¥ | L ux;~ ¢.

i=1/n

If we write a = lim,,_., E[f,,] then this proposition can be thought of as saying
that W1[f,] — % (a)?, where % is defined as follows:

Definition 5.26. The Gaussian isoperimetric function % :10,1] — [0, \/%7[] is
defined by % = ¢po® L. This function is symmetric about 1/2; i.e., % = po D1,

The name of this function will be explained when we study the Gaussian
Isoperimetric Inequality in Chapter 11.4. For now we’ll just use the following
fact:

Proposition 5.27. For a — 0%, %(a) ~ av2In(1/a).

Proof. Write a = ®(¢), where t — co. We use the well-known fact that ®(¢) ~
¢(t)/t. Thus

a~ ﬁexp(—t2/2) = t~v2In(1l/a),
PR ~D@)-t = U)~a-t~av/2In(/a). 0

Given Propositions 5.24 and 5.25, let’s consider the degree-1 Fourier

weight of subcubes and Hamming balls asymptotically as their “volume”
a = E[f] tends to 0. For the subcubes we have W1[f]= a®log(1/a). For the
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Hamming balls we have W[f,] — %(a)? ~ 2a®In(1/a). So in both cases we
have an upper bound of O(a?log(1/a)).

You should think of this upper bound O(a?log(1/a)) as being unusually
small. The obvious a priori upper bound, given that f : {—1,1}* — {0,1} has
Elfl=a,is

Wl[f] <Var[fl=a(l-a)~a.
Yet subcubes and Hamming balls have degree-1 weight which is almost quadrat-
ically smaller. In fact the first theorem we will show in this section is the
following:

Level-1 Inequality. Let f:{—1,1}* — {0,1} have mean E[f]1= a < 1/2. Then
W[f1< O(a®log(1l/a)).
(For the case a = 1/2, replace f by 1—f.)

Thus all small subsets of {—1,1}* have unusually small W![f]; or equiva-
lently (in some sense), unusually large “noisy boundary”. This is another key
illustration of the idea that the Hamming cube is a “small-set expander”.

Remark 5.28. The bound in the Level-1 Inequality has a sharp form, W[f] <
2a?In(1/a). Thus Hamming balls are in fact the “asymptotic maximizers” of
W1[f]among sets of small volume a. Also, the inequality holds more generally
for f:{-1,1}" —[-1,1] with a = E[|f]].

Remark 5.29. The name “Level-1 Inequality” is not completely standard;
e.g., in additive combinatorics the result would be called Chang’s Inequality.
We use this name because we will also generalize to “Level-£2 Inequalities” in
Chapter 9.5.

So far we considered maximizing degree-1 weight among subsets of the
Hamming cube of a fixed small volume, a. The second theorem in this section
is concerned with what happens when there is no volume constraint. In
this case, maximizing examples tend to have volume a = 1/2; switching the
notation to f : {—1,1}* — {—1, 1}, this corresponds to f being unbiased (E[f]=
0). The unbiased Hamming ball is Maj,,, which we know has W'[Maj,,] — %
This is quite large. But unbiased subcubes are just the dictators y; and their
negations; these have W1[+y;] = 1 which is obviously maximal.

Thus the question of which f : {-1,1}® — {-1,1} maximizes W[f] has a
trivial answer. But this answer is arguably unsatisfactory, since dictators
(and their negations) are not “really” functions of n bits. Indeed, when we
studied social choice in Chapter 2 we were motivated to rule out functions f
having a coordinate with unfairly large influence. And in fact Proposition 2.58
showed that if all }? (i) are equal (and hence small) then W1[f] < %+on(1). The
second theorem of this section significantly generalizes Proposition 2.58:
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The % Theorem. Let f : {-1,1}" — {—1,1} satisfy |f()| <€ for all i € [n). Then
Wlf1= 2 +00). (5.16)
Further, if WU[f1= 2 —¢, then f is O(v/€)-close to the LTF sgn(f=1).

Functions f with | f ()| =€ for all i € [n] are called (¢,1)-regular; see Chap-
ter 6.1. So the 72—[ Theorem says (roughly speaking) that within the class of
(e,1)-regular functions, the maximal degree-1 weight is %, and any function
achieving this is an unbiased LTF. Further, from Theorem 5.17 we know that
all unbiased LTFs which are (¢,1)-regular achieve this.

Remark 5.30. Since we have Stab,[f]~ W1[flp and %arcsinp ~ % o when p
is small, the % Theorem gives the Majority Is Stablest Theorem in the limit
p—0".

Let’s now discuss how we’ll prove our two theorems about degree-1 weight.
Let f:{-1,1}" — {0,1} and a = E[f]; we think of a as small for the Level-1
Inequality and a = 1/2 for the % Theorem. By Plancherel, W![f]= E[f(x)L(x)],
where

L(x)= f71(x) = F(Dxy + -+ + F(n)x,.
To upper-bound E[f(x)L(x)], consider that as x varies the real number L(x)
may be rather large or small, but f(x) is always 0 or 1. Given that f(x) is 1
on only a a fraction of x’s, the “worst case” for E[f(x)L(x)] would be if f(x)
were 1 precisely on the a fraction of x’s where L(x) is largest. In other words,

W![f1=E[f®)L(x)] < E[17xss - L®)], (5.17)
where ¢ is chosen so that
Pr[L(x)=t]l~ a. (5.18)

But now we can analyze (5.17) quite effectively using tools such as Hoeffding’s
bound and the CLT, since L(x) is just a linear combination of independent +1
random bits. In particular L(x) has mean 0 and standard deviation o =
VW1[f] so by the CLT it acts like the Gaussian Z ~ N(0,?), at least if we
assume all |£(i)| are small. If we are thinking of @ = 1/2, then ¢ = 0 and we get

0% =W'f1 = E[li (x>0 - L)) = Ell(z>0) - Z] = \/%—HU;

This implies o2 = %, as claimed in the % Theorem (after adjusting f’s range
to {—1,1}). If we are instead thinking of a as small then (5.18) suggest taking
t ~o0v2In(1/a) so that Pr[Z = t] = a. Then a calculation akin to the one in

Proposition 5.27 implies

WUf1<Ell gy - L)~ a-0v/2In(Va),

from which the Level-1 Inequality follows. In fact, we don’t even need all | FQ)l
small for this latter analysis; for large ¢ it’s possible to upper-bound (5.17)
using only Hoeffding’s bound:
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Lemma 5.31. Let £(x) =a1x1+ -+ anxy, where ¥; a? =1. Then for any s=1,
ElL{/(a)>5) - 10@)[] = (25 +2) exp(—5).

Proof. We have
E[1/()>s) - 1€(x)]] = sPr[|¢(x)] > s] +f Pr[|¢(x)| > uldu

8'2 e u2
<2sexp(—%5)+ 2exp(-5)du,
S
using Hoeffding’s bound. But for s > 1,

(e} 9 0o ) ,
f 2exp(—”7)du5[ u-2exp(—%)du = 2exp(-%). H
s s

We now give formal proofs of the two theorems, commenting that rather
than L(x) it’s more convenient to work with

(@)= 3@ =P+ 4 Ty,

Proof of the Level-1 Inequality. Following Remark 5.28 we let f : {—1,1}" —
[-1,1] and a = E[|f|]. We may assume o = \/WI[f]>0. Writing ¢ = %le we
have (f,¢) = 2(f,f=1) = LW![f]= 0 and hence

o ={f,0) = Ell{gw)<s) - [ (0)0(0)] + E[L{px)>5) - [ () €(x)]

holds for any s = 1. The first expectation above is at most E[s|f(x)|] = as, and
the second is at most (2 +23)exp(—s2/2) <4s exp(—32/2) by Lemma 5.31. Hence

0 < as +4sexp(—s2/2).
The optimal choice of s is s = (V2 + 0,(1))vIn(1/a), yielding
o <(V2+o(1)ayIn(l/a).

Squaring this establishes the claim 02 < (2 + 04(1))a?In(1/a). O

Proof of the % Theorem. We may assume o = /WL[f] = 1/2: for the theo-
rem’s first statement this is because otherwise there is nothing to prove; for
the theorem’s second statement this is because we may assume ¢ sufficiently
small.

We start by proving (5.16). Let ¢ = %le, so |||l =1 and I?\(i)l < 2¢ for all
i €[n]. We have

o =(f,0<Ellll1= /2 +Ce (5.19)

for some constant C, where we used Theorem 5.16. Squaring this proves (5.16).
We observe that (5.16) therefore holds even for f :{-1,1}" —[-1,1].

Now suppose we also have W![f]= 2 —¢;i.e.,

/2 2 _
ogz\/T-€=\/2 2€.
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Thus the first inequality in (5.19) must be close to tight; specifically,
(C +2)e = Ell4]1-(f,¢) = El(sgn(¢(x)) - f (x)) - £(x)]. (5.20)
By the Berry—Esseen Theorem (and Remark 5.15, Exercise 5.16),
Pr[|¢| < KVel <Pr[|IN(0,1)| < K\el+.56-2¢ < % 2K\Ve+1.12¢ <2K /e
for any constant K = 1. We therefore have the implication

Pr{f # sgn(¥)] = 3K Ve = Prlf(x) #sgn(f(x)) A |(x)]>K\el=Kve
= El(sgn({(x)) - f(x))- 0(x)] = K e - 2K Ve) = 2K 2.

This contradicts (5.20) for K = vC + 2, say. Thus Pr[f # sgn(£)] <3V C + 2/,
completing the proof. ([l

For an interpolation between these two theorems, see Exercise 5.44.

We conclude this section with an application of the Level-1 Inequality.
First, a quick corollary which we leave for Exercise 5.37:

Corollary 5.32. Let f :{-1,1}* — {-1,1} have |E[f]1|=1-6 = 0. Then W[f]<
46210g(2/6).

In Chapter 2.5 we stated the FKN Theorem, which says that if f : {—1,1}" —
{-1,1} has W![f]=1-§ then it must be O(5)-close to a dictator or negated-
dictator. The following theorem shows that once the FKN Theorem is proved,
it can be strengthened to give an essentially optimal (Exercise 5.36) closeness
bound:

Theorem 5.33. Suppose the FKN Theorem holds with closeness bound C9,
where C =1 is a universal constant. Then in fact it holds with bound 6/4 +n,
where 1 = 160252 max(log(1/C¥), 1).

Proof. Suppose [ :{-1,1}" — {-1,1} has W'[f]=1-6 = 0. By assumption f
is Cd-close to +y; for some i € [n], say i = n. Thus we have

If(n)] = 1-2C6

and our task is to show that in fact |f(n)| = 1-6/2—-2n. We may assume 6 < ﬁ
as otherwise 1—-06/2 -2n < 0 (Exercise 5.38) and there is nothing to prove. By
employing the trick from Exercise 2.49 we may also assume E[f]=0.

Consider the restriction of f given by fixing coordinate n to b € {—1,1};
i.e., fin—1115- For both choices of & we have |E[f},-15]| =1 —-2C4 and so Corol-
lary 5.32 implies W[ f, 1151 < 16C25210g(1/C5). Thus

16C25210g(1/C5) = g[wl[f[,,_lm,]] =Y (FWY+FW,nhH = Y F()2,

j<n j<n
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by Corollary 3.22. It follows that
F)?2=Wf1- Y F()?=1-6-16C%5%10g(1/CH),
j<n
and the proof is completed by the fact that
1-6-16C256%10g(1/C6) = (1 - 6/2 - 2n)?

when 6 < ﬁ (Exercise 5.38). O

5.5. Highlight: Peres’s Theorem and uniform noise stability

Theorem 5.17 says that if f is an unbiased linear threshold function f(x) =
sgn(a1xq1 + -+ +anxy,) in which all a;’s are “small”, then the noise stability
Stab,[f] is at least (roughly) %arcsin p. Rephrasing in terms of noise sen-
sitivity, this means NSs[f] is at most (roughly) %\/5 +0(5%2) (see the state-
ment of Theorem 2.45). On the other hand, if some a; were particularly large
then f would be pushed in the direction of the dictator function y;, which has
NSslyil=0 « V8. This observation suggests that all unbiased LTFs f should
have NSs[f1< O(V/5). The unbiasedness assumption also seems inessential,
since biasing a function should tend to decrease its noise sensitivity.

Indeed, the idea here is correct, as was shown by Peres in 1999:

Peres’s Theorem. Let f :{—1,1}" — {—1,1} be any linear threshold function.
Then NSs[f1< O(V/5).

Pleasantly, the proof is quite simple and uses no heavy tools like the
Central Limit Theorem. Before getting to it, let’s make some remarks. First,
Peres’s Theorem shows that the class of all linear threshold functions is what’s
called uniformly noise-stable.

Definition 5.34. Let 9 be a class of Boolean-valued functions. We say that
A is uniformly noise-stable if there exists €:[0,1/2] — [0,1] with €(§) — 0 as
6 — 0% such that NS;[f1 < e(8) holds for all f € 4.

This definition is only interesting for infinite classes 8. (Any class con-
taining functions of only finitely many input lengths is vacuously uniformly
noise-stable; see Exercise 5.34.) By Proposition 5.6 we see that functions
in a uniformly noise-stable class have “almost all of their Fourier weight at
constant degree”; i.e., for all € > 0 there is a 2 € N such that wW>k [f1=e€ for
all f € #. In particular, from Corollary 3.34 we get that if 28 is a uniformly
noise-stable class then its restriction to n-input functions is learnable from
random examples to any constant error in poly(n) time.

Let’s make these observations more concrete in the context of linear
threshold functions. Peres’s Theorem immediately gives that LTFs have their
Fourier spectrum e-concentrated up to degree O(1/e2) (Proposition 3.3) and
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hence the class of LTFs is learnable from random examples with error € in
time nO/e") (Corollary 3.34). The latter result is not too impressive since
it’s been long known that LTF's are learnable in time poly(n, 1/¢) using linear
programming. However, the noise sensitivity approach is much more flexible.
Consider the concept class

€ ={th=g(f1,...,f) | f1,---,fs : {-1,1}" = {—1,1} are LTFs}.

For each A :{—1,1}" — {—1,1} in ¥, Peres’s Theorem and a union bound (Ex-
ercise 2.44) imply that NSs[A] < O(sV6). Thus from Corollary 3.34 we get
that the class %€ is learnable in time n0¢”€), This is the only known way of
showing even that an AND of two LTFs is learnable with error .01 in time
poly(n).

The trick for proving Peres’s Theorem is to employ a fairly general tech-
nique for bounding noise sensitivity using average sensitivity (total influence):

Theorem 5.35. Let 6 € (0,1/2] and let A : N* — R. Let 98 be a class of Boolean-
valued functions closed under negation and identification of input variables.
Suppose that each [ € B with domain {—1,1}* has I[f]1< A(n). Then each
f € B has NSs[f1=< %A(m), where m = [1/6].

Proof. Fix any f : {-1,1}" — {—1,1} from 98. Since noise sensitivity is an
increasing function of the noise parameter (see the discussion surround-
ing Proposition 2.51) we may replace § by 1/m. Thus our task is to upper-
bound NSy,,,[f]1=Prl[f(x) # f(y)] where x ~ {—1,1}" is uniformly random and
y € {-1,1}" is formed from x by negating each bit independently with proba-
bility 1/m. The rough idea of the proof is that this is equivalent to randomly
partitioning x’s bits into m parts and then negating a randomly chosen part.

More precisely, let z € {—1,1}" and let 7 : [n] — [m] be a partition of [n]
into m parts. Define

gz =L = {-11}, g a(w)=f(zow”),

where o denotes entry-wise multiplication and w” = (w1, .. ., W) € {—1,1}".
Since g is derived from f by negating and identifying input variables it
follows that g, ; € 8. So by assumption g, , has total influence I[g, ;] < A(m)
and hence average influence &[g, ;1< %A(m) (see Exercise 2.43(a)).

Now suppose 2 ~ {—1,1}" and x : [n] — [m] are chosen uniformly at ran-
dom. We certainly have

E[8lgzall< 5, Am).

To complete the proof we will show that the left-hand side above is precisely
NS1/m[f]. Recall that in the experiment for average influence &[g] we choose
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w ~ {-1,1)" and j ~ [m] uniformly at random and check if gw) # g(w®?).
Thus

El8lg:all= Pr lg:2@)#g:a@™l= Pr [f(zow™)#f(zo@™)")

It is not hard to see that the joint distribution of zow™, zo(w®) is the same
as that of x, y. To be precise, define o = 771(j), distributed as a random
subset of [n] in which each coordinate is included with probability 1/m, and
define A € {-1,1}" by A; = -1 if and only if i € J. Then

wEt)rJ z[f(z ow”™) # f(z o(w®j)”)] = wErJ z[f(z ow™) # f(zow™ o A)].

But for every outcome of w, 7, j (and hence J, 1), we may replace z with
zow?” since they have the same distribution, namely uniform on {-1,1}".
Then the above becomes

Pr [f(2)# f(zoA)]=NSyy,lf],

w,m,j,2

as claimed. U
Peres’s Theorem is now a simple corollary of Theorem 5.35.

Proof of Peres’s Theorem. Let 2 be the class of all linear threshold func-
tions. This class is indeed closed under negating and identifying variables.
Since each linear threshold function on m bits is unate (i.e., monotone up to
negation of some input coordinates, see Exercises 2.5, 2.6), its total influence
is at most v/m (see Exercise 2.23). Applying Theorem 5.35 we get that for any
LTF f and any 6 €(0,1/2],

NSslfls Lvm=1vm  (for m=1/5))
<0(V5). O

Remark 5.36. Our proof of Peres’s Theorem attains the upper bound /1/|1/6].
This is at most v/3/2v/8 for all & € (0,1/2] and it’s also v/3 + O(6%2) for small &.
To further improve the constant we can use Theorem 2.33 in place of Exer-
cise 2.23; it implies that all unate m-bit functions have total influence at most
V2/m\/m +0(m~Y2). This lets us obtain the bound NS;[f]< v2/1v5 + 0(5%?)
for all LTF f.

Recall from Theorem 2.45 that NS;[Maj, ] ~ %\/5 for large n. Thus the
constant v'2/7 in the bound from Remark 5.36 is fairly close to optimal. It
seems quite likely that majority’s % is the correct constant here. There is
still slack in Peres’s proof because the random functions g, » arising in Theo-
rem 5.35 are unlikely to be majorities, even if f is. The most elegant possible
result in this direction would be to prove the following conjecture of Benjamini,
Kalai, and Schramm:
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Majority Is Least Stable Conjecture. Let f:{-1,1}" — {—1,1} be a linear
threshold function, n odd. Then for all p €[0,1], Stab,[f]= Stab,[Maj,,].

(This is a precise statement about majority’s noise stability within the class
of LTF's; the Majority Is Stablest Theorem refers to its noise stability within
the class of small-influence functions.) However, Sivakanth Gopi and others
found a counterexample to the above conjecture, already for n = 5. A plausible
replacement would be to conjecture that Stab,[f]= %arcsinp for all linear
threshold functions f.

A challenging problem in this area is to extend Peres’s Theorem to poly-
nomial threshold functions. Let

P p=1{f {-1,1}" = {-1,1}| f is a PTF of degree at most k}, 2, = U‘@n,k-
n

Peres’s Theorem shows that the class & (i.e., LTFs) is uniformly noise-stable.
Is the same true of %%? What about £?1¢o? More quantitatively, what upper
bound can we prove on NS;[f] for f € 22,7 Since &%, is closed under negating
and identifying variables, a natural approach to bounding the noise sensitivity
of PTFs is to again use Theorem 5.35. For example, if we could show that
I[f1=o(n) for all f € 27, we could conclude that NSs[f]1=05(1) for all f € &7;
i.e., that &7, is uniformly noise-stable. (In fact, the total influence approach
to bounding noise sensitivity is not just sufficient but is also necessary; see
Exercise 5.40.) More ambitiously, if we could show that I[f] < O(1)y/n for
all f € 22, ;, then it would follow that NS;[f]1=< O (V6 for all f € B, strictly
generalizing Peres’s Theorem. In fact, a conjecture of Gotsman and Linial
dating back to 1990 proposes an even more refined bound:

Gotsman-Linial Conjecture. Let f € 2, ;. Then I[f] < O;(1)y/n. More
strongly, I[f1=< O(k)\/n. Most strongly, the f € 2, 1, of maximal total influence
is the symmetric one f(x) = sgn(p(x1+---+x,)), where p is a degree-k univariate
polynomial which alternates sign on the k + 1 values of x1 +--- +xy closest to 0.

The strongest form of the Gotsman—Linial Conjecture is true when &k =1,
by Theorem 2.33. However, even for £ = 2 there was no progress on the con-
jecture for close to 20 years. At that point two independent works [DHK' 10,
HKM10] showed that every f € 9, satisfies both I[f] < O(n'-12") and
I[f] < 200 p1-VO®)  The former (essentially weaker) bound has the advan-
tage of an elementary proof; see Exercise 5.45. It also suffices to show that &2,
the class of degree-k PTFs, is indeed uniformly noise-stable. This gives a nice
kind of converse to Proposition 5.6, which showed that every function in a
uniformly noise-stable class is close to being a constant-degree PTF.

The latest progress on the Gotsman-Linial Conjecture is the following
theorem of Kane [Kan12], which comes quite close to proving it:
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Theorem 5.37. Every f € 2, ;, satisfies I[f1</n -(2*logn)O%logh) 1t follows
(via Theorem 5.35) that for a fixed k € N*t, every f € 9, satisfies NSs[f]1 <
V5 - polylog(1/5).

5.6. Exercises and notes

5.1 (a) Suppose [ :{-1,1}* - {-1,1} is an LTF. Show that it can be expressed
as f(x) =sgn(ag+aixi +---a,x,) where the a;’s are integers. (Hint:
First obtain rational a;’s by a perturbation.)
(b) Show also that a degree-d PTF has a representation in which all of
the degree-d polynomial’s coefficients are integers.

5.2 Let f(x)=sgn(ag+aix1+---a,x,) be an LTF.
(a) Show that if ag =0, then E[f]= 0. (Hint: Show that f is in fact an
odd function.)
(b) Show that if ag = 0, then E[f] = 0. Show that the converse need not
hold.
(c) Suppose g :{-1,1}* — {-1,1} is an LTF with E[g] = 0. Show that g
can be represented as g(x) = sgn(cix1 + -+ cpXxy).
5.3 Suppose f(x) =sgn(ag+aixi +---apx,) is an LTF with |a1| = |ag|=--- =
la,|. Show that Infi[f]=Infs[f]=--- =Inf,[f]. (Hint: Why does it suffice
to prove this for n = 27?)

5.4 (a) Show that the number of functions f :{-1,1}" — {—1,1} that are LTF's
is at most 270, (Hint: Chow’s Theorem.)
(b) More generally, show that the number of functions f : {-1,1}" —
{—1,1} that are degree-k PTF's is at most on**1+0(),

5.5 (a) Suppose ¢ : {—1,1}* — R is defined by £(x) = ag + a1x1 + --- + anx,.
Define ¢:{-1,1}""1 — R by #(xo,...,%n) = QX0 +Q1X1 + - ApXp. Show
that | Z]l1 = 1211 and [[£]12 = | ¢]|2.

(b) Complete the proof of Theorem 5.2.
5.6 Let f:{—1,1}* — {—1,1} be an unbiased linear threshold function. Show

that Inf;[f]= \/%71 for some i € [n], improving the KKL Theorem for LTFs.

5.7 Consider the following “correlation distillation” problem (cf. Exercise 2.56).
For each i € [n] there is a number p; € [-1,1] and an independent se-
quence of pairs of p;-correlated bits, (agl),bgl)), (aiz),b(im), (a§3),b§3)), ete.
Party A on Earth has access to the stream of n-bit strings a®, a?,
a® .. . anda party B on Venus has access to the stream b(l), b(2), b(3), e
Neither party knows the numbers p1,...,0,. The goal is for B to estimate
these correlations. To assist in this, A can send a small number of bits
to B. A reasonable strategy is for A to send F@D), f(@a®), f@®),...toB,
where f:{-1,1}" — {-1,1} is some Boolean function. Using this informa-
tion B can try to estimate E[f(a)b;] for each i.
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5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

(a) Show that E[f(a)b;]1=f(i)p;.

(b) This motivates choosing an f for which all 7(;) are large. If we also
insist all £(i) be equal, show that majority functions f maximize this
common value.

For n =2, let f : {-1,1}* — {—1,1} be a randomly chosen function (as in
Exercise 1.7). Show that [[f]l. < 2v/n2 ™2 except with probability at
most 277,

Prove Theorem 5.8.

(a) Give as simple a proof as you can that the parity function y,;:{-1,1}" —
{—1,1} is not a PTF of degree n — 1.

(b) Show that if f: {-1,1}" — {-1,1} is not +y[,], then it is a PTF of
degree n — 1. (Hint: Consider f=""1.)

For each k£ € N*, show that there is a degree-k PTF f with W=¢[f]<21%.

In this exercise you will show that threshold-of-parities circuits can be
effectively simulated by threshold-of-threshold circuits, but not the con-
verse.

(a) Let f:{-1,1}" — {-1,1} be a symmetric function. Show that f is
computable as the sum of at most 2n LTF's, plus a constant.

(b) Deduce thatif f: {—1,1}* — {—1,1} is computable by a size-s threshold-
of-parities circuit, then it is also computable by a size-2ns threshold-
of-thresholds circuit.

(c) Show that the complete quadratic function CQ,, : 5 — {-1,1} (see Ex-
ercise 1.1) is computable by a size-2n threshold-of-thresholds circuit.

(d) Assume n even. Show that any threshold-of-parities circuit for CQ,,
requires size 2"/2.

Let f:{-1,1}Y* — {—1,1} be computable by a DNF of size s. Show that
f has a PTF representation of sparsity O(ns®). (Hint: Approximate the
ANDSs using Theorem 5.12.) Can you improve this bound to O(ns2)?

In contrast to the previous exercise, show that there is a function f :
{-1,1}* — {-1,1} computable by a depth-3 AC? circuit (see Chapter 4.5)
but requiring threshold-of-parities circuits of size at least n1°6”. (Hint:
Involve the inner product mod 2 function and Exercise 4.12.)

Let & be a nonempty collection of subsets S < [n]. For each a € {-1,1}",
write 1y : {-1,1}" — {0, 1} for the indicator of {a}, write li} H{-1,1}"-R
for Y gcz 1/{;}(8)953, and write v, = % . li}.

(a) Show that w,(a) = 1 and E[y?2] = ﬁ Show also that for all x €

{(=1,1", Y0 () = (@) and ¥qpx Ya(®)? = 25 - 1.
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(b) Fix 0<e< 1 and suppose |F|=(1- %)2”. Let f:{-1,1}* - {-1,1} be
a random function as in Exercise 1.7. Show that for each x € {—1,1}",
except with probability at most 47" we have |} ;.42 (@)@, (x)| <e.

(c) Deduce that for all but a 27" fraction of functions f : {-1,1}* — {-1,1},
there a multilinear polynomial g : {—1,1}" — IR supported on the mono-
mials {ys : S € &#} such that ||f —qllc <E€.

(d) Deduce that all but a 27" fraction of functions f : {-1,1}" — {-1,1}
have PTF representation of degree at most n/2 + O(y/nlogn).

5.16 (a) Show that in the Berry—Esseen Theorem we can also conclude
|Pr[S <ul-PrlZ <ul| <cy.

(Hint: You'll need that lims_.¢+ Pr[Z <u —6]1=Pr[Z < u].)
(b) Deduce that if I € R is any interval, we can also conclude

|Pr[S elIl-Pr[Z c ]| <2cy.

5.17 Show that the assumptions E[X;] =0 and Z?ZIVar[X ;1=1in the Berry—
Esseen Theorem are not restrictive, as follows. Let X1,...,X, be indepen-
dent random variables with finite means and variances. Let S = Z?ZIX i
and let Z ~ N(y,0?), where p =Y  E[X;]and 0 =Y, Var[X;]. Assum-
ing 02 > 0, show that for all u € R,

|Pr[S < u]-Pr[Z < u]| < cela?,
where

n
€=

1X; ~ELX 113
i=1
5.18 (a) Use the generalized Binomial Theorem to compute the power series
for (1 —22)_1/2, valid for |z]| < 1.
(b) Integrate to obtain the power series for arcsinz given in (5.9), valid
for |z| < 1.
(¢) Confirm that equality holds also for z = +1.

5.19 Verify that the random vector S defined in (5.7) has E[gl] = E[§2] =0,

E[D_S)?] = E[gg] = 1, E[glgz] =p; i.e., E[g] - g and COV[g] - [i i] ‘

5.20 Prove Corollary 5.20.

5.21 Fix n odd. Using Theorem 5.19 show that IMaTn(S )| is a decreasing func-
tion of |S| for odd 1 < |S| = ”T_l Deduce (using also Corollary 5.20) that

1Maj, floo = Maj, ({1) ~ 22,
5.22 Prove Corollary 5.21.
5.23 Prove Theorem 5.18. (Hint: Corollary 5.21.)

5.24 Complete the proof of Theorem 5.22 by showing that (1 - kni + %)‘1/ 2<
1+2k/n for all 1 <k < n/2.
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5.25 Using just the facts that Stab,[Maj,] — %arcsin p for all pe[-1,1] and
that Stab,[Maj,] = ¥ ;-0 W*[Maj, 1p*, deduce that lim,_.o, W*[Maj, ] —
[pk](% arcsinp) for all £ € N. (Hint: By induction on %, always taking p
“small enough”.)

=2j+14 (m)L . 2m+1 (2m)
m )

5.26 (a) For 0 <j <m integers, show that ﬂMaj2m+1 l1= ot g
(b) Deduce [Majg,, 111 = E [gxt |- 221 (2™), where X ~ Binomial(m,1/2).

(c) Deduce [Maj, fl; ~ %%271/2.

5.27 (a) Show that for each odd % € N,
(2)* 132 <[p*1(2 arcsinp) < (2)** & ~32(1 + O(1/R)).

T

(Hint: Stirling’s approximation.)
(b) Prove Corollary 5.23. (Hint: For the second statement you’ll need to
)3/

approximate the sum } ,4q j>% (% 2 j~%2 by an integral.)

5.28 For integer 0 < j < n, define £ : {-1,1}" — R by £j(x) = Z|S|:J~xs. Since

Xj is symmetric, the value £(x) depends only on the number z of —1’s

in x; or equivalently, on Z?zlxi. Thus we may define K;:{0,1,...,n} = R

by K ;(z) = Zj(x) for any x with }_; x; = n —2z.

(@) Show that K;(z) can be expressed as a degree-;j polynomial in z. It
is called the Kravchuk (or Krawtchouk) polynomial of degree j. (The
dependence on n is usually implicit.)

(¢) Show for p € [-1,1] that Z}‘zojgj(x)pj =2"Pr(y=(1,...,1)], where y =
Np(x).

(d) Deduce the generating function identity K ;(z) = [/ 11— pP (1 +p)*73).

5.29 Prove Proposition 5.24.

5.30 Prove Proposition 5.25 using the Central Limit Theorem. (Hint for W[, ]:
use symmetry to show it equals the square of E[f,,(x)}" \/iﬁxi].)

5.31 Consider the setting of Theorem 5.16. Let S =) ; a;x; where x ~ {—1,1}",
and let Z ~ N(0, 1).
(a) Show that Pr[|S|=¢], Pr[|Z|=t] < 2exp(—t2/2) for all ¢ = 0.
(b) Recalling E[[Y ] = [;°Pr[|Y| = ¢1dt for any random variable Y, use
the Berry—Esseen Theorem (and Remark 5.15, Exercise 5.16) to show

[EI1S 11~ EI1Z1]] < 0T + exp(~T%/2)

for any T'= 1.

(c¢) Deduce |E[|S|]1- V2/7| < O(e\/log(1/e)).

(d) Improve O(e+/log(1/€)) to the bound O(e) stated in Theorem 5.16 by
using the nonuniform Berry-Esseen Theorem, which states that the
bound cy in the Berry—Esseen Theorem can be improved to Cy - Tluﬁ*
for some constant C.
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5.32

5.33

5.34

5.35

5.36

5.37
5.38

Consider the sequence of LTF's defined in Proposition 5.25. Show that
,}i_,rf,loStabP[f"] = Ap(w).

Here 1 = ®(t) and Ap(u) is the Gaussian quadrant probability defined
by Ap(u) = Prlzy > t,2z9 > t], where 21,22 are standard Gaussians with
correlation E[z122] = p. Verify also that A,(a) =Pr[z; <t,z5 <¢] where
a=d@).

In this exercise you will complete the justification of Theorem 5.17 using
the following multidimensional Berry-Esseen Theorem:

Theorem 5.38. Let X1,...,X,, be independent R -valued random vectors,
each having mean zero. Write S =37 ; X; and assume X = Cov[S] is
invertible. Let Z ~ N(0,X) be a d-dimensional Gaussian with the same
mean and covariance matrix as S. Then for all convex sets U < RY,

|Pr[S € U]-Pr(Z e U] < CdYy,

where C is a universal constant, y =Y."_; E[|Z712X; ||§], and | - ||2 denotes
the Euclidean norm on RZ.

(@) Let X = 1
0

i’] where p € (—1,1). Show that

S | [
o 1]l0 A-p»7|-p 1]

eR2.
(¢) Complete the proof of Theorem 5.17.

Let 28 be a class of Boolean-valued functions, all of input length at most n.
Show that NSs[f1< nd for all f € 28 and hence 28 is uniformly noise-stable
(in a sense, vacuously). (Hint: Exercise 2.42.)

+a
+a

(b) Compute y' =1y for y =

Give a simple proof of the following fact, which is a robust form of the
edge-isoperimetric inequality (for volume 1/2) and a weak form of the
FKN Theorem: If f:{-1,1}* - {-1,1} has E[f]1=0and I[f1< 1+9, then f
is O(d)-close to +y; for some i € [n]. In fact, you should be able to achieve
d-closeness (which can be further improved using Theorem 5.33). (Hint:
Upper- and lower-bound ) ; f (i)? < (max; | ]? @ONE; | f (7)) using Proposi-
tion 3.2 and Exercise 2.5(a).)

Show that Theorem 5.33 is essentially optimal by exhibiting functions
fi{-1,1)" — {-1,1} with (1) = 1—-6/2 and W[f] =1 -6 + Q(6210g(1/6)),
for a sequence of § tending to 0.

Prove Corollary 5.32.
Fill in the details of the proof of Theorem 5.33.
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5.39

5.40

5.41

5.42

5.43

5.44

5.45

Show that if f: {-1,1}* — {-1,1} is an LTF, then f—ﬁNS(s[f] < O(1V5).
(Hint: The only fact needed about LTF's is the corollary of Peres’s Theorem
that W2*[f1< O(1/VE) for all k.)

As discussed in Section 5.5, Theorem 5.35 implies that an upper bound on
the total influence of degree-k PTF's is sufficient to derive an upper bound
on their noise sensitivity. This exercise asks you to show necessity as well.
More precisely, suppose NSs[f]1 < €(d) for all f € &2,. Show that I[f] <
O(e(1/n)-n) for all f € 22, ;. Deduce that &7, is uniformly noise-stable if
and only if I[f]1= o(n) for all f € 27, ;, and that NSs[f]1=<O(k Vé)forall fe
2y, if and only if I[f] < O(k+/n) for all f € 2, ;. (Hint: Exercise 2.43(c).)

Estimate carefully the asymptotics of I[f], where f € PTF, ;, is as in the
strongest form of the Gotsman—Linial Conjecture.

Let A = {-1,1}" have cardinality a2", a < 1/2. Thinking of {-1,1}" c R",
let ua € R™ be the center of mass of A. Show that p4 is close to the origin
in Euclidean distance: [|[p4ll2 < O(y/log(1/a)).

Show that the Gaussian isoperimetric function satisfies %" = —1/% on
(0,1). Deduce that % is concave.

Fix a €(0,1/2). Let f :{-1,1}" — [-1,1] satisfy E[|f|]] < a and If(i)l <e€
for all i € [n]. Show that W1[f] < %(a)? + Ce, where % is the Gaussian
isoperimetric function and where the constant C may depend on a. (Hint:
You will need the nonuniform Berry—Esseen Theorem from Exercise 5.31.)

In this exercise you will show by induction on % that Inflf] < 2n1~1 2" for

all degree-k PTFs f :{-1,1}" — {—1,1}. The £ =0 case is trivial. So for

k >0, suppose [ = sgn(p) where p:{-1,1}" — R is a degree-k polynomial

that is never 0.

(a) Show for i € [n] that E[f(x)x;sgn(D; p(x))] = Inf;[f]. (Hint: First use
the decomposition f = x;D;f + E;f to reach E[D;f - sgn(D;p)]; then
show that D;f = sgn(D; p) whenever D; f #0.)

(b) Conclude that I[f1< E[|}; x;sgn(D; p(x))|]. Remark: When £ =2 and
thus each sgn(D;p) is an LTF, it is conjectured that this bound is
still O(y/n).

(¢) Apply Cauchy—Schwarz and deduce

I[f1< \/n + Y Elwx;xjsgn(D; p(x))sgn(D;p(x))].
i#]

(d) Use Exercise 2.19 and the AM-GM inequality to obtain

I[f]< \/n +_Tisgn(D;p)].

(e) Complete the induction.
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(f) Finally, deduce that the class of degree-£ PTF's is uniformly noise-
stable, specifically, that every degree-k PTF f satisfies NSs5[f]< 356/ 2t
for all § € (0,1/2]. (Hint: Theorem 5.35.)

Notes. Chow’s Theorem was proved by independently by Chow [Cho61] and
by Tannenbaum [Tan61] in 1961; see also Elgot [Elg61]. The generaliza-
tion to PTFs (Theorem 5.8) is due to Bruck [Bru90], as is Theorem 5.10 and
Exercise 5.12. Theorems 5.2 and 5.9 are from Gotsman and Linial [GL94]
and may be called the Gotsman—Linial Theorems; this work also contains the
Gotsman-Linial Conjecture and Exercise 5.11. Conjecture 5.3 should be con-
sidered folklore. Corollary 5.13 was proved by Bruck and Smolensky [BS92];
they also essentially proved Theorem 5.12 (but see [SB91]). Exercise 5.13
is usually credited to Krause and Pudlak [KP97]. The upper bound in Exer-
cise 5.4 is asymptotically sharp [Zue89]. Exercise 5.15 is from O’Donnell and
Servedio [OS08].

Theorem 2.33 and Proposition 2.58, discussed in Section 5.2, were essen-
tially proved by Titsworth in 1962 [Tit62]; see also [Tit63]. More precisely,
Titsworth solved a version of the problem from Exercise 5.7. His motivation
was in fact the construction of “interplanetary ranging systems” for measuring
deep space distances, e.g., the distance from Earth to Venus. The connection
between ranging systems and Boolean functions was suggested by his advisor,
Solomon Golomb. Titsworth [Tit62] was also the first to compute the Fourier
expansion of Maj,. His approach involved generating functions and contour
integration. Other approaches have used special properties of binomial co-
efficients [Bra87] or of Kravchuk polynomials [Kal02]. The asymptotics of
Wk [Maj, ] described in Section 5.3 may have first appeared in Kalai [Kal02],
with the error bounds being from O’Donnell [0’D03]. Kravchuk polynomials
were introduced by Kravchuk [Kra29].

The Berry—Esseen Theorem is due independently to Berry [Ber41] and
Esseen [Ess42]. Shevtsova [Shel3] has the record for the smallest known con-
stant B that works therein: roughly .5514. The nonuniform version described
in Exercise 5.31 is due to Bikelis [Bik66]. The multidimensional version
Theorem 5.38 stated in Exercise 5.33 is due to Bentkus [Ben04]. Sheppard
proved his formula in 1899 [She99]. The results of Theorem 5.18 may have
appeared first in O’'Donnell [0’D04, O’D03].

The Level-1 Inequality should probably be considered folklore; it was per-
haps first published in Talagrand [Tal96] and we have followed his proof.
The first half of the 72—[ Theorem is from Khot et al. [KKMOO07]; the second
half is from Matulef et al. [MORS10]. Theorem 5.33, which improves the
FKN Theorem to achieve “closeness” /4, was independently obtained by Jen-
drej, Oleszkiewicz, and Wojtaszczyk [JOW12], as was Exercise 5.36 showing
optimality of this closeness. The closeness achieved in the original proof of
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the FKN Theorem [FKNO2] was 6/2; that proof (like ours) relies on having
a separate proof of closeness O(§). Kindler and Safra [KS02, Kin02] gave
a self-contained proof of the 6/2 bound relying only on the Hoeffding bound.
The content of Exercise 5.35 was communicated to the author by Eric Blais.
The result of Exercise 5.44 is from [KKMOO07]; Exercise 5.42 was suggested
by Rocco Servedio.

Peres’s Theorem was published in 2004 [Per04] but was mentioned as
early as 1999 by Benjamini, Kalai, and Schramm [BKS99]. The work [BKS99]
introduced the definition of uniform noise stability and showed that the class
of all LTF's satisfies it; however, their upper bound on the noise sensitivity
of LTFs was O(6V%), worse than Peres’s. The proof of Peres’s Theorem that
we presented is a simplification due to Parikshit Gopalan and incorporates
an idea of Diakonikolas et al. [DHK*10, HKM10]. Regarding the total in-
fluence of PTFs, the work of Kane [Kan12] shows that every degree-k PTF
on n variables has I[f] < poly(k)nl~VYO® which is better than Theorem 5.37
for certain superconstant values of k. Exercise 5.39 was suggested by Nitin
Saurabh.
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Chapter 6

Pseudorandomness and
Fo-polynomials

In this chapter we discuss various notions of pseudorandomness for Boolean
functions; by this we mean properties of a fixed Boolean function that are
in some way characteristic of randomly chosen functions. We will see some
deterministic constructions of pseudorandom probability density functions
with small support; these have algorithmic application in the field of deran-
domization. Finally, several of the results in the chapter will involve interplay
between the representation of f : {0,1}" — {0,1} as a polynomial over the reals
and its representation as a polynomial over IFs.

6.1. Notions of pseudorandomness

The most obvious spectral property of a truly random function f :{-1,1}"* —
{—1,1} is that all of its Fourier coefficients are very small (as we saw in Exer-
cise 5.8). Let’s switch notation to f :{—1,1}" — {0, 1}; in this case f(®) will not
be very small but rather very close to 1/2. Generalizing:

Proposition 6.1. Let n> 1 and let f :{-1,1}" — {0,1} be a p-biased random
function; i.e., each f(x) is 1 with probability p and 0 with probability 1— p,
independently for all x € {—1,1}". Then except with probability at most 27", all
of the following hold:

IF(@)-pls2vn2™?,  VS#e |f(S)=2/n27"

Proof. We have ?(S )=, 2%xs f(x), where the random variables f(x) are
independent. If S = @, then the coefficients 2% S sum to 1 and the mean

143
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of £(S) is p; otherwise the coefficients sum to 0 and the mean of £(S) is 0.
Either way we may apply the Hoeffding bound to conclude that

Pr(|7(S) — E[F(S)]| = t] < 2exp(—#2-2""1)

for any ¢ > 0. Selecting ¢ = 2/n27"2, the above bound is 2exp(—2n) < 47",
The result follows by taking a union bound over all S c[n]. U

This proposition motivates the following basic notion of “pseudorandom-
ness”:

Definition 6.2. A function f : {—1,1}" — R is e-regular (sometimes called
e-uniform) if |f(S)| <€ for all S # @.

Remark 6.3. By Exercise 3.9, every function f is e-regular for ¢ = ||f||;. We
are often concerned with f :{—1,1}* — [-1,1], in which case we focus on ¢ < 1.

Example 6.4. Proposition 6.1 states that a random p-biased function is
(2y/n272)-regular with very high probability. A function is 0-regular if and
only if it is constant (even though you might not think of a constant func-
tion as very “random”). If A < IF§ is an affine subspace of codimension k&
then 14 is 2 *-regular (Proposition 3.12). For n even the inner product
mod 2 function and the complete quadratic function, IP,,CQ, : F5 — {0,1},
are 272 1_regular (Exercise 1.1). On the other hand, the parity functions
xs : {-1,1}" — {—1,1} are not e-regular for any € < 1 (except for S = @). By
Exercise 5.21, Maj,, is \/iﬁ-regular.

The notion of regularity can be particularly useful for probability density
functions; in this case it is traditional to use an alternate name:

Definition 6.5. If ¢ : F§ — R is a probability density which is e-regular,
we call it an e-biased density. Equivalently, ¢ is an e-biased density if and
only if [Ex-y[xy(®)]| <€ for all y € IE/‘\Z \ {0}; thus one can think of “e-biased” as
meaning “at most e-biased on subspaces”. Note that the marginal of such a
distribution on any set of coordinates J < [n] is also e-biased. If ¢ is @4 =
14/E[14] for some A € 5 we call A an e-biased set.

Example 6.6. For ¢ a probability density we have |¢l1 = E[¢] =1, so every
density is 1-biased. The density corresponding to the uniform distribution
on 7, namely ¢ = 1, is the only 0-biased density. Densities corresponding to
the uniform distribution on smaller affine subspaces are “maximally biased”:
if A cIF§ is an affine subspace of dimension less than n, then ¢4 is not e-
biased for any € < 1 (Proposition 3.12 again). If E = {(0,...,0),(1,...,1)}, then
E is a 1/2-biased set (an easy computation, see also Exercise 1.1(h)).

There is a “combinatorial” property of functions f that is roughly equiv-
alent to e-regularity. Recall from Exercise 1.29 that | f ﬂi has an equivalent
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non-Fourier formula: Ey y . [f(x)f (y)f(2)f (x+y+2)]. We show (roughly speak-
ing) that f is regular if and only if this expectation is not much bigger than
E[f]*= Exy 2 wlf (0 f(0f(2)f W)l

Proposition 6.7. Let f : 5 — R. Then

(1) If f is e-regular, then ﬂfﬂi —-E[f]* <€2-Var[f].
(2) If f is not e-regular, then ﬂfﬂi —E[f]* = ¢

Proof. If f is e-regular, then

Ifis-EIf1t = Y F(S)* <max{f(S)%)- Y F(S)? <€ Varlf].
S#® S#e S#o
On the other hand, if f is not e-regular, then | ]? (T)| = € for some T # @; hence
I713 is at least /(@) + F(T)* = EIf1* +¢. O

The condition of e-regularity — that all non-empty-set coefficients are
small — is quite strong. As we saw when investigating the % Theorem in
Chapter 5.4 it’s also interesting to consider f that merely have | f (i)] <€ for
all i € [n]; for monotone f this is the same as saying Inf;[f] < ¢ for i. This
suggests two weaker possible notions of pseudorandomness: having all low-
degree Fourier coefficients small, and having all influences small. We will
consider both possibilities, starting with the second.

Now a randomly chosen f :{-1,1}* — {—1,1} will not have all of its influ-
ences small; in fact as we saw in Exercise 2.12, each Inf;[f]is 1/2 in expec-
tation. However, for any 6 > 0 it will have all of its (1 — §)-stable influences
exponentially small (recall Definition 2.52). In Exercise 6.2 you will show:

Fact 6.8. Fix 6 € [0,1] and let f : {-1,1}* — {—1,1} be a randomly chosen
function. Then for any i € [n],
(1-6/2)"

1-9) _
ElInf 2[f]]= s

This motivates a very important notion of pseudorandomness in the anal-
ysis of Boolean functions: having all stable-influences small. Recalling the
discussion surrounding Proposition 2.54, we can also describe this as having
no “notable” coordinates.

Definition 6.9. We say that f:{—1,1}" — R has (¢,6)-small stable influences,
or no (¢,0)-notable coordinates, if Int(il_‘s)[ f1=<¢€ for each i € [n]. This condition
gets stronger as € and 6 decrease: when § = 0, meaning Inf;[f] < ¢ for all i,
we simply say f has e-small influences.

Example 6.10. Besides random functions, important examples of Boolean-
valued functions with no notable coordinates are constants, majority, and
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large parities. Constant functions are the ultimate in this regard: they have
(0,0)-small stable influences. (Indeed, constant functions are the only ones
with 0-small influences.) The Maj,, function has \/Lﬁ—small influences. To see
the distinction between influences and stable influences, consider the parity
functions ys. Any parity function yg (with S # @) has at least one coordinate
with maximal influence, 1. But if |S| is “large” then all of its stable influences
will be small: We have Inf(il_‘s)[)(S] equal to (1—6)'S"1 when i € S and equal
to 0 otherwise;i.e., ys has ((1-46 )ISI=1 5)-small stable influences. In particular,
xs has (e,6)-small stable influences whenever |S| = ln(éﬂ.

The prototypical example of a function f : {—1,1}" — {-1,1} that does not
have small stable influences is an unbiased k-junta. Such a function has
Var([f]=1 and hence from Fact 2.53 the sum of its (1 — §)-stable influences is
at least (1-6)*"1. Thus Inf‘il_‘s)[f] > (1—-6)*~1YE for at least one i; hence f
does not have ((1 - 6)%/k,5)-small stable influences for any 6 €(0,1). A some-
what different example is the function f(x) = xoMaj,(x1,...,x,), which has
Infg_&[f] >1-/5; see Exercise 6.5(d).

Let’s return to considering the interesting condition that |f(i)| <€ for all
i1 € [n]. We will call this condition (e¢,1)-regularity. It is equivalent to saying
that £=! is e-regular, or that f has at most ¢ “correlation” with every dictator:
[{f,xxi)| <€ for all i. Our third notion of pseudorandomness extends this
condition to higher degrees:

Definition 6.11. A function f :{-1,1}"* — R is (¢, k)-regular if If(S)I <e¢ for all
0 < |S| < k; equivalently, if f =k is e-regular. For k£ = n (or & = 00), this condition
coincides with e-regularity. When ¢ : F§ — R>Y is an (¢, k)-regular probability
density, it is more usual to call ¢ (and the associated probability distribution)
(e,k)-wise independent.

Below we give two alternate characterizations of (e, k)-regularity; how-
ever, they are fairly “rough” in the sense that they have exponential losses
on k. This can be acceptable if & is thought of as a constant. The first char-
acterization is that f is (¢, k)-regular if and only if fixing & input coordinates
changes f’s mean by at most O(¢). The second characterization is the condi-
tion that f has O(e) covariance with every k-junta.

Proposition 6.12. Let f:{-1,1}* =R and let =0, ke N.

(1) If f is (e, k)-regular then any restriction of at most k coordinates changes [’s
mean by at most 2Fe.

(2) If f is not (e,k)-regular then some restriction to at most k coordinates
changes f’s mean by more than e.

Proposition 6.13. Let f:{-1,1}* >R and let =0, ke N.
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(1) If f is (e,k)-regular, then Covlf,h]l < ki€ for any h:{-1,1}" — R with
deg(h) < k. In particular, Covlf,hl< 2¥2¢ for any k-junta h : {-1,1}"* —
{-1,1}

(2) If f is not (¢,k)-regular, then Covlf,h] > € for some k-junta h :{—1,1}" —
{-1,1}

We will prove Proposition 6.12, leaving the proof of Proposition 6.13 to the
exercises.

Proof of Proposition 6.12. For the first statement, suppose f is (¢, k)-regular
and let J <[n], ze {-1, 1}J, where |J| < k. Then the statement holds because

Elf;.1=F(@®)+ ¢¢;cJ Fm) 2"

(Exercise 1.15) and each of the at most 2* terms If(T)zTI = If(T)I is at most €.

For the second statement, suppose that | f (J)| > €, where 0 < |J| <k. Then
a given restriction z € {—1,1} changes f’s mean by

)= Y f(D2T.

p#Tcd
We need to show that |4 |« > €, and this follows from
12lloo = 12X lloo = | ElRxs11 = [A(D)] = | ()] > €. O

Taking € = 0 in the above two propositions we obtain:

Corollary 6.14. For f :{—1,1}* — R, the following are equivalent:
(1) fis(0,k)-regular.
(2) Every restriction of at most k coordinates leaves f’s mean unchanged.
(3) Covlf,h]l=0 for every k-junta h:{-1,1}* — {-1,1}.

If f is a probability density, condition (3) is equivalent to Ex.r[h(x)] = E[h] for
every k-junta h :{-1,1}" — {-1,1}.

For such functions, additional terminology is used:

Definition 6.15. If f : {—1,1}* — {—1,1} is (0, k)-regular, it is also called kth-
order correlation immune. If f is in addition unbiased, then it is called k-
resilient. Finally, if ¢ : F§ — R>Y is a (0, k)-regular probability density, then
we call ¢ (and the associated probability distribution) k-wise independent.

Example 6.16. Any parity function yg : {—1,1}* — {-1,1} with |S| =k +1
is k-resilient. More generally, so is ys:g for any g : {-1,1}" — {—1,1} that
does not depend on the coordinates in S. For a good example of a correlation
immune function that is not resilient, consider 4 : {-1,1}3" — {-1,1} defined
by h = xq,...2m} A X{m+1,...3m}- This h is not unbiased, being True on only a
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1/4-fraction of inputs. However, its bias does not change unless at least 2m
input bits are fixed; hence A is (2m — 1)th-order correlation immune.

We conclude this section with Figure 6.1, indicating how our various no-
tions of pseudorandomness compare:

small influences

/

regular

Ny

low-degree regular

small stable influences
(no notable coordinates)

Figure 6.1. Comparing notions of pseudorandomness: arrows go from
stronger notions to (strictly) weaker ones

For precise quantitative statements, counterexamples showing that no other
relationships are possible, and explanations for why these notions essentially
coincide for monotone functions, see Exercise 6.5.

6.2. Fo-polynomials

We began our study of Boolean functions in Chapter 1.2 by considering their
polynomial representations over the real field. In this section we take a
brief look at their polynomial representations over the field IFo, with False,
True being represented by 0,1 € Fo as usual. Note that in the field g, the
arithmetic operations + and - correspond to logical XOR and logical AND,
respectively.

Example 6.17. Consider the logical parity (XOR) function on n bits, ..
To represent it over the reals (as we have done so far) we encode False, True
by +1 € R; then y[,;:{-1,1}"* — {-1,1} has the polynomial representation
XAn1(x) = x1x9 -+ - x,. Suppose instead we encode False, True by 0,1 € Fg; then
Xin1 : F5 — F2 has the polynomial representation y[,j(x) = x1 +x2 + - + xp.
Notice this polynomial has degree 1, whereas the representation over the
reals has degree n.

In general, let f : 'y — I3 be any Boolean function. Just as in Chapter 1.2
we can find a (multilinear) polynomial representation for it by interpolation.
The indicator function 1) : F§ — IFg for a € [F§ can be written as

lg@= ] « [] @-=, (6.1)

i:a;=1 i:a;=0
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a degree-n multilinear polynomial. (We could have written 1+ x; rather than
1—x; since these are the same in IF'5.) Hence f has the multilinear polynomial
expression

f@)= ) fla)lgyx). (6.2)

n
aclFg

After simplification, this may be put in the form

f@)= Y cgx’, (6.3)
Scln]

where x5 = [l;es x; as usual, and each coefficient cg is in 9. We call (6.3)
the Fao-polynomial representation of f. As an example, if f = y1s] is the parity
function on 3 bits, its interpolation is
Xi31(x) = (1 —21)(1 —x2)xg + (1 — x1)x2(1 — x3) + x1(1 — x22)(1 — x3) + 21202203
=x1+x9+x3 —2(x1x9 +x1x3 + X9x3) + 4x1X9%x3 (6.4)
=x1+x2+x3
as expected. We also have uniqueness of the [F9-polynomial representation;

the quickest way to see this is to note that there are 22" functions F§ —Fo
and also 22" possible choices for the coefficients cg. Summarizing:

Proposition 6.18. Every f :TFj — Vg has a unique F2-polynomial represen-
tation as in (6.3).

Example 6.19. The logical AND function AND, : '} — [F2 has the simple
expansion AND,,(x) = x1x9---x,. The inner product mod 2 function has the
degree-2 expansion IPg, (x1,...,Xn,¥1,...,¥n) =X1Y1 +X2Yy2 +*+ XpnYn.

Since the IF2-polynomial representation is unique we may define IFs-
degree:

Definition 6.20. The [Fg-degree of a Boolean function f : {False, True}* —
{False, True}, denoted degy, (f), is the degree of its [F2-polynomial representa-
tion. We reserve the notation deg(f) for the degree of f’s Fourier expansion.

We can also give a formula for the coefficients of the [Fo-polynomial repre-
sentation:
Proposition 6.21. Suppose f : ' — Fo has Fa-polynomial representation
f(x) = Y.gcnycsxS. Then cg = 2 supp(x)cs ().

Corollary 6.22. Let f :{False, True}" — {False, True}. Then degy,(f) =n if and
only if f(x) = True for an odd number of inputs x.

The proof of Proposition 6.21 is left for Exercise 6.10; Corollary 6.22 is just the
case S =[n]. You can also directly see that c[,] = ), f(x) by observing what
happens with the monomial x1x3 - x, in the interpolation (6.1), (6.2).
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Given a generic Boolean function f : {False, True}* — {False, True} it’s nat-
ural to ask about the relationship between its Fourier expansion (i.e., poly-
nomial representation over R) and its [F2-polynomial representation. In fact
you can easily derive the [Fo-representation from the R-representation. Sup-
pose p(x) is the Fourier expansion of f; i.e., f’s R-multilinear representa-
tion when we interpret False, True as +1 € R. From Exercise 1.9, q(x) =
% — % p(1-2x1,...,1—2x,) is the unique R-multilinear representation for f
when we interpret False, True as 0,1 € R. But we can also obtain g(x) by car-
rying out the interpolation in (6.1), (6.2) over Z. Thus the IFg representation
of f is obtained simply by reducing g(x)’s (integer) coefficients modulo 2.

We saw an example of this derivation above with y[3;. The +1-representation
is x1x2x3. The representation over {0,1} e Z < R is % - %(1 —2x1)(1—2x9)(1 —
2x3), which when expanded equals (6.4) and has integer coefficients. Finally,
we obtain the [F'y representation x1+x2 +x3 by reducing the coefficients of (6.4)

modulo 2.

One thing to note about this transformation from Fourier expansion to [F'a-
representation is that it can only decrease degree. As noted in Exercise 1.11,
the first step, forming q(x) = % - %p(l —2x1,...,1—2x,), does not change the
degree at all (except if p(x) =1, q(x) = 0). And the second step, reducing ¢’s
coefficients modulo 2, cannot increase the degree. We conclude:

Proposition 6.23. Let f:{-1,1}" — {-1,1}. Then degp,(f) < deg(f).

Here is an interesting consequence of this proposition. Suppose that f :
{—1,1}* — {-1,1} is k-resilient; i.e., f(S) =0forall [S|<sk<n. Let g =¥ f;
thus g(S) = f([n]\ S) and hence deg(g) <n—k —1. From Proposition 6.23
we deduce deg,(g) <n—k—1. But if we interpret f,g: F5 — g, then g =
x1+:-++x,+f and hence degp, (g) = degy, (f) (unless f is parity or its negation).
Thus:

Proposition 6.24. Let f :{-1,1}" — {—1,1} be k-resilient, k <n—1. Then
deng(f) <n-k-1

This proposition was shown by Siegenthaler, a cryptographer who was
studying stream ciphers; his motivation is discussed further in the notes in
Section 6.6. More generally, Siegenthaler proved the following result (the
proof does not require Fourier analysis):

Siegenthaler’s Theorem. Proposition 6.24 holds. Further, if  is merely
kth-order correlation immune, then we still have deng(f) <n-Fk(fork<n).

Proof. Pick any monomial x” of maximal degree d = degp,(f) in f’s Fa-
polynomial representation; we may assume d > 1 else we are done. Make
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an arbitrary restriction to the n —d coordinates outside of </, forming func-
tion g : ]FZJ — F5. The monomial x7 still appears in g’s Fo-polynomial repre-
sentation; thus by Corollary 6.22, g is 1 for an odd number of inputs.

Let us first show Proposition 6.24. Assuming f is k-resilient, it is unbi-
ased. But g is 1 for an odd number of inputs so it cannot be unbiased (since
29-1 is even for d > 1). Thus the restriction changed f’s bias, and we must
haven—d >k, henced<n-k-1.

Suppose now f is merely kth-order correlation immune. Pick an arbi-
trary input coordinate for g and suppose its two possible restrictions give
subfunctions g¢ and g1. Since g has an odd number of 1’s, one of g has
an odd number of 1’s and the other has an even number. In particular, gg
and g1 have different biases. One of these biases must differ from f’s. Thus
n—d+1>Fk, henced <n-k. U

We end this section by mentioning another bound related to correlation
immunity:

Theorem 6.25. Suppose f :{—1,1}" — {-1,1} is kth-order correlation immune
but not k-resilient (i.e., E[f1#0). Then k+1 < %n

The proof of this theorem (left to Exercise 6.14) uses the Fourier expan-
sion rather than the [Fo-representation. The bounds in both Siegenthaler’s
Theorem and Theorem 6.25 can be sharp in many cases; see Exercise 6.15.

6.3. Constructions of various pseudorandom functions

In this section we give some constructions of Boolean functions with strong
pseudorandomness properties. We begin by discussing bent functions:

Definition 6.26. A function f : IFZ — {—1,1} (with n even) is called bent if
If(NI =272 for all y € ]FE

Bent functions are 272-regular. If the definition of e-regularity were
changed so that even | ]? (0)| needed to be at most €, then bent functions would
be the most regular possible functions. This is because }_, i (y)2 =1for any f:
IF’zl — {—1,1} and hence at least one | ]? (y)] must be at least 2712 In particular,
bent functions are those that are maximally distant from the class of affine
functions, {+y, :y € ]P/‘Z‘}.

We have encountered some bent functions already. The canonical example
is the inner product mod 2 function, IP,(x) = y(x1xn/2+1 +X2Xn/242+ - +Xp/2%5).
(Recall the notation y(b) = (~1)®.) For n = 2 this is just the AND, function
% + %xl + %xz - %xle, which is bent by inspection. For general n, the bentness
is a consequence of the following fact (proved in Exercise 6.16):

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.



152 6. Pseudorandomness and IF'2-polynomials

Proposition 6.27. Let f :Fj — {-1,1} and g : IE‘;’ — {=1,1} be bent. Then
feg: IF’Z”"’ — {~1,1} defined by (f ® g)(x,x") = f(x)g(x’) is also bent.

Another example of a bent function is the complete quadratic function
CQ,(x) = ¥(X1<i<j<n xix;) from Exercise 1.1. Actually, in some sense it is the
“same” example, as we now explain.

Proposition 6.28. Let f :F5 — {-1,1} be bent. Then +y,-f is bent for any
Y€ F2, as is f oM for any invertible linear transformation M :IFg — IF'g.

Proof. Multiplying by —1 does not change bentness, and both y,-f and fo M
have the same Fourier coefficients as f up to a permutation (see Exercise 3.1).
O

We claim that CQ,, arises from f =IP, as in Proposition 6.28. In the
case n = 4, this is because Y. 1<j<j<4 %;x;j = (x1 +x3)(x2 +x3) +(x1 + X2 +x3)x4 +x3
over [Fo; thus

1 010

111 0]. . .
CQy(x) =TP4(Mx)- x(0,0,1,00(x), where M = 0110 is invertible.

0 001

The general case is left to Exercise 6.20. In fact, every bent f with degy, (f) <2
arises by applying Proposition 6.28 to the inner product mod 2 function; see
Exercise 6.19. There are other large families of bent functions; however,
the problem of classifying all bent functions is open and seems difficult. We
content ourselves by describing one more family:

Proposition 6.29. Let f : ]Fg" — {=1,1} be defined by f(x,y) =1Pg,(x,y)g(y)
where g :{-1,1}* — {—1,1} is arbitrary. Then f is bent.

Proof. We will think of y € ]ﬁl, so IPg,(x,y) = x,(x). Well also write a generic

—

YE ]F%n as (y1,Y2)- Then indeed

fly) = Ey[xy(x)g(y)x(ﬂ,yz)(x, y)= I;: g(y)xyz(y)l*xl[xy+yl(x)]
= El[g(y)xm(y)l{ym:m] =27"g(yDxy,(yn)=227". O

We next discuss explicit constructions of small e-biased sets, which are of
considerable use in the field of algorithmic derandomization. The most basic
step in a randomized algorithm is drawing a string x ~ IFj from the uniform
distribution; however, this has the “cost” of generating n independent, random
bits. But sometimes it’s not necessary that x precisely have the uniform
distribution; it may suffice that x be drawn from an e-biased density. If we
can deterministically find an e-biased (multi-)set A of cardinality, say, 2¢, then
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we can generate x ~ ¢4 using just ¢ independent random bits. We will see
some example derandomizations of this nature in Section 6.4; for now we
discuss constructions.

Fix £ € N* and recall that there exists a finite field IFor with exactly 2¢
elements. It is easy to find an explicit representation for [F5r — a complete
addition and multiplication table, say — in time 29, (In fact, one can compute
within [ even in deterministic poly(¢) time.) The field elements x € 'y, are
naturally encoded by distinct ¢-bit vectors; we will write enc : Fgr — IFg for
this encoding. The encoding is linear; i.e., it satisfies enc(0) = (0,...,0) and
enc(x +y) = enc(x) + enc(y) for all x,y € Fqr.

Theorem 6.30. There is a deterministic algorithm that, given n =1 and 0 <
€ < 1/2, runs in poly(n/e) time and outputs a multiset A CIFj of cardinality at
most 16(n/e)? with the property that ¢4 is an e-biased density.

Proof. It suffices to obtain cardinality (n/e)? under the assumption that
e=2" and n = 27t are integer powers of 2. We will describe a probabil-
ity density ¢ on IFj by giving a procedure for drawing a string y ~ ¢ which
uses 2¢ independent random bits. A will be the multiset of 22¢ = (n/e)? possi-
ble outcomes for y. It will be clear that A can be generated in deterministic
polynomial time. The goal will be to show that ¢ is 27¢-biased.

To draw y ~ ¢, first choose r,s ~ Iy, independently and uniformly. This
uses 2/ independent random bits. Then define the ith coordinate of y by

y; = (enc(r'),enc(s)), i€lnl,

where the inner product (-,-) takes place in Fg . Fixing y € ]F‘Z \ {0}, we need to
argue that | E[y, (] <27*. Now over I},

(v, = Y vilenc(r'),enc(s)) = <Z YieHC(ri),enc(s)> = (enc( ilYiri ), enc(s)),
i=1 i=1 i=

where the last step used linearity of enc. Thus

ELy,(y)] = E[(- 79| = E [E[(-1)(eneerhenctsdy (6.5)

where py :[For — P9/ is the polynomial a — y1a + y202 + - +yna™. This poly-
nomial is of degree at most n, and is nonzero since y # 0. Hence it has at
most n roots (zeroes) over the field [Fy,. Whenever r is one of these roots,
enc(py(r)) = 0 and the inner expectation in (6.5) is 1. But whenever r is not
a root of p, we have enc(p,(r)) # 0 and so the inner expectation is 0. (We are
using Fact 1.7 here.) We deduce that

0 <Ely,(y)]<Prlr is aroot of p,] =< % =27t

which is stronger than what we need. U
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The bound of O(n/e)? in this theorem is fairly close to being optimally
small; see Exercise 6.24 and the notes for this chapter.

Another useful tool in derandomization is that of k-wise independent dis-
tributions. Sometimes a randomized algorithm using n independent random
bits will still work assuming only that every subset of & of the bits is indepen-
dent. Thus as with e-biased sets, it’s worthwhile to come up with deterministic
constructions of small sets A ¢ IFj such that the density function ¢4 is k-wise
independent (i.e., (0,%)-regular). The best known examples have the addi-
tional pleasant feature that A is a linear subspace of I'}; in this case, k-wise
independence is easy to characterize:

Proposition 6.31. Let H be an m x n matrix over [Fg and let A <IF§ be the
span of H’s rows. Then ¢4 is k-wise independent if and only if any sum of at
most k columns of H is nonzero in . (We exclude the “empty” sum.)

Proof. Since @4 = Y yeat Xy (Proposition 3.11), ¢4 is k-wise independent if
and only if |y| > & for every y € AL\ {0}. But ye At ifand only if Hy=0. O

Here is a simple construction of such a matrix with m ~ klogn:

Theorem 6.32. Let k,¢ € N* and assume n =2¢ = k. Then for m =(k—-1)¢ +1,
there is a matrix H € F3'*" such that any sum of at most k columns of H is
nonzero in [F3'.

Proof. Write a1,...,a, for the elements of the finite field IF,,, and consider
the following matrix H' € F%*":

1 1 1

ay ag An

2 2 2

H =| 99 @y an
k-1 k-1 k-1

ay ay a;,

Any submatrix of H' formed by choosing % columns is a Vandermonde matrix
and is therefore nonsingular. Hence any subset of 2 columns of H' is linearly
independent in IFﬁ. In particular, any sum of at most %2 columns of H' is
nonzero in Iﬁ‘fl Now form H € [F]'*" from H' by replacing each entry a; Z>0)
with enc(a;), thought of as a column vector in IE‘g. Since enc is a linear map we
may conclude that any sum of at most £ columns of H is nonzero in F3'. [J

Corollary 6.33. There is a deterministic algorithm that, given integers 1 <
k <n, runs in poly(n*) time and outputs a subspace A < 5 of cardinality at
most 28n*1 such that ¢4 is k-wise independent.
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Proof. It suffices to assume n = 2¢ is a power of 2 and then obtain cardinality
2nk-1 = 9k=DI+1 T1p this case, the algorithm constructs H as in Theorem 6.32
and takes A to be the span of its rows. The fact that ¢4 is k-wise independent
is immediate from Proposition 6.31. O

For constant % this upper bound of O(n*~1) is close to optimal. It can be
improved to O(n'*2l) but there is a lower bound of Q(n'*2!) for constant %;
see Exercises 6.27, 6.28.

We conclude this section by noting that taking an e-biased density within
a k-wise independent subspace yields an (¢, k)-wise independent density:

Lemma 6.34. Suppose H € F3'*" is such that any sum of at most k columns
of H is nonzero in 3!, Let ¢ be an e-biased density on IFy'. Consider drawing
y~and setting z=y H e [F5. Then the density of z is (¢,k)-wise indepen-
dent.

Proof. Suppose y € IE/‘E has 0 < |y| < %k. Then Hy is nonzero by assumption
and hence |E[y,(2)]| = IEy~(p[(—1)yTH7]| <€ since ¢ is e-biased. O

As a consequence, combining the constructions of Theorem 6.30 and The-
orem 6.32 gives an (¢, k)-wise independent distribution that can be sampled
from using only O(log% +loglog(n) + log(1/¢)) independent random bits:

Theorem 6.35. There is a deterministic algorithm that, given integers 1<k <
n and also 0 <€ <1/2, runs in time poly(n/e) and outputs a multiset A €'y of
cardinality O(klog(n)/e)? (@ power of 2) such that ¢ is (€, k)-wise independent.

6.4. Applications in learning and testing

In this section we describe some applications of our study of pseudorandom-
ness.

We begin with a notorious open problem from learning theory, that of
learning juntas. Let € ={f :IFj — F2 | f is a k-junta}; we will always assume
that 2 < O(logn). In the query access model, it is quite easy to learn € exactly
(i.e., with error 0) in poly(n) time (Exercise 3.37(a)). However, in the model of
random examples, it’s not obvious how to learn € more efficiently than in the
nk -poly(n) time required by the Low-Degree Algorithm (see Theorem 3.36).
Unfortunately, this is superpolynomial as soon as k2 > w(1). The state of
affairs is the same in the case of depth-% decision trees (a superclass of ¥),
and is similar in the case of poly(n)-size DNFs and CNFs. Thus if we wish to
learn, say, poly(n)-size decision trees or DNF's from random examples only, a
necessary prerequisite is doing the same for O(logn)-juntas.
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Whether or not w(1)-juntas can be learned from random examples in poly-
nomial time is a longstanding open problem. Here we will show a modest
improvement on the n*-time algorithm:

Theorem 6.36. For k < O(logn), the class ¢ ={f :F5 — 2| f is a k-junta}

can be exactly learned from random examples in time n®% . poly(n).

(The 3/4 in this theorem can in fact be replaced by w/(w + 1), where w is any
number such that n x n matrices can be multiplied in time O(n®).)

The first observation we will use to prove Theorem 6.36 is that to learn k-
juntas, it suffices to be able to identify a single coordinate that is relevant (see
Definition 2.18). The proof of this is fairly simple and is left for Exercise 6.31:

Lemma 6.37. Theorem 6.36 follows from the existence of a learning algorithm
that, given random examples from a nonconstant k-junta f :IF§ — g, finds
at least one relevant coordinate for f (with probability at least 1—0) in time
n®%  poly(n)-log(1/5).

Assume then that we have random example access to a (nonconstant)
k-junta f : F5 — [F2. As in the Low-Degree Algorithm we will estimate the
Fourier coefficients f (S) for all 1 <|S|<d, where d <k is a parameter to
be chosen later. Using Proposition 3.30 we can ensure that all estimates
are accurate to within (1/3)27%, except with probability most /2, in time
n? - poly(n)-log(1/6). (Recall that 2% < poly(n).) Since f is a k-junta, all of
its Fourier coefficients are either 0 or at least 2% in magnitude; hence we
can exactly identify the sets S for which 7(S) # 0. For any such S, all of the
coordinates i € S are relevant for f (Exercise 2.11). So unless £(S) = 0 for all
1<1|S| <d, we can find a relevant coordinate for f in time n? - poly(n)-log(1/8)
(except with probability at most 6/2).

To complete the proof of Theorem 6.36 it remains to handle the case that
f (S)=0forall 1<|S|=<d;i.e., f is dth-order correlation immune. In this case,
by Siegenthaler’s Theorem we know that degp,(f) <%k —d. (Note that d <k
since f is not constant.) But there is a learning algorithm running in time
0(n)3’ -1og(1/5) that exactly learns any Fa-polynomial of degree at most ¢
(except with probability at most 6/2). Roughly speaking, the algorithm draws
O(n)! random examples and then solves an Fo-linear system to determine the
coefficients of the unknown polynomial; see Exercise 6.30 for details. Thus in
time n3%~9 . poly(n)-log(1/5) this algorithm will exactly determine f, and in
particular find a relevant coordinate.

By choosing d = [%k] we balance the running time of the two algorithms.
Regardless of whether f is dth-order correlation immune, at least one of the
two algorithms will find a relevant coordinate for f (except with probability
at most /2 +6/2 = 6) in time n‘®** . poly(n)-log(1/5). This completes the proof
of Theorem 6.36.
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Our next application of pseudorandomness involves using e-biased dis-
tributions to give a deterministic version of the Goldreich—Levin Algorithm
(and hence the Kushilevitz—Mansour learning algorithm) for functions f with
small ff]l;. We begin with a basic lemma showing that you can get a good
estimate for the mean of such functions using an e-biased distribution:

Lemma 6.38. If f : {-1,1}" — R and ¢ :{-1,1}* — R is an e-biased density,
then

E [f@I-EIf1 < 0fle.

This lemma follows from Proposition 6.13.(1), but we provide a separate proof:

Proof. By Plancherel,

E [f@®)]=(p,f)=F@)+ Y PSF(S),
e S#®

and the difference of this from E[f] = f (@) is, in absolute value, at most

Y 1@SIFS)<e- Y IFSI<ifle. O
S#¢ S7¢
Since || f 2ﬂ1 < f ﬂ? (Exercise 3.6), we also have the following immediate

corollary:

Corollary 6.39. If f : {-1,1}" - R and ¢ : {—1,1}" — R is an e-biased density,
then

E [f@P1-EIf)| < fTe.

We can use the first lemma to get a deterministic version of Proposi-
tion 3.30, the learning algorithm that estimates a specified Fourier coefficient.

Proposition 6.40. There is a deterministic algorithm that, given query access
to a function f :{-1,1}* = R aswell as U c[n], 0<e<1/2, and s = 1, outputs
an estimate f(U) for f(U) satisfying

FO)-F@l=e,
provided |fll1 <s. The running time is poly(n,s, 1/e).

Proof. It suffices to handle the case U = @ because for general U, the algo-
rithm can simulate query access to /-y with poly(n) overhead, and Fﬁ(@) =
f (U). The algorithm will use Theorem 6.30 to construct an (e¢/s)-biased den-
sity ¢ that is uniform over a (multi-)set of cardinality O(n?s%/e?). By enumer-
ating over this set and using queries to f, it can deterministically output the
estimate }? (@) = Ex~ylf (x)] in time poly(n,s, 1/¢). The error bound now follows
from Lemma 6.38. |

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.



158 6. Pseudorandomness and IF'2-polynomials

The other key ingredient needed for the Goldreich—Levin Algorithm was
Proposition 3.40, which let us estimate

WS 1= Y AISUT2= E  [f7.(8)?] (6.6)
T z~{-1,1)7

for any S € J < [n]. Observe that for any z € {~1,1} we can use Proposi-
tion 6.40 to deterministically estimate f/.JTz(S) to accuracy +e. The reason
is that we can simulate query access to the restricted function f/JTz, the
(¢/s)-biased density ¢ remains (¢/s)-biased on {—1,1}”, and most importantly
ﬂfJ|zﬂ1 <{ifi1 = s by Exercise 3.7. It is not much more difficult to determinis-
tically estimate (6.6):

Proposition 6.41. There is a deterministic algorithm that, given query access
to a function f :{-1,1}* — {-1,1} as wellas ScdJcn), 0<e<1/2, and s=1,
outputs an estimate f3 for WS ] that satisfies

WS[F1- Bl <e,

provided [[fil1 <s. The running time is poly(n,s, 1/e).

Proof. Recall the notation Fsﬁf from Definition 3.20; by (6.6), the algo-

rithm’s task is to estimate E___, 1}j[(FSij)z(z)]. Ifp:{-1, 1Y =R is an
1.2-biased density, Corollary 6.39 tells us that
2 2 A ~2 NP

z@(p[(Fng) (Z)]_zN{_E1 1}j[(Fng) ()] = ||Fs|jf||1'ﬁ <Iflly- 3= =%, (6.7)
where the second inequality is immediate from Proposition 3.21. We now
show the algorithm can approximately compute EzN(p[(Fsgf )2(2)]. For each
z€{-1,1}7, the algorithm can use ¢ to deterministically estimate (Fsﬁ fz)=
E;TZ(S ) to within +s- ;5 < 7 in poly(n,s,1/e) time, just as was described in
the text following (6.6). Since | fJ;(S)I < 1, the square of this estimate is
within, say, % of (FSQ £)?(z). Hence by enumerating over the support of ¢, the
algorithm can in deterministic poly(n,s,1/¢) time estimate EzN(p[(Fng )Y2(2)]
to within i%, which by (6.7) gives an estimate to within +e¢ of the desired
quantity EzN{_l)l}j[(Fng)z(z)]. O

Propositions 6.40 and 6.41 are the only two ingredients needed for a de-
randomization of the Goldreich—Levin Algorithm. We can therefore state a
derandomized version of its corollary Theorem 3.38 on learning functions with
small Fourier 1-norm:

Theorem 6.42. Let € ={f : {~1,1}* — {-1,1} | i fl1 < s}. Then € is determin-
istically learnable from queries with error € in time poly(n,s, 1/¢).
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Since any f : {—1,1}* — {-1,1} with sparsity(f) < s also has {f]; <s, we
may also deduce from Exercise 3.37(c):

Theorem 6.43. Let € = {f : {—1,1}" — {—1,1} | sparsity(f) < 20®)). Then € is
deterministically learnable exactly (0 error) from queries in time poly(n,2%).

Example functions that fall into the concept classes of these theorems are deci-
sion trees of size at most s, and decision trees of depth at most %, respectively.

We conclude this section by discussing a derandomized version of the
Blum-Luby-Rubinfeld linearity test from Chapter 1.6:

Derandomized BLR Test. Given query access to f : 5 — Fy:

(1) Choose x ~TFy and y ~ ¢, where ¢ is an e-biased density.
(2) Query f at x, y, and x+ y.
(3) “Accept” if f(x)+f(y)=f(x+y).

Whereas the original BLR Test required exactly 2n independent random
bits, the above derandomized version needs only n + O(log(n/e)). This is very
close to minimum possible; a test using only, say, .99n random bits would only
be able to inspect a 201" fraction of f’s values.

If f is [Fo-linear then it is still accepted by the Derandomized BLR Test
with probability 1. As for the approximate converse, we’ll have to make a
slight concession: We’ll show that any function accepted with probability
close to 1 must be close to an affine function, i.e., satisfy degy,(f) < 1. This
concession is necessary: the function f : F5 — Fg might be 1 everywhere
except on the (tiny) support of ¢. In that case the acceptance criterion f(x)+
f(y) = f(x+y) will almost always be 1+0 = 1; yet f is very far from every
linear function. It is, however, very close to the affine function 1.

Theorem 6.44. Suppose the Derandomized BLR Test accepts [ : F§ — Fo
with probability %+ %9. Then f has correlation at least V0% —e with some

affine g : F2 —Fy; e, dist(f,g) < 1 - 3V02 -e.

Remark 6.45. The bound in this theorem works well both when 6 is close to 0
and when 0 is close to 1; e.g., for 6 = 1 -2 we get that if f is accepted with
probability 1 -4, then f is nearly J-close to an affine function, provided € « §.

Proof. As in the analysis of the BLR Test (Theorem 1.30) we encode f’s
outputs by +1 € R. Using the first few lines of that analysis we see that our
hypothesis is equivalent to
0= E [f@fyf(x+y]= E [f(y)-(f )]
x~IFy y=~9
y~¢
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By Cauchy—Schwarz,
E [f(y)-(f * )] < ¢ E [f(y)2]\/ E [(f * £)2(y)] = \/ E [(f * [2(y)],
y~9 y~¢ y~9 y~¢

and hence
02 < E [(f « H*MI<EIf + PA+1f  flie= Y. Fp+e,
v 1)
where the inequality is Corollary 6.39 and we used f/*\f (y) = f (y)2. The
conclusion of the proofis as in the original analysis (cf. Proposition 6.7, Exer-
cise 1.29):
02-e< Y Fptsmax{f(p? Y F(p)?=max{f(1)?},

yelF} velg yeF2 vely

and hence there exists y* such that I]? (Y =vo2-e. O

6.5. Highlight: Fooling [F'o-polynomials

Recall that a density ¢ is said to be e-biased if its correlation with every Fo-
linear function f is at most € in magnitude. In the lingo of pseudorandomness,
one says that ¢ fools the class of [Fa-linear functions:

Definition 6.46. Let ¢ : F3 — R be a density function and let € be a class
of functions IF5 — IR. We say that ¢ e-fools € if

E [f(y)]- E [f(x)]<e
y~¢ xNFg
for all f€<6.

Theorem 6.30 implies that using just O(log(n/e)) independent random
bits, one can generate a density that e-fools the class of f: [F5 — {—1,1} with
degp,(f) = 1. A natural problem in the field of derandomization is: How
many independent random bits are needed to generate a density which e-fools
all functions of Fo-degree at most d? A naive hope might be that e-biased
densities automatically fool functions of [Fa-degree d > 1. The next example
shows that this hope fails badly, even for d = 2:

Example 6.47. Recall the inner product mod 2 function, IP, : Fj — {0,1},
which has [Fo-degree 2. Let ¢ : F§ — R>? be the density of the uniform dis-
tribution on the support of IP,,. Now IP, is an extremely regular function
(see Example 6.4), and indeed ¢ is a roughly 277/2-biased density (see Exer-
cise 6.7). But ¢ is very bad at fooling at least one function of Fa-degree 2,
namely IP,, itself:

E [IP,(x)]=1/2, yljl(p[IPn(y)] =1

n
x~IF

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.



6.5. Highlight: Fooling [F2-polynomials 161

The problem of using few random bits to fool n-bit, Fo-degree-d functions
was first taken up by Luby, Velickovié, and Wigderson [LVW93]. They showed
how to generate a fooling distribution using exp(O(/d log(n/d) +log(1/c))) in-
dependent random bits. There was no improvement on this for 14 years, at
which point Bogdanov and Viola [BV07] achieved O(log(n/e)) random bits for
d = 2 and O(logn) + exp(poly(1/e)) random bits for d = 3. In general, they
suggested that Fo-degree-d functions might be fooled by the sum of d inde-
pendent draws from a small-bias distribution. Soon thereafter Lovett [Lov08]
showed that a sum of 2¢ independent draws from a small-bias distribu-
tion suffices, implying that [Fo-degree-d functions can be fooled using just
20(@) .1og(n/e) random bits. More precisely, if ¢ is any e-biased density on F?,
Lovett showed that

E  [foP++y2N]- E [fw)]=0E").
Yy yeh g x~F}

In other words, the 2?-fold convolution (p*zd density fools functions of Fa-
degree d.

The current state of the art for this problem is Viola’s Theorem [Vio09b],
which shows that the original idea of Bogdanov and Viola [BV07] works:
Summing d independent draws from an e-biased distribution fools [Fo-degree-
d polynomials.

Viola’s Theorem. Let ¢ be any e-biased density on 7, 0<e<1. Let d € N*
and define €5 = 9¢Y2"™" Then the class ofall f:T§ —{-1,1} with degp,(f) <d
is €4-fooled by the d-fold convolution (p*d; ie.,

@, ... )y _ 1/2¢-1
o B JF07 4ty D= B @] <9

In light of Theorem 6.30, Viola’s Theorem implies that one can e-fool n-bit
functions of Fo-degree d using only O(dlogn)+ 0(d2%log(1/c)) independent
random bits.

The proof of Viola’s Theorem is an induction on d. To reduce the case
of degree d +1 to degree d, Viola makes use of a simple concept: directional
derivatives.

Definition 6.48. Let f : ' — IF3 and let y € F5. The directional derivative
Ayf :IF§ — IFg is defined by

AL @)= Flx+y)— £
Over [ we may equivalently write A, f(x) = f(x +y) + f(x).
As expected, taking a derivative reduces degree by 1:

Fact 6.49. For any f :IFj — Fg and y € Fj we have degp,(A,f) < degp, (f) - 1.
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In fact, we’ll prove a slightly stronger statement:

Proposition 6.50. Let f :IF§ — [F2 have degp,(f) = d and fix y,y' € 3. Define
g:F5 — o by g(x)= fx+y)—Ff(x+y"). Then degp,(g)=d -1

Proof. In passing from the Fa-polynomial representation of f(x) to that
of g(x), each monomial x% of maximal degree d is replaced by (x+v)S —(x+y")S.
Upon expansion the monomials x° cancel, leaving a polynomial of degree at
most d — 1. [l

We are now ready to give the proof of Viola’s Theorem.

Proof of Viola’s Theorem. The proofis by induction on d. The d =1 case is
immediate (even without the factor of 9) because ¢ is e-biased. Assume that
the theorem holds for general d > 1 and let f : F5 — {—1,1} have degp, (f) <
d + 1. We split into two cases, depending on whether the bias of f is large or
small.

Case 1: E[f]? > ¢4. In this case,

Vea!| E_[f@1- E [f@]
z~(p*(d+1) xNIE‘;
<IEIfll-| E_[f@]- E [f@)]

z~@*

= E [f(x)f(2)]- v Ew[f(x,)f(x)])

x/NF;’qu)*(d+1)

=| LB L fEnf@1- E_[fa+f@)

y~IF‘;,z~zp*(d+1)

=| B IA@I-E (A
y,x~F5

y~]Fg,z~<p*(d*1)

IA

y~P1]F§‘ [

E )[Ayf(z)]—ngg[Ayf(x)H.

zN(p*(d+l

For each outcome y = y the directional derivative A, f has [Fo-degree at most d
(Fact 6.49). By induction we know that (p*d €4-fools any such polynomial, and
it follows from Exercise 6.29 that (p*(d+1) does too. Thus each quantity in the
expectation over y is at most €4, and we conclude

E: f 2 IE r - Ed 1
z v = €4 = 3€ = .
~(p*(d+1)[ ( )] xNFIZL[ ( )] /—6 d 3 d+1 €d+1

Case 2: E[f]? <¢4. In this case we want to show that Eypra [fw)]? is
nearly as small. By Cauchy—Schwarz,

2
[fw)?= E |E[f(z+y)]] = E_| E[f(z+y)P]
Yy~ z~p*d Ly~¢

w~p*d+D) 2~p*

= Ed[E Uu+yv@+ym]= E [E v@+yv@+yw]
z~pdlyy~p ¥,y ~plz~p*d
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For each outcome of y = y, ' = y/, the function f(z +y)f(z+7y') is of [Fo-degree
at most d in the variables z, by Proposition 6.50. Hence by induction we have

E | E [fe+yfz+y)l|< E [ E [fx+yfx+y)| +eq
3,y ~plz~p*d ¥,y ~plx~F}

= E ¢+ )@ ]+eq

= L P @) +eq
yel;
<f02+e? Y f(?+eq
y#0

<2¢4 +€2,

where the last step used the hypothesis of Case 2. We have thus shown

[f(w)]2 <2¢y4 +e? < 3eq <4eg,
w~tp*(d+1)

and hence |E[f(w)]| <2,/e4. Since we are in Case 2, |E[f]| < /€4, and so
E [fw)]-Elf]|<3\eq=¢€4+1,

w~(p*(d+1)

as needed. O

We end this section by discussing the tightness of parameters in Viola’s
Theorem. First, if we ignore the error parameter, then the result is sharp: a
counting argument (see [BV07]) shows that the d-fold convolution of e-biased
densities cannot in general fool functions of Fo-degree d + 1. More explicitly,
for any d e N*, ¢ =2d + 1, Lovett and Tzur [LT09] gave an explicit %-biased
density on IF(;H)" and an explicit function £ : IF(;H)" —{-1,1} of degree d + 1
for which

2d
E [fa)]l-Elf]|z1-".
w~p* 2

Regarding the error parameter in Viola’s Theorem, it is not known whether
the quantity eV2"" can be improved, even in the case d = 2. However, ob-
taining even a modest improvement to ¢ 1.99¢ (for d as large as logn) would
constitute a major advance since it would imply progress on the notorious
problem of “correlation bounds for polynomials”; see Viola [Vio09al].

6.6. Exercises and notes

6.1 Let f be chosen as in Proposition 6.1. Compute Var[f'(S )] for each S < [n].
6.2 Prove Fact 6.8.

6.3 Show that any nonconstant k-junta has Int(il_‘s)[f 1= (1/2—-6/2)*~1/E for at
least one coordinate i.
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6.4 Let ¢ : F2 — IR*" be an e-biased density. For each d € N* show that the
d-fold convolution ¢*¢ is an €?-biased density.

6.5 (a) Show that if f : {-1,1}* — R has e-small influences, then it is /e-
regular.

(b) Show that for all even n there exists f : {-1,1}" — {—1,1} that is 277/2-
regular but does not have e-small influences for any € < 1/2.

(c) Show that there is a function f : {—1,1}* — {-1,1} with ((1-6)""1,6)-
small stable influences that is not e-regular for any ¢ < 1.

(d) Verify that the function f(x) = xoMaj,,(x1,...,x,) from Example 6.10
satisfies Inf‘ol_‘s)[f] = Stab;_5[Maj,] for 6 € (0,1), and thus does not
have (¢,6)-small stable influences unless e =1 — V6.

(e) Show that the function f : {-1,1}**! — {-1,1} from part (d) is \/iﬁ
regular.

(f) Suppose [ :{-1,1}" — R has (¢,5)-small stable influences. Show that
f is (n,k)-regular for n = \/e/(1-5)k1.

(g) Show that f has (¢, 1)-small stable influences if and only if f is (y/€, 1)-
regular.

(h) Let f:{-1,1}" — {-1,1} be monotone. Show that if f is (¢, 1)-regular
then f is e-regular and has e-small influences.

6.6 (a) Let f:{-1,1}" - R. Let (J,J) be a partition of [n] and let z € {-1,1}7.
For z ~ {-1, 1Y uniformly random, give a formula for Var,[E[f;.]]
in terms of f’s Fourier coefficients. (Hint: Direct application of Corol-
lary 3.22.)

(b) Using the above formula and the probabilistic method, give an alter-
nate proof of the second statement of Proposition 6.12.

6.7 Let ¢ :IF§ — R>° be the density corresponding to the uniform distribution
on the support of IP,, : 'y — {0,1}. Show that ¢ is e-biased for € = 2 "2/(1—
27"/2) but not for smaller ¢.

6.8 Prove Proposition 6.13.

6.9 Compute the [Fo-polynomial representation of the equality function Equ,, :
{0,1}" — {0,1}, defined by Equ,,(x) =1 if and only if x; =x9 =+ = x5,.

6.10 (a) Let f:{0,1}" — R and let g(x) = Ygc[nj csx® be the (unique) multilin-
ear polynomial representation of f over R. Show that

cs= Y (~)SRIpR),
RcS

where we identify R <[n] with its 0-1 indicator string. This formula
is sometimes called Mobius inversion.
(b) Prove Proposition 6.21.
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6.11

6.12

6.13

6.14

6.15

6.16
6.17

6.18

6.19

(Cf. Lemma 3.5.) Let f:F§ — [F2 be nonzero and suppose degp, (f) < k.
Show that Pr{f(x) # 0] = 27%. (Hint: As in the similar Exercise 3.4, use
induction on n.)

Let f:{-1,1}" — {0, 1}.

(@) Show that degp,(f) < log(sparsity(f )). (Hint: You will need Exer-
cise 3.7, Corollary 6.22, and Exercise 1.3.)

(b) Suppose f is 27%-granular. Show that degp,(f) < k. (This is a stronger
result than part (a), by Exercise 3.32.)

Let f:{-1,1}" —{-1,1} be bent, n > 2. Show that degp, (f) < n/2. (Note
that the upper bound n/2 + 1 follows from Exercise 6.12(b).)

In this exercise you will prove Theorem 6.25.
(@) Suppose p(x) = co + cgx® +r(x) is a real multilinear polynomial over
X1,...,X, With cg,cg # 0, |S| > %n, and |T'| > %n for all monomials

xT appearing in r(x). Show that after expansion and multilinear

reduction (meaning x? — 1), p(x)? contains the term 2cocgx®.

(b) Deduce Theorem 6.25.

In this exercise you will explore the sharpness of Siegenthaler’s Theorem

and Theorem 6.25.

(a) Foralln and 2 <n -1, find an f :{0,1}" — {0, 1} that is k-resilient and
has deng(f) =n—-k-1.

(b) For all n =3, find an f :{0,1}" — {0,1} that is 1st-order correlation
immune and has degp,(f)=n—1.

(¢) For all n divisible by 3, find a biased f : {0,1}" — {0, 1} that is (%n—l)th—
order correlation immune.

Prove Proposition 6.27.

Bent functions come in pairs: Show that if f : [F5 — {-1,1} is bent, then
on/2 }? is also a bent function (with domain Iﬁ\g).

Extend Proposition 6.29 to show that if 7 is any permutation on [F?, then
f(x,y) =IPg,(x,7(y))g(y) is bent.

Dickson’s Theorem says the following: Any polynomial p : F§ — [Fg of
degree at most 2 can be expressed as

k
p)=Lo(x)+ ) £;(x)0(), (6.8)
j

where ¢ is an affine function and (1,2’1,...,&,(}6 are linearly indepen-
dent linear functions. Here % depends only on p and is called the “rank” of
p. Show that for n even, g: F§ — {-1,1} defined by g(x) = x(p(x)) is bent if
and only if £ = n/2, if and only if g arises from IP,, as in Proposition 6.28.
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6.20 Without appealing to Dickson’s Theorem, prove that the complete qua-
dratic x — Y 1<;< <5 %iX; can be expressed as in (6.8), with & = [n/2]. (Hint:
Induction on n, with different steps depending on the parity of n.)

6.21 Define mods: {—1,1}* — {0, 1} by mod3(x) = 1 if and only if Z;.l:lxi is divis-
ible by 3. Derive the Fourier expansion

mods(x) = % + %(—1/2)” Z (_1)(|S| mod 4)/2\/§|S|xs

Scinl
|S| even

and conclude that modg is
@ )x j.)

%(‘/?g)”—regular. (Hint: Consider H?:l(_% +

6.22 In Theorem 6.30, show that given r,s any fixed bit y; can be obtained in
deterministic poly(¢) time.

6.23 (a) Slightly modify the construction in Theorem 6.30 to obtain a (27 —
270)-biased density. (Hint: Arrange for py to have degree at most n —
1)
(b) Since IFy, is a dimension-¢ vector space over g, it has some basis
v1,...,U¢. Suppose we modify the construction in Theorem 6.30 so that
@ is a density on F2¢ with yij = (enc(vjri),enc(s)) for i € [n],j € [/].
Show that ¢ remains 27 -biased.

6.24 Fix ¢ € (0,1) and n € N. Let A € I} be a randomly chosen multiset in
which [Cn/e?] elements are included, independently and uniformly. Show
that if C is a large enough constant, then A is e-biased except with proba-
bility at most 27".

6.25 Consider the problem of computing the matrix multiplication C = AB,
where A,B € '3 *". There is an algorithm [LLG14] for solving this problem
in time O(n®), where w < 2.373; however, the algorithm is very compli-
cated. Suppose you are given A, B, and the outcome C’ of running this
algorithm; you want to test that indeed C’' = AB.

(a) Give an algorithm using n random bits and time 0O(n?) with the fol-
lowing property: If C' = AB, then the algorithm “accepts” with prob-
ability 1; if C' # AB, then the algorithm “accepts” with probability at
most 1/2. (Hint: Compute C'x and ABx for a random x € IE‘Z.)

(b) Show how to reduce the number of random bits used to O(logn) at the
expense of making the false acceptance probability 2/3, while keeping
the running time O(n?). (You may use the fact that in Theorem 6.30,
the time required to compute y given r and s is n - polylog(¥).)

6.26 Simplify the exposition and analysis of Theorem 6.32 and Corollary 6.33
in the case of £ = 2, and show that you can take m to be one less (i.e.,
m=7/).
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6.27 Consider the matrix H' € ]Ffl"” constructed in Theorem 6.32, and suppose
we delete all rows corresponding to even (nonzero) powers of the a;’s.
Show that H' retains the property that any sum of at most 2 columns
of H' is nonzero in IFfL. (Hint: Prove and use that (}_; 8 j)2 =Y, ﬁ? for any
sequence of §; € I,.) Deduce that the cardinality of A in Corollary 6.33
can be decreased to 2(2n)*/2!,

6.28 Let A < {-1,1}" be a multiset and suppose that the probability density ¢
is k-wise independent. In this exercise you will prove the lower bound
|A] = Q(n'*2y (for k constant).

(@) Suppose & < 2" is a collection of subsets of [n] such that |[SUT| <k
for all S,T € &. For each S € & define )(g‘ € {-1,1}/4 c R to be the
real vector with entries indexed by A whose ath entry is a® = [[;c5 a;.

Show that the set of vectors {\/ﬁ )(‘g : S € #}is orthonormal and hence
|A| = |F].

(b) Show that we can find & satisfying |F| = Zﬁ/: 20 (7) if £ is even and
k-1)/2 1 \ipz s
7| = ZE':O : (7) + (7)) if /e is odd.

6.29 Let 6 be a class of functions Fj — R that is closed under translation; i.e.,
f 7% € 6 whenever f € € and z € [’} (recall Definition 3.24). An example is
the class of functions of F'o-degree at most d. Show that if v is a density
that e-fools €, then v * ¢ also e-fools € for any density ¢.

6.30 Fix an integer ¢ = 1. In this exercise you will generalize Exercise 3.43 by
showing how to exactly learn IF'2-polynomials of degree at most ¢.

(a) Fix p : F} — I3 with degy, (p) < ¢ and suppose that ', ..., x™ ~ F2
are drawn uniformly and independently from ;. Assume that m >
C-2/(n? +10g(1/5)) for 0 <6 < 1/2 and C a sufficiently large constant.
Show that except with probability at most §, the only ¢ : F§ — g
with degy,(q) < ¢ that satisfies g(x'") = p(x?) for all i € [m] is q = p.
(Hint: Exercise 6.11 with ¢ — p.)

(b) Show that the concept class of all polynomials Fj — [Fy of degree
at most ¢ can be learned from random examples only, with error 0,
in time O(n)3’. (Remark: As in Exercise 3.43, since the key step is
solving a linear system, the learning algorithm can also be done in
O(n)*! time, assuming matrix multiplication can be done in O(n®)
time.)

(¢) Extend this learning algorithm so that in running time O(n)3¢ -log(1/5)
it achieves success probability at least 1 - 9. (Hint: Similar to Exer-
cise 3.40.)

6.31 In this exercise you will prove Lemma 6.37.
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(a) Give a poly(n,2*)-log(1/5)-time learning algorithm that, given random
examples from a k-junta '5 — 2, determines (except with probabil-
ity at most §) if f is a constant function, and if so, which one.

(b) Given access to random examples from a k-junta f : Fj — g, let
P c[n] be a set of relevant coordinates for f and let z € IFS’ . Show
how to obtain M independent random examples from the (& — |P|)-
junta fﬁ|z in time poly(rn,2%)- M -log(1/5) (except with probability at
most 9).

(¢) Complete the proof of Lemma 6.37. (Hint: Build a depth-% decision
tree for f.)

6.32 (a) Improve the bound in Lemma 6.38 to [|f{l1e— If((Z))Ie and the bound in

Corollary 6.39 to ﬂfﬂ?e - ||f||§e.

(b) Improve the bound in Theorem 6.44 to V02 —e/v/1—e.

6.33 Improve on Theorem 6.44 by a factor of roughly 2 in the case of acceptance
probability near 1. Specifically, show that if f passes the Derandomized
BLR Test with probability 1 -9, then there exists y* € IE/‘E with | }? (r)l=
V1-26—-€/vV1-e.

6.34 Fix an integer k € N™. Let (f5)s¢0,1;» be a collection of functions indexed
by length-£ binary sequences, each f; : 5 — R. Define the kth Gowers
“inner product” {((fs)s)y+ € R by

(f)shur = [T fitx+ ¥ 30|,
ay1 ~~~~~ €0, 1}k i:s;=1
where the £+1 random vectors x y1,...,y, are independent and uniformly
distributed on 5. Define the kth Gowers norm of a function f:[F§ — R
by

1Fllge = Fo s D,

where (f,f,...,f) denotes that all 2k functions in the collection equal f.
(You will later verify that ((f,f,...,f )y is always nonnegative.)

(@) Check that (fo, f1)y1 = Elfo]Elf1] and therefore |I£1I7, = E[f1?.

(b) Check that

(fo0,f10,fo1, f11)y2 = 2 FooFroFor (i)
yelFy

~4

and therefore | f || f l4. (Cf. Exercise 1.29(b).)
(¢) Show that

[T fs&'+ X yl

s:sp=1 iis;=

b

(6.9)
where &' is independent of x,y1,...,y;_; and uniformly distributed.

xl

<(fs)s>Uk:y1 Ey 1[ l_[ fs(x+ X yl

"""" s:s,=0 5=
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(d) Show that ((f,f,...,/)y+ is always nonnegative, as promised.
(e) Using (6.9) and Cauchy—Schwarz, show that

(Frs =\ Fasrrnsir )0\ s, 1)V

(f) Show that
(FIsygr = [ fslye. (6.10)

s€{0,1}%
(g) Fixing f : IIF‘; — R, show that [|flly» < Ifly#:1. (Hint: Consider
(fs)seio,1yr+1 defined by fs =f if sp11 =0and fs =1if sp,1=1.)
(h) Show that | -|l;;» satisfies the triangle inequality and is therefore a
seminorm. (Hint: First show that

2k
I fo+ fl”Uk = Z «fl[SES])sE{O,l}k)Uk
Sc{0,1}*

and then use (6.10).)
(?) Show that |||l is in fact anorm for all 2 = 2;i.e., | fll;r =0 = f =0.

Notes. The [Fg-polynomial representation of a Boolean function f is often
called its algebraic normal form. It seems to have first been explicitly intro-
duced by Zhegalkin in 1927 [Zhe2T7].

For functions f : 7Z, — R, the idea of e-regularity as a pseudorandomness
notion dates back to Chung and Graham [CG92], as does the equivalent com-
binatorial condition Proposition 6.7. (In the context of quasirandom graphs,
the ideas date further back to Thomason [Tho87] and to Chung, Graham,
and Wilson [CGW89].) The idea of treating functions with small (stable) in-
fluences as being “generic” has its origins in the work of Kahn, Kalai, and
Linial [KKL88]. The notion was brought to the fore in work on hardness of ap-
proximation — implicitly, by Hastad [Has96, Has99], and later more explicitly
by Khot, Kindler, Mossel, and O’Donnell [KKMOO07].

The notion of e-biased sets (and also (¢, k)-wise independent distributions)
was introduced by Naor and Naor [NN93] (see also the independent work of
Peralta [Per90]). The construction in Theorem 6.30 is due to Alon, Goldre-
ich, Hastad, and Peralta [AGHP92] (as is Exercise 6.23). As noted by Naor
and Naor [NN93], e-biased sets are closely related to error-correcting codes
over [Fg; indeed, they are equivalent to linear error-correcting in which all
pairs of codewords have relative distance in [% - %e,% + %e]. In particular, the
construction in Theorem 6.30 is the concatenation of the well-known Reed—
Solomon and Hadamard codes (see, e.g., MacWilliams and Sloane [MS77]
for definitions). The nonconstructive upper bound in Exercise 6.24 is essen-
tially the Gilbert—Varshamov bound and is close to known lower bound of

Q(m) (assuming € = 27%™) which follows from the work of McEliece,
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Rodemich, Rumsey, and Welch [MRRW77] (see [MS77]). Additionally, con-
structive upper bounds of O(e%) and O(%) are known using tools from coding
theory; see the work of Ben-Aroya and Ta-Shma [BT09] and Matthews and
Peachey [MP11].

The probabilistic notion of correlation immunity — i.e., condition (2) of
Corollary 6.14 — was first introduced by Siegenthaler [Sie84]; we further dis-
cuss his work below. Independently and shortly thereafter, Chor, Friedman,
Goldreich, Hastad, Rudich, and Smolensky [CFG™*85] introduced the defini-
tion of resilience and also connected it to (0, %k)-regularity of the Fourier spec-
trum; i.e., they proved Corollary 6.14. (In the cryptography literature, Corol-
lary 6.14 is called the Xiao—-Massey Theorem [XM88].) The work [CFG*85]
also essentially contains Theorem 6.25 and the relevant function from Exam-
ple 6.16; cf. the work of Mossel et al. [MOS04].

The problem of constructing explicit 2-wise distributions of small support
arose in different guises in different areas — in the study of orthogonal arrays
(in statistics), error-correcting codes, and algorithmic derandomization. Alon,
Babai, and Itai [ABI85] gave the construction in Theorem 6.32 — in fact, the
stronger one from Exercise 6.27 — based on the analysis of dual BCH codes
in MacWilliams and Sloane [MS77]. The lower bound from Exercise 6.28
is essentially due to Rao [Rao47]; see also independent proofs [CFG*85,
ABIS5].

Siegenthaler’s Theorem dates from 1984 [Sie84]. His motivation was the
study of cryptographic stream ciphers in cryptography. In this application, a
short random sequence of bits (“secret key”) is transformed via some scheme
into a very long sequence of pseudorandom bits (“keystream”), which can then
be used as a one-time pad for encryption. A basic component of most schemes
is a linear feedback shift register (LFSR), which can efficiently generate long,
fairly statistically-uniform sequences. However, due to its Fs-linearity, it
suffers from some simple cryptanalytic attacks. An early idea for combating
this is to take n independent LFSR streams and combine them via some
function f : Fj — IFo. Effective attacks are possible in such a scheme if f is
correlated with any of its input bits — or indeed (as Siegenthaler pointed out)
any input pair, triple, etc. This led Siegenthaler to define the probabilistic
notion of correlation-immunity. Although y[,] is the maximally correlation-
immune function, it is not suitable as a LFSR combining function precisely
because of its [F9-linearity; the same is true of any function of low [Fe-degree.
Siegenthaler precisely captured this tradeoff between correlation-immunity
and Fa-degree in his theorem.

Bent functions were named and first studied by Rothaus around 1966;
he didn’t publish the notion until 1976, however [Rot76], at which point
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there were already several works on subject, see, e.g., [Dil72]. Bent func-
tions have application in cryptography and coding theory; see, e.g., Carlet’s
survey [Carl10]. The basic constructions presented in Section 6.3 are due
to Rothaus; the class of bent functions described in Exercise 6.18 is called
the Maiorana—McFarland family. Dickson’s Theorem is from a 1901 publica-
tion [Dic01, Theorem 199]; see also MacWilliams and Sloane [MS77, Theo-
rem 15.4].

Theorem 6.36 is from Mossel et al. [MOSO04]; there is an improved al-
gorithm for learning k-juntas that runs in time roughly 75924 poly(n), due
to Gregory Valiant [Vall2]. Avrim Blum offers a prize of $1,000 for solv-
ing the case of £ =loglogn in poly(n) time [Blu03]. Theorem 6.42 is due to
Kushilevitz and Mansour [KM93]. The Derandomized BLR Test and The-
orem 6.44 (and Exercise 6.32) are due to Ben-Sasson, Sudan, Vadhan, and
Wigderson [BSSVWO03].

The result of Exercise 6.11 is due to Muller [Mul54a, Theorem 6]; deriving
Exercise 6.30 from it and from Blumer et al. [ BEHW87] is folklore. The result
of Exercise 6.12(a) is due to Bernasconi and Codenotti [BC99]; Exercise 6.13
is from MacWilliams and Sloane [MS77]. In Exercise 6.25, part (a) is due
to Freivalds [Fre79] and part (b) to Naor and Naor [NN93]. The Gowers
norm and results of Exercise 6.34 are from Gowers [Gow01]. Our proof of the
second statement in Proposition 6.12 was suggested by Noam Lifshitz.

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.






Chapter 7

Property testing,
PCPPs, and CSPs

In this chapter we study several closely intertwined topics: property testing,
probabilistically checkable proofs of proximity (PCPPs), and constraint sat-
isfaction problems (CSPs). All of our work will be centered around the task
of testing whether an unknown Boolean function is a dictator. We begin by
extending the BLR Test to give a 3-query property testing algorithm for the
class of dictator functions. This in turn allows us to give a 3-query testing
algorithm for any property, so long as the right “proof” is provided. We then in-
troduce CSPs, which are in fact identical to string testing algorithms. Finally,
we explain how dictator tests can be translated into computational complex-
ity results for CSPs, and we sketch the proofs of some of Hastad’s optimal
inapproximability results.

7.1. Dictator testing

In Chapter 1.6 we described the BLR property testing algorithm: Given query
access to an unknown function f : {0,1}* — {0, 1}, this algorithm queries f on a
few random inputs and approximately determines whether f has the property
of being linear over IF'9. The field of property testing for Boolean functions is
concerned with coming up with similar algorithms for other properties. In
general, a “property” can be any collection % of n-bit Boolean functions; it’s
the same as the notion of “concept class” from learning theory. Indeed, before
running an algorithm to try to learn an unknown f € 4, one might first run a
property testing algorithm to try to verify that indeed f € 6.

173

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.



174 7. Property testing, PCPPs, and CSPs

Let’s encapsulate the key aspects of the BLR linearity test with some
definitions:

Definition 7.1. An r-query function testing algorithm for Boolean functions
f:{0,1)* —{0,1} is a randomized algorithm that:

) .,xDef0,1)” according to some prob-

o chooses r (or fewer) strings x'1
ability distribution;
o queries f(x0),..., f(&");

e based on the outcomes, decides (deterministically) whether to “accept” f.

Definition 7.2. Let % be a “property” of n-bit Boolean functions, i.e., a collec-
tion of functions {0,1}" — {0,1}. We say a function testing algorithm is a local
tester for € (with rejection rate A > 0) if it satisfies the following:

o If f € €, then the tester accepts with probability 1.

e For all 0 <e <1, if dist(f,¥) > € (in the sense of Definition 1.29), then
the tester rejects f with probability greater than A -¢.

Equivalently, if the tester accepts f with probability at least 1 - A -¢,
then f is e-close to €; i.e., 3g € € such that dist(f,g) <e.

By taking € = 0 in the above definition you see that any local tester gives
a characterization of ¢: a function is in ¥ if and only if it is accepted by
the tester with probability 1. But a local tester furthermore gives a “robust”
characterization: Any function accepted with probability close to 1 must be
close to satisfying €.

Example 7.3. By Theorem 1.30, the BLR Test is a 3-query local tester for the
property € ={f :I'5 — P2 | f is linear} (with rejection rate 1).

Remark 7.4. To be pedantic, the BLR linearity test is actually a family of
local testers, one for each value of n. This is a common scenario: We will
usually be interested in testing natural families of properties (6,),cN+, Where
%, contains functions {0,1}"* — {0, 1}. In this case we need to describe a family
of testers, one for each n. Generally, these testers will “act the same” for
all values of n and will have the property that the rejection rate A >0 is a
universal constant independent of n.

There are a number of standard variations of Definition 7.2 that one could
consider. One variation is to allow for an adaptive testing algorithm, mean-
ing that the algorithm can decide how to generate ) based on the query
outcomes f (x(l)),...,f (x'“~1). However, in this book we will only consider
nonadaptive testing. Another variation is to relax the requirement that e-far
functions be rejected with probability Q(¢); one could allow for smaller rates
such as Q(e2), or Q(e/logn). For simplicity, we will stick with the strict de-
mand that the rejection probability be linear in €. Finally, the most common
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definition of property testing allows the number of queries to be a function
r(e) of € but requires that any function e-far from % be rejected with proba-
bility at least 1/2. This is easier to achieve than satisfying Definition 7.2; see
Exercise 7.1.

So far we have seen that the property of being linear over g is locally
testable. We’ll now spend some time discussing local testability of an even sim-
pler property, the property of being a dictator. In other words, we’ll consider
the property

P ={f :{0,1}" —{0,1} | f(x) = x; for some i € [n]}.

As we will see, dictatorship is in some ways the most important property to
be able to test.

We begin with a reminder: Even though 2 is a subclass of the linear
functions and we have a local tester for linearity, this doesn’t mean we auto-
matically have a local tester for dictatorship. (This is in contrast to learning
theory, where a learning algorithm for a concept class automatically works for
any subclass.) The reason is that the non-dictator linear functions —i.e., yg
for |S| # 1 — are at distance % from 2 but are accepted by any linearity test
with probability 1.

Still, we could use a linearity test as a first component of a test for dicta-
torship; this essentially reduces the problem to testing if an unknown lin-
ear function is a dictator. Historically, the first local testers for dictator-
ship [BGS95, PRS01] worked this way; after testing linearity, they chose
x,y ~ {0,1}" uniformly and independently, set z = x A y (the bitwise logical
AND), and tested whether f(2) = f(x) A f(y). The idea is that the only parity
functions that satisfy this “AND test” with probability 1 are the dictators (and
the constant 0). The analysis of the test takes a bit of work; see Exercise 7.8
for details.

Here we will describe a simpler dictatorship test. Recall we have already
seen an important result that characterizes dictatorship: Arrow’s Theorem,
from Chapter 2.5. Furthermore the robust version of Arrow’s Theorem (Corol-
lary 2.60) involves evaluating a 3-candidate Condorcet election under the
impartial culture assumption, and this is the same as querying the election
rule f on 3 correlated random inputs. This suggests a dictatorship testing
component we call the “NAE Test”:

NAE Test. Given query access to [ :{-1,1}" — {-1,1}:

e Choose x,y,z € {—1,1}* by letting each triple (x;,y;,2;) be drawn inde-
pendently and uniformly at random from among the 6 triples satisfying
the not-all-equal predicate NAE3 : {—1,1}% — {0, 1}.

e Query f at x, v, 2.
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o Accept if NAE3(f(x), f(y), f(2)) is satisfied.

The NAE Test by itself is almost a 3-query local tester for the property of
being a dictator. Certainly if f is a dictator then the NAE Test accepts with
probability 1. Furthermore, in Chapter 2.5 we proved:

Theorem 7.5 (Restatement of Corollary 2.60). If the NAE Test accepts  with
probability 1 —¢, then Wi[f]=1—- ge, and hence f is O(e)-close to +y; for some
i €[n] by the FKN Theorem.

There are two slightly unsatisfactory aspects to this theorem. First, it
gives a local tester only for the property of being a dictator or a negated-
dictator. Second, though the deduction W[f]>1- ge requires only simple
Fourier analysis, the conclusion that f is close to a (negated-)dictator relies
on the non-trivial FKN Theorem. Fortunately we can fix both issues simply
by adding in the BLR Test:

Theorem 7.6. Given query access to [ : {—1,1}" — {—1,1}, perform both the
BLR Test and the NAE Test. This is a 6-query local tester for the property of
being a dictator (with rejection rate .1).

Proof. The first condition in Definition 7.2 is easy to check: If f:{-1,1}* —
{—1,1} is a dictator, then both tests accept f with probability 1. To check
the second condition, fix 0 <€ <1 and assume the overall test accepts f with
probability at least 1—.1e. Our goal is to show that f is e-close to some dictator.

Since the overall test accepts with probability at least 1—.1¢, both the BLR
and the NAE tests must individually accept f with probability at least 1 —.1¢.
By the analysis of the NAE Test we deduce that W'[f]=1—- g - 1le=1- .45¢.
By the analysis of the BLR Test (Theorem 1.30) we deduce that f is .1le-close
to some parity function; i.e., £(S*)=1—.2¢ for some S* < [n]. Now if |S*| # 1
we would have

n
1= WH[£]1=(1-.45¢)+(1-.2¢)* 22~ .85¢ > 1,
k=0
a contradiction. Thus we must have |S*| = 1 and hence f is .1e-close to the
dictator yg«, stronger than what we need. O

As you can see, we haven’t been particularly careful about obtaining the
largest possible rejection rate. Instead, we will be more interested in using as
few queries as possible (while maintaining some positive constant rejection
rate). Indeed we now show a small trick which lets us reduce our 6-query
local tester for dictatorship down to a 3-query one. This is best possible since
dictatorship can’t be locally tested with 2 queries (see Exercise 7.6).

BLR+NAE Test. Given query access to f :{—1,1}" — {-1,1}:
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o With probability 1/2, perform the BLR Test on f.
o With probability 1/2, perform the NAE Test on f.

Theorem 7.7. The BLR+NAE Test is a 3-query local tester for the property of
being a dictator (with rejection rate .05).

Proof. The only observation we need to make is that if the BLR+NAE Test
accepts with probability 1—.05¢ then both the BLR and the NAE tests individ-
ually must accept f with probability at least 1 —.1e. The result then follows
from the analysis of Theorem 7.6. U

Remark 7.8. In general, this trick lets us take the maximum of the query
complexities when we combine tests, rather than the sum (at the expense
of worsening the rejection rate). Suppose we wish to combine ¢ = O(1) dif-
ferent testing algorithms, where the ith tester uses r; queries. We make
an overall test that performs each subtest with probability 1/¢. This gives a
max(ri,...,r;)-query testing algorithm with the following guarantee: If the
overall test accepts f with probability 1— /—}E then every subtest must accept f
with probability at least 1 — Ae.

We can now explain one reason why dictatorship is a particularly impor-
tant property to be able to test locally. Given the BLR Test for linear functions
it still took us a little thought to find a local test for the subclass & of dictators.
But given our dictatorship test, it’s easy to give a 3-query local tester for any
subclass of 2. (On a related note, Exercise 7.15 asks you to give a 3-query
local tester for any affine subspace of the linear functions.)

Theorem 7.9. Let . be any subclass of n-bit dictators; i.e., let S < [n] and let
& ={x;:{0,1}" - {0,1} | i € S}.

Then there is a 3-query local tester for &# (with rejection rate .01).

Proof. Let 15 € {0,1}* denote the indicator string for the subset S. Given
access to 1 :{0,1}" — {0, 1}, the test is as follows:

o With probability 1/2, perform the BLR+NAE Test on f.
o With probability 1/2, apply the local correcting routine of Proposition 1.31
to f on string 1g; accept if and only if the output value is 1.

This test always makes either 2 or 3 queries, and whenever f € .# it accepts
with probability 1. Now let 0 < ¢ <1 and suppose the test accepts f with
probability at least 1 — Ae, where A =.01. Our goal will be to show that f is
e-close to a dictator y; with i € S.

Since the overall test accepts f with probability at least 1—Ae, the BLR+NAE
Test must accept f with probability at least 1 —2Ae. By Theorem 7.7 we may
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deduce that f is 401e-close to some dictator y;. Our goal is to show that i € S;
this will complete the proof because 40A¢ < € (by our choice of A =.01).

So suppose by way of contradiction that i ¢ S; i.e., y;(1g) = 0. Since f is
40Ae-close to the parity function y;, Proposition 1.31 tells us that

Pr[locally correcting f on input 1g produces the output y;(1g) =0]=1-80A1¢.

On the other hand, since the overall test accepts f with probability at least
1— e, the second subtest must accept f with probability at least 1 —2Ae. This
means

Pr[locally correcting f on input 1g produces the output 0] < 21e.

But this is a contradiction, since 21¢ < 1—801¢ for all 0 <e <1 (by our choice
of 1 =.01). Hence i € S as desired. O

7.2. Probabilistically Checkable Proofs of Proximity

In the previous section we saw that every subproperty of the dictatorship
property has a 3-query local tester. In this section we will show that any
property whatsoever has a 3-query local tester — if an appropriate “proof” is
provided.

To make sense of this statement let’s first generalize the setting in which
we study property testing. Definitions 7.1 and 7.2 are concerned with testing a
Boolean function f : {0,1}" — {0, 1} by querying its values on various inputs. If
we think of f’s truth table as a Boolean string of length N = 2", then a testing
algorithm simply queries various coordinates of this string. It makes sense to
generalize to the notion of testing properties of N-bit strings, for any length N.
Here a property € will just be a collection € < {0, 1}V of strings, and we’ll be
concerned with relative Hamming distance dist(w,w’) = %A(w,w’ ) between
strings. For simplicity, we’ll begin to write n instead of N.

Definition 7.10. An r-query string testing algorithm for strings w € {0,1}" is
a randomized algorithm that:

e chooses r (or fewer) indices i1,...,i, € [n] according to some probability
distribution;

e queries wj,,...,W;,;

¢ based on the outcomes, decides (deterministically) whether to “accept” w.

We may also generalize this definition to testing strings w € Q" over finite
alphabets Q of cardinality larger than 2.

Definition 7.11. Let € <{0,1}" be a “property” of n-bit Boolean strings. We
say a string testing algorithm is a local tester for € (with rejection rate A > 0)
if it satisfies the following:

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.



7.2. Probabilistically Checkable Proofs of Proximity 179

o If w € €, then the tester accepts with probability 1.

e For all 0 <e <1, if dist(w,¥) > €, then the tester rejects w with probabil-
ity greater than A -e.

Equivalently, if the tester accepts w with probability at least 1 - A -¢,
then w is e-close to €;i.e., 3w’ € € such that dist(w,w’) <e.

Example 7.12. Let Z ={(0,0,...,0)} ={0,1}" be the property of being the all-
zeroes string. Then the following is a 1-query local tester for Z (with rejection
rate 1): Pick a uniformly random index i and accept if w; = 0.

Let & ={(0,0,...,0),(1,1,...,1)} < {0,1}"* be the property of having all co-
ordinates equal. Then the following is a 2-query local tester for &: Pick two
independent and uniformly random indices i and j and accept if w; = wj.
In Exercise 7.4 you are asked to show that if dist(w,&) = €, then this tester
rejects w with probability % - %(1 —-2)? =e.

Let 0 = {w € F} : w has an odd number of 1’s}. This property does not
have a local tester making few queries. In fact, in Exercise 7.5 you are
asked to show that any local tester for & must make the maximum number
of queries, n.

As the last example shows, not every property has a local tester making a
small number of queries; indeed, most properties of n-bit strings do not. This
is rather too bad: Imagine that for any large n and any complicated property
% <1{0,1}" there were an O(1)-query local tester. Then if anyone supplied you
with a string w claiming it satisfied €, you wouldn’t have to laboriously check
this yourself, nor would you have to trust the supplier; you could simply spot-
check w in a constant number of coordinates and become convinced that w is
(close to being) in €.

But what if, in addition to w € {0,1}", you could require the supplier to
give you some additional side information II € {0,1}¢ about w so as to assist
you in testing that w € €? One can think of IT as a kind of “proof” that w
satisfies €. In this case it’s possible that you can spot-check w and II together
in a constant number of coordinates and become convinced that w is (close
to being) in € — all without having to “trust” the supplier of the string w
and the purported proof I1. These ideas lead to the notion of probabilistically
checkable proofs of proximity (PCPPs).

Definition 7.13. Let € < {0,1}" be a property of n-bit Boolean strings and
let £ € N. We say that € has an r-query, length-¢ probabilistically checkable
proof of proximity (PCPP) system (with rejection rate A > 0) when the following
holds: There exists an r-query testing algorithm 7' for (n + ¢)-bit strings,
thought of as pairs w € {0,1}"* and I € {0, 1}, such that:
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 (“Completeness.”) If w € €, then there exists a “proof” II € {0,1}¢ such
that T accepts with probability 1.

e (“Soundness.”) For all 0 <¢ < 1, if dist(w,¥) > €, then for every “proof”
1€ {0,1} the tester T rejects with probability greater than A -¢.

Equivalently, if there exists IT € {0,1}’ that causes T to accept with
probability at least 1 —A-¢, then w must be e-close to 6.

PCPP systems are also known as assisted testers, locally testable proofs, or
assignment testers.

Remark 7.14. A word on the three parameters: We are usually interested in
fixing the number of queries r to a very small universal constant (such as 3)
while trying to keep the proof length ¢ = ¢(n) relatively small (e.g., poly(n) is
a good goal). We are usually not very concerned with the rejection rate A so
long as it’s a positive universal constant (independent of n).

Example 7.15. In Example 7.12 we stated that 0 = {w € F§ : w1 +---+w, =1}
has no local tester making fewer than n queries. But it’s easy to give a 3-query
PCPP system for @ with proof length n — 1 (and rejection rate 1). The idea is
to require the proof string I to contain the partial sums of w:

Jj+1

Hj = Z wi; (mod 2).

i=1
The tester will perform one of the following checks, uniformly at random:

Il =w1 +we

IIg =117 + ws

I3 =1l + wy

-1 =Ih-2+w,
M-1=1

Evidently the tester always makes at most 3 queries. Further, in the “com-
pleteness” case w € @, if I is a correct list of partial sums then the tester will
accept with probability 1. It remains to analyze the “soundness” case, w ¢ 0.
Here we are significantly aided by the fact that dist(w, @) must be exactly 1/n
(since every string is at Hamming distance either 0 or 1 from &). Thus to
confirm the claimed rejection rate of 1, we only need to observe that if w ¢ G
then at least one of the tester’s n checks must fail.

This example generalizes to give a very efficient PCPP system for testing
that w satisfies any fixed Fa-linear equation. What about testing that w
satisfies a fixed system of [Fe-linear equations? This interesting question is
explored in Exercise 7.16, which serves as a good warmup for our next result.
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We now extend Theorem 7.9 to show the rather remarkable fact that
any property of n-bit strings has a 3-query PCPP system. (The proof length,
however, is enormous.)

Theorem 7.16. Let 6 <1{0,1}" be any class of strings. Then there is a 3-query,
length-2%" PCPP system for € (with rejection rate .001).

Proof. Let N = 2" and fix an arbitrary bijection ¢: {0,1}* — [N]. The tester
will interpret the string w € {0,1}" to be tested as an index «(w) € [N] and will
interpret the 2V-length proof IT as a function IT: {0,1}V — {0,1}. The idea
is for the tester to require that II be the dictator function corresponding to
index «(w); i.e., yw) : {0, 1} —{0,1}.

Now under the identification ¢, we can think of the string property € as a
subclass of all N-bit dictators, namely

€' = {Yuwn : 10,1V —{0,1} |w' € 6}

In particular, €’ is a property of N-bit functions. We can now state the twofold
goal of the tester:
(1) check that [Te €’;
(2) given that Il is indeed some dictator y,q) : {0, 1V - {0,1} with w' € €,
check that w’ = w.

To accomplish the latter the tester would like to check w; = w; for a random
J € [n]. The tester can query any w; directly but accessing w; requires a little
thought. The trick is to prepare the string

X7 € (0,1 defined by X)) = ;.

and then to locally correct IT on X (using Proposition 1.31).

Thus the tester is defined as follows:

(1) With probability 1/2, locally test the function property €’ using Theo-
rem 7.9.

(2) With probability 1/2, pick j ~ [n] uniformly at random; locally correct I1
on the string X and accept if the outcome equals w e

Note that the tester makes 3 queries in both of the subtests.

Verifying “completeness” of this PCPP system is easy: if w € 6 and II is
indeed the (truth table of) y,q,) : {0, 1}¥ — {0, 1} then the test will accept with
probability 1. It remains to verify the “soundness” condition. Fix w € {0,1}",
I1:{0,1}Y — {0,1}, and 0 < ¢ < 1 and suppose that the tester accepts (w,II)
with probability at least 1 — Ae, where A =.001. Our goal is to show that w is
e-close to some string w’ € €.
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Since the overall test accepts with probability at least 1 — Ae, subtest (1)
above accepts with probability at least 1 —2A¢e. Thus by Theorem 7.9, IT must
be 200Ae-close to some dictator y,, with w’ € €. Since dictators are parity
functions, Proposition 1.31 tells us that

vV j, Prllocally correcting IT on X produces YuwH (X Wy = w}-] =1-400A¢e = 1/2,
(7.1)
where we used 4001¢e < 4001 < 1/2 by the choice A =.001.

On the other hand, since the overall test accepts with probability at least
1 - Ae, subtest (2) above rejects with probability at most 21¢. This means
]% ] Pr[locally correcting IT on X @) doesn’t produce w;l| < 2Ae.
J~n
By Markov’s inequality we deduce that except for at most a 41e fraction of
coordinates j € [n] we have

Pr(locally correcting IT on X ) doesn’t produce w;] < 1/2.

Combining this information with (7.1) we deduce that w; = w; except for at

most a 41e < ¢ fraction of coordinates j € [n]. Since w' € € we conclude that
dist(w,C) < ¢, as desired. U

You may feel that the doubly-exponential proof length 22" in this theorem
is quite bad, but bear in mind there are 22" different properties €. Actually,
giving a PCPP system for every property is a bit overzealous since most prop-
erties are not interesting or natural. A more reasonable goal would be to give
efficient PCPP systems for all “explicit” properties. A good way to formalize
this is to consider properties decidable by polynomial-size circuits. Here we
use the definition of general (De Morgan) circuits from Exercise 4.13. Given
an n-variable circuit C we consider the set of strings which it “accepts” to be
a property,

¢ ={wef0,1}":C(w)=1}. (7.2)
For properties computed by modest-sized circuits C we may hope for PCPP
systems with proof length much less than 22" We saw such a case in Exam-
ple 7.15.

Another advantage of considering “explicit” properties is that we can de-
fine a notion of constructing a PCPP system, “given” a property. A theorem
of the form “for each explicit property % there exists an efficient PCPP sys-
tem...” may not be useful, practically speaking, if its proof is nonconstructive.
We can formalize the issue as follows:

Definition 7.17. A PCPP reduction is an algorithm which takes as input a
circuit C and outputs the description of a PCPP system for the string prop-
erty € decided by C as in (7.2), where n is the number of inputs to C. If the
output PCPP system always makes r queries, has proof length ¢(n,size(C))
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(for some function ¢), and has rejection rate A > 0, we say that the PCPP
reduction has the same parameters. Finally, the PCPP reduction should run
in time poly(size(C), ?).

(We haven’t precisely specified what it means to output the description of
a PCPP system; this will be explained more carefully in Section 7.3. In brief
it means to list — for each possible outcome of the tester’s randomness — which
bits are queried and what predicate of them is used to decide acceptance.)

Looking back at the results on testing subclasses of dictatorship (Theo-
rem 7.9) and PCPPs for any property (Theorem 7.16) we can see they have
the desired sort of “constructive” proofs. In Theorem 7.9 the local tester’s de-
scription depends in a very simple way on the input 1g. As for Theorem 7.16,
it suffices to note that given an n-input circuit C we can write down its truth
table (and hence the property it decides) in time poly(size(C))-2", whereas the
allowed running time is at least poly(size(C),22"). Hence we may state:

Theorem 7.18. There exists a 3-query PCPP reduction with proof length 22"
(and rejection rate .001).

In Exercise 7.18 you are asked to improve this result as follows:

Theorem 7.19. There exists a 3-query PCPP reduction with proof length
2poly(size(C) (ond positive rejection rate).

(The fact that we again have just 3 queries is explained by Exercise 7.12;
there is a generic reduction from any constant number of queries down to 3.)

Indeed, there is a much more dramatic improvement:

The PCPP Theorem. There exists a 3-query PCPP reduction with proof
length poly(size(C)) (and positive rejection rate).

This is (a slightly strengthened version of) the famous “PCP Theorem”
[FGL*96, AS98, ALM*98] from the field of computational complexity, which
is discussed later in this chapter. Though the PCPP Theorem is far stronger
than Theorem 7.18, the latter is not unnecessary; it’s actually an ingredient
in Dinur’s proof of the PCP Theorem [Din07], being applied only to circuits of
“constant” size. The current state of the art for PCPP length [Din07, BS08]
is highly efficient:

Theorem 7.20. There exists a 3-query PCPP reduction with proof length
size(C) - polylog(size(C)) (and positive rejection rate).

7.3. CSPs and computational complexity

This section is about the computational complexity of constraint satisfaction
problems (CSPs), a fertile area of application for analysis of Boolean functions.
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To study it we need to introduce a fair bit of background material; in fact, this
section will mainly consist of definitions.

In brief, a CSP is an algorithmic task in which a large number of “vari-
ables” must be assigned “labels” so as to satisfy given “local constraints”. We
start by informally describing some examples:

Example 7.21.

e In the “Max-3-Sat” problem, given is a CNF formula of width at most 3
over Boolean variables x1,...,x,. The task is to find a setting of the
inputs that satisfies (i.e., makes True) as many clauses as possible.

e In the “Max-Cut” problem, given is an undirected graph G = (V,E). The
task is to find a “cut” —i.e., a partition of V into two parts — so that as
many edges as possible “cross the cut”.

e In the “Max-E3-Lin” problem, given is a system of linear equations
over [F'g, each equation involving exactly 3 variables. The system may in
general be overdetermined; the task is to find a solution which satisfies
as many equations as possible.

e In the “Max-3-Coloring” problem, given is an undirected graph G =
(V,E). The task is to color each vertex either red, green, or blue so as to
make as many edges as possible bichromatic.

Let’s rephrase the last two of these examples so that the descriptions
have more in common. In Max-E3-Lin we have a set of variables V, to be
assigned labels from the domain Q = 9. Each constraint is of the form
vi+v9+vg =0 or vy +ve+vg =1, where vy,vg,v3 € V. In Max-3-Coloring
we have a set of variables (vertices) V to be assigned labels from the domain
Q = {red, green,blue}. Each constraint (edge) is a pair of variables, constrained
to be labeled by unequal colors.

We now make formal definitions which encompass all of the above exam-
ples:

Definition 7.22. A constraint satisfaction problem (CSP) over domain Q
is defined by a finite set of predicates (“types of constraints”) ¥, with each
w € V¥ being of the form v : Q" — {0,1} for some arity r (possibly different for
different predicates). We say that the arity of the CSP is the maximum arity
of its predicates.

Such a CSP is associated with an algorithmic task called “Max-CSP(\¥)”,
which we will define below. First, though, let us see how the CSPs from
Example 7.21 fit into the above definition.

e Max-3-Sat: Domain Q = {True,False}; ¥ contains 14 predicates: the 8
logical OR functions on 3 literals (variables/negated-variables), the 4
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logical OR functions on 2 literals, and the 2 logical OR functions on 1
literal.

e Max-Cut: Domain Q ={-1,1}; ¥ = {#}, where #: {-1,1}2 — {0, 1} is the
“not-equal” predicate.

e Max-E3-Lin: Domain Q = Fg; ¥ contains the two 3-ary predicates
(xl,xg,xg,) — X1 +X2+Xx3 and (xl,xg,x3) — x1+x9+x3+ 1.

e Max-3-Coloring: Domain Q = {red, green,blue}; ¥ contains just the sin-
gle not-equal predicate #: Q2 — {0, 1}.

Remark 7.23. Let us add a few words about traditional CSP terminology.
Boolean CSPs refer to the case |Q| =2. If w:{-1,1}" — {0,1} is a Boolean pred-
icate we sometimes write “Max-1” to refer to the CSP where all constraints
are of the form vy applied to literals; i.e., ¥ = {y(zxvy,...,+0;)}. As an example,
Max-E3-Lin could also be called Max- (3. The “E3” in the name Max-E3-Lin
refers to the fact that all constraints involve “E”xactly 3 variables. Thus e.g.
Max-3-Lin is the generalization in which 1- and 2-variable equations are al-
lowed. Conversely, Max-E3-Sat is the special case of Max-3-Sat where each
clause must be of width exactly 3 (a CSP which could also be called Max-ORg).

To formally define the algorithmic task Max-CSP(V), we begin by defining
its input:

Definition 7.24. An instance (or input) & of Max-CSP(¥) over variable set V
is a list (multiset) of constraints. Each constraint C € &2 is a pair C = (S, y),
where ¥ € ¥ and where the scope S = (vl, ...,U") is a tuple of distinct variables
from V, with r being the arity of . We always assume that each v € V
participates in at least one constraint scope. The size of an instance is the
number of bits required to represent it; writing n = |V| and treating |Q|, |V|
and the arity of ¥ as constants, the size is between n and O(|2?|logn).

Remark 7.25. Let’s look at how the small details of Definition 7.24 affect
input graphs for Max-Cut. Since an instance is a multiset of constraints, this
means we allow graphs with parallel edges. Since each scope must consist
of distinct variables, this means we disallow graphs with self-loops. Finally,
since each variable must participate in at least one constraint, this means in-
put graphs must have no isolated vertices (though they may be disconnected).

Given an assignment of labels for the variables, we are interested in the
number of constraints that are “satisfied”. The reason we explicitly allow
duplicate constraints in an instance is that we may want some constraints
to be more important than others. In fact it’s more convenient to normalize
by looking at the fraction of satisfied constraints, rather than the number.
Equivalently, we can choose a constraint C ~ 22 uniformly at random and look
at the probability that it is satisfied. It will actually be quite useful to think
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of a CSP instance &2 as a probability distribution on constraints. (Indeed, we
could have more generally defined weighted CSPs in which the constraints
are given arbitrary nonnegative weights summing to 1; however, we don’t
want to worry about the issue of representing, say, irrational weights with
finitely many bits.)

Definition 7.26. An assignment (or labeling) for instance & of Max-CSP(¥)
is just a mapping F : V — Q. For constraint C = (S,v) € &2 we say that F
satisfies C if ¢(F(S)) = 1. Here we use shorthand notation: if S = wl,...,v")
then F(S) denotes (F(v!),...,F(")). The value of F, denoted Valg(F), is the
fraction of constraints in &2 that F satisfies:

Valgp(F) = s, E§~@[W(F(S))] €[0,1]. (7.3)

The optimum value of & is

Opt(£?2) = max {Valg(F)}.
F:v-Q
If Opt(£?) = 1, we say that & is satisfiable.

Remark 7.27. In the literature on CSPs there is sometimes an unfortunate
blurring between a variable and its assignment. For example, a Max-E3-Lin
instance may be written as

x1+x9+x3=0

x1+x5+x6=0

x3+x4+x6=1;
then a particular assignment x1 =0,x9 =1,x3 = 0,x4 = 1,x5 = 1,x6 = 1 may be
given. Now there is confusion: Does x2 represent the name of a variable or
does it represent 1? Because of this we prefer to display CSP instances with
the name of the assignment F' present in the constraints. That is, the above

instance would be described as finding F': {x1,...,x6} — [Fg so as to satisfy as
many as possible of the following:

F(x1)+F(xg)+ F(x3)=0
F(x1)+F(x5)+F(xg)=0
F(x3)+F(x4)+F(xg) =1,

Finally, we define the algorithmic task associated with a CSP:

Definition 7.28. The algorithmic task Max-CSP(V) is defined as follows: The
input is an instance 2. The goal is to output an assignment F' with as large
a value as possible.

Having defined CSPs, let us make a connection to the notion of a string
testing algorithm from the previous section. The connection is this: CSPs
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and string testing algorithms are the same object. Indeed, consider a CSP
instance & over domain ) with n variables V. Fix an assignment F :V —
Q; we can also think of F' as a string in Q" (under some ordering of V).
Now think of a testing algorithm which chooses a constraint (S,y) ~ 2 at
random, “queries” the string entry F(v) for each v € S, and accepts if and only
if the predicate w(F(S)) is satisfied. This is indeed an r-query string testing
algorithm, where r is the arity of the CSP; the probability the tester accepts
is precisely Valg(F).

Conversely, let T be some randomized testing algorithm for strings in Q".
Assume for simplicity that 7°s randomness comes from the uniform distribu-
tion over some sample space U. Now suppose we enumerate all outcomes
in U, and for each we write the tuple of indices S that T' queries and the
predicate v : QS| — {0,1} that T uses to make its subsequent accept/reject
decision. Then this list of scope/predicates pairs is precisely an instance of
an n-variable CSP over Q. The arity of the CSP is equal to the (maximum)
number of queries that 7' makes and the predicates for the CSP are precisely
those used by the tester in making its accept/reject decisions. Again, the
probability that T accepts a string F' € Q" is equal to the value of F' as an
assignment for the CSP. (Our actual definition of string testers allowed any
form of randomness, including, say, irrational probabilities; thus technically
not every string tester can be viewed as a CSP. However, it does little harm
to ignore this technicality.)

In particular, this equivalence between string testers and CSPs lets us
properly define “outputting the description of a PCPP system” as in Defini-
tion 7.17 of PCPP reductions.

Example 7.29. The PCPP system for 6 = {w € Fg : w1 +---+w, =1} given in
Example 7.15 can be thought of as an instance of the Max-3-Lin CSP over the
2n —1 variables {w1,...,w,,I11,...,I1,_1}. The BLR linearity test for functions
[F§ — IF2 can also be thought of as instance of Max-3-Lin over 2" variables
(recall that function testers are string testers). In this case we identify the
variable set with IE‘g; if n = 2 then the variables are named (0,0), (0,1), (1,0),
and (1,1); and, if we write F : IF% — [Fg for the assignment, the instance is

F(0,0)+F(0,0)+F(0,0)=0
F(0,0)+F(0,1)+F(0,1)=0
F(0,00+F(1,00+F(1,00=0
F(0,0)+F(1,1)+F(1,1)=0

F(,1)+F(0,0)+F(0,1)=0
F(0,1)+F(0,1)+F(0,0)=0
FO,D+F(1,00+F(1,1)=0
FO,D+F(1,1)+F(1,00=0

F(1,00+F(0,0)+F(1,0)=0
F(1,00+F(0,1)+F(1,1)=0
F(1,0)0+F(1,0)+F(0,00=0
F(1,00+F(1,1)+F(0,1)=0

Cf. Remark 7.27; also, note the duplicate constraints.

F(1,D+F(0,00)+F(1,1)=0
F(1,1)+F(0,1)+F(1,00=0
F(1,D+F(1,00+F(0,1)=0
F(1,1)+F(1,1)+F(0,0)=0.

We end this section by discussing the computational complexity of finding
high-value assignments for a given CSP — equivalently, finding strings that
make a given string tester accept with high probability. Consider, for example,
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the task of Max-Cut on n-vertex graphs. Of course, given a Max-Cut instance
one can always find the optimal solution in time roughly 27, just by trying all
possible cuts. Unfortunately, this is not very efficient, even for slightly large
values of n. In computational complexity theory, an algorithm is generally
deemed “efficient” if it runs in time poly(n). For some subfamilies of graphs
there are poly(n)-time algorithms for finding the maximum cut, e.g., bipartite
graphs (Exercise 7.14) or planar graphs. However, it seems very unlikely
that there is a poly(n)-time algorithm that is guaranteed to find an optimal
Max-Cut assignment given any input graph. This statement is formalized by
a basic theorem from the field of computational complexity:

Theorem 7.30. The task of finding the maximum cut in a given input graph
is “NP-hard”.

We will not formally define NP-hardness in this book (though see Exer-
cise 7.13 for some more explanation). Roughly speaking it means “at least as
hard as the Circuit-Sat problem”, where “Circuit-Sat” is the following task:
Given an n-variable Boolean circuit C, decide whether or not C is satisfiable
(i.e., there exists w € {0,1}" such that C(w) = 1). It is widely believed that
Circuit-Sat does not have a polynomial-time algorithm (this is the “P # NP”
conjecture). In fact it is also believed that Circuit-Sat does not have a 2°0)-
time algorithm.

For essentially all CSPs, including Max-E3-Sat, Max-E3-Lin, and Max-3-
Coloring, finding an optimal solution is NP-hard. This motivates considering
a relaxed goal:

Definition 7.31. Let 0 < a < f < 1. We say that algorithm A is an (a, f)-
approximation algorithm for Max-CSP(V) (pronounced “a out of f approxima-
tion”) if it has the following guarantee: on any instance with optimum value
at least B, algorithm A outputs an assignment of value at least a. In case A is
a randomized algorithm, we only require that its output has value at least «
in expectation.

A mnemonic here is that when the fest assignment has value g, the algorithm
gets value a.

Example 7.32. Consider the following algorithm for Max-E3-Lin: Given
an instance, output either the assignment F = 0 or the assignment F =1,
whichever has higher value. Since either 0 or 1 occurs on at least half of the
instance’s “right-hand sides”, the output assignment will always have value
at least % Thus this is an efficient (%,ﬁ)-approximation algorithm for any g.
In the case =1 one can do better: performing Gaussian elimination is an
efficient (1, 1)-approximation algorithm for Max-E3-Lin (or indeed Max-r-Lin

for any r).
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As a far more sophisticated example, Goemans and Williamson [GW95]
showed that there is an efficient (randomized) algorithm which (.8788, 8)-
approximates Max-Cut for every S.

Not only is finding the optimal solution of a Max-E3-Sat instance NP-hard,
it’s even NP-hard on satisfiable instances. In other words:

Theorem 7.33. (1,1)-approximating Max-E3Sat is NP-hard. The same is true
of Max-3-Coloring.

On the other hand, it’s easy to (1, 1)-approximate Max-3-Lin (Example 7.32)
or Max-Cut (Exercise 7.14). Nevertheless, the “textbook” NP-hardness results
for these problems imply the following:

Theorem 7.34. (B, B)-approximating Max-E3-Lin is NP-hard for any fixed
Be (%, 1). The same is true of Max-Cut.

In some ways, saying that (1,1)-distinguishing Max-E3-Sat is NP-hard is
not necessarily that disheartening. For example, if (1 —§,1)-approximating
Max-E3-Sat were possible in polynomial time for every 6 > 0, you might con-
sider that “good enough”. Unfortunately, such a state of affairs is very likely
ruled out:

Theorem 7.35. There exists a positive universal constant 6o > 0 such that
(1-560, )-approximating Max-E3-Sat is NP-hard.

In fact, Theorem 7.35 is equivalent to the “PCP Theorem” mentioned in
Section 7.2. It follows straightforwardly from the PCPP Theorem, as we now
sketch:

Proof sketch. Let §y be the rejection rate in the PCPP Theorem. We want
to show that (1 — ¢, 1)-approximating Max-E3-Sat is at least as hard as the
Circuit-Sat problem. Equivalently, we want to show that if there is an efficient
algorithm A for (1-39¢, 1)-approximating Max-E3-Sat then there is an efficient
algorithm B for Circuit-Sat. So suppose A exists and let C be a Boolean
circuit given as input to B. Algorithm B first applies to C the PCPP reduction
given by the PCPP Theorem. The output is some arity-3 CSP instance &2
over variables wi,...,wy,I11,...,I1y, where ¢ < poly(size(C)). By Exercise 7.12
we may assume that &2 is an instance of Max-E3-Sat. From the definition
of a PCPP system, it is easy to check (Exercise 7.19) the following: If C is
satisfiable then Opt(£?) = 1; and, if C is not satisfiable then Opt(£?) <1 - dy.
Algorithm B now runs the supposed (1 — g, 1)-approximation algorithm A
on & and outputs “C is satisfiable” if and only if A finds an assignment of
value at least 1 —6. |
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7.4. Highlight: Hastad’s hardness theorems

In Theorem 7.35 we saw that it is NP-hard to (1 — ¢, 1)-approximate Max-
E3Sat for some positive but inexplicit constant §¢. You might wonder how
large ¢ can be. The natural limit here is % because there is a very simple
algorithm that satisfies a %-fraction of the constraints in any Max-E3Sat
instance:

Proposition 7.36. Consider the Max-E3-Sat algorithm that outputs a uni-
formly random assignment F. This is a (%, B)-approximation for any .

Proof. In instance &, each constraint is a logical OR of exactly 3 literals
and will therefore be satisfied by F with probability exactly %. Hence in
expectation the algorithm will satisfy a %-fraction of the constraints. [l

(It’s also easy to “derandomize” this algorithm, giving a deterministic guaran-
tee of at least % of the constraints; see Exercise 7.21.)

This algorithm is of course completely brainless — it doesn’t even “look
at” the instance it is trying to approximately solve. But rather remarkably,
it achieves the best possible approximation guarantee among all efficient
algorithms (assuming P # NP). This is a consequence of the following 1997
theorem of Hastad [Has01b], improving significantly on Theorem 7.35:

Hastad’s 3-Sat Hardness. For any constant § >0, it is NP-hard to (% +0,1)-
approximate Max-E3-Sat.

Hastad gave similarly optimal hardness-of-approximation results for sev-
eral other problems, including Max-E3-Lin:

Hastad’s 3-Lin Hardness. For any constant § >0, it is NP-hard to (% +6,1-
6)-approximate Max-E3-Lin.

In this hardness theorem, both the “a” and “B” parameters are optimal,
as we saw in Example 7.32 one can efficiently (%,ﬁ)-approximate and also
(1,1)-approximate Max-E3-Lin.

The goal of this section is to sketch the proof of the above theorems, mainly
Héstad’s 3-Lin Hardness Theorem. Let’s begin by considering the 3-Sat hard-
ness result. If our goal is to increase the inexplicit constant 6y in Theo-
rem 7.35, it makes sense to look at how the constant arises. From the proof
of Theorem 7.35 we see that it’s just the rejection rate in the PCPP Theorem.
We didn’t prove that theorem, but let’s consider its length-22" analogue, Theo-
rem 7.18. The key ingredient in the proof of Theorem 7.18 is the dictator test.
Indeed, if we strip away the few local correcting and consistency checks, we
see that the dictator test component controls both the rejection rate and the
type of predicates output by the PCPP reduction. This observation suggests
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that to get a strong hardness-of-approximation result for, say, Max-E3-Lin,
we should seek a local tester for dictatorship which (a) has a large rejection
rate, and (b) makes its accept/reject decision using 3-variable linear equation
predicates.

This approach (which of course needs to be integrated with efficient “PCPP
technology”) was suggested in a 1995 paper of Bellare, Goldreich, and Su-
dan [BGS95]. Using it, they managed to prove NP-hardness of (1 — 6y, 1)-
approximating Max-E3-Sat with the explicit constant 59 = .026. Hastad’s
key conceptual contribution (originally from [Has96]) was showing that given
known PCPP technology, it suffices to construct a certain kind of relaxed
dictator test. Roughly speaking, dictators should still be accepted with prob-
ability 1 (or close to 1), but only functions which are “very unlike” dictators
need to be rejected with substantial probability. Since this is a weaker re-
quirement than in the standard definition of a local tester, we can potentially
achieve a much higher rejection rate, and hence a much stronger hardness-of-
approximation result.

For these purposes, the most useful formalization of being “very unlike
a dictator” turns out to be “having no notable coordinates” in the sense of
Definition 6.9. We make the following definition which is appropriate for
Boolean CSPs.

Definition 7.37. Let W be a finite set of predicates over the domain Q =
{-1,1}. Let 0<a<pf=<1andlet 1:[0,1] —[0,1] satisfy A(e) — 0 as ¢ — 0.
Suppose that for each n € N* there is a local tester for functions f : {—1,1}"* —
{—1,1} with the following properties:

o If f is a dictator then the test accepts with probability at least §.

e If f has no (¢,e)-notable coordinates —i.e., Infél_e)[f I<eforallie[n]-
then the test accepts with probability at most a + A(e).

o The tester’s accept/reject decision uses predicates from W; i.e., the tester
can be viewed as an instance of Max-CSP(W¥).

Then, abusing terminology, we call this family of testers an (a, §)-Dictator-vs.-
No-Notables test using predicate set V.

Remark 7.38. For very minor technical reasons, the above definition should
actually be slightly amended. In this section we freely ignore the amendments,
but for the sake of correctness we state them here. One is a strengthening,
one is a weakening.

o The second condition should be required even for functions f : {—1,1}" —
[—1,1]; what this means is explained in Exercise 7.22.
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e When the tester makes accept/reject decisions by applying v € ¥ to
query results f(x'D),..., (&), it is allowed that the query strings are
not all distinct. (See Exercise 7.31.)

Remark 7.39. It’s essential in this definition that the “error term” A(e) = 0.(1)
be independent of n. On the other hand, we otherwise care very little about
the rate at which it tends to 0; this is why we didn’t mind using the same
parameter € in the “(¢,e)-notable” hypothesis.

Just as the dictator test was the key component in our PCPP reduction
(Theorem 7.18), Dictator-vs.-No-Notables tests are the key to obtaining strong
hardness-of-approximation results. The following result (essentially proved
in Khot et al. [KKMOO07]) lets you obtain hardness results from Dictator-vs.-
No-Notables tests in a black-box way:

Theorem 7.40. Fix a CSP over domain Q ={-1,1} with predicate set ¥. Sup-
pose there exists an (a, B)-Dictator-vs.-No-Notables test using predicate set V.
Then for all 6 >0, it is “UG-hard” to (a + 6, 8 — 0)-approximate Max-CSP(W).

In other words, the distinguishing parameters of a Dictator-vs.-No-Notables
test automatically translate to the distinguishing parameters of a hardness
result (up to an arbitrarily small §).

The advantage of Theorem 7.40 is that it reduces a problem about compu-
tational complexity to a purely Fourier-analytic problem, and a constructive
one at that. The theorem has two disadvantages, however. The first is that
instead of NP-hardness — the gold standard in complexity theory — it merely
gives “UG-hardness”, which roughly means “at least as hard as the Unique-
Games problem”. We leave the definition of the Unique-Games problem to
Exercise 7.27, but suffice it to say it’s not as universally believed to be hard
as Circuit-Sat is. The second disadvantage of Theorem 7.40 is that it only
has -6 rather than . This can be a little disappointing, especially when
you are interested in hardness for satisfiable instances (f = 1), as in Hastad’s
3-Sat Hardness. In his work, Hastad showed that both disadvantages can
be erased provided you construct something similar to, but more complicated
than, an (a, B)-Dictator-vs.-No-Notables test. This is how the Hastad 3-Sat
and 3-Lin Hardness Theorems are proved. Describing this extra complica-
tion is beyond the scope of this book; therefore we content ourselves with the
following theorems:

Theorem 7.41. For any 0 < § < %, there exists a (% + §,1)-Dictator-vs.-No-
Notables test which uses logical OR functions on 3 literals as its predicates.

Theorem 7.42. For any 0 <6 < %, there exists a (%,1 — 0)-Dictator-vs.-No-
Notables test using 3-variable [Fo-linear equations as its predicates.
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Theorem 7.42 will be proved below, while the proof of Theorem 7.41 is
left for Exercise 7.29. By applying Theorem 7.40 we immediately deduce the
following weakened versions of Hastad’s Hardness Theorems:

Corollary 7.43. For any 6 > 0, it is UG-hard to (% + 8,1 - d)-approximate
Max-E3-Sat.

Corollary 7.44. For any 6 > 0, it is UG-hard to (% + 8,1 - d)-approximate
Max-E3-Lin.

Remark 7.45. For Max-E3-Lin, we don’t mind the fact that Theorem 7.40
has -0 instead of § because our Dictator-vs.-No-Notables test only accepts
dictators with probability 1 — 6 anyway. Note that the 1 —¢ in Theorem 7.42
cannot be improved to 1; see Exercise 7.7.)

To prove a result like Theorem 7.42 there are two components: the design
of the test, and its analysis. We begin with the design. Since we are looking
for a test using 3-variable linear equation predicates, the BLR Test naturally
suggests itself; indeed, all of its checks are of the form f(x)+ f(y)+ f(z) = 0.
It also accepts dictators with probability 1. Unfortunately it’s not true that
it accepts functions with no notable coordinates with probability close to %
There are two problems: the constant 0 function and “large” parity functions
are both accepted with probability 1, despite having no notable coordinates.
The constant 1 function is easy to deal with: we can replace the BLR Test by
the “Odd BLR Test”.

Odd BLR Test. Given query access to f :IFg5 — [Fy:
* Choose x ~F5 and y ~ IF5 independently.
» Choose b ~ IFg uniformly at random and set z=x+y+(b,b,...,b) e 5.
o Accept if f(x)+ f(y)+f(z)=b.

Note that this test uses both kinds of 3-variable linear equations as its
predicates. For the test’s analysis, we as usual switch to =1 notation and
think of testing f(x)f(y)f(2) = b. It is easy to show the following (see the
proof of Theorem 7.42, or Exercise 7.15 for a generalization):

Proposition 7.46. The Odd BLR Test accepts [ :{-1,1}* — {—1, 1} with prob-
ability
3t Y fSP=3+3 max {(S)).
S ST odd

This twist rules out the constant 1 function; it passes the Odd BLR Test
with probability % It remains to deal with large parity functions. Hastad’s
innovation here was to add a small amount of noise to the Odd BLR Test.
Specifically, given a small § > 0 we replace 2z in the above test with 2’ ~
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N1_5(2); i.e., we flip each of its bits with probability 6/2. If f is a dictator, then
there is only a 6/2 chance this will affect the test. On the other hand, if f is a
parity of large cardinality, the cumulative effect of the noise will destroy its
chance of passing the linearity test. Note that parities of small odd cardinality
will also pass the test with probability close to 1; however, we don’t need to
worry about them since they have notable coordinates. We can now present
Hastad’s Dictator-vs.-No-Notables test for Max-E3-Lin.

Proof of Theorem 7.42. Given a parameter 0 < § < 1, define the following
test, which uses Max-E3-Lin predicates:
Hastads Test. Given query access to f :{—1,1}* — {-1,1}:

e Choose x,y ~{—1,1}" uniformly and independently.

e Choose bit b ~{—1,1} uniformly and set z=b-(xoy) e {-1,1}" (where o
denotes entry-wise multiplication).

e Choose 2’ ~N1_s(2).
o Accept if f(x)f(y)f(2')=Db.
We will show that this is a (%, 1-6/2)-Dictator-vs.-No-Notables test. First,
let us analyze the test assuming b = 1.
Pr[Hastads Test accepts f | b=11=E[} + 2 f (@) f (y)f ()]
=3+ 3 Elf () f(3)-T1_sf (@o )]
3+ S EIf @) (f * T1_s)@)]

2
=11 Y AS)- f*T1of(S)
Scin]
=1+l ¥ 1-087©9)
Sc<ln]

On the other hand, when b = —1 we take the expectation of % - % @ fyf)
and note that 2’ is distributed as N__s)(x o y). Thus

Pr{Hastads Test accepts £ |b=-11=1-1 Y (-1)SI(1-6)5I7(S).

Scin]
Averaging the above two results we deduce
Pr{Hastads Test accepts f1=2+1 Y (1-6)5I7(S). (7.4)
|S| odd

(Incidentally, by taking 6 = 0 here we obtain the proof of Proposition 7.46.)

From (7.4) we see that if f is a dictator, f = ys with |S| = 1, then it is
accepted with probability 1—6/2. (It’s also easy to see this directly from the
definition of the test.) To complete the proof that we have a (%, 1-6/2)-Dictator-
vs.-No-Notables test, we need to bound the probability that f is accepted given
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that it has (¢,€)-small stable influences. More precisely, assuming

Inf'"[f1= Y Q-5 f(S?<e forallie[n]  (7.5)
Sai

we will show that
Pr[Hastads Test accepts f1< % + %\/E, provided € < 6. (7.6)

This is sufficient because we can take A(¢) in Definition 7.37 to be

A©) {%\/E fore<é,
€)=

% for e > 6.

Now to obtain (7.6), we continue from (7.4):

Pr[Hastads Test accepts 1< % + % |f9r|la§$1{(1 —5)SIF(S)}- Z f(S)z
o |S| odd

1,1 _5)SI7
=g +3z pax{1-8)7/(S)

1.1 —5)2ISI£(S)2
<5+ 2\/|Sm|§c)1(d{(1 5)2SI£(3)2}
1.1 _ 8)SI-17(Q)2
52+2\/|§‘?i‘31§{(1 SISIFLF(S)2)

1 1 1-9)
<z+ i\/Iirel[a:L)]({Inf(i [,

where we used that |S| odd implies S nonempty. And the above is indeed at
most % + %\/E provided € < 8, by (7.5). O

7.5. Exercises and notes

7.1 Suppose there is an r-query local tester for property ¢ with rejection
rate A. Show that there is a testing algorithm that, given inputs 0 <
€,0 <1/2, makes O(%) (nonadaptive) queries to f and satisfies the
following:

o If f € 6, then the tester accepts with probability 1.
o If f is e-far from %, then the tester accepts with probability at
most 6.

7.2 Let 4 = {(x,y) € {0,1}*" : x = y}, the property that a string’s first half
matches its second half. Give a 2-query local tester for .# with rejection
rate 1. (Hint: Locally test that x® y = (0,0,...,0).)

7.3 Reduce the proof length in Example 7.15 to n — 2.

7.4 Verify the claim from Example 7.12 regarding the 2-query tester for the
property that a string has all its coordinates equal. (Hint: Use +1 nota-
tion.)
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7.5 Let 0 ={w € ' : w has an odd number of 1’s}. Let T be any (n — 1)-query
string testing algorithm that accepts every w € @ with probability 1. Show
that T in fact accepts every string v € 5 with probability 1 (even though
dist(w,0) = % > 0 for half of all strings w). Thus locally testing & re-
quires n queries.

7.6 Let T be a 2-query testing algorithm for functions {—1,1}" — {—1,1}. Sup-
pose that 9 accepts every dictator with probability 1. Show that it also
accepts Maj,, with probability 1 for every odd n’ < n. This shows that
there is no 2-query local tester for dictatorship assuming n > 2. (Hint:
You’ll need to enumerate all predicates on up to 2 bits.)

7.7 For every a < 1, show that there is no (a, 1)-Dictator-vs.-No-Notables test
using Max-E3-Lin predicates. (Hint: Consider large odd parities.)

7.8 (a) Consider the following 3-query testing algorithm for f :{0,1}"* — {0, 1}.
Let x,y ~ {0,1}" be independent and uniformly random, define 2z €
{0,1}" by z; =x; A y; for each i € [n], and accept if f(x) A f(y) = f(2).
Let pp be the probability that this test accepts a parity function yg :
{0,1}* — {0,1} with |S| = k. Show that pg = p1 = 1 and that in general
pr < %+2_|S|. In fact, you might like to show that pj = %+(% -
%(—l)k )2% . (Hint: It suffices to consider £ = n and then compute the
correlation of y(1, ) A X{n+1,..2n) With the bent function IPs,.)

(b) Show how to obtain a 3-query local tester for dictatorship by combin-
ing the following subtests: (i) the Odd BLR Test; (ii) the test from
part (a).

7.9 Obtain the largest explicit rejection rate in Theorem 7.7 that you can. You
might want to return to the Fourier expressions arising in Theorem 1.30
and 2.56, as well as Exercise 1.28. Can you improve your bound by doing
the BLR and NAE Tests with probabilities other than 1/2,1/2?

7.10 (a) Say that A is an (a, f)-distinguishing algorithm for Max-CSP(V) if
it outputs ‘YES’ on instances with value at least § and outputs ‘NO’
on instances with value strictly less than a. (On each instance with
value in [a, ), algorithm A may have either output.) Show that if
there is an efficient (a, §)-approximation algorithm for Max-CSP(¥),
then there is also an efficient (a, §)-distinguishing algorithm for Max-
CSP(Y).

(b) Consider Max-CSP(W), where ¥ be a class of predicates that is closed
under restrictions (to nonconstant functions); e.g., Max-3-Sat. Show
that if there is an efficient (1, 1)-distinguishing algorithm, then there
is also an efficient (1, 1)-approximation algorithm. (Hint: Try out all
labels for the first variable and use the distinguisher.)

7.11 (a) Let ¢ be a CNF of size s and width w = 3 over variables x1,...,x,.
Show that there is an “equivalent” CNF ¢’ of size at most (w —2)s and
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7.12

7.13

7.14
7.15

7.16

7.17

7.18

width 3 over the variables x1,...,x, plus auxiliary variables I1y,...,II,,
with ¢ < (w — 3)s. Here “equivalent” means that for every x such that
¢(x) = True there exists IT such that ¢'(x,II) = True; and, for every x
such that ¢(x) = False we have ¢'(«x,II) = False for all II.

(b) Extend the above so that every clause in ¢’ has width exactly 3 (the
size may increase by O(s)).

Suppose there exists an r-query PCPP reduction 221 with rejection rate A.
Show that there exists a 3-query PCPP reduction %5 with rejection rate
at least A/(r2"). The proof length of %9 should be at most 72" - m plus the
proof length of 221 (where m is the description-size of Z%1’s output) and
the predicates output by the reduction should all be logical ORs applied
to exactly three literals. (Hint: Exercises 4.1, 7.11.)

(a) Give a polynomial-time algorithm R that takes as input a general
Boolean circuit C and outputs a width-3 CNF formula ¢ with the
following guarantee: C is satisfiable if and only if ¢ is satisfiable.
(Hint: Introduce a variable for each gate in C.)

(b) The previous exercise in fact formally justifies the following state-
ment: “(1,1)-distinguishing Max-3-Sat is NP-hard”. (See Exercise 7.10
for the definition of (1,1)-distinguishing.) Argue that, indeed, if (1,1)-
distinguishing (or (1,1)-approximating) Max-3-Sat is in polynomial
time, then so is Circuit-Sat.

(¢) Prove Theorem 7.33. (Hint: Exercise 7.11(b).)

Describe an efficient (1, 1)-approximation algorithm for Max-Cut.

(a) Let H be any subspace of ') and let # ={y, :Fj —{-1,1} |y € H').
Give a 3-query local tester for /4 with rejection rate 1. (Hint: Similar
to BLR, but with (@g * f,f = f).)

(b) Generalize to the case that H is any affine subspace of 5.

Let A be any affine subspace of Ij. Construct a 3-query, length-2" PCPP
system for A with rejection rate a positive universal constant. (Hint:
Given w € IF5, the tester should expect the proof IT € {-1, 1}?" to encode
the truth table of y,,. Use Exercise 7.15 and also a consistency check
based on local correcting of I1 at e;, where i € [n] is uniformly random.)

(a) Give a 3-query, length-O(n) PCPP system (with rejection rate a posi-
tive universal constant) for the class {w € 'y : IP,(w) = 1}, where IP,
is the inner product mod 2 function (n even).

(6) Do the same for the complete quadratic function CQ,, from Exer-
cise 1.1. (Hint: Exercise 4.13.)

In this exercise you will prove Theorem 7.19.
(a) Let D € [F3*" be a nonzero matrix and suppose x, y ~ I are uniformly
random and independent. Show that Pr[y  Dx # 0] = %.
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(b) Letye ]Fg andTI € ]ng”. Suppose x,y ~ ]Fg are uniformly random and
independent. Show that PI‘[(YTx)(’)/T y)=TIe (xyT)] isl1ifI'= ny and
is at most % otherwise. Here we use the notation BeC =%, ;B;;C;;
for matrices B,C € IF5™".

(c) Suppose you are given query access to two functions ¢ :[Fj — [F2 and
q:F5*" — [Fg. Give a 4-query testing algorithm with the following
two properties (for some universal constant A > 0): (i) if £ = y, and
q = X,y for some y € Fy, the test accepts with probability 1; (ii) for
all 0 <e <1, if the test accepts with probability at least 1 -7y -¢, then
there exists some y € 'y such that ¢ is e-close to y, and q is e-close
to x,,7. (Hint: Apply the BLR Test to ¢ and ¢, and use part (b) with
local correcting on q.)

(d) Let L be alist of homogenous degree-2 polynomial equations over vari-
ables w1,...,w, € Fa. (Each equation is of the form Z?,j:l cijwiwj=>b
for constants b,c;; € ['o; we remark that w? =w;.) Define the string
property £ ={w € I’y : w satisfies all equations in L}. Give a 4-query,

length-(2" + 27"y PCPP system for £ (with rejection rate a positive
universal constant). (Hint: The tester should expect the truth table of
Xw and ¥, 7- You will need part (c) as well as Exercise 7.15 applied
to “q”.)

(e) Complete the proof of Theorem 7.19. (Hints: given w € {0,1}", the
tester should expect a proof consisting of all gate values w € {0, 1}%2e(C)
in C’s computation on w, as well as truth tables of y; and y;;7-
Show that i being a valid computation of C is encodable with a list
of homogeneous degree-2 polynomial equations. Add a consistency
check between w and w using local correcting, and reduce the number
of queries to 3 using Exercise 7.12.)

7.19 Verify the connection between Opt(£?) and C’s satisfiability stated in the
proof sketch of Theorem 7.35. (Hint: Every string w is 1-far from the
empty property.)

7.20 A randomized assignment for an instance & of a CSP over domain Q is a
mapping F that labels each variable in V with a probability distribution
over domain elements. Given a constraint (S,y) with S = (vy,...,v;), we
write ¢(F(S)) € [0, 1] for the expected value of w(F(vy),...,F(v,)). This is
simply the probability that v is satisfied when one actually draws from
the domain-distributions assigned by F'. Finally, we define the value of F
to be Valgb(F) = E(S,W)NQ[W(F(S))].

(a) Suppose that A is a deterministic algorithm that produces a random-
ized assignment of value a on a given instance &2. Show a simple
modification to A that makes it a randomized algorithm that pro-
duces a (normal) assignment whose value is « in expectation. (Thus,
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7.21

7.22

7.23

in constructing approximation algorithms we may allow ourselves to
output randomized assignments.)

(b) Let A be the deterministic Max-E3-Sat algorithm that on every in-
stance outputs the randomized assignment that assigns the uniform
distribution on {0,1} to each variable. Show that this is a (%,ﬂ)-
approximation algorithm for any . Show also that the same algo-
rithm is a (%, B)-approximation algorithm for Max-3-Lin.

(¢) When the domain Q is {—1,1}, we may model a randomized assign-
ment as a function f : V — [-1,1]; here f(v) = u is interpreted as the
unique probability distribution on {—1,1} which has mean py. Now
given a constraint (S,y) with S = (vy,...,v;), show that the value of
f on this constraint is in fact ¢ (f(v1),...,f(v;)), where we identify
v {-1,1}" — {0,1} with its multilinear (Fourier) expansion. (Hint:
Exercise 1.4.)

(d) Let ¥ be a collection of predicates over domain {—1,1}, and define
v = minycy{%(@)}. Show that outputting the randomized assignment
f =0 is an efficient (v, f)-approximation algorithm for Max-CSP(V).

Let F be a randomized assignment of value a for CSP instance & (as
in Exercise 7.20). Give an efficient deterministic algorithm that outputs
a usual assignment F of value at least @. (Hint: Try all possible label-
ings for the first variable and compute the expected value that would be
achieved if F were used for the remaining variables. Pick the best label
for the first variable and repeat.)

Given a local tester for functions f : {—1,1}* — {—1,1}, we can interpret
it also as a tester for functions f : {—1,1}* — [-1,1]; simply view the
tester as a CSP and view the acceptance probability as the value of
[ when treated as a randomized assignment (as in Exercise 7.20(c)).
Equivalently, whenever the tester “queries” f(x), imagine that what is re-
turned is a random bit b € {—1,1} whose mean is f(x). This interpretation
completes Definition 7.37 of Dictator-vs.-No-Notables tests for functions
f:{-1,1Y* - [-1,1] (see Remark 7.38). Given this definition, verify that
the Hastads Test is indeed a (%, 1-9)-Dictator-vs.-No-Notables test. (Hint:
Show that (7.4) still holds for functions f :{—1,1}" — [-1,1]. There is only
one subsequent inequality that uses that f’s range is {—1,1}, and it still
holds with range [-1,1].)

Let W be a finite set of predicates over domain Q2 = {—1,1} that is closed
under negating variables. (An example is the scenario of Max-y from Re-
mark 7.23.) In this exercise you will show that Dictator-vs.-No-Notables
tests using ¥ may assume [ :{-1,1}* — [-1,1] is odd without loss of
generality.
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7.24

7.25

7.26

7.27

7.28

(a) Let T be an (a, B)-Dictator-vs.-No-Notables test using predicate set ¥
that works under the assumption that f : {-1,1}" — [-1,1] is odd.
Modify T as follows: Whenever it is about to query f(x), with proba-
bility I let it use f(x) and with probability 3 let it use —f(—x). Call
the modified test 7”. Show that the probability 7" accepts an arbitrary
f:{-1,1}" —[-1,1] is equal to the probability T accepts f°d9 (recall
Exercise 1.8).

(b) Prove that T" is an (a, §)-Dictator-vs.-No-Notables test using predi-
cate set WV for functions f:{-—1,1}* - [-1,1].

This problem is similar to Exercise 7.23 in that it shows you may assume

that Dictator-vs.-No-Notables tests are testing “smoothed” functions of

the form T;_sh for A : {-1,1}"* — [-1,1], so long as you are willing to
lose O(6) in the probability that dictators are accepted.

(a) Let U be an (a, f)-Dictator-vs.-No-Notables test using an arity-r pred-
icate set ¥ (over domain {—1,1}) which works under the assumption
that the function f : {—1,1}* —[-1, 1] being tested is of the form T¢_sh
for A :{-—1,1Y* — [-1,1]. Modify U as follows: whenever it is about
to query f(x), let it draw y ~ N1_s(x) and use f(y) instead. Call the
modified test U’. Show that the probability U’ accepts an arbitrary
h:{-1,1}* - [-1,1] is equal to the probability U accepts T1_sh.

(b) Prove that U’ is an (a, § — r6/2)-Dictator-vs.-No-Notables test using
predicate set V.

Give a slightly alternate proof of Theorem 7.42 by using the original
BLR Test analysis and applying Exercises 7.23, 7.24.

Show that when using Theorem 7.40, it suffices to have a “Dictators-
vs.-No-Influentials test”, meaning replacing Inf(ilfd[ f1in Definition 7.37
with just Inf;[f]. (Hint: Exercise 7.24.)

For g € N*, Unique-Games(q) refers to the arity-2 CSP with domain Q =
[g]in which all ¢! “bijective” predicates are allowed; here v is “bijective” if
there is a bijection 7 : [¢g] — [q] such that y(i, j) = 1 iff n(j) = i. Show that
(1,1)-approximating Unique-Games(q) can be done in polynomial time.
(The Unique Games Conjecture of Khot [Kho02] states that for all § >0
there exists g € N* such that (6,1 — §)-approximating Unique-Games(q)
is NP-hard.)

In this problem you will show that Corollary 7.43 actually follows directly

from Corollary 7.44.

(a) Consider the Fo-linear equation vq +ve +vg = 0. Exhibit a list of 4
clauses (i.e., logical ORs of literals) over the variables such that if the
equation is satisfied, then so are all 4 clauses, but if the equation is
not satisfied, then at most 3 of the clauses are. Do the same for the
equation v +vg+vg=1.
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(b) Suppose that for every 6 > 0 there is an efficient algorithm for (% +
0,1 - 9)-approximating Max-E3-Sat. Give, for every § > 0, an efficient
algorithm for (% + 0,1 - 0)-approximating Max-E3-Lin.

(c) Alternatively, show how to transform any (a, 8)-Dictator-vs.-No-Notables
test using Max-E3-Lin predicates into a (% + %a, B)-Dictator-vs.-No-
Notables test using Max-E3-Sat predicates.

7.29 In this exercise you will prove Theorem 7.41.

(a) Recall the predicate OXR from Exercise 1.1. Fix asmall 0 < < 1. The
remainder of the exercise will be devoted to constructing a (% +6/4,1)-
Dictator-vs.-No-Notables test using Max-OXR predicates. Show how
to convert this to a (%4—6/8, 1)-Dictator-vs.-No-Notables test using Max-
E3-Sat predicates. (Hint: Similar to Exercise 7.28(c).)

(b) By Exercise 7.23, it suffices to construct a (% +6/4,1)-Dictator-vs.-No-
Notables test using the OXR predicate assuming [ : {-1,1}" —[-1,1]
is odd. Hastad tests OXR(f(x),f(y),f(2)) where x,y,2z € {—1,1}" are
chosen randomly as follows: For each i € [n] (independently), with
probability 1 -0 choose (x;,y;,2;) uniformly subject to x;y;2z; = -1,
and with probability ¢ choose (x;, ¥;,2;) uniformly subject to y;z; = —1.
Show that the probability this test accepts an odd f : {-1,1}" —[-1,1]
is

2 - iStab_5[f1- %Sgn] fs? B 1077, (7.7)
where J S1_5 S denotes that J is a (1 — §)-random subset of S in
the sense of Definition 4.15. In particular, show that dictators are
accepted with probability 1.

(¢) Upper-bound (7.7) by

§rom+ V=00 +1 3 FSP E [FEDI,
NE S1-5
or something stronger. (Hint: Cauchy—Schwarz.)
(d) Complete the proof that this is a (% +6/4,1)-Dictator-vs.-No-Notables
test, assuming f is odd.

7.30 In this exercise you will prove Theorem 7.40. Assume there exists an
(a, B)-Dictator-vs.-No-Notables test T using predicate set ¥ over domain
{—1,1}. We define a certain efficient algorithm R, which takes as input
an instance ¥ of Unique-Games(q) and outputs an instance &2 of Max-
CSP(W). For simplicity we refer to the variables V of the Unique-Games
instance ¢ as “vertices” and its constraints as “edges”. We also assume
that when ¥ is viewed as an undirected graph, it is regular. (By a result of
Khot-Regev [KRO08] this assumption is without loss of generality for the
purposes of the Unique Games Conjecture.) The Max-CSP(¥) instance &2
output by algorithm R will have variable set V x {—1,1}9, and we write
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assignments for it as collections of functions (f,),ev, where f : {—1,1}¢ —
{—1,1}. The draw of a random of constraint for & is defined as follows:
e Choose u € V uniformly at random.
e Draw arandom constraint from the test T'; call it w(f (@D, ..., Fa™)).
e Choose r random “neighbors” v1,...,v, of u in %, independently
and uniformly. (By a neighbor of u, we mean a vertex v such that
either (u,v) or (v,u) is the scope of a constraint in ¥.) Since ¥’s
constraints are bijective, we may assume that the associated scopes
are (u,v1),...,(u,v,) with bijections 7x1,...,7,:[q] — [g].
o Output the constraint w(f:,’ll(x(l)),...,w(f,’,'r (x'")), where we use
the permutation notation f” from Exercise 1.30.

(a) Suppose Opt(¥4) =1-05. Show that there is an assignment for &2 with
value at least f—O(6) in which each f, is a dictator. (You will use
regularity of ¢4 here.) Thus Opt(2?) = - 0(6).

(b) Given an assignment F = (f,),ecv for &2, introduce for each u € V the
function g, : {-1,1}9 — [-1,1] defined by g(x) = E,[fF(x)], where v is
a random neighbor of u in ¢4 and 7 is the associated constraint’s per-
mutation. Show that Valg(F') = E,cv[Valr(g,)] (using the definition
from Exercise 7.22).

(c) Fix an € > 0 and suppose that Valg(F) = s + 2A(¢), where A is the
“rejection rate” associated with 7'. Show that for at least a A(e)-fraction
of vertices u € V, the set NbrNotable, = {i € [¢] : Infél_e)[gu] > ¢} is
nonempty.

(d) Show that for any u €V, i € [q] we have E[Int‘nl__l‘z)[f,,]] > Inf'9[g,],
where v is a random neighbor of u and 7 is the associated constraint’s
permutation. (Hint: Exercise 2.48.)

(e) For v € V, define also the set Notable, = {i € [¢]: Inf(il_s)[fv] = ¢/2}.
Show that if i € NbrNotable,, then Pr,[7~1(i) € Notable,] = ¢/2, where
v and 7 are as in the previous part.

(f) Show that for every u € V we have [Notable, uNbrNotable, | < O(1/¢?).
(Hint: Proposition 2.54.)

(g) Consider the following randomized assignment for ¢ (see Exericse 7.20):
for each u € V, give it the uniform distribution on Notable, UNbrNotable,
(if this set is nonempty; otherwise, give it an arbitrary labeling). Show
that this randomized assignment has value Q(A(¢)e®).

(h) Conclude Theorem 7.40, where “UG-hard” means “NP-hard assuming
the Unique Games Conjecture”.

7.31 Technically, Exercise 7.30 has a small bug: Since a Dictator-vs.-No-Notables
test using predicate set ¥ is allowed to use duplicate query strings in its
predicates (see Remark 7.38), the reduction in the previous exercise does
not necessarily output instances of Max-CSP(W) because our definition
of CSPs requires that each scope consist of distinct variables. In this
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exercise you will correct this bug. Let M € N* and suppose we modify

the algorithm R from Exercise 7.30 to a new algorithm R’, producing an

instance &' with variable set V x [M] x {—1,1}9. We now think of assign-
ments to ' as M-tuples of functions f},..., flf” , one tuple for eachveV.

Further, thinking of &2 as a function tester, we have 2’ act as fpllows:

Whenever 22 is about to query f,(x), we have 2?' instead query fJ(x) for

a uniformly random j € [M].

(@) Show that Opt(2?) = Opt(2?').

(b) Show that if we delete all constraints in &?’ for which the scope con-
tains duplicates, then Opt(2?') changes by at most r2/M, where r is
the maximum arity of a constraint in V.

(c) Show that the deleted version of &2’ is a genuine instance of Max-
CSP(¥). Since the constant r2/M can be arbitrarily small, this cor-
rects the bug in Exercise 7.30’s proof of Theorem 7.40.

Notes. The study of property testing was initiated by Rubinfeld and Su-
dan [RS96] and significantly expanded by Goldreich, Goldwasser, and Ron
[GGRI8]; the stricter notion of local testability was introduced (in the context
of error-correcting codes) by Friedl and Sudan [FS95]. The first local tester
for dictatorship was given by Bellare, Goldreich, and Sudan [BGS95, BGS98]
(as in Exercise 7.8); it was later rediscovered by Parnas, Ron, and Samorod-
nitsky [PRS01, PRS02]. The relevance of Arrow’s Theorem to testing dicta-
torship was pointed out by Kalai [Kal02].

The idea of assisting testers by providing proofs grew out of complexity-
theoretic research on interactive proofs and PCPs; see the early work Ergiin,
Kumar, and Rubinfeld [EKR99] and the references therein. The specific
definition of PCPPs was introduced independently by Ben-Sasson, Goldreich,
Harsha, Sudan, and Vadhan [BSGH*04] and by Dinur and Reingold [DR04]
in 2004. Both of these works obtained the PCPP Theorem, relying on the
fact that previous literature essentially already gave PCPP reductions of
exponential (or greater) proof length: Ben-Sasson et al. [BSGH" 04] observed
that Theorem 7.19 can be obtained from Arora et. al. [ALM™*98] (their proof is
Exercise 7.18), while Dinur and Reingold [DR04] pointed out that the slightly
easier Theorem 7.18 can be extracted from the work of Bellare, Goldreich,
and Sudan [BGS98]. The proof we gave for Theorem 7.16 is inspired by the
presentation in Dinur [Din07].

The PCP Theorem and its stronger forms (the PCPP Theorem and Theo-
rem 7.20) have a somewhat remarkable consequence. Suppose a researcher
claims to prove a famous mathematical conjecture, say, “P # NP”. To ensure
maximum confidence in correctness, a journal might request the researcher
submit a formalized proof, suitable for a mechanical proof-checking system.
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If the submitted formalized proof w is a Boolean string of length n, the proof-
checker will be implementable by a circuit C of size O(n). Notice that the
string property % decided by C is nonempty if and only if there exists a
(lIength-n) proof of P # NP. Suppose the journal applies Theorem 7.20 to C and
requires the researcher submit the additional proof IT of length n - polylog(n).
Now the journal can run a rather amazing testing algorithm, which reads
just 3 bits of the submitted proof (w,II). If the researcher’s proof of P # NP
is correct then the test will accept with probability 1. On the other hand, if
the test accepts with probability at least 1 -y (where vy is the rejection rate
in Theorem 7.20), then w must be 1-close to the set of strings accepted by C.
This doesn’t necessarily mean that w is a correct proof of P # NP — but it does
mean that € is nonempty, and hence a correct proof of P # NP exists! By
querying a larger constant number of bits from (w,II) as in Exercise 7.1, say,
[30/y] bits, the journal can become 99.99% convinced that indeed P # NP.

CSPs are very widely studied in computer science; it is impossible to sur-
vey the topic here. In the case of Boolean CSPs various monographs [CKSO01,
KSTWO01] contain useful background regarding complexity theory and ap-
proximation algorithms. The notion of approximation algorithms and the de-
randomized (%, 1)-approximation algorithm for Max-E3-Sat (Proposition 7.36,
Exercise 7.21) are due to Johnson [Joh74]. Incidentally, there is also an
efficient (%, 1)-approximation algorithm for Max-3-Sat [KZ97], but both the
algorithm and its analysis are extremely difficult, the latter requiring com-
puter assistance [Zwi02].

Hastad’s hardness theorems appeared in 2001 [Has01b], building on ear-
lier work [Has96, Has99]. Hastad [Has01b] also proved NP-hardness of
(ll) + 6,1 — §)-approximating Max-E3-Lin(mod p) (for p prime) and of (%,1)-
approximating Max-CSP({NAE,}), both of which are optimal. Using tools due
to Trevisan et al. [TSSWO00], Hastad also showed NP-hardness of (}—613 +0, %)-
approximating Max-Cut, which is still the best known such result. The
best known inapproximability result for Unique-Games(q) is NP-hardness of
(% +q 0D, %)—approximation [OW12]. Khot’s influential Unique Games Con-
jecture dates from 2002 [Kho02]; the peculiar name has its origins in a work
of Feige and Lovasz [FL92]. The generic Theorem 7.40, giving UG-hardness
from Dictator-vs.-No-Notables tests, is essentially from Khot et al. [KKMOO07];
the first explicit proof appearing in print may be due to Austrin [Aus08]. (We
remark that the terminology “Dictator-vs.-No-Notables test” is not standard.)
If one is willing to assume the Unique Games Conjecture, there is an almost-
complete theory of optimal inapproximability due to Raghavendra [Rag09].
Many more inapproximability results, with and without the Unique Games
Conjecture, are known; for some surveys, see those of Khot [Kho05, Kho10a,
Khol0b].
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As mentioned, Exercise 7.8 is due to Bellare, Goldreich, and Sudan [BGS95]
and to Parnas, Ron, and Samorodnitsky [PRS01]. The technique described in
Exercise 7.21 is known as the Method of Conditional Expectations. The trick
in Exercise 7.23 is closely related to the notion of “folding” from the theory of
PCPs. The bug described in Exercise 7.31 is rarely addressed in the literature;
the trick used to overcome it appears in, e.g., Arora et al. [ABH" 05].

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.






Chapter 8

Generalized domains

So far we have studied functions f : {0,1}* — R. What about, say, f :{0,1,2}" —
R? In fact, very little of what we’ve done so far depends on the domain be-
ing {0,1}"*; what it has mostly depended on is our viewing the domain as a
product probability distribution. Indeed, much of analysis of Boolean func-
tions carries over to the case of functions f : Q; x--- x Q, — R where the
domain has a product probability distribution 71 ®---® 7,. There are two
main exceptions: the “derivative” operator D; does not generalize to the case
when |Q;| > 2 (though the Laplacian operator L; does), and the important
notion of hypercontractivity (introduced in Chapter 9) depends strongly on
the probability distributions 7;.

In this chapter we focus on the case where all the ;’s are the same, as
are the m;’s. (This is just to save on notation; it will be clear that everything
we do holds in the more general setting.) Important classic cases include
functions on the p-biased hypercube (Section 8.4) and functions on abelian
groups (Section 8.5). For the issue of generalizing the range of functions — e.g.,
studying functions f :{0,1,2}" — {0,1,2} — see Exercise 8.33.

8.1. Fourier bases for product spaces

We will now begin to discuss functions on (finite) product probability spaces.

Definition 8.1. Let (2,71) be a finite probability space with |[Q2] = 2 and as-
sume 7 has full support. For n € N* we write L2(Q",7%") for the (real) inner
product space of functions f : Q" — R, with inner product

(f.&)= E_I[fx)gx)]
x~m®"
Here 7n®" denotes the product probability distribution on Q7.

207
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Example 8.2. A simple example to keep in mind is Q = {a, b, c} with n(a) =
m(b) =n(c) =1/3. Here a, b, and c are simply abstract set elements.

We can (and will) generalize to nondiscrete probability spaces, and to
complex inner product spaces. However, we will keep to the above definition
for now.

Notation 8.3. We will write my0 for the uniform probability distribution
on {—1,1}. Thus so far in this book we have been studying functions in

L?({-1,1}",7%). For simplicity, we will write this as L2({-1,1}").

Notation 8.4. Much of the notation we used for L2({—1,1}*) extends naturally
to the case of LZ(Q",JT®”): e.g., Ifllp = ExNﬂ@n[If(x)|p]1/p, or the restriction
notation from Chapter 3.3.

As we described in Chapter 1.4, the essence of Boolean Fourier analysis
is in deriving combinatorial properties of a Boolean function f : {-1,1}" —
R from its coefficients over a particular basis of L2({—1,1}"), the basis of
parity functions. We would like to achieve the same thing more generally for
functions in L2(Q",7%"). We begin by considering vector space bases more
generally.

Definition 8.5. Let |Q2] = m. The indicator basis (or standard basis) for
L2(Q, ) is just the set of m indicator functions (1,).cq, where

1 ify=ux,
1x(y) = . Y
0 ify#x.

Fact 8.6. The indicator basis is indeed a basis for L%(Q, 71) since the functions
(1.)ceq are nonzero, spanning, and orthogonal. Hence dim(L3(Q,n)) = m.

We will usually fix Q and 7 and then consider L2(Q",7®") for n € N*.
Applying the above definition gives us an indicator basis (1,)eqn for the m”-
dimensional space L2(Q",7®%"). The representation of f € L2(Q,n) in this
basis is just f =Y ,cq f(x)1,. This is not very interesting; the coefficients are
just the values of f so they don’t tell us anything new about the function. We
would like a different basis that will generate useful “Fourier formulas” as in
Chapter 1.4.

For inspiration, let’s look critically at the familiar case of L2({-1,1}").
Here we used the basis of all parity functions, ys(x) = [[;esxi. It will be
helpful to think of the basis function yg :{-1,1}" — R as follows: Identify S
with its 0-1 indicator vector and write

15 = [[¢s,(x:),  where ¢o=1, ¢1=id.
i=1

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.



8.1. Fourier bases for product spaces 209

(Here id is just the identity map id(b) = b.) We will identify three properties
of this basis which we’d like to generalize.

First, the parity basis is a product basis. We can break down its “prod-
uct structure” as follows: For each coordinate i € [n] of the product domain
{=1,1}", the set {1,id} is a basis for the 2-dimensional space L2({-1,1},71/).
We then get a basis for the 2"-dimensional product space L2({—1,1}") by tak-
ing all possible n-fold products. More generally, suppose we are given an
inner product space L%(Q, ) with |Q| = m. Let ¢o,...,$n_1 be any basis for
this space. Then the set of all products ¢;,¢;, - ¢;, (0=<i; <m) forms a basis
for the space L2(Q",7®%").

Second, it is convenient that the parity basis is orthonormal. We will later
check that if a basis ¢o,...,¢,—1 for L2(Q,7) is orthonormal, then so too is
the associated product basis for L2(Q",7%"). This relies on the fact that 7"
is the product distribution. For example, the parity basis for L2({-1,1}")
is orthonormal because the basis {1,id} for L2({—1,1},71/) is orthonormal:
E[1%] = E[x%] =1, E[1-x;]=0. Orthonormality is the property that makes
Parseval’s Theorem hold; in the general context, this means that if f € L%(Q, )
has the representation Z;’gl ci¢; then E[f2] = Z;’;)l c?.

Finally, the parity basis contains the constant function 1. This fact leads
to several of our pleasant Fourier formulas. In particular, when you take
an orthonormal basis ¢o,...,¢n-1 for L?(Q,n) which has ¢o =1, then 0 =
(b0, d;) = Exzlpi(x)] for all i > 0. Hence if f € L?(Q,n) has the expansion
f= Z;’;)l ci¢;i, then E[f]1=co and Var[f]1=3 ;.9 c?.

We encapsulate the second and third properties with a definition:

Definition 8.7. A Fourier basis for an inner product space L2(Q,n) is an
orthonormal basis ¢o,...,¢p,—1 With ¢g = 1.

Example 8.8. For each n € N¥, the 2" parity functions (ys)sc[,] form a

Fourier basis for L2({-1, 1}”,71% .

Remark 8.9. A Fourier basis for L2(Q, ) always exists because you can ex-
tend the set {1} to a basis and then perform the Gram—Schmidt process. On the
other hand, Fourier bases are not unique. Even in the case of L2({—1,1},7159)
there are two possibilities: the basis {1,id} and the basis {1, -id}.

Example 8.10. In the case of Q = {a, b, c} with n(a) = 7(b) = n(c) = 1/3, one
possible Fourier basis (see Exercise 8.4) is

¢1(a) = +V2 ¢pa(a)=0
po=1, ¢1(b)=-vV2/2  Pa(b)=+V6/2,
P1e)=—v2/2,  ¢a(c)=—-V6/2.
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As mentioned, given a Fourier basis for L%(Q,7) you can construct a
Fourier basis for any L2(Q",7%") by “taking all n-fold products”. To make
this precise we need some notation.

Definition 8.11. An n-dimensional multi-index is a tuple a € N". We write
n
supp(a) ={i:a; #0}, #a=|supp(@)l, lal=)_ a;.
i=1
We may write a € N, when we want to emphasize that each a; €{0,1,...,m—
1}.

Definition 8.12. Given functions ¢y,...,¢;;-1 € L2(Q,7) and a multi-index
aeN” . we define ¢, € L2(Q",7%") by

<m>

$a(x) = [ Pa, ().
=1

1
Now we can show that products of Fourier bases are Fourier bases.

Proposition 8.13. Let ¢o,...,¢Pn—-1 be a Fourier basis for L2(Q, 7). Then the
collection (¢po)acN , is a Fourier basis for L2(Q", n®") (with the understanding
that a =(0,0,...,0) indexes the constant function 1).

Proof. First we check orthonormality. For any multi-indices a, € N2, we
have

(Pa,Pp) = xNE,,m[%(x) “Ppp(x)]

- E [lf[l%,.(xi)-lf[l%(xi)]

x~7[®n

i

= H {a;=pi) (since {¢o, .. .,Pm—1} is orthonormal)

12

n
1_[ xEn[‘Pai(xi) g (x)] (since 7®" is a product distribution)
=1%i"
n
1
i=1

[a—y

{a=p}-

This confirms that the collection (¢q)qen?, is orthonormal, and consequently
linearly independent. It is therefore also a basis because it has cardinality m”,
which we know is the dimension of L2(Q",7%") (see Fact 8.6). |

Given a product Fourier basis as in Proposition 8.13, we can express any
f e L2(Q",n®") as a linear combination of basis functions. We will write f(a)
for the “Fourier coefficient” on ¢, in this expression.
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Definition 8.14. Having fixed a Fourier basis ¢y,...,¢,—1 for L%(Q,n), every
f € L2(Q",7n®") is uniquely expressible as

f= 3 Fl@ps

n
aelNZ,,

This is the Fourier expansion of f with respect to the basis. The real number
f(a) is called the Fourier coefficient of f on a and it satisfies

fl@) = (f,pa).

Example 8.15. Fix the Fourier basis as in Example 8.10. Let f : {a,b,c}> —
{0,1} be the function which is 1 if and only if both inputs are ¢. Then you can
check (Exercise 8.5) that

_1_V2 V6 V2 V6 1 Vi2 Viz 1
f=5-1500.0~ 150~ 15 P0n~ 15 P02+ 3P0+ 35 Pent 36 P +5P22):

The notation f (@) may seem poorly chosen because it doesn’t show the de-
pendence on the basis. However, the Fourier formulas we develop in the next
section will have the property that they are the same for every product Fourier
basis. We will show a basis-independent way of developing the formulas in
Section 8.3.

8.2. Generalized Fourier formulas

In this section we will revisit a number of combinatorial/probabilistic no-
tions and show that for functions f € L2(Q", 7®"), these notions have familiar
Fourier formulas that don’t depend on the Fourier basis.

The orthonormality of Fourier bases gives us some formulas almost imme-
diately:

Proposition 8.16. Let f,g € L2(Q",n®"). Then for any fixed product Fourier
basis, the following formulas hold:

E[f1=f(0)

El[f%]1= Z Fla)? (Parseval)
aeN?

Var(fl= ) f(a)®

a#0

f.e)= Y Ffl@g (Plancherel)
aelNZ

Covif,gl= ) fl@g(a).

a#0
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Proof. We verify Plancherel’s Theorem, from which the other identities follow
(Exercise 8.6):

For=( Y Fape ¥ &Ps)

n n
aeNZ,, PeNZ

= Y F(@&pB)pa,bp)

a,BeNT,

= Y flwg)

n
aelNZ,

by orthonormality of (¢a)aen?, - O

We now give the key definition for developing basis-independent Fourier
expansions. In the case of L2({—1,1}) this definition appeared already in
Exercise 3.28.

Definition 8.17. Let J < [n] and write J = [n]\ J. Given f e L2(Q",n®"), the
projection of f on coordinates o is the function </ € L2(Q",7n®") defined by
Y@= E [f(xs,2)],

xr~n®J

where x; € Q7 denotes the values of x in the J-coordinates. In other words,
F<7(x) is the expectation of f when the J-coordinates of x are rerandomized.
Note that we take f<7 to have Q" as its domain, even though it only depends
on the coordinates in /.

Forming <7 is indeed the application of a projection linear operator to f,
namely the expectation over J operator, E5. We take this as the definition of
the operator: E5f = f </ When J = {i} is a singleton we write simply E;.
Remark 8.18. This definition of E; is consistent with Definition 2.23. You

are asked to verify that E is indeed a projection, self-adjoint linear operator
in Exercise 8.7.

Proposition 8.19. Let J < [n]and f € L2(Q",7®"). Then for any fixed product
Fourier basis,

7= Y f@d.
aeN?
supp(a)<dJ

Proof. Since E7 is a linear operator, it suffices to verify for all a that

cg _ JPa ifsupp(a) <,
* 10 otherwise.

If supp(a) < J, then ¢, does not depend on the coordinates J; hence indeed

¢S = ¢pq. So suppose supp(a) € J. Since ¢q(x) = ([T;cs Pa; (x:)) (IT;c57 P, (x0)),
we can write ¢q = Pq, “Pa, where ¢, depends only on the coordinates in o/,

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.



8.2. Generalized Fourier formulas 213

¢a; depends only on the coordinates in J, and El¢a,] =0 precisely because
supp(a) € J. Thus for every x € Q",

57 @)= B [¢a,@)ba; )] =pa,(x) E [he (x)]1=0

xr~”®J x’~n®J

as needed. O

Corollary 8.20. Let f € L2(Q",n®") and fix a product Fourier basis. If f
depends only on the coordinates in J <[n] then f(a) =0 whenever supp(a) € J.

Proof. This follows from Proposition 8.19 because f = f<7. [l

Corollary 8.21. Let i € [n] and f € L?(Q",n®"). Then for any fixed product
Fourier basis,

Eif= Y Ffl@e.

a:a;=0

Let us now define influences for functions f € L2(Q",7%"). In the case of
Q ={-1,1}, our definition of Inf;[f] from Chapter 2.2 was E[(D;f)?]. However,
the notion of a derivative operator does not make sense for more general

domains Q. In fact, even in the case of Q = {-1,1} it isn’t a basis-invariant

(i—1)y_ (i—-1) (i—~-1)y_ =1y
notion: the choice of % rather than % is inherently

arbitrary. Instead we can fall back on the Laplacian operators, and take the
identity Inf;[f1=(f,L;f) from Proposition 2.26 as a definition.

Definition 8.22. Let i € [n] and f € L2(Q",7®"). The ith coordinate Laplacian
operator L; is the self-adjoint, projection linear operator defined by

Lif =f - Eif.
The influence of coordinate i on f is defined to be
Inf;[f]1=(f,Lif) = Lif,Lif).
The total influence of f is defined to be I[f1=3"_, Inf;[f].

You can think of L; f as “the part of f which depends on the ith coordinate”.

Proposition 8.23. Let i € [n] and f € L2(Q",n®"). Then for any fixed product
Fourier basis,

Lif= Y f@¢a, Infiifl= Y Ffl@? Ifl1=) #a-f@?,

a:a; #0 a:a; #0

Proof. The first formula is immediate from Corollary 8.21, the second from
Plancherel, and the third from summing over i. O

Exercise 8.9 asks you to verify the following formulas (cf. Exercise 2.21),
which are often useful for computations:
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Proposition 8.24. Let i € [n] and f € L2(Q",7°"). Then

Infi[f]= E [Var(f(x1,...,%i-1,%},%i+1,...,%,)]].
X~n®" X ~7

If furthermore f’s range is {—1,1}, then

Inf;[f1=E[|L;f11=2 E’I;n[f(x) # (X1, X1, %, 8415, %n)].

/
X, ~T

Example 8.25. Let’s continue Example 8.15, in which {a, b, ¢} has the uniform
distribution and f : {a,b,c}?> — {0,1} is 1 if and only if both inputs are c¢. We
compute Infi[f] two ways. Using Proposition 8.24 we have Var[f(x1,a)] =
Var(f(x1,b)] = 0 and Var[f(x1,c)] = 3-Z = £ (because f(x1,c) is Bernoulli with
parameter %); thus Inf;[f]= % . % = 22—7 Alternatively, using the formula from
Proposition 8.23 as well as the Fourier expansion from Example 8.15, we can
compute Infi[f]= (= ¥2)? +(—¥9)? + ()2 + (422 + (Y22 + () = 2.

Next, we straightforwardly extend our definitions of the noise operator
and noise stability to general product spaces.

Definition 8.26. Fix a finite product probability space (Q",7®"). For p € [0,1]
and x € " we write y ~ Ny(x) to denote that y € Q" is randomly chosen as
follows: For each i € [n] independently,

IEY with probability p,
Yi= drawn from 7 with probability 1 - p.

If x ~7®" and y ~ Ny(x), we say that (x,y) is a p-correlated pair under n®".
(This definition is symmetric in ¥ and y.)

Definition 8.27. For a fixed space L%(Q",7%") and p €10,1], the noise oper-
ator with parameter p is the linear operator T, on functions f € L2(Q", 7®")
defined by

T = E .
pf(x) YN (x)[f(y)]

p

The noise stability of f at p is
Stab,[f1=<(f,T,f) = E [fx)f(y)].

(x,y) p-correlated
under %"

Proposition 8.28. Let p €[0,1] and let f € L>(Q",n®"). Then for any fixed
product Fourier basis,

Tof= Y p"Fl@)¢gs, Stablfl= Y p"*fla)’

n n
a(—:lN<m a€N<m
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Proof. Let J denote a p-random subset of [n]; i.e., J is formed by including
each i € [n] independently with probability p. Then by definition T, f(x) =
E [f<?(x)], and so from Proposition 8.19 we get

~

T,f@=Ef@I=E[ ¥ Ff@@|= ¥ po*Ffl@)pa)
J J aeN? aeN?
supp(a)<=d
since for a fixed a, the probability of supp(a) < J is p*®. The formula for
Stab,[f] now follows from Plancherel. O

Remark 8.29. The first formula in this proposition may be used to extend
the definition of T, f to values of p outside [0, 1].

We also define p-stable influences. The factor of p~! in our definition is
for consistency with the L2({—1, 1}") case.

Definition 8.30. For f € L2(Q",n®"), p €(0,1], and i € [n], the p-stable influ-
ence of i on f is

Inf”[f1= p Stab,[Lif1= Y. p** 'f(@)?
a:a; 720

We also define IP[f] = " Infép)[f].

Just as in the case of L2({—1,1}") we can use stable influences to define
the “notable” coordinates of a function, of which there is a bounded quantity.
A verbatim repetition of the proof of Proposition 2.54 yields the following
generalization:

Proposition 8.31. Suppose f € L>(Q",n®") has Var[f]1<1. Given 0<8 <1,
O<es<1, let J ={i[n]:Inf'"V[f]1= €} Then |J|< L.

We end this section by discussing the “degree” of functions on general
product spaces. For f € L2({—1,1}") the Fourier expansion is a real polynomial;
this yields an obvious definition for degree. But for general f € L2(Q",7%")
the domain is just an abstract set so we need to look for a more intrinsic
definition. We take our cue from Exercise 1.10(b):

Definition 8.32. Let f € L2(Q",7®") be nonzero. The degree of f, written
deg(f), is the least £ € N such that f is a sum of k-juntas (functions depending
on at most £ coordinates).

Proposition 8.33. Let f € L2(Q",n®") be nonzero. Then for any fixed product
Fourier basis we have deg(f) = max{#a : f(a) # 0}.

Proof. The inequality deg(f) < max{#a : f (a) # 0} is immediate from the
Fourier expansion:

f= Y Ffl@éa
a:F(@)#0
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216 8. Generalized domains

and each function f(a)$, depends on at most #a coordinates. For the reverse
inequality, suppose f = g1 +---+ g, where each g; depends on at most %
coordinates. By Corollary 8.20 each g; has its Fourier support on functions ¢,
with #a < k. But f(a) = gi(a) + -+ @n(@), so the same is true of f. O

8.3. Orthogonal decomposition

In this section we describe a basis-free kind of “Fourier expansion” for func-
tions on general product domains. We will refer to it as the orthogonal decom-
position of f € L2(Q",n®"), though it goes by several other names in the liter-
ature: e.g., Hoeffding decomposition, Efron-Stein decomposition, or ANOVA
decomposition. The general idea is to express

f=3 % (8.1)

Scln]

where each function f=5 € L%(Q",7%") gives the “contribution to f coming
from coordinates S (but not from any subset of S)”.

To make this more precise, let’s start with the familiar case of f : {-1,1}" —
R. Here it is possible to define the functions =5 : {~1,1} — R simply by
=5 = }? (S)xs. (Later we will give an equivalent definition that doesn’t in-
volve the Fourier basis.) This definition satisfies (8.1) as well as the following
two properties:

(1) £=5 depends only on the coordinates in S.

(2) If T C S and g is a function depending only on the coordinates in T,
then (f=5,g) = 0.

These properties describe what we mean precisely when we say that f=5 is
the “contribution to f coming from coordinates S (but not from any subset
of S)”. Furthermore, decomposition (8.1) is orthogonal, meaning (f=°,f=T) =
0 whenever S #T.

To make this definition basis-free, recall the “projection of f onto coordi-
nates J”, f<7, from Exercise 3.28 and Definition 8.17. You can think of f </
as the “contribution to f coming from coordinates JJ (collectively)”. It has a
probabilistic definition not depending on any basis, and with the definition
=5 = ]? (S) xs we have from Exercise 3.28 or Proposition 8.19 that

<7=3 5. (8.2)
Scd

It is precisely by inverting (8.2) that we can give a basis-free definition of the
functions f=5.

Let’s do this inversion for a general f € L2(Q",7n®"). The projection func-
tions <7 € L2(Q",n®") can be defined as in Definition 8.17. If we want (8.2)
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to hold for J = @ then we should define

f=¢ — fQCD

(which is the constant function equal to E[f]). Given this, if we want (8.2) to
hold for singleton sets J = {j}, then we need

fQU} — f:¢ T f:{j} — f:{j} — fg{j} _ f;¢-
In other words,

f:U}(x) - x~];]z®n [f | Xj= xJ] - x~E7t®” [f(x)]

Notice this function only depends on the input value x;; it measures the
change in expectation of f if you know the value x;. Moving on to sets of
cardinality 2, if we want (8.2) to hold for J = {i, j}, then we need

fE{i,j} =%+ f={i} + f={j} + f={i,ﬂ
— fQQ) + (fg{i} _ f§¢) +(f§{j} _ fQQ)) + f={i,j}
and hence
f={i,j} — fg{i,j} _ fE{i} _ fg{j} + fg(b.

It’s clear that we can continue this and define all the functions =5 by the
principle of inclusion-exclusion. To show this definition leads to an orthogonal
decomposition we will need the following lemma:

Lemma 8.34. Let f,g € L2(Q",n®"). Assume that f does not depend on any

coordinate outside I < [n], and g does not depend on any coordinate outside
J S[nl. Then (f,g) = (F<INT <INy,

Proof. We may assume without loss of generality that I uJ =[n]. Given any
x € Q" we can break it into the parts (x7n7,%1\J,%j\1). We then have

(f,8) = E [f(xrng,xng) - 8&x1ng,%\1)],
XInd »XI\J X J\I

where we have abused notation slightly by writing f and g as functions just
of the coordinates on which they actually depend. Since x7\; and xj\; are
independent, the above equals

E | E [f(xing,21\0)]- E [g(x1n7,2\1)]] -
XInd | X1\J XJ\I

But now E,,,[f(x1~s,%7\7)] is nothing more than f</"Y(x1;), and similarly
Ey, [g&1ns, 211 = g7 (x17). Thus the above equals

x:FJ[fQIﬂJ(xImJ) . ggImJ(xIﬂJ)] — <f§lﬂJ’g§IﬁJ>. D

We can now give the main theorem on orthogonal decomposition:
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Theorem 8.35. Let f € L2(Q",n®"). Then f has a unique decomposition as
f=> r*

Scln]
where the functions =5 € L2(Q",n®") satisfy the following:

(1) =5 depends only on the coordinates in S.
(2) If T C S and g € L>(Q",n®") depends only on the coordinates in T, then
(f=5,8)=0.
This decomposition has the following additional properties:

(3) Condition (2) additionally holds whenever S € T.
(4) The decomposition is orthogonal: (f=5,f=Ty=0for S#T.

(5) Lser ==
(6) For each S <[n), the mapping f — f=5 is a linear operator.

Proof. We first show the existence of a decomposition satisfying (1)—(6). We
then show uniqueness for decompositions satisfying (1) and (2). As suggested
above, for each S c[n] we define
f75= Y (~0SVipsd,
JcS

where the functions £<7 € L2(Q", 7®") are as in Definition 8.17. Since each <
depends only on the coordinates in J/, condition (1) certainly holds. It is also
immediate that condition (5) holds by inclusion-exclusion; you are asked to
prove this explicitly in Exercise 8.14. Condition (6) also follows because each
f — <7 is a linear operator, as discussed after Definition 8.17.

We now verify (2). Assume T C S and that g € L2(Q",7®") only depends
on the coordinates in 7. We have

(55,8 = Y (~)SI(rsd gy, (8.3)
JcS

Take any i € S\ T and pair up the summands in (8.3) as J’, J”, where J' #i
and J” = J'u{i}. By Lemma 8.34 we have

(<", ) =TT, gy = (=TT =T,

the latter equality using i ¢ T. But the signs (=S and (=)= gre
opposite, so the summands in (8.3) cancel in pairs. This shows the sum is 0,
confirming (2).

We complete the existence proof by noting that (2) —= (3) = (4) (as-
suming (1)). The first implication is because (f=%,g) = (f=5,g<°"T) when
g depends only on the coordinates in 7' (Lemma 8.34), and SNT C S when
S ¢ T. The second implication is because S # T implies either SZT or T £ S.
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It remains to prove the uniqueness statement. Suppose f has two repre-
sentations satisfying (1) and (2). By subtracting them we get a decomposition
of the 0 function that satisfies (1) and (2); our goal is to show that each func-
tion in this decomposition is the 0 function. We can do this by showing that
any decomposition satisfying (1) and (2) also satisfies “Parseval’s Theorem”:
) =Xscmlf =S ||§. But this is an easy consequence of (4), which we just
noted is itself a consequence of (1) and (2). O

We can connect the orthogonal decomposition of f to its expansion under
Fourier bases as follows:

Proposition 8.36. Let f € L2(Q",n®") have orthogonal decomposition f =
Y Scin] f=S. Fix any Fourier basis ¢y, ...,(m-1 for L*(Q,n). Then
==Y fl@d. (8.4)

aeN?
supp(a)=S

Proof. This follows easily from the uniqueness part of Theorem 8.35. If we
take (8.4) as the definition of functions f=5, it is immediate that Y f=5 = f
and that =5 depends only on the coordinates in S. Further, if g depends

only on coordinates T'C S, then f =S and g have disjoint Fourier support by
Corollary 8.20; hence (f=5,g) = 0 by Plancherel (Proposition 8.16). O

Example 8.37. Let’s compute the orthogonal decomposition of the function
f :{a,b,c}?> — {0,1} from Example 8.15. Recall that in this example {a,b,c}
has the uniform distribution and f(x1,x2) =1 if and only if x; = x9 = c¢. First,

f=? =Elfl=3.
Next, for i = 1,2 we have that f<%(x) is % if x; = ¢ and 0 otherwise; hence

+2 ifx; =c,

f:{i}(xl,xz)Z{

Nellile]| V]

else.

Finally, it’s easiest to compute f=1% as f — =2 — £=1 — £=C} this yields

+% ifx;=x2=c,
FrUB (1 x9) = —% if exactly one of x1, x9 is ¢,
+% if x1,x9 # c.
You can check (Exercise 8.20) that this is consistent with Proposition 8.36 and
the Fourier expansion from Example 8.15.

We can write all of the Fourier formulas from Section 8.2 in terms of the
orthogonal decomposition; e.g.,
(foey=Y (75,75, Infilf1=Y If 512, T, f= Y oSfS.
Scin] Sai Scln]
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These formulas can be proved either by using the connection from Proposi-
tion 8.36 or by reasoning directly from the defining Theorem 8.35; see Ex-
ercise 8.18. The orthogonal decomposition also gives us the natural way of
stratifying f by degree; we end this section by generalizing some more defini-
tions from Chapter 1.4:

Definition 8.38. For f € L2(Q",7°") and %k € N we define the degree k part
of f tobe f=F = Y iS|=k 7=5 and the weight of f at degree k to be WE[f]1=| f=* IIS.
We also use notation like f=¢ = Y 1S|1<k =5 and W>*[f] = YIS|>k I f=S |I§.

8.4. p-biased analysis

Perhaps the most common generalized domain in analysis of Boolean func-
tions is the case of the hypercube with “biased” bits. In this setting we think of
arandom input in {—1,1}" as having each bit independently equal to —1 (True)
with probability p € (0,1) and equal to 1 (False) with probability ¢ = 1 - p.
(We could also consider different parameters p; for each coordinate; see Ex-
ercise 8.24.) In the notation of the chapter this means Lz(Q”,ngn), where
Q={-1,1} and 7, is the distribution on Q defined by 7,(-1) = p, 7,(1) = q.
This context is often referred to as p-biased Fourier analysis, though it would
be more consistent with our terminology if it were called “u-biased”, where
p= B lxl=q-p=1-2p.

One of the more interesting features of the setting is that we can fix a combi-
natorial Boolean function f :{—1,1}" — {—1,1} and then consider its properties
for various p between 0 and 1; we will discuss this further later in this sec-
tion. We will also sometimes use the abbreviated notation Pry,[-] in place of
Prx~ﬂ§n[-], and similarly Eﬂp[-].

The p-biased hypercube is one of the generalized domains where it can
pay to look at an explicit Fourier basis. In fact, since we have |Q2| = 2 there is
a unique Fourier basis {¢¢,¢1} (up to negating ¢1). For notational simplicity
we’ll write ¢ instead of ¢; and use “set notation” rather than multi-index
notation:

Definition 8.39. In the context of p-biased Fourier analysis we define the
basis function ¢ : {—1,1} — R by

Pl =2
g

where
U :x-l~§n [x;1=¢g-p=1-2p, o= sig;cdgtev[xi] =+v/4pq =2\/p/1-p.
i D i p

Note that 02 = 1 — 2. We also have the formula ¢(1) = \/p/q, $(-1) = —+/q/p.
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We will use the notation u and o throughout this section. It’s clear that
{1,¢} is indeed a Fourier basis for L2({—1,1},np) because E[¢(x;)] = 0 and
El¢(x;)?]1 = 1 by design.

Definition 8.40. In the context of Lz({—l,l}”,ngn) we define the product
Fourier basis functions (¢s)scra] by

ps@) = [ o).

ieS
Given f € L2({-1,1}",7%") we write ]? (S) for the associated Fourier coefficient;

ie.,

fS)= E_[f@)ps@)].

Thus we have the biased Fourier expansion

f)=Y F(S)¢sw).

Scinl]

Although the notation is very similar to that of the classic uniform-distribution
Fourier analysis, we caution that in general,

PsPT £ PSAT-

Example 8.41. Let y; € L2({-1, 1}”,71;3”) be the ith dictator function, y;(x) =
x;, viewed under the p-biased distribution. We have

P(x;) = Lo

and the latter is evidently f’s (biased) Fourier expansion. That is,

= x;=u+opx;),

L@ =u 1di)=0, j7i(S)=0 otherwise.

This example lets us see a link between a function’s “usual” Fourier expan-
sion and its biased Fourier expansion. (For more on this, see Exercise 8.25.)
Let’s abuse notation a little by writing simply ¢; instead of ¢(x;). We have
the formulas v

¢; = La'u — x;=utoop;, (8.5)

and we can go from the usual Fourier expansion to the biased Fourier expan-
sion simply by plugging in the latter.

Example 8.42. Recall the “selection function” Sel : {—-1,1}3 — {-1,1} from
Exercise 1.1(j); Sel(x1,x2,x3) outputs x9 if x; = —1 and outputs x3 if x1 = 1.
The usual Fourier expansion of Sel is

Sel(x1,x9,x3) = %xg + %x3 - %xlxz + %xlxg.
Using the substitution from (8.5) we get
Sel(x1,x2,%3) = (1 + o) + 3(u+0¢3) — F(u+ 0P+ 0¢) + S+ 0P+ 0p3)
=+ (G- 5o pe+ G+ 500 p3— 507 1o+ 50" P13, (8.6)
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Thus if we write Sel® for the selection function thought of as an element of
L2({-1, 1}3,71;,'?3), we have

SelP(g)=p, SelP2)=(3-3wo, SelPB3)=(}+1wo,
SelP((1,2) = -30%, SelP({1,8) =307, Sel”(S)=0 else.

By the Fourier formulas of Section 8.2 we can deduce, e.g., that E[Sel®] = U,
Inf[SelP] = (-10%)2 +(302)% = o, etc.

Let’s codify a piece of notation from this example:

Notation 8.43. Let f : {-1,1}* — R and let p € (0,1). We write f for the

function when viewed as an element of L2({-1, 1}”,71;3,’”

We now discuss derivative operators. We would like to define an opera-
tor D; on L2({-1,1}", n?”) that acts like differentiation on the biased Fourier
expansion. For example, referring to (8.6) we would like to have

D3Sel” =4 + 2o + 202 1.

In general we are seeking a%_ which, by basic calculus and the relation-
ship (8.5), satisfies
0 O0x; 0 0

_ = . =0 -—.

0¢p; 0¢; Ox; 0x;
Recognizing % as the “usual” ith derivative operator, we are led to the fol-
lowing:

Definition 8.44. For i € [n], the ith (discrete) derivative operator D; on
L%2({-1,1)",7%") is defined by

. f(x(iwl)) _ f(x(i—»—l))
2 .

Note that this defines a different operator for each value of p. We sometimes
write the above definition as

Dif(x)=0

D(pi ZO"Dxi.

With respect to the biased Fourier expansion of f € L2({-1, 1}”,71;3)’”) the oper-
ator D; satisfies

Dif =Y F(S)ds\i- (8.7)
Sai

Given this definition we can derive some additional formulas for influ-
ences, including a generalization of Proposition 2.21:
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Proposition 8.45. Suppose f € L2({-1, 1}”,71;3,’”) is Boolean-valued (i.e., has
range {—1,1}). Then

Infi[f]1=0® Pr [f(x)#f@x*")]

for each i €[n], and
I[f1=0” E_[sens;(®)].

If furthermore f is monotone, then Inf;[f]= 0}? ().

Proof. Using Definition 8.44’s notation we have

Inf;[f]= E[(Dy,/)*] = 0 EI(Dy, /)]

Since (Dy, f )2 is the 0-1 indicator that i is pivotal for f, the first formula
follows. The second formula follows by summing over i. Finally, when [ is
monotone we furthermore have that (D, f )2 = D,,f and hence

Inf;[f]= 027][3[Dxif] =0 EDy, f1= af (),

as claimed. O

The remainder of this section is devoted to the topic of threshold phenom-
ena in Boolean functions. Much of the motivation for this comes from theory
of random graphs, which we now briefly introduce.

Definition 8.46. Given an undirected graph G on v = 2 vertices, we identify
it with the string in {True, False}(®) which indicates which edges are present
(True) and which are absent (False). We write ¥(v,p) for the distribution

ns(z); this is called the Erdds—Rényi random graph model. Note that if we
permute the v vertices of a graph, this induces a permutation on the (g) edges.

A (v-vertex) graph property is a Boolean function f : {True, False}® — {True,False}
that is invariant under all v! such permutations of its input; colloquially, this
means that f “does not depend on the names of the vertices”.

Graph properties are always transitive-symmetric functions in the sense of
Definition 2.10.

Example 8.47. The following are all v-vertex graph properties:
Conn(G) = True if G is connected,;
3Col(G) = True if G is 3-colorable;
Clique,(G) = True if G is contains a clique on at least & vertices;
Maj,(G) = True (assuming n = (3) is odd) if G has at least (3)/2 edges;
X121(G) = True if G has an odd number of edges.
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Note that each of these actually defines a family of Boolean functions, one
for each value of v; this is the typical situation in the study of graph proper-
ties. An example of a function f : {True, False}(®) — {True,False} that is not a
graph property is the one defined by f(G) = True if vertex #1 has at least one
neighbor; this f is not invariant under permuting the vertices.

Graph properties which are monotone are particularly nice to study; these
are the ones for which adding edges can never make the property go from True
to False. The properties Conn, Clique;, and Maj,, defined above are all mono-
tone, as is 3Col. Now suppose we take a monotone graph property, say, Conn.
A typical question in random graph theory would be, “how many edges does a
graph need to have before it is likely to be connected?” Or more precisely, how
does Prg.-¢(y,p)[Conn(G) = True] vary as p increases from 0 to 1?

There’s no need to ask this question just for graph properties. Given any
monotone Boolean function f : {True,False}* — {True,False} it is intuitively
clear that when p increases from 0 to 1 this causes Pry, [f(x) = True] to in-
crease from O to 1 (unless f is a constant function). As illustration, we show a
plot of Pry [f(x) = True] versus p for the dictator function, ANDg, and Maj ;.

14

Pr(f =True]
Tp

0

Figure 8.1. Plot of Prﬂp [f(x) = True] versus p for f a dictator (dotted),
f = ANDg (dashed), and f = Maj;o; (solid)

The Margulis-Russo Formula quantifies the rate at which Pry [f(x) =
True] increases with p; specifically, it relates the slope of the curve at p to the
total influence of f under ng’”. To prove the formula we switch to +1 notation.

Margulis-Russo Formula. Let f : {—1,1}" — R. Recalling Notation 8.43
and the relation u=1-2p, we have

KT N S SRy
duE[f ]—U i:zlfp(”' (8.8)
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In particular, if f : {-1,1}* — {—1, 1} is monotone, then

di Pr [f(x)=-1]= d —E[fP]= I[f"’)] (8.9)
p x~m3" du

Proof. Treating f as a multilinear polynomial over x1,...,x, we have

ElfP1=T,f1,....,D=f(,..., )

(this also follows from Exercise 1.4). By basic calculus,

d n
- ( ey ): Dxl‘ ( ey )
d#fu It FZI fl,...,p

But
1 1—
Dy, f(l,...,w) = E[Dy, fP]= ;E[D@f“’)] = —fPW),

completing the proof of (8.8). As for (8.9), the second equality follows immedi-
ately from Proposition 8.45. The first equality holds because p=1-2p and
E[f1=1-2Prl[f = —1]; the two factors of —2 cancel. O

Remark 8.48. If f : {True, False}” — {True, False} is a nonconstant monotone
function, the Margulis—Russo Formula implies that Pry [f(x) = True] is a
strictly increasing function of p, because I[f?’] is always positive.

Looking again at Figure 8.1 we see that the plot for Maj,y; looks very
much like a step function, jumping from nearly 0 to nearly 1 around the
critical value p = 1/2. For Maj,,, this “sharp threshold at p = 1/2” becomes
more and more pronounced as n increases. This is clearly suggested by the
Margulis—Russo Formula: the derivative of the curve at p = 1/2 is equal to
I[Maj, ] (the usual, uniform-distribution total influence), which has the very
large value ©(y/n) (Theorem 2.33). Such sharp thresholds exist for many
Boolean functions; we give some examples:

Example 8.49. In Exercise 8.23 you are asked to show that for every ¢ > 0
there is a C such that

Pr [Maj, = Truel <e, Pr [Maj, =Truel=z1-e.

TT1/2-Cly/n TT1/24Cl/n

Regarding the Erdés—Rényi graph model, the following facts are known:

Pr_[Cli (@)= Truel — 0 Mp<l
r 1que = lrue
G-4lop) L 1Clogu ~o0 |1 ifp> /4.
0 if <ln_v 1_loglogv :
Pr [Conn(G)= True] — . P hlfv( 102)1%11)
G~%(v,p) vmeo |1 if p>TE(1+ Togo ).
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In the above examples you can see that the “jump” occurs at various values
of p. To investigate this phenomenon, we first single out the value for which
Pr; [f(x) = True] = 1/2:

Definition 8.50. Let f : {True, False}* — {True, False} be monotone and non-
constant. The critical probability for f, denoted p., is the unique value
in (0,1) for which Pr Nngn[f(x) = True] = 1/2. We also write g. = 1— pg,

He=Qqc—Pc=1-2p.,and 0. =+/4pcqe.

In Exercise 8.27 you are asked to verify that p. is well defined.

Looking at the connectivity property from Example 8.49 we see that not
only does Pr; [Conn = True] jump from near O to near 1 in an interval of
the form p. +0(1), it actually makes the jump in an interval of the form
pc(1+0(1)). This latter phenomenon is (roughly speaking) what is meant
by a “sharp threshold”. To investigate this further, suppose that f is a (non-
constant) monotone function and A is the derivative of Pry [f(x) = True] at
D = D Intuitively, we would expect Pry [f(x) = True] to jump from near 0 to
near 1 in an interval of around p. of width about 1/A. Thus a “sharp thresh-
old” should roughly correspond to the case that 1/A is small even compared
to min(p.,q.). The Margulis—Russo Formula says that A = U—lgl[f ()], and

since min(p.,q.) is proportional to 4p.q. = (73 it follows that 1/A is “small”
compared to min(p., q.) if and only if I[fP<)] is “large”. Thus we have a neat
criterion:

Sharp threshold principle: Let f : {True, False}* — {True, False} be monotone.
Then, roughly speaking, Pry [f(x) = Truel has a “sharp threshold” if and only
if f has “large” (“superconstant”) total influence under its critical probability
distribution.

Of course this should all be made a bit more precise; see Exercise 8.28
for details. In light of this principle, we may try to prove that a given f
has a sharp threshold by proving that I[f?<)] is not “small”. In turn, this
strongly motivates the problem of “characterizing” Boolean-valued functions
f e L2({-1,1}*,7n%") for which I[f]is small. Friedgut’s Junta Theorem, men-
tioned at the end of Chapter 3.1 and proved in Chapter 9.6, tells us that in
the uniform distribution case p = 1/2, the only way I[f] can be small is if f
is close to a junta. In particular, any monotone graph property with p. =1/2
must have a very large derivative % Pr; [f = Truel at p = p.: since the func-
tion is transitive-symmetric, all n coordinates are equally influential and it
can’t be close to a junta. These results also hold so long as p is bounded
away from 0 and 1; see Chapter 10.3. However, many interesting monotone
graph properties have p. very close to 0: e.g., connectivity, as we saw in Ex-
ample 8.49. Characterizing the functions f € L2({-1, 1}, 7%") with small I[f]
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when p = 0,(1) is a trickier task; see the work of Friedgut, Bourgain, and
Hatami described in Chapter 10.5.

8.5. Abelian groups

The previous section covered the case of f € L2(Q", 7°") with |Q| = 2; there,
we saw it could be helpful to look at explicit Fourier bases. When |Q| = 3
this is often not helpful, especially if the only “operation” on the domain is
equality. For example, if f : {Red, Green,Blue}” — R, then it’s best to just work
abstractly with the orthogonal decomposition. However, if there is a notion
of, say, “addition” in (2, then there is a natural, canonical Fourier basis for
L%(Q,7) when 7 is the uniform distribution.

More precisely, suppose the domain ( is a finite abelian group G, with
operation + and identity 0. We will consider the domain G under the uni-
form probability distribution ; this is quite natural because r is translation-
invariant: 1(X) = n(t +X) for any X € G, t € G. In this setting it is more
convenient to allow functions with range the complex numbers; thus we come
to the following definition:

Definition 8.51. Let G be a finite abelian group with operation + and iden-
tity 0. For n € N* we write L2(G") for the complex inner product space of
functions f : G" — C, with inner product

f.&)= E [f@e@)

Here and throughout this section x ~ G denotes that x is drawn from the
uniform distribution on G™.

Everything we have done in this chapter for the real inner product space
L2(Q", n®") generalizes easily to the case of a complex inner product; the main
difference is that Plancherel’s Theorem becomes

(f.ev= Y Fflga= Y (5,g5).

aeN”,, Scln]
See Exercise 8.32 for more.

A natural Fourier basis for L%(G) comes from a natural family of functions
G — C, namely the characters. These are defined to be the group homomor-
phisms from G to C*, where C* is the abelian group of nonzero complex
numbers under multiplication.

Definition 8.52. A character of the (finite) group G is a function y : G — C*
which is a homomorphism,; i.e., satisfies y(x + y) = y(x)x(y). Since G is finite
there is some m € N* such that 0 =x+x+---+x (m times) for each x € G. Thus
1= y(0) = y(x)™, meaning the range of y is in fact contained in the mth roots
of unity. In particular, |y(x)| =1 for all x € G.
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We have the following easy facts:
Fact 8.53. If y and ¢ are characters of G, then so are Y and ¢ - y.
Proposition 8.54. Let y be a character of G. Then either y =1 or E[y]=0.

Proof. If y # 1, pick some y € G such that y(y) # 1. Since x + y is uniformly
distributed on G when x ~ G,

xI:JG[x(x)] = xI}G[x(x +y)]= chI:JG[)c(x) ()] = x(y)xI:JG[)((x)].
Since y(y) # 1 it follow that E[y(x)] must be 0. U

Proposition 8.55. The set of all characters of G is orthonormal. (As a conse-
quence, G has at most dim(L2(GQ)) = |G| characters.)

Proof. First, if y is a character, then (y, y) = E[| )(IQ] =1 because |y| = 1. Next,
if ¢ is another character distinct from y then (¢, y) =E[¢-¥]. But ¢-y is a
character by Fact 8.53, and ¢-y = ¢/y # 1 because ¢ and y are distinct; here
we used y = 1/y because |y| = 1. Thus (¢, y) = 0 by Proposition 8.54. ([

As we will see next, G in fact has exactly |G| characters. It thus follows
from Proposition 8.55 that the set of all characters (which includes the con-
stant 1 function) constitutes a Fourier basis for L2(G).

To check that each finite abelian group G has |G| distinct characters, we
begin with the case of a cyclic group, 7, for some m. In this case we know
that every character’s range will be contained in the mth roots of unity.

Definition 8.56. Fix an integer m = 2 and write w for the mth root of unity
exp(2mi/m). For 0 < j <m, we define y; : Z,, — C by y;(x) = w’/*. It is easy to
see that these are distinct characters of Z,,.

Thus the functions yo =1, x1,..., Ym-1 form a Fourier basis for L2(Zp).
Furthermore, Proposition 8.13 tells us that we can get a Fourier basis for
L2(Zzl) by taking all products of these functions.

Definition 8.57. Continuing Definition 8.56, let n € N*. For a € N, we
define y, : Z}, — C by

n

Xa@) =[] xa,(x)).

Jj=1
These functions are easily seen to be (all of the) characters of the group Z7,,
and they constitute a Fourier basis of L2(7Z12,).

Most generally, by the Fundamental Theorem of Finitely Generated Abelian
Groups we know that any finite abelian G is a direct product of cyclic groups
of prime-power order. In Exercise 8.35 you are asked to check that you get all
of the characters of G — and hence a Fourier basis for L%(G) — by taking all
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products of the associated cyclic groups’ characters. In the remainder of the
section we mostly stick to groups of the form Z7, for simplicity.

Returning to the characters yo,..., ¥m-1 from Definition 8.56, it is easy
to see (using w™ = 1) that they satisfy x;-x; = Xj+;' (mod m) and also 1/y; =
Xj = X—j (mod m)- Thus the characters themselves form a group under mul-
tiplication, isomorphic to Z,,. As in Chapter 3.2, we index them using the
notation Z,,. More generally, indexing the Fourier basis/characters of L2(Z”m)
by ZZ instead of multi-indices, we have:

Fact 8.58. The characters (ya),, 7 of Z1, form a group under multiplication:

®* Xa XB= Xa+p;
e 1/¥a=%a=X-a

As mentioned, the salient feature of L%(G) distinguishing it from other
spaces L2(Q,n) is that there is a notion of addition on the domain. This
means that convolution plays a major role in its analysis. We generalize the
definition from the setting of IF5:

Definition 8.59. Let f,g € L%(G). Their convolution is the function f * g €
L2(G) defined by

(fxg)x)= E [f(y)glx—y)]= E [f(x—y)g(y)].
y~G y~G

Exercise 8.36 asks you to check that convolution is associative and com-
mutative, and that the following generalization of Theorem 1.27 holds:

Theorem 8.60. Let f,g € L%(G). Then f = g(a) = f(a)8(a).

We conclude this section by mentioning vector space domains. When
doing Fourier analysis over the group Z”, it is natural for subgroups to arise.
Things are simplest when the only subgroups of Z,, are the trivial ones, {0}
and Z,,; in this case, all subgroups will be isomorphic to Z% for some n' <
n. Of course, this simple situation occurs if and only if m is equal to some
prime p. In that case, Z, can be thought of as a field, ZZ as an n-dimensional
vector space over this field, and its subgroups as subspaces. We use the
notation [} in this setting and write F\Z to index the Fourier basis/characters;
this generalizes the notation introduced for p =2 in Chapter 3.2. Indeed, all
of the notions from Chapters 3.2 and 3.3 regarding affine subspaces and
restrictions thereto generalize easily to L2(IFZ).

8.6. Highlight: Randomized decision tree complexity

A decision tree T for f:{—1,1}" — {—1,1} can be thought of as a deterministic
algorithm which, given adaptive query access to the bits of an unknown string
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x €{-1,1}", outputs f(x). For example, to describe a natural decision tree for
f =Majs in words: “Query x1, then x9. If they are equal, output their value;
otherwise, query and output x3.” For a worst-case input (one where x1 # x3)
this algorithm has a cost of 3, meaning it makes 3 queries. The cost of the
worst-case input is the depth of the decision tree.

As is often the case with algorithms it can be advantageous to allow ran-
domization. For example, consider using the following randomized query
algorithm for Maj;: “Choose two distinct input coordinates at random and
query them. If they are equal, output their value; otherwise, query and out-
put the third input coordinate.” Now for every input there is at least a 1/3
chance that the algorithm will finish after only 2 queries. Indeed, if we define
the cost of an input x to be the expected number of queries the algorithm
makes on it, it is easy to see that the worst-case inputs for this algorithm
have cost (1/3)-2+(2/3)-3 =8/3 < 3.

Let’s formalize the notion of a randomized decision tree:

Definition 8.61. Given f :{—1,1}Y* — R, a (zero-error) randomized decision
tree 9 computing f is formally defined to be a probability distribution over
(deterministic) decision trees that compute f. The cost of 9 on input x €
{—1,1}" is defined to be the expected number of queries T' makes on x when
T ~ 9. The cost of 9 itself is defined to be the maximum cost of any input.
Finally, the (zero-error) randomized decision tree complexity of f, denoted
RDT(f), is the minimum cost of a randomized decision tree computing f.

We can get further savings from randomization if we are willing to assume
that the input x is chosen randomly. For example, if & ~ {-1, 1} is uniformly
random then any of the deterministic decision trees for Maj; will make 2
queries with probability 1/2 and 3 queries with probability 1/2, for an overall
expected 5/2 < 8/3 < 3 queries.

Definition 8.62. Let 9 be a randomized decision tree. We define

0i(9)= Pr [T queries x;],
x~{-1,1}",
T~

n
AT) = Z 0;(9)= {l% . [# of coordinates queried by T' on x].  (8.10)
i=1 x~—L117,
T~9

Given [ : {-1,1}" — R, we define A(f) to be the minimum of A(J") over all
randomized decision trees 9 computing f.

We can also generalize these definitions for functions f € L2(Q,7%"%). A
deterministic decision tree over domain Q is the natural generalization in
which each internal query node has |Q2| outgoing edges, labeled by the ele-
ments of Q. We write 6&” T ), A(T), A®(f) for the generalizations to trees
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over (; in the case of L2({-1, 1}”,7:?”) we use the superscript (p) instead of
(7p) for brevity.

It follows immediately from the definitions that for any f € L2(Q",7®%"),
AP(f) < RDT(f) < DT(f).

Remark 8.63. In the definition of A®™(f) it is equivalent if we only allow
deterministic decision trees; this is because in (8.10) we can always choose
the “best” deterministic 7" in the support of J.

Example 8.64. It follows from our discussions that RDT(Majs) < 8/3 and
A(Majs) < 5/2; indeed, it’s not hard to show that both of these bounds are
equalities. In Exercise 8.38 you are asked to generalize to the recursive
majority of 3 function on n = 3% inputs; it satisfies DT(Majgd) =3%=n, but

RDT(Mand) < (8/3)d — nlog3(8/3) ~ n.89,

A(Mand) < (5/2)d — nlog3(5/2) ~ n.83.

Incidentally, these bounds are not asymptotically sharp; estimating RDT(MajS’d)
in particular is a well-studied open problem.

Example 8.65. In Exercise 8.39 you are asked to show that for the logical OR
function, A?)(OR,,) = @, which is roughly 2 for p = 1/2 but is asymptotic
to n/(21n2) at the critical probability p..

Example 8.64 illustrates a mildly surprising phenomenon: using random-
ness it’s possible to evaluate certain unbiased n-bit functions f while reading
only a 1/n®D fraction of the input bits. This is even more interesting when f
is transitive-symmetric like Majgd. In that case it’s not hard to show (Exer-
cise 8.37) that any randomized decision tree 9 computing f can be converted
to one where A(9") remains the same but all §;(97) are equal to A(f)/n. Then f
can be evaluated despite the fact that each input bit is only queried with prob-
ability 1/n®®.

In this section we explore the limits of this phenomenon. In particular,
a longstanding conjecture of Yao [Yao77] says that this is not possible for
monotone graph properties:

Yao’s Conjecture. Let [ : {-1,1}" — {—1,1} be a nonconstant monotone v-
vertex graph property, where n = (g) Then RDT(f) = Q(n).

Toward this conjecture we will present a lower bound due to O’Donnell,
Saks, Schramm, and Servedio [OSSS05]. (Two other incomparable bounds
are discussed in the notes for this chapter.) It has the advantages that it
works for the more general class of transitive-symmetric functions and that
it even lower-bounds AP(f):
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Theorem 8.66. Let f :{—1,1}" — {—1, 1} be a nonconstant monotone transitive-
symmetric function with critical probability p.. Then

APIF) = (nlo)?3.

Theorem 8.66 is essentially sharp in several interesting cases. Whenever
the critical probability p. is ®(1/n) or 1—0(1/n) then o, = ©(1/\/n) and The-
orem 8.66 gives the strongest possible bound, A®P<)(f) = Q(n). This occurs,
e.g., for the OR,, function (Example 8.65). Furthermore, Theorem 8.66 can
be tight up to a logarithmic factor when p. = 1/2 as the following theorem of
Benjamini, Schramm, and Wilson shows:

Theorem 8.67. [BSWO05]. There exists an infinite family of monotone transitive-
symmetric functions [, : {—1,1}" — {—1, 1} with critical probability p. = 1/2 and
A(f) < O0(n*3logn).

Theorem 8.66 follows easily from two inequalities [0S06, OS07], [0SSS05],
which we now present:

OS Inequality. Let f € L>((-1,1}",75"). Then ¥, F@O<Ifll2- VAP(E).
In particular, if f has range {—1,1} and is monotone, then I[f]1< o/ AP)(f).

OSSS Inequality. Let f € L2(Q", 7%") have range {-1,1} and let I be any
randomized decision tree computing f. Then

Var[f] < i 8T Infi[f].
i=1

Remark 8.68. An interesting corollary of the OSSS Inequality is that
MaxInf[f]=> Var[fVA™(f) = Var[fVDT(f) = Var[f 1/ deg(f)?,
the last inequality assuming Q = {—1,1}. See Exercise 8.44.

These two inequalities can be thought of as strengthenings of basic Fourier
inequalities which take into account the decision tree complexity of /. The
OS Inequality essentially generalizes the result that majority functions maxi-
mizes }.7_; ]? (1); i.e., Theorem 2.33. The OSSS Inequality is a generalization
of the Poincaré Inequality, discounting the influences of coordinates that are
rarely read.

We will first derive the query complexity lower bound Theorem 8.66 from
the OS and OSSS Inequalities. We will then prove the latter two inequalities.

Proof of Theorem 8.66. We consider f to be an element of L2({-1,1}", ng’?).
Let 9 be a randomized decision tree achieving AP<)(f). In the OSSS Inequal-
ity, we have Var[f] =1 since p. is the critical probability and Inf;[f]1=1[f1/n
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for each i € [n] since [ is transitive-symmetric. Thus

1= Y62 I Aoy Tp1 2 000y,

i=1 n

where we used the OS Inequality. The theorem follows by rearranging. [l

Now we prove the OS and OSSS Inequalities, starting with the latter. We
will need a simple lemma that uses the decomposition f =E;f + L;f.

Lemma 8.69. Let f,g € L2(Q",n%") and let j € [n]. Given w € Q, write flo
for the restriction of f in which the jth coordinate is fixed to value w, and
similarly for g. Then

Covif,gl= E  [CoVlfiw,gwll+(L;f,L;g).
w,w'~1
independent

Proof. Since the covariances and Laplacians are unchanged when constants
are added, we may assume without loss of generality that E[f] = E[g] = 0.
Then Covlf,gl=(f,g) and

E [Covifiw,giwll= E [(fio, 810 ~Elfiw]Elgiu]
= E [(fiw81)1~EIf1Elg] = E [(fiu,g1u)1= E;f Ejg).

Thus the stated equality reduces to the basic (Exercise 8.8) identity

(f,g)=(E;f,Ejg)+(L;f,L;g). O

Proof of the OSSS Inequality. More generally we show thatif g :{-1,1}" —
{=1,1} is also an element of L2(Q",7%"), then

Covif,gl< ) 6"(7) Inf;lgl. (8.11)
i=1

The result then follow by taking g = f. We may also assume that 5 =T is a
single deterministic tree computing f; this is because (8.11) is linear in the
quantities 6&” NT). We prove (8.11) by induction on the structure of T'. If T' is
depth-0, then f must be a constant function; hence Cov[f,g] =0 and (8.11) is
trivial. Otherwise, let j € [n] be the coordinate queried at the root of T'. For
each w € Q, write T, for the subtree of T given by the w-labeled child of the
root. By applying Lemma 8.69 and induction (noting that T, computes the
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restricted function f,), we get

Covlf,gl= E [CoVlfiw,g1wll+(L;f,L;g)
w,0'~71
independent

< E [Yo"(T.) Infilgw]| + Lif, Lig)
w,w' ~7 iZj
=Y 6U(T) - Inf;(g]+(f,L;g) (in part since E[L;g] = 0)
i£]
< Y 6(T) - Inf;(g] +EIIL;g|] (since |f| < 1)
i#j
n
=Y 6(T) Inf;[g],
i=1
where the last step used 63.” (T)=1 and Proposition 8.24. This completes the
inductive proof of (8.11). O

Finally, we prove the OS Inequality. For this we require a definition.

Definition 8.70. Let ({2, 7) be a finite probability space and T' a deterministic
decision tree over ). The decision tree process associated to T generates
a random string x distributed according to 7 (and some additional random
variables), as follows:

(1) Start at the root node of T'; say it queries coordinate ji. Choose x;, ~ 7
and follow the outgoing edge labeled by the outcome.

(2) Suppose the node of T' which is reached queries coordinate jo. Choose
xj, ~ 7 and follow the outgoing edge labeled by the outcome.

(3) Repeat until a leaf node is reached. Then, define J = {j1,jo,J3,...} S [nl]
to be the set of coordinates queried.

(4) Draw the as-yet-unqueried coordinates, denoted x 7, from n®,

Despite the fact that the coordinates x; are drawn in a random, dependent
order, it’s not hard to see (Exercise 8.42) that the final string x = (xg,x5) is
distributed according the product distribution 7",

Proof of the OS Inequality. We will prove the claim 37" ; FG) < 1If la/AD(F);
the “in particular” statement follows immediately from Proposition 8.45. Fix

a deterministic decision tree T achieving A?)(f) (see Remark 8.63) and let

x = (xg,%7) be drawn from the associated decision tree process. Using the
notation ¢ from Definition 8.39 we have

E[ 3 ¢(x)]l.

*7 i=1

Y fiy= E [f) _i1</>(xi)]=JE [fx)
i=1 i= X

XX g
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Here we abused notation slightly by writing f(x.y); in the decision tree process,
[’s value is determined once xy is. Since E[¢p(x;)] = 0 for each i ¢ J we may
continue:

E [f@)ELY. pall= E [f@xg) 5 Licsd]
Jxg 1 J,xg i=1

n 2

J 1=
by Cauchy—Schwarz. Now \/E ,,[f(xs)?]is simply | fll2 since T computes f.
To complete the proof it suffices to show that

E
J,xJ

L 2
(gll{ieJ}(P(xi)) ] = APXF).

To see this, expand the square:

n

=Y E [Liend@)?1+ Y. E [1;rendx)dla)].
i:]_J,xJ i¢irJ,xJ

E [( ¥ Vel
. Y

Jxg | \i=1 (i) Pl

Conditioned on i € J the quantity E[(,b(xi)2] is simply 1. Thus

Y JEJ[I{iEJ}(p(xi)Z] =Y Prlie J1=AP(f).
i=14% =

i=1

It remains to show that Ej 4, [1(; jrcyp(x;)p(x;)] = 0 whenever i # i’. Sup-
pose we condition on the event that i,i’ € J and we further condition on i
being queried before i’ is queried. Certainly this may affect the conditional
distribution of x;, but the conditional distribution of x;; remains 7,; hence
E[¢p(x;/)] = 0 under this conditioning. Of course the same argument holds
when we condition on i’ being queried before i. From this it follows that
EJg x,[1 ircqyP(x;)p(x;:)] is indeed 0, completing the proof. U

8.7. Exercises and notes

8.1 Explain how to generalize the definitions and results in Sections 8.1
and 8.2 to general finite product spaces L2(Q x -+ x Qp, 1 X -+ X 7Tp,).

8.2 Verify that Definition 8.1 indeed defines a real inner product space. (Where
is the fact that 7 has full support used?)

8.3 Verify the formula for f(«) in Definition 8.14.

8.4 Verify that ¢, 1,2 from Example 8.10 indeed constitute a Fourier basis
for Q = {a, b, c} with the uniform distribution.

8.5 Verify the Fourier expansion in Example 8.15.
8.6 Complete the proof of Proposition 8.16.
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8.7

8.8

8.9
8.10

8.11

8.12

8.13

8.14
8.15

8.16

Prove that the expectation over I operator, Ej, is a linear operator on
L2(Q", %) (i.e., Ef(f +g) = E;f +E;g), a projection (i.e., E;oE; = E), and
self-adjoint (i.e., (f,E;g) = (E;f,g)). Deduce that T, is also self-adjoint.

Show for any f,g € L%(Q",7°") and j € [n] that f =E;f +L;f and that
(f.&) =<E;f,E;jg)+(L;f,L;g).
Prove Proposition 8.24. (Hint: Exercise 1.17.)

Let f € L?(Q",n®") have range {—1,1}. Proposition 8.24 tells us that

IL; flly = ||Lif||§ =Inf;[f].

(@) Show that ||L; |5 < 2PInf;[f] for any p > 1.

(b) In case 1 < p <2, show that in fact ||Lif||§ < Inf;[f]. (Hint: Use the
general form of Holder’s inequality to bound ||L; f |, in terms of ||L; f |1
and |L;f1l2.)

Generalize all of Exercise 2.35 to the setting of L2(Q", 7%"). Caution: the
two statements referring to p € [-1, 1] should refer only to p € [0,1] in this
more general setting.

Assume Q| =m and let 7 denote the uniform distribution on Q.

(a) For x € Q" and y ~ N, (x), write a formula for Pr[y; = w] in terms of p
(there are two cases depending on whether or not x; = w).

(b) Verify that your formula defines a valid probability distribution on Q
even when —ﬁ < p < 0. We may therefore extend the definition of
N, to this case. (Cf. the second half of Definition 2.40.)

(c) Verify that for x ~ 7" and y ~ N,(x), the distribution of (x,y) is
symmetric in x and y.

(d) Show that when y ~ N_
QN {x;}.

(e) Verify that the formula for T, from Proposition 8.28 continues to hold
for —ﬁ < p <0. (Hint: Use the fact that it holds for p € [0,1] and
that the formula in part (a) is a polynomial in p.)

Show that Definition 8.30 extends by continuity to
InfEO)[f] =#Z f(a)?.
pod

=1
ai¢0

11(x), each y; is uniformly distributed on

Extend also Proposition 8.31 to the case of § = 1.
Prove explicitly that condition 5 holds in Theorem 8.35.

Prove that condition 6 must hold in Theorem 8.35 directly from the
uniqueness statement (i.e., without appealing to the explicit construc-
tion).

Let f € L2(Q", 7®"). Prove directly from the defining Theorem 8.35 that
(F=5)<T is equal to £=5 if S = T and is equal to 0 otherwise.
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8.17

8.18

8.19
8.20

8.21

8.22

8.23

8.24

Let f € L2(Q",7®") and let x ~ 7°". In this exercise you should think

about how the (conditional) expectation of f changes as the random vari-

ables x1,...,x, are revealed one at a time.

(@) Recalling that f<*!(x) depends only on x1,...,x;, show that the se-
quence of random variables (f<*!(x));—¢_, is a martingale (where
FEO1 denotes £2); i.e.,

Elf <) | 1<), ..., )] = ) veeln].

(This is the Doob martingale for f.)
(b) For each ¢t € [n] define

d;f = fg[t] _ fg[t—l] — Z f:S.
Scln]
max(S)=t

Show that E[d;f(x) | f<%(x),..., " 1(x)] = 0. (Here (d;f)i=1_n is
the martingale difference sequence for f.)

For f,g € L2(Q",n®"), prove the following directly from Theorem 8.35:
fe0=Y (75,875

Scln]
Inf;[f1= Y 1/~5112
Sai

If1=Y k-W[f]
k=0
To(F =) = (T )™ = p* =5
Stab,[f1= Y p* -WF[f].
k=0

Let f € L2(Q",7®") and let S < [n]. Show that =5 leo < 25! 1l co-
Explicitly verify that Proposition 8.36 holds for the function in Exam-
ples 8.15 and 8.37.

Let f € L%(Q",7n%") and let i € S = [n]. Suppose we take f=5 and restrict
its ith coordinate to have value w;, forming the subfunction g = (f=° )w; -
Show that g = g=5 ¥, In particular, E[g] = 0 assuming |S| = 2.

Let f € L2(Q",7°") be a symmetric function. Show that if 1 <|S|<|T|<n,
then g; Var[f<5] < 7 Var[£<T].

Prove the sharp threshold statement about the majority function made
in Example 8.49. (Hint: Chernoff bound.) In the social choice literature,
this fact is known as the Condorcet Jury Theorem.

Let p1,...,pn€(0,1) and let 7 =7, ®---7, be the associated product dis-
tribution on {-1,1}". Write y; =1-2p; and 0; =2,/p;\/1 - p;. Generalize
Proposition 8.45 to the setting of L2({—1, 1}, 7).
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8.25

8.26

8.27

8.28

8.29

Let f:{—1,1Y* - R and consider the general product distribution setting

of Exercise 8.24.

(@) For S ={iy,...,ir} S[nl, write Dy for Dd)il o-- -0D¢ik and similarly D,.
Show that DC/)S = HiES (o st.

(b) Writing f () for the function f viewed as an element of L2({—1,1}",7),
show that

F@)(S) = [T0i Dagf(Hs- .., pin)-
ieS

(¢) Show that If Pl < ITies 0 - I fllco-
(@) Generalize Exercise 2.10 by showing that for f € L2({-1,1}", ngn) with
range {—1,1},
Pr [i is b-pivotal for f on x] = 7,(b)Inf;[f]
x~m"
forie[n]and be{-1,1}.
(b) Generalize Proposition 4.7 by showing that if f: {-1,1}* — {-1,1} has
DNFyiqth(f) < w, then I[fP] < 4qw < 4w, and if f has CNFyigen(f) < w,
then I[fP] < 4pw < 4w.

Fix any a € (0,1). Let f : {True,False}* — {True,False} be a nonconstant
monotone function. Show that there exists p €(0,1) such that Pr, [f(x) =
True] = a. (Hint: Intermediate Value Theorem.)

Fix a small constant 0 < ¢ < 1/2. Let f : {True,False}* — {True,False}
be a nonconstant monotone function. Let pg (respectively, p., p1) be
the unique value of p € (0,1) such that Pr, [f(x) = True] = € (respec-
tively, 1/2, 1 —¢). (This is a valid definition by Exercise 8.27.) Define
also a% =4p.(1-p.). The threshold interval for f is defined to be [pg, p1],
and 6 = p1 — po is the threshold width. Now let (f,),en be a sequence
of nonconstant monotone Boolean functions (usually “naturally related”,
with f,’s input length an increasing function of n). Define the sequences
po(n), pc(n), p1(n), Ug(n), 6(n). We say that the family (f,,) has a sharp
threshold if 6(n)/03(n) — 0 as n — oo; otherwise, we say it has a coarse
threshold. (Note: If p.(n) < 1/2 for all n, this is the same as saying that
o(n)pc(n) — 0.) Show that if (f;,) has a coarse threshold, then there
exists C < oo, an infinite sequence n1 < ng < ng < ---, and a sequence
(p(n;))ien such that:
e €< Pr,,p(ni)[fni(x) =Truel]<1—e¢for all i;
o« PP <C for all i.

(Hint: Margulis—Russo and the Mean Value Theorem.)

Let f :{-1,1}® — {—1,1} be a nonconstant monotone function and let
F :10,1]1 — [0,1] be the (strictly increasing) function defined by F(p) =
Pr; [f(x) = —1]. Let p. be the critical probability such that F(p.) = 1/2.
Assume that p. < 1/2. (This is without loss of generality since we can
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replace f by fT. We often think of p. <« 1/2.) The goal of this exercise is to

show a weak kind of threshold result: roughly speaking, F(p) = 0o(1) when

p=o0(p.) and F(p)=1-0(1) when p = w(p,).

(a) Using the Margulis—Russo Formula and the Poincaré Inequality show
that forall0<p <1,

F(p)1-F(p))

Fl(p)=
R )

(b) Show that for all p < p. we have F'(p) = %’;) and hence £ InF(p) =
1

2p°

(c) Deduce that for any 0 < pg < p. we have F(pg) < %\/po/pc; i.e., F(pg) <
¢ if po < (2¢)?pe..

(d) Show that the factor (2¢)? can be improved to O(7)e1*” for any small
constant 7 > 0. (Hint: The quadratic dependence on ¢ arose because
we used 1-F(p) = 1/2 for p < p.; but from part (c) we have the im-
proved bound 1-F(p) =1—1 once p < (27)?p..)

(e) In the other direction, show that so long as p1 = ﬁ pe <1/2, we have
F(p1) =1—-e¢. (Hint: Work with In(1 - F(p)).) In case p1 < 1/2 does not
hold, show that we at least have F(1/2)=1-+/p./2.

() The bounds in part (e) are not very interesting when p. is close to 1/2.
Show that we also have F(1—68)=1-v/6/2 (even when p. = 1/2).

8.30 Consider the sequence of functions [, : {True,False}* — {True,False} de-
fined for odd n = 3 as follows: f,(x1,...,x,) = Majs(x1,22,Maj, _o(x3,...,2,)).
(a) Show that f, is monotone and has critical probability p. = 1/2.
(b) Sketch a plot of Pry [f,,(x) = True] versus p (assuming n very large).
(c) Show that I[f,] = O(/n).
(d) Show that the sequence [, has a coarse threshold as defined in Exer-
cise 8.28 (assuming € < 1/4).

8.31 (a) Consider the following probability distributions on strings x € [F5:

(1) First choose k ~ {0,1,2,...,n} uniformly. Then choose x uni-
formly from the set of all strings of Hamming weight k.

(2) First choose a uniformly random “path x from (0,0,...,0) up
to (1,1,...,1)”; i.e., let & be a uniformly random permutation
from S, and let #=% € [F5 denote the string whose jth coordi-
nate is 1 if and only if n(j) <i. Then choose k ~ {0,1,2,...,n}
uniformly and let x be the “kth string on the path”, namely 7=%.

(3) First choose p ~[0,1]. Then choose x ~ n;’;”.

Show that these are in fact the same distribution. (Hint: Imagine
choosing n + 1 indistinguishable points uniformly from [0, 1] and then
randomly assigning them the labels “p”, 1, 2, ..., n.)
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(b) We denote by v" the distribution on ]F[zn] from part (a); more generally,
we use the notation vV for the distribution on IFIZV where N is an
abstract set of cardinality n. Given a nonempty J <[n], show that if
x~v"and xg € IE“QI denotes the restriction of x to coordinates </, then
x has the distribution v7.

(c) Let f:IF5 — R and fix i € [n]. The ith Shapley value of f is defined to

be
Shapi[f] — !3 n[f(x(iHl)) _ f(x(i-—>0))]_

Show that }.7"_; Shap;[f1=f(1,1,...,1)- £(0,0,...,0).
(d) Suppose [ :[F5 — {0, 1} is monotone. Show Shap;[f]= 4f01 Inf;[/P1dp.
8.32 Explain how to generalize the definitions and results in Sections 8.1, 8.2

to the case of the complex inner product space L2(Q",7%"). In particular,
verify the following formulas from Proposition 8.16:

Elf1=£(0)
Ellf21=EKf, )] = ae%g,,,(ﬂ“)’f(a» = %m IF(a)?
Varlf1=(f —EIf1,f —EIf]) = §0|f(a)|2
(f.8) = % (f(a),8(a)) = % fla)g(a)
Covlf,gl=(f —<;][f],g—E[g]> = é:f(a)@.

8.33 (a) As in Exercise 2.58, explain how to generalize the definitions and
results in Sections 8.1, 8.2 to the case of functions f : Q" — V, where
V is a real inner product space with inner product (:,-)y. Here the
Fourier coefficients }? (a) will be elements of V, and (f,g) is defined
to be Ey- en[(f(x),g(x))v]. In particular, verify the formulas from
Proposition 8.16, including Placherel: ({f,g) = Za(f(a),g(a))v.

(b) For X a finite set we write Ay for the set of all probability distributions
over X (cf. Exercise 7.22). Writing |X| = m, we also identify Ay with
the standard convex simplex in R, namely {pe R™ :yy +---+ iy, =
1,u; = 0 Vi} (where we assume some fixed ordering of X). Finally,
we identify the m elements of £ with the constant distributions in
As; equivalently, the vertices of the form (0,...,0,1,0,...,0). Given a
function f: Q" — Z, often the most useful way to treat it analytically
is to interpret it as a function f : Q" — Ay c R™ and then use the
setting described in part (a), with V = R™. Using this idea, show that
if f: Q" — ¥ and 7 is a distribution on (2, then

Stab,[f]= Pr ( )[f(x) =f(y]l.

x~m®",y~N,(x
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(Here in Stab,[f] we are interpreting f’s range as Ay < R™, whereas
in the expression f(x) = f(y) we are treating f’s range as the abstract
set 2.)

8.34 We say a function f € L?(Q",n%") is a linear threshold function if it is

8.35

8.36

8.37

expressible as f(x) = sgn(¢(x)), where ¢ : Q" — R has degree at most 1 (in

the sense of Definition 8.32).

(@) Given 0™V, 0D e Q" and x € {-1,1}", we introduce the notation w®
for the string (w(lxl), .. ,a)gf")) € Q". Show that if @V, 0™ ~ 7®" are
drawn independently and (x,y) ~ {—1,1}" x {—1,1}" is a p-correlated
pair of binary strings, then (w®,w®) is a p-correlated pair under
&,

(b) Let f € L2(Q",n®") be a linear threshold function. Given a pair
oD 0P e Q| define g,cv yov {-1,1}" — {~1,1} by g,0v 4cv(x) =
f(@®). Show that 8w -1 18 a linear threshold function in the
“usual” sense.

(c) Prove that Peres’s Theorem (from Chapter 5.5) applies to linear thresh-
old functions in L2(Q",7®"), with the same bounds.

Let G be a finite abelian group. We know by the Fundamental Theorem
of Finitely Generated Abelian Groups that G = Z,,, x --Z,, where each
m; is a prime power.

(a) Given a € G, define y,:G — C by

n
Xa(x) =[] exp@rmia;x;im ;).
j=1
Show y, is a character of G and that the y,’s are distinct functions
for distinct a’s. Deduce that the set of all y,’s forms a Fourier basis
for L%(G).

(b) Show that this set of characters forms a group under multiplication
and that this group is isomorphic to G; i.e., generalize Fact 8.58. This
is called the dual group of G and it is written G. We also identify the
characters in G with their indices a.

Verify that the convolution operation on L%(G) is associative and commu-
tative, and that it satisfies f * g(a) = f(a)g(a) for all @ € G. (See Exer-
cise 8.35 for the definition of G.)

(@) Let f € L2(Q",n®") be any transitive-symmetric function and let I~
be a randomized decision tree computing f. Show that there exists
a randomized decision tree I computing f with A™(J") = AP (J)
and such that 65”)(3" ") is the same for all i € [n]. (Hint: Randomize
over the automorphism group Aut(f) and use Exercise 2.47.)

(b) Given a randomized decision tree I, let §7(J) = maxie[n]{5§” (T,
Given f € L2({-1,1}",7®"), define 6 (f) to be the minimum value of
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6" over all I which compute f; this is called the revealment of f.
Show that if f is transitive-symmetric, then 5§ (f) = %A(”)(f ).
8.38 (a) Show that DT(Maj$¢) = 3¢, RDT(Maj5?) < (8/3)?, and A(Maj$?) <
(5/2)2.
(b) Show that RDT(Maj§2) <(8/3)?. How small can you make your upper
bound?

8.39 (a) Show that for every deterministic decision tree T computing the logi-
cal OR function on n bits,

AP(T)=p-1+(1-p)p-2+(1-p)°p-3+---
_1-(1-p)
—

et (1=-p)" 2p-(n-1)+A-p)" Ln

Deduce AP(OR,) = =25

(b) Show that A®J(OR,) ~ n/(2In2) as n — oo, where p. denotes the
critical probability for OR,,.

8.40 Let NAND : {True, False}? — {True, False} be the function that outputs True
unless both its inputs are True.

(@) Show that for d even, NAND®? = Tribesg‘é&. (Thus the recursive
NAND function is sometimes known as the AND-OR tree.)

(b) Show that DT(NAND®¢) = 24,

(¢) Show that RDT(NAND) = 2.

(d) For b € {True,False} and 9 a randomized decision tree computing
a function f, let RDT;(9") denote the maximum cost of 9 among
inputs x with f(x) = 6. Show that there is a randomized decision
tree J computing NAND with RDTF,1s.(9) = 3/2.

(e) Show that RDT(NAND®?) < 3.

(f) Show that there is a family of randomized decision trees (Jg)gen+,
with 9; computing NAN D®d, satisfying the inequalities

RDTra15e(Tq) < 2RDT14e(Fg-1)
RDTTrue(cO];i) = RDTFaIse(%—l) + (1/2)RDTTrue(<%—l)-

(g) Deduce RDT(NAND®?) < (11¥33)d » 5,754 where n = 27,

8.41 Let ¥ = {monotone [ :{-1,1}" — {—1,1} | DT(f) < k}. Show that € is learn-
able from random examples with error ¢ in time nOWHe), (Hint: OS In-
equality and Corollary 3.32.)

8.42 Verify that the decision tree process described in Definition 8.70 indeed
generates strings distributed according to 7®". (Hint: Induction on the
structure of the tree.)
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8.43 Let T be a deterministic decision tree of size s. Show that A(T') < logs.
(Hint: Let P be a random root-to-leaf path chosen as in the decision tree
process. How can you bound the entropy of the random variable P?)

8.44 Let f € L%(Q",7n%") be a nonconstant function with range {—1,1}.
(@) Show that MaxInf[f] = Var[fVA™(f) (cf. the KKL Theorem from
Chapter 4.2).
(b) In case Q = {—1,1} show that MaxInf[f]= Var[f1/deg(f)3. (You should
use the result of Midrijanis mentioned in the notes in Chapter 3.6.)
(¢) Show that I[f]1= Var[f1/8™(f), where 6™ (f) is the revealment of f,
defined in Exercise 8.37(b).

8.45 Let f € L2(Q",n®") have range {—1,1}.
(a) Let 9 be a randomized decision computing f and let i € [n]. Show
that Inf;[f]< 55.” )(J). (Hint: The decision tree process.)
(b) Suppose f is transitive-symmetric. Show that A™(f) = \/Var[f]-n.
(Hint: Exercise 8.37(b).) This result can be sharp up to an O(y/logn)
factor even for an f: {—1,1}" — {—1,1} with Var[f]=1; see [BSWO05].

8.46 In this exercise you will give an alternate proof of the OSSS Inequality
that is sharp when Var[f] =1 and is weaker by only a factor of 2 when
Var[f]is small. Let f € L?(Q",n®") have range {—1,1}. Given a random-
ized decision tree I we write err(9 ) = Pry_ze: [T (x) # f(x)].

(a) Let T be a depth-£ deterministic decision tree (not necessarily com-
puting f) whose root queries coordinate i. Let 9 be the distribution
over deterministic trees of depth at most 2 — 1 given by following
a random outgoing edge from 7”s root (according to 7). Show that
err(7) < err(T) + 3 Inf;[f].

(b) Let 9 be a randomized decision tree of depth 0. Show that err(J) =
min{Pr[f(x) = 1],Pr[f(x) = —1]}.

(c) Prove by induction on depth that if  is any randomized decision tree,
then 337" | 6%(7)Inf;[f] = min{Prlf (x) = 1], Prif(x) = - 1]} —err(J).
Verify that this yields the OSSS Inequality when Var[f]=1 and in
general yields the OSSS Inequality up to a factor of 2.

8.47 Show that the OSSS Inequality fails for functions f :{-1,1}* — R. (Hint:
The simplest counterexample uses a decision tree with the shape in Fig-
ure 8.2.)
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Figure 8.2. The basis for a counterexample to the OSSS Inequality when
fi-1, 11" - R

Can you make the ratio of the left-hand side to the right-hand side
equal to %/g? Larger?

Notes. The origins of the orthogonal decomposition described in Section 8.3
date back to the work of Hoeffding [Hoe48] (see also von Mises [vM47]). Ho-
effding’s work introduced U-statistics, i.e., functions f of independent random
variables X7,...,X, of the form avg;.; ...<;, <, 8Xi,,...,X;,), where g: RF —
R is a symmetric function. Such functions are themselves symmetric. For
these functions, Hoeffding introduced f<° (which, by symmetry, depends only
on |S|) and proved certain inequalities (e.g., those in Exercise 8.22) relating
Var[f] to the quantities ||f <S ||§, \f =8 |I§. Nonsymmetric functions f were
considered only rarely in the subsequent three decades of statistics research.
One notable exception comes in the work of Hajek [Haj68], who effectively
introduced f=!, known as the Hdjek projection of f. Also, a work of Bour-
gain [Bou79] essentially describes the decomposition f = Y, f=*. The first
work that mentions the general orthogonal decomposition for not-necessarily-
symmetric functions appears to be that of Efron and Stein [ES81] from the
late 1970s. Efron and Stein’s description is brief; the subsequent work of
Karlin and Rinott [KR82] gives a more thorough development. Efron and
Stein’s main result was a proof of the statement Var[f] < I[f] for symmet-
ric f; in the statistics literature this is known as the Efron—Stein Inequality.
Steele [Ste86a] extended this to the case of nonsymmetric f by a simple proof
that used the Fourier basis approach to orthogonal decomposition. This ap-
proach via Fourier bases originated in the work of Rubin and Vitale [RV80];
see also Takemura [Tak83] and Vitale [Vit84]. The terminology “Fourier
basis” we use is not standard.

The p-biased hypercube distribution is strongly motivated by the Erdés—
Rényi [ER59] theory of random graphs (see e.g., Bollobas and Riordan [BRO0S8]
for history) and by percolation theory (introduced in Broadbent and Hammer-
sley [BH57]). Influences under the p-biased distribution — and their connec-
tion to threshold phenomena — were studied by Russo [Rus81, Rus82]. The
former work proved the Margulis—Russo formula independently of Margulis,
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who had proven it earlier [Mar74]. Fourier analysis under the p-biased distri-
bution seems to have been first introduced to the theoretical computer science
literature by Furst, Jackson, and Smith [FJS91], who extended the LMN
learning algorithm for AC? to this setting. Talagrand [Tal93, Tal94] devel-
oped p-biased Fourier for the study of threshold phenomena, strengthening
Margulis and Russo’s work and proving the KKL. Theorem in the p-biased
setting. Similar results were obtained by Friedgut and Kalai [FK96] using
an earlier work of Bourgain, Kahn, Kalai, Linial, and Katznelson [BKK*92]
that proved a version of the KKL Theorem in the setting of general product
spaces. The statements about sharp thresholds for cliques and connectivity
in Example 8.49 are essentially due to Matula and to Erd6s—Rényi, respec-
tively; see, e.g., Bollobas [Bol01]. Weak threshold results similar to the ones
in Exercise 8.29 were proved by Bollobas and Thomason [BT87], using the
Kruskal-Katona Theorem rather than the Poincaré Inequality.

Fourier analysis on finite abelian groups — and more generally, on locally
compact abelian groups — is an enormous subject upon which we have touched
only briefly. We cannot survey it here but refer instead to the standard text-
book of Rudin [Rud62] and to the reader-friendly textbook of Terras [Ter99],
which focuses on finite groups.

One of the earliest works on randomized decision tree complexity is that
of Saks and Wigderson [SW86]; they proved the contents of Exercise 8.40.
(We note that RDT(f) is usually denoted R(f) in the literature, and DT(f) is
usually denoted D(f).) One basic lower bound in the area is that RDT(f) =
v DT(f) for any f : {-1,1}* — {—1,1}; in fact, this lower bound holds even
for “nondeterministic decision tree complexity”, as proved in [BI87, Tar89].
Yao’s Conjecture is also sometimes attributed to Richard Karp. Regarding
the recursive majority-of-3 function, Ravi Boppana was the first to point out
that RDT(Maj$?) = 0(3%) even though DT(Maj$?) = 3¢. Saks and Wigderson
noted the bound RDT(Majgd) < (8/3)? and also that it is not optimal. Fol-
lowing subsequent works [JKS03, She08] the best known upper bound is
0(2.65%) [MNSX11] and the best known lower bound is Q(2.55%) [Leo12].

The proof of the OSSS Inequality we presented is essentially Lee’s [Leel0];
the alternate proof from Exercise 8.46 is due to Jain and Zhang [JZ11].
The Condorcet Jury Theorem (see Exercise 8.23) is from [dC85]. The Shap-
ley value described in Exercise 8.31 was introduced by the Nobelist Shap-
ley [Sha53]; for more, see Roth [Rot88]. Exercise 8.34 is from Blais, O’'Donnell,
and Wimmer [BOW10]. Exercises 8.37(a) and 8.45 are from the work of
Benjamini, Schramm, and Wilson [BSWO05]; the term “revealment” was intro-
duced by Schramm and Steif [SS10]. Exercise 8.47 is from [0SSS05]. Related
to this, it is extremely interesting to ask whether something like the result of
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Exercise 8.44(b) holds for functions f : {—1,1}* — [-1,1]. It has been suggested
that the answer is yes:

Aaronson-Ambainis Conjecture. [Aar08, AA11] Let f:{-1,1}" —[-1,1].
Then MaxInf[f]= poly(Var[f1/deg(f)).

If true, this conjecture would have significant consequences for the limitations
of efficient quantum computation; see Aaronson and Ambainis [AA11]. The
best result in the direction of the conjecture, due to Dinur et al. [DFKO07], is
the lower bound MaxInf[f] = poly(Var[f1/23¢8(),
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Chapter 9

Basics of
hypercontractivity

In 1970, Bonami proved the following central result:

The Hypercontractivity Theorem. Let f : {—1,1}* - Randlet 1< p < g <oo.
Then | Tpf g < I I for 0= p =/,

As stated, this theorem may look somewhat opaque. In this chapter we
consider some special cases of it that are easier to understand, easier to prove,
and that encompass almost all of the theorem’s uses. The proof of the full
theorem is deferred to Chapter 10. The special cases in this chapter are the
following:

Bonami Lemma. Let f :{—1,1}" — R have degree k. Then ||f|4 < \/§k £ N2

The fundamental idea of this statement is that if x ~{-1,1}" and f : {-1,1}* —
R has low degree then the random variable f(x) is quite “reasonable”; e.g.,
it is “nicely” distributed around its mean. The Bonami Lemma has a very
easy inductive proof and is already powerful enough to obtain many of the
well-known applications of “hypercontractivity”, including the KKL Theorem
(proven at the end of this chapter) and the Invariance Principle.

(2,q)-Hypercontractivity Theorem. Let f :{—1,1}* — R and let 2 < g < cc.
Then ”Tl/\/ﬁf”q < |Iflle. As a consequence, if f has degree at most k then

1flg<va=T Il

This theorem quantifies the extent to which T, is a “smoothing” operator;
equivalently, it gives even more control over the “reasonableness” of low-
degree polynomials. Its consequences include a generalization of the Level-1

247
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Inequality (from Chapter 5.4) to “Level-£ Inequalities”, as well as a Chernoff-
like tail bound for low-degree polynomials of random bits.

(p,2)-Hypercontractivity Theorem. Let f:{-1,1}" >R and let 1<p <2.
Then ||T\/mf||2 <|fllp. Equivalently, Stab,[f]< IIfII%JqO for0<sp=<1l

This theorem is actually “equivalent” to the (2, q)-Hypercontractivity Theorem
by virtue of Holder’s inequality. When specialized to the case of f : {-1,1}" —
{0,1} it gives a precise quantification of the fact that the “noisy hypercube
graph” is a “small-set expander”. Qualitatively, this means that if A < {—1,1}"
is “small”, x ~ A, and y ~ N,(x), then y is very unlikely to be in A.

9.1. Low-degree polynomials are reasonable

As anyone who has worked in probability knows, a random variable can some-
times behave in rather “unreasonable” ways. It may be never close to its
expectation. It might exceed its expectation almost always, or almost never.
It might have finite 1st, 2nd, and 3rd moments, but an infinite 4th moment.
All of this poor behavior can cause a lot of trouble — wouldn’t it be nice to have
a class of “reasonable” random variables?

A very simple condition on a random variable that guarantees some good
behavior is that its 4th moment is not too large compared to its 2nd moment.

Definition 9.1. For a real number B = 1, we say that the real random variable
X is B-reasonable if E[X*] < BE[X?]2. (Equivalently, if | X4 < BY4|X|5.)

The smaller B is, the more “reasonable” X is. This definition is scale-
invariant (i.e., ¢X is B-reasonable if and only if X is, for ¢ # 0) but not
translation-invariant (c + X and X may not be equally reasonable). The latter
fact can sometimes be awkward, a point we’ll address further in Section 9.3.
Indeed, we'll later encounter a few alternative conditions that also capture
“reasonableness”. For example, in Chapter 11 we'll consider the analogous
3rd moment condition, E[|X|3] < BE[X2]*2. Strictly speaking, the 4th mo-
ment condition is stronger: if X is B-reasonable, then

E[|X°1=E[|X|- X% < \/E[X?]\/E[X*] < VBE[X?*?;

on the other hand, there exist random variables with finite 3rd moment and
infinite 4th moment. However, such unusual random variables almost never
arise for us, and morally speaking the 4th and 3rd moment conditions are
about equally good proxies for reasonableness.

Example 9.2. If x ~ {—1,1} is uniformly random then x is 1-reasonable. If
g ~N(0,1) is a standard Gaussian, then E[g*] = 3, so g is 3-reasonable. If
u ~[-1,1] is uniform, then you can calculate that it is s5’-1"easonab1e. In all
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of these examples B is a “small” constant, and we think of these random
variables simply as “reasonable”. An example of an “unreasonable” random
variable would be highly biased Bernoulli random variable; say, Pr(y = 1] =
27" Prly=0]=1-27", where n is large. This y is not B-reasonable unless
B=2".

Let’s give a few illustrations of why reasonable random variables are nice
to work with. First, they have slightly better tail bounds than what you would
get out of the Chebyshev inequality:

Proposition 9.3. Let X # 0 be B-reasonable. Then Pr[|X| = t|X|2] < B/t* for
all t>0.

Proof. This is immediate from Markov’s inequality:
E[X*] B
< —

Pr(|X|=¢|X|lo] = PriX* = | X 4]« ———— < —.
r[|X| =t X|2]=Pr[ X151 HEXZR

O

More interestingly, they also satisfy anticoncentration bounds; e.g., you
can upper-bound the probability that they are near 0.

Proposition 9.4. Let X # 0 be B-reasonable. Then Pr[|X| > t|X|2] = (1 -
t2)%/B for all t €10, 11.

Proof. Applying the Paley—Zygmund inequality (also called the “second mo-
ment method”) to X2, we get

O

E[X%? (1-#)
Pr(|X| >t X o] = Pr(X? = ?E[X?%]] = (1 - ¢?) > :
2 Elx'] - B
For a generalization of this proposition, see Exercise 9.12.

For a discrete random variable X, a simple condition that guarantees
reasonableness is that X takes on each of its values with nonnegligible prob-
ability:

Proposition 9.5. Let X be a discrete random variable with probability mass
function n. Write
A=min(r)= min ){Pr[X =x]}.

xerange(X

Then X is (1/1)-reasonable.

Proof. Let M = | X . Since Pr[|X|=M]= 1 we get
E[X?]=AM?2 = M?<E[X%)).
On the other hand,
EX*=E[X?.X?]<M? E[X?],
and thus E[X*] < (1/1)E[X?]? as required. O
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The converse to Proposition 9.5 is certainly not true. For example, if
X= \/lﬁxl +eet lnxn where x ~ {—1,1}*, then X is very close to a standard
Gaussian random variable (for n large) and is, unsurprisingly, 3-reasonable.

On the other hand, the “A” for this X is tiny, 27".

This discussion raises the issue of how you might try to construct an
unreasonable random variable out of independent uniform +1 bits. By Propo-
sition 9.5, at the very least you must use a lot of them. Furthermore, it also
seems that they must be combined in a high-degree way. For example, to
construct the unreasonable random variable y from Example 9.2 requires
degree n: y=(1+x1)(1+x9)---(1+x,)/2".

Indeed, the idea that high degree is required for unreasonableness is
correct, as the following crucial result shows:

The Bonami Lemma. For each k, if f :{-1,1}" — R has degree at most k
and x1,...,x, are independent, uniformly random +1 bits, then the random
variable f(x)is 9*_reasonable, i.e.,

ElfY1<9Elf22 = [fla<V3Ifla

In other words, low-degree polynomials of independent uniform +1 bits are
reasonable. As we will explain later, the Bonami Lemma is a special case of
more general results in the theory of “hypercontractivity”. However, many key
theorems using hypercontractivity — e.g., the KKL Theorem, the Invariance
Principle — really need only the simple Bonami Lemma. (We should also note
that the name “Bonami Lemma” is not standard; however, the result was first
proved by Bonami and it’s often used as a lemma, so the name fits. See the
discussion in the notes in Section 9.7.)

One pleasant thing about the Bonami Lemma is that once you decide
to prove it by induction on n, the proof practically writes itself. The only
“non-automatic” step is an application of Cauchy—Schwarz.

Proof of the Bonami Lemma. We assume k£ = 1 as otherwise f must be
constant and the claim is trivial. The proof is by induction on n. Again,
if n = 0, then f must be constant and the claim is trivial. For n = 1 we
can use the decomposition f(x) = x,D, f(x) + E, f(x) (Proposition 2.24), where
deg(D,f)<k -1, deg(E,f) <k, and the polynomials D, f(x) and E, f(x) don’t
depend on x,. For brevity we write f = f(x),d =D, f(x), and e = E, f(x). Now
Elf*]1=El(x,d +e)]

=Elxid*]1 +4Elx’ d3e] + 6 E[x2d’e?] + 4E[x,de®] + E[e?]

=Elx?1E[d*] + 4E[x31E[d®e] + 6E[x2 ] E[d?e?] + 4E[x, ] E[de®] + E[e*].
In the last step we used the fact that x,, is independent of d and e, since D, f
and E, f do not depend on x,. We now use E[x,] = E[xi] =0 and E[x%] =
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Elx%]1=1 to deduce
E[f*]=E[d*]1 +6E[d%e?] + E[e*]. 9.1)
A similar (and simpler) sequence of steps shows that
E(f%]1 = E[d?] +E[e?]. 9.2)

To upper-bound (9.1), recall that d = D, f(x) where D, f is a multilinear
polynomial of degree at most £ — 1 depending on n — 1 variables. Thus we
can apply the induction hypothesis to deduce E[d*] < 9* 1 E[d?]2. Similarly,
Ele?] < 9*E[e?]? since deg(E,f) < k. To bound E[d?e?] we apply Cauchy—
Schwarz, getting vV E[d*]1VE[e*] and letting us use induction again. Thus we
have

Elf*1 < 9" 1E[d?]? + 6\/ 9% 1E[d%]2 V9% E[e2]2 + 9" E[e?]?

2
< 9*(E[d?? + 2E[d?|Ele?] + E[e’]?) = 9* (E[d®] + Ele?])
where we used 9" "1E[d?]? < 9* E[d?]2. In light of (9.2), this completes the
proof. O

Some aspects of the sharpness of the Bonami Lemma are explored in
Exercises 9.2, 9.3, 9.37, and 9.38. Here we make one more observation. At
the end of the proof we used the wasteful-looking inequality 9* 1 E[d?]? <
9* E[d?]%. Tracing back through the proof, it’s easy to see that it would still
be valid even if we just had E[x?] < 9 rather than E[x;.l] = 1. For example,
the Bonami Lemma holds not just if the x;’s are random bits, but if they are
standard Gaussians, or are uniform on [—1,1], or there are some of each. We
leave the following as Exercise 9.4.

Corollary 9.6. Let x1,...,x, be independent, not necessarily identically dis-
tributed, random variables satisfying Elx;] = E[x?] = 0. (This holds if, e.g.,
each —x; has the same distribution as x;.) Assume also that each x; is B-
reasonable. Let f = F(x1,...,x,), where F is a multilinear polynomial of degree
at most k. Then f is max(B,9)k-reasonable.

As a first application of the Bonami Lemma, let us combine it with Propo-
sition 9.4 to show that a low-degree function is not too concentrated around
its mean:

Theorem 9.7. Let [ : {-1,1}" — R be a nonconstant function of degree at
most k; write u=E[f] and o = \/Varl[f]. Then

Pr [f@)-ul> lo]= Aol %
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Proof. Let g = %( f — 1), a function of degree at most % satisfying | gll2 = 1. By
the Bonami Lemma, g is 9*-reasonable. The result now follows by applying
Proposition 9.4 to g with ¢ = % O

Using this theorem, we can give a short proof of the FKN Theorem from
Chapter 2.5: If £ : {—~1,1}* — {—1,1} has W[f] =1-§ then f is O(5)-close to
+y; for some i € [n].

Proof of the FKN Theorem. Write ¢ = f=1, so E[¢/?] = 1 -6 by assumption.
We may assume without loss of generality that § < ﬁ. The goal of the proof
is to show that Var[¢?] is small; specifically we’ll show that Var[¢2] < 64006.
This will complete the proof because (using Exercise 1.20 for the first equality
below)
Warle®1= Y F0?7 ()% = (2 f(i)z)2 - X f@!
2 = .

i i

it

= (-8 % flir = (1-20)- & i’
and hence Var[¢?] < 64005 implies
1-32026 < ¥ F(i)* < maxif()? ¥ F()? < maxif()? < max{IFD),
i=1 12 i=1 2 i

as required.
To bound Var[¢2] we first apply Theorem 9.7 to the degree-2 function ¢2;
this yields
Pr(|¢2 - (1-0)| = }VVarle?]] = 912 = L.

Now suppose by way of contradiction that Var[¢?] > 64008; then the above
implies

17 <Pr[|2-(1-6)| > 40V5] <Pr||¢* - 1| > 395 9.3)

This says that |¢] is frequently far from 1. Since |f| = 1 always, we can deduce
that |f — ¢|? is frequently large. More precisely, a short calculation (Exer-
cise 9.5) shows that (f —¢)? = 1698 whenever |¢£2—1| > 39v/5. But now (9.3) im-
plies E[(f —¢)?] = 11;-1695 > 8, a contradiction since E[(f —¢)?]= 1-W1[f]=§
by assumption. O

9.2. Small subsets of the hypercube are noise-sensitive

An immediate consequence of the Bonami Lemma is that for any f: {-1,1}" —
Rand 2eN,

1Ty 5f Flla= ?nf:k le<lF* 2. (9.4)
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This is a special case of the (2,4)-Hypercontractivity Theorem (whose name
will be explained shortly), which says that the assumption of degree-%2 homo-
geneity is not necessary:

(2,4)-Hypercontractivity Theorem. Let f :{-1,1}* — R. Then
1Ty, 5 la < IIfll2.

It almost looks as though you could prove this theorem simply by sum-
ming (9.4) over k. In fact that proof strategy can be made to work given a
few extra tricks (see Exercise 9.6), but it’s just as easy to repeat the induction
technique used for the Bonami Lemma.

Proof. We'll prove E[T, 5/ (%)*]1 < E[f(x)?]? using the same induction as in
the Bonami Lemma. Retaining the notation d and e, and using the shorthand
T=T, /3 we have

Tf =x,- \/lgTd+Te.
Similar computations to those in the Bonami Lemma proof yield
E(TF)*]= (%) E[(Td)*1+ 6(%)* E[(Td)*(Te)*] + EL(Te)*]
< E[(Td)*1+ 2E[(Td)*(Te)?1+ E[(Te)*]
< E[(Td)*1+2VE[(Td)*]1VE[(Te)*] + E[(Te)*]
<E[d?]? + 2E[d?*]E[e?] + E[e?]
- (E[d*]+Ele?))® = E[f27,

where the second inequality is Cauchy—Schwarz, the third is induction, and
the final equality is a simple computation analogous to (9.2). ([

The name “hypercontractivity” in this theorem describes the fact that not
only is Tl/\/§ a “contraction” on L2({—1,1}”) — meaning ||T1/\/§f||2 < | fllg for
all f (Exercise 2.33) —it’s even a contraction when viewed as an operator from
L2({-1,1}") to L*({-1,1}"). You should think of hypercontractivity theorems
as quantifying the extent to which T, is a “smoothing”, or “reasonable-izing”
operator.

Unfortunately the quantity [T, 5/ ll4 in the (2,4)-Hypercontractivity The-
orem does not have an obvious combinatorial meaning. On the other hand,
the quantity

ITyy5fllz = \/<T1/\/§f,T1/\/§f> = \/<f’T1/\/§T1/\/§f> = v Stabyslf],

does have a nice combinatorial meaning. And we can make this quantity
appear in the Hypercontractivity Theorem via a simple trick from analysis,
just using the fact that T,, 5 is a self-adjoint operator. We “flip the norms
across 2” using Holder’s inequality:
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254 9. Basics of hypercontractivity

(4/3,2)-Hypercontractivity Theorem. Let f:{—1,1}* — R. Then
1Ty, 5  l2 < 1 lass;

ie.,

Stabys[f1=<If 155 (9.5)
Proof. Writing T =T, ;5 for brevity we have

ITFI5 = (TF,TFY = (£, TTFY < I flasITTf lla < I F las T N2 (9.6)

by Holder’s inequality and the (2,4)-Hypercontractivity Theorem. Dividing
through by | Tf |2 (which we may assume is nonzero) completes the proof. [J

In the inequality (9.5) the left-hand side is a natural quantity. The right-
hand side is just 1 when f : {-1,1}* — {—1, 1}, which is not very interesting.
But if we instead look at f: {—1,1}" — {0, 1} we get something very interesting:

Corollary 9.8. Let A < {—1,1}" have volume «; i.e., let 14 : {-1,1}* — {0,1}
satisfy E[14]1= a. Then
Staby/5[14] :x~{l—)£l}”[x €A,ye Al<a®?.
y~N13(x)
Equivalently (for a >0),

Pr [yeAl< a2,
x~A
y~Ny3(x)

Proof. This is immediate from inequality (9.5), since

2
11405 =(BILA@) )" = Bl1,@)]P2 = o2 O

See Section 9.5 for the generalization of this corollary to noise rates other
than 1/3.

Example 9.9. Assume a =27%, ke N*, and A is a subcube of codimension %;
e.g., 14 : F§ —{0,1} is the logical AND function on the first £ coordinates.
For every x € A, when we form y ~ Ny/3(x) we’ll have y € A if and only if the
first £ coordinates of x do not change, which happens with probability (2/3)* =
(2/3)losl/e) — 410g(3/2) o 585 < 12 T fact, the bound a2 in Corollary 9.8 is
essentially sharp when A is a Hamming ball; see Exercise 9.24.

We can phrase Corollary 9.8 in terms of the expansion in a certain graph:

Definition 9.10. For n € N and p € [-1,1], the n-dimensional p-stable hy-
percube graph is the edge-weighted, complete directed graph on vertex set
{—1,1}" in which the weight on directed edge (x,y) € {—1,1}" x {—1,1}" is equal
to Pr[(x,y) = (x,y)] when (x,y) is a p-correlated pair. If p =1-26 for 6 € [0, 1],
we also call this the d-noisy hypercube graph. Here the weight on (x,y) is
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9.2. Small subsets of the hypercube are noise-sensitive 255

Prl(x,y) = (x,y)] where x ~ {—1,1}" is uniform and y is formed from x by
negating each coordinate independently with probability 6.

Remark 9.11. The edge weights in this graph are nonnegative and sum to 1.
The graph is also “regular” in the sense that for each x € {—1,1}" the sum of
all the edge weight leaving (or entering) x is 27". You can also consider the
graph to be undirected, since the weight on (x,y) is the same as the weight
on (y,x); in this viewpoint, the weight on the undirected edge (x,y) would be
21 n§AxY)(1 — 52 In fact, the graph is perhaps best thought of as the
discrete-time Markov chain on state space {—1,1}" in which a step from state
x € {=1,1}" consists of moving to state y ~ Ny(x). This is a reversible chain
with the uniform stationary distribution. Each discrete step is equivalent to
running the “usual” continuous-time Markov chain on the hypercube for time
t =1In(1/p) (assuming p €[0,1]).

With this definition in place, we can see Corollary 9.8 as saying that the
1/3-stable (equivalently, 1/3-noisy) hypercube graph is a “small-set expander”:
given any small a-fraction of the vertices A, almost all of the edge weight
touching A is on its boundary. More precisely, if we choose a random vertex
x € A and take a random edge out of x (with probability proportional to its
edge weight), we end up outside A with probability at least 1 - a2, You
can compare this with the discussion surrounding the Level-1 Inequality in
Section 5.4, which is the analogous statement for the p-stable hypercube
graph “in the limit p — 0%”. The appropriate statement for general p is
appears in Section 9.5 as the “Small-Set Expansion Theorem”.

Corollary 9.8 would apply equally well if 14 were replaced by a function g :
{-1,1}* — {-1,0,1}, with a denoting Pr[g # 0] = E[|g|] = E[g?]. This situation
occurs naturally when g = D;f for some Boolean-valued f : {-1,1}* — {-1,1}.
In this case Stabq/s[g] = Int(l.l/ 3)[f 1, the 1/3-stable influence of i on f. We
conclude that for a Boolean-valued function, if the influence of i is small then
its 1/3-stable influence is much smaller:

Corollary 9.12. Let f :{~1,1}* — {~1,1}. Then Inf"?[f]1<Inf;[£1>2 for il i.

We remark that the famous KKL Theorem (stated in Chapter 4.2) more or
less follows by summing the above inequality over i € [n]; if you're impatient
to see its proof you can skip directly to Section 9.6 now.

Let’s take one more look at the “small-set expansion result”, Corollary 9.8.
Since noise stability roughly measures how “low” a function’s Fourier weight
is, this corollary implies that a function f : {—1,1}* — {0,1} with small mean «a
cannot have much of its Fourier weight at low degree. More precisely, for any
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k € N we have
a®? > Staby5[f1= (1/3)FW=F[f] = W=*[f1=<3ka®2. 9.7)

For % =1 this gives W=1[f] < 3a®2, which is nontrivial but not as strong
as the Level-1 Inequality from Section 5.4. But (9.7) also gives us “level-k
inequalities” for larger values of 2. For example,

i.e., almost all of f’s Fourier weight is above degree .25log(1/a). We will give
slightly improved versions of these level-k inequalities in Section 9.5.

9.3. (2,9)- and (p,2)-hypercontractivity for a single bit

Although you can get a lot of mileage out of studying the 4-norm of random
variables, it’s also natural to consider other norms. For example, we would
get improved versions of our concentration and anticoncentration results,
Propositions 9.3 and 9.4, if we could bound the higher norms of a random
variable in terms of its 2-norm. As we’ll see, we can also get stronger “level-%
inequalities” by bounding the (2+¢€)-norm of a Boolean function for small € > 0.

We started with the 4-norm due to the simplicity of the proofs of the
Bonami Lemma and the (2,4)-Hypercontractivity Theorem. To generalize
these results to other norms it’s a bit more elegant to work with the latter.
Partly this is because it’s “formally stronger” (see Theorem 9.21). But the
main reason is that the hypercontractivity version alleviates the inelegant
issue that being “B-reasonable” is not translation-invariant. Thus instead of
generalizing the condition that [|p X4 < | X2 (“X is p‘4-reasonable”) we'll
generalize the condition that |la + pb X |4 < lla + bX |2 (cf. the n =1 case of the
(2,4)-Hypercontractivity Theorem).

Definition 9.13. Let 1< p <qg <oo and let 0 < p <1. We say that a real
random variable X (with | X, <o0) is (p,q, p)-hypercontractive if

la+pbXl4 <la+bX], forallconstantsa,beclR.

Remark 9.14. By homogeneity, it suffices to check the condition for a =1,
beRorforaclR, b=1(cf. Exercise 9.9(a)). It’s also true (Exercise 9.11) that
if X is (p, q, p)-hypercontractive then it is (p, q, p')-hypercontractive for p’ < p
as well.

In Exercise 9.10 you will show that if X is hypercontractive then E[X]
must be 0. Thus hypercontractivity, like reasonableness, is not a translation-
invariant notion. Nevertheless, the fact that the definition involves transla-
tion by an arbitrary a greatly facilitates proofs by induction. For example, an
elegant property we gain from the definition is the following (Exercise 10.2):
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Proposition 9.15. Let X and Y be independent (p,q, p)-hypercontractive ran-
dom variables. Then X +Y is also (p,q, p)-hypercontractive.

The n =1 case of our (2,4)-Hypercontractivity Theorem precisely says that
a single uniformly random =+1 bit x is (2,4,1/ \/?_))-hypercontractive;
the (4/3,2)-Hypercontractivity Theorem says that the bit x is also (4/3,2,1/v/3)-
hypercontractive. We'll spend the remainder of this section generalizing these
facts to (2,q,p)- and (p,2, p)-hypercontractivity for other values of p and gq.
We remark that in our study of hypercontractivity we’ll focus mainly on the
cases of p =2 or ¢ = 2. The study of hypercontractivity for p,q # 2 and for
random variables other than uniform +1 bits is deferred to Chapter 10.

We now consider hypercontractivity of a uniformly random +1 bit x. We
know that x is (2, q,1/v/3)-hypercontractive for ¢ = 4; what about other values
of ¢? Things are most pleasant when ¢ is an even integer because then you
don’t need to take the absolute value when computing [la + pbX]|l4. So let’s try
g =6.

Proposition 9.16. For x a uniform +1 bit, we have |la + pbx|g < |la +bx||2 for
all a,b e R if (and only if) p < 1/V/5. That is, x is (2,6, 1/v/5)-hypercontractive.

Proof. Raising the inequality to the 6th power, we need to show
El(a + pbx)®1 < El(a + bx)?13. (9.8)

The result is trivial when a = 0; otherwise, we may assume a = 1 by homo-
geneity. We expand both quantities inside expectations and use the fact that
E[x*]is 0 when % is odd and 1 when £ is even. Thus (9.8) is equivalent to

1+1502b% +15p%b% + pb8% < (1+5%)% =1+ 362 + 3% + 5. 9.9)

Comparing the two sides term-by-term we see that the coefficient on b2 is
the limiting factor: in order for (9.9) to hold for all b € R it is sufficient that
15p% < 3; i.e., p < 1/v/5. By considering b — 0 it’s also easy to see that this
condition is necessary. O

If you repeat this analysis for the case of ¢ = 8 you’ll find that again the
limiting factor is the coefficient on 52, and that «x is (2,8, p)-hypercontractive
if (and only if) ()p? < (}); i.e., p < 1/v/7. In light of this it is natural to guess
that the following is true:

Theorem 9.17. Let x be a uniform +1 bit and let q € (2,00]. Then |la+pbx|ly <
la +bxll2 for all a,b € R assuming p < l/m.

Equivalent statements are that |la + (l/m)bxllg < a?+0b2 that x is
(2,q,l/m)-hypercontractive, and that ”Tl/\/quf”q < |fllg holds for any
f:{-1,1} - R.
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For g an even integer it is not hard (see Exercise 9.36) to prove Theo-
rem 9.17 just as we did for ¢ = 6. Indeed, the proof works even under more
general moment conditions on x, as in Corollary 9.6. Unfortunately, obtaining
Theorem 9.17 for all real g > 2 takes some more tricks. A natural idea is to try
forging ahead as in Proposition 9.16, using the series expansions for (1+ pbx)?
and (1+52)72 provided by the Generalized Binomial Theorem. However, even
when |b| < 1 (so that convergence is not an issue) there is a difficulty because
the coefficients in the expansion of (1 + 52)?2 are sometimes negative.

Luckily, this issue of negative coefficients in the series expansion goes
away if you try to prove the analogous (p,2, p)-hypercontractivity statement.
Thus the slick proof of Theorem 9.17 proceeds by first proving that statement,
then “flipping the norms across 2”.

Theorem 9.18. Let x be a uniform +1 bit and let 1 < p <2. Then |la +pbx|2 <

la+bxlp for all a,b € R assuming 0<p<./p—1. Thatis, xis (p,2,y/p—1)-
hypercontractive.

Proof. By Remark 9.14 we may assume a =1 and p = /p — 1. By Exercise 9.7
we may also assume without loss of generality that 1+ bx =0 for x € {-1,1};
i.e., that |b| < 1. It then suffices to prove the result for all |5| < 1 because the
|b] =1 case follows by continuity. Writing b = € for the sake of intuition, we
need to show

I1+vp—1-exllh < |1+ex|}
— El1+p-1-ex1P2? <E[(1+ex)"]. (9.10)

Here we were able to drop the absolute value on the right-hand side because
le| < 1. The left-hand side of (9.10) is

(1+(p-De?yP? <1+ 22D2 9.11)

where we used the inequality (1+¢)° <1+6¢ for ¢ 20 and 0 <6 < 1 (easily
proved by comparing derivatives in t). As for the right-hand side of (9.10),
since |ex| < 1 we may use the Generalized Binomial Theorem to show it equals

+p(p 1) 2 +p(p 1)(p 2) 3 3+p(p 1)(p 2)(p-3) 4

E |1+ pex ctxt+-

ex

= ]_+p€E[x]+ p(p D 2E[x2]+ M 3E[x3]+ }M 4E[x4]+

— 1+p(p 1)€2+p(p 1)(1;! 2)(p-3) 4 p(p 1(p— 2)(123’ 3)(p—4)(p— 5)€6+

In light of (9.11), to verify (9.10) it suffices to note that each “post-quadratic”

term above,
p(p-1)(p—-2)(p—3)---(p—(2k-1)) 2k

(Qk)! ’
is nonnegative. This follows from 1 < p <2: the numerator has two positive
factors and an even number of negative factors. [l
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To deduce Theorem 9.17 from Theorem 9.18 we again just need to flip the
norms across 2 using the fact that T, is self-adjoint. This is accomplished
by taking Q={-1,1}, 1 =719, ¢ =2, T = T\/pT, and C =1 in the following

proposition (and noting that 1/y/p’'—1=+/p—1):

Proposition 9.19. Let T be a self-adjoint operator on L2(Q,n), let 1<p, q <
oo, and let p', q' be their conjugate Holder indices. Assume ITfllq =Clfllp for
all f. Then |Tglpy <Cligllq for all g.

Proof. This follows from

ITgllp = sup (f,Tg)= sup (Tf,g)< sup ITflqllgly =Clgly,
I£l,=1 1fl,=1 I£lp=1
where the first equality is the sharpness of Hélder’s inequality, the second
equality holds because T is self-adjoint, the subsequent inequality is Holder’s,
and the final inequality uses the hypothesis [|Tf 4 <CIf|p. O

At this point we have established that if ¥ is a uniform +1 bit, then it
is (2,q9,1/y/q — 1)-hypercontractive and (p,2, /p — 1)-hypercontractive. In the
next section we will give a very simple induction which transforms these
facts into the full (2, ¢)- and (p,2)-Hypercontractivity Theorems stated at the
beginning of the chapter.

9.4. Two-function hypercontractivity and induction
At this point we have established that if f : {-1,1} — R then for any p <2 <g,

IT itz = 1Flps 1Ty m=iflg < 1Flz.

We would like to extend these facts to the case of general f : {-1,1}" — R;
i.e., establish the (p,2)- and (2, q)-Hypercontractivity Theorems stated at the
beginning of the chapter. A natural approach is induction.

In analysis of Boolean functions, there are two methods for proving state-
ments about [ : {—1,1}" — R by induction on n. One method, which might be
called “induction by derivatives”, uses the decomposition f(x) = x,D,f(x) +
E, f(x). We saw this approach in our inductive proof of the Bonami Lemma.
The other method, which might be called “induction by restrictions”, goes via
the subfunctions f.; obtained by restricting the nth coordinate of f to +1. We
saw this approach in our proof of the OSSS Inequality in Chapter 8.6. In both
methods we reduce inductively from one function f to two functions: either
D,f and E,f, or f_1 and f,1. Because of this, when trying to prove a fact
by induction on n it’s often helpful to try proving a generalized fact about
two functions. Our proof of the OSSS Inequality gives a good example of this
technique.
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So to facilitate induction, let’s find a two-function version of the hypercon-
tractivity statements we’ve proven so far. Perhaps the most natural statement
we’ve seen is the noise-stability rephrasing of the (4/3,2)-Hypercontractivity
Theorem, namely Stabs[f1=< |f ”421/3' At least in the case n =1, our work in
the previous section (Theorem 9.18) generalizes this to Stab,_1[f1=<|f II?, for
l1<p<2 le,

Stabylf1= E  [f@fI=<IfIi,,

>

p-correlated
for 0 < p = 1. Looking at this, you might naturally guess a (correct) general-
ization for two functions f,g:{-—1,1}" — R, namely
E [F@)gWI<fll1+plglisp- (9.12)

(x,3)
p-correlated

We have a nice interpretation of this inequality when f,g : {—1,1}* — {0,1}
are indicators of subsets A,B < {—1,1}" as in Corollary 9.8; it gives an upper
bound on the probability of going from A to B in one step on the p-stable
hypercube graph. This bound is sharp when A and B have the same volume,
but for A and B of different sizes you might imagine it’s helpful to measure f
and g by different norms in (9.12). To see what we can expect, let’s break up
the p-correlation in (9.12) into two parts; say, write

p=1rs, 0O<r,s<1,
and use

L f@eWI=EIT;f T sgl
\/E-co;*related

Then Cauchy—Schwarz implies
E) [f(®)gWI=EIT f-T 581 < IT 7 120IT z58ll2 < I f l14r11811+s,

(x,y
p-correlated

(9.13)
where the last step used (p,2)-hypercontractivity — which we have so far
only proven in the case n =1 (Theorem 9.18). The inequality (9.13), restated
below, is precisely the desired two-function version of the (2,9)- and (p,2)-
Hypercontractive Theorems.

(Weak) Two-Function Hypercontractivity Theorem. Let f,g:{-1,1}" —
R,let0<r,s<1, and assume 0<p <+/rs<1. Then
(E) [fF@)gWI<Ifll1+r18l1+s-

>

p-correlated

We call this the “Weak” Two-Function Hypercontractivity Theorem be-
cause the hypothesis r,s < 1 is not actually necessary; see Chapter 10.1. As
mentioned, we have so far established this theorem in the case n = 1. However,
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the beauty of hypercontractivity in this form is that it extends to general n
by an almost trivial induction. The form of the induction is “induction by
restrictions”. (It’s also possible — but a little trickier — to extend the (2, q)-
Hypercontractivity Theorem from n = 1 to general n via “induction by deriva-
tives”; see Exercise 9.16.) For future use, we will write the induction in more
general notation.

Two-Function Hypercontractivity Induction Theorem. Let 0 <p <1
and assume that

(33) [F@)gWI=Iflplglq

>

p-correlated

holds for every f,g € L2(Q,n). Then the inequality also holds for every f,g €
LZ(Qn’T[@n).

Proof. The proof is by induction on n, with the n = 1 case holding by assump-
tion. For n > 1, let f, g € L%(Q",n®") and let (x,y) denote a p-correlated pair
under 7®”%. We’ll use the notation x = (x’,x,) where x' = (x1,...,x,-1), and
similar notation for y. Note that (x’,y') and (x,,y,) are both p-correlated
pairs (of length n—1 and 1, respectively). We’ll also write f, = fin—1]x, for the
restriction of f in which the last coordinate is fixed to value x,, and similarly
for g. Now
E [fx)gl= E E [fx,(xNgy )= E [lfs,lplgy, lq]
(x,3) X, ¥n) (6,5 Xn>Yn)
by induction. If we write F € LZ(Q,n) for the function x, — |/ f,|l, and simi-
larly write G(y,) = llgy, 4, then we may continue the above as
E )[llfxn Ipllgy, ”q]:( E )[F(xn)G(yn)]s 1Fpx, I1Gllq,y,»

Xn,¥n XnYn

where we used the base case of the induction. Finally,
IFlp.x, = EIFGe)IP1"? = Ell fi, 15177 = (EE s, &P = 1£1

by definition, and similarly for |G |l4,y, . Thus we have established E[f(x)g(y)] <
If1l,lgllg, completing the induction. O

Remark 9.20. More generally, if we assume the inequality holds over each
of (Q1,71),...,(Qy,,7y,), then it also holds over (1 x --- x Q,, 71 ®--- ® 7,); the
only change needed to the proof is notational.

At this point, we have fully established the Weak Two-Function Hyper-
contractivity Theorem. By taking g = f and r = s = p in the theorem we
obtain the full (p,2)-Hypercontractivity Theorem stated at the beginning of
the chapter. Finally, by applying Proposition 9.19 we also obtain the (2, q)-
Hypercontractivity Theorem for all f: {—1,1}" — R.
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9.5. Applications of hypercontractivity

With the (2, q)- and (p,2)-Hypercontractivity Theorems in hand, let’s revisit
some applications we saw in Sections 9.1 and 9.2. We begin by deducing a
generalization of the Bonami Lemma:

Theorem 9.21. Let f : {-1,1}" — R have degree at most k. Then |flq <
k
Va-1lfllzforany g =2.

Proof. We have

IF0G =Ty, T jamif I <IT o f 13
using the (2,q)-Hypercontractivity Theorem. (Here we are extending the
definition of T, to p > 1 via T,f =% ; o/ f~/; see also Remark 8.29.) The result
now follows since

k k
IT —FI12=Y (¢g-1YW/I[fl<(g-1"Y W/[fl=(g-D*IfI2. O
va=if Iz JZO ZO 5

J

Using a trick similar to the one in our proof of the (4/3,2)-Hypercontractivity
Theorem you can use this to deduce ||f|le < (1/v/p — 1)k I£1, when f has de-
gree k for any 1 < p <2; see Exercise 9.14. However, a different trick yields a
strictly better result, including a finite bound for p = 1:

Theorem 9.22. Let f : {—1,1}" — R have degree at most k. Then ||f |2 < ek £ 11
2
More generally, for 1 < p <2 it holds that ||f ||z < (elTl)k 171 p.

Proof. We prove the statement about the 1-norm, leaving the case of general

1< p <2 to Exercise 9.15. For ¢ >0, let 0 <0 < 1 be the solution of% = % + %
1 e

(namely, 6 = 517). Applying the general version of Hélder’s inequality and
then Theorem 9.21, we get

_ k(1-0) _
Iflle < IFIE21F19 < Vive IF1=2nr8.

Dividing by | f II%‘H (which we may assume is nonzero) and then raising the
result to the power of 1/0 yields

1-0\k 1, 1\k
Iz < (L +0)F ) 1flx = A+ 2] Il
The result follows by taking the limit as € — 0. ([

In the linear case of £ = 1, Theorems 9.21 and 9.22 taken together show
thatcp|Xiaxilla <1 X;a;xilp, <CpllX;a;x;|2 for some constants 0 < c, <C,,
depending only on p €[1,00). This fact is known as Khintchine’s Inequality.

Theorem 9.21 can be used to get a strong concentration bound for degree-%
Boolean functions. Chernoff tells us that the probability a linear form } a;x;
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exceeds ¢ standard deviations decays like exp(—©(¢2)). The following theorem
generalizes this to degree-k forms, with decay exp(—0O(t2%)):

Theorem 9.23. Let f : {—1,1}" — R have degree at most k. Then for any
k
t=+v2e we have

k2
Pr L [F@) = 01 ll) < exp - 62).

Proof. We may assume | f|lg = 1 without loss of generality. Let ¢ =2 be a
parameter to be chosen later. By Markov’s inequality,

E[lf(x)I9]

Pr[|f(x) = ¢t]=Pr[|f(x)? =] < -

By Theorem 9.21 we have

E[lf®)9]= (/g—1 ) IFIZ = (g - )*27 < g#Da,

Thus Pr[|f(x)| = ¢] < (¢*’2/t)?. It’s not hard to see that the ¢ that minimizes
this expression should be just slightly less than ¢¥*. Specifically, by choosing
g =t¥*/e = 2 we get

Pri|f(x)] = t] < exp(—(k/2)q) = exp (—z’ietz/k)

as claimed. O

We can use Theorem 9.22 to get a “one-sided” analogue of Theorem 9.7,
showing that a low-degree function exceeds its mean with noticeable proba-
bility:

Theorem 9.24. Let f : {—1,1}" — R be a nonconstant function of degree at
most k. Then

1.2k
x~{l—)£1}”[f(x)>E[f]] =ge ",

Proof. We may assume E[f] =0 without loss of generality. We then have

21£ 11 = 1 (BIf - 1pwso] —EIf - (1 - Lipy»o)]) = EIf - Lipyso)];

hence,
HIFIE =EIf - Lipasol* <EIFP1-El1f 0] < e If113 - Prif(x)> 0]

using Cauchy—Schwarz and Theorem 9.22. The result follows. [l

Next we turn to noise stability. Using the (p,2)-Hypercontractivity Theo-
rem we can immediately deduce the following generalization of Corollary 9.8:

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.



264 9. Basics of hypercontractivity

Small-Set Expansion Theorem. Let A < {-1,1}" have volume a; i.e., let
1a:{-1,1}* —{0,1} satisfy E[1al=a. Then forany 0<p <1,

2
Stab,[14]= Pr [xcA,yeAl=sa™r.
x~{-1,1}"
y~N,(x)

Equivalently (for a >0),

1-p
Pr [yeAl=sal+w.
x~A

y~N,(x)

In other words, the §-noisy hypercube is a small-set expander for any 6 > 0:
the probability that one step from a random x ~ A stays inside A is at most
a®1-9)_T¢’s also possible to derive a “two-set” generalization of this fact using
the Two-Function Hypercontractivity Theorem; we defer the discussion to
Chapter 10.1 since the most general result requires the non-weak form of the
theorem. We can also obtain the generalization of Corollary 9.12:

Corollary 9.25. Let f :{-1,1}* — {-1,1}. Then for any 0 < p <1 we have
2
Infgp)[f] < Inf;[f] for all i.

Finally, from the Small-Set Expansion Theorem we see that indicators
of small-volume sets are not very noise-stable and hence can’t have much
of their Fourier weight at low levels. Indeed, using hypercontractivity we
can deduce the Level-1 Inequality from Chapter 5.4 and also generalize it to
higher degrees.

Level-%2 Inequalities. Let [ : {—1,1}" — {0,1} have mean E[f] = a and let
ke IN* be at most 2In(1/a). Then

W=[f1 < (2In(1/a))* a2,

Proof. By the Small-Set Expansion Theorem,
WSk[f] < p_kStabp[f] < p—kaZ/(1+p) < p—ka2(1—P)
for any 0 < p < 1. Basic calculus shows the right-hand side is minimized when

o= —21n€e1/a) < 1; substituting this into p_k a21-p yields the claim. |

For the case k =1, a slightly different argument gives the sharp Level-1
Inequality W1[f] < 2a21In(1/a); see Exercise 9.18.

9.6. Highlight: The Kahn-Kalai-Linial Theorem

Recalling the social choice setting of Chapter 2.1, consider a 2-candidate, n-
voter election using a monotone voting rule f : {-1,1}" — {—1,1}. We assume
the impartial culture assumption (that the votes are independent and uni-
formly random), but with a twist: one of the candidates, say b € {—1, 1}, is able

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.



9.6. Highlight: The Kahn—Kalai—Linial Theorem 265

to secretly bribe % voters, fixing their votes to b. (Since f is monotone, this is
always the optimal way for the candidate to fix the bribed votes.) How much
can this influence the outcome of the election? This question was posed by
Ben-Or and Linial in a 1985 work [BL85, BL90]; more precisely, they were
interested in designing (unbiased) voting rules f that minimize the effect of
any bribed %&-coalition.

Let’s first consider £ = 1. If voter i is bribed to vote for candidate b
(but all other votes remain uniformly random), this changes the bias of f by
b ]? (i) = bInf;[f]. Here we used the assumption that f is monotone (i.e., Propo-
sition 2.21). This led Ben-Or and Linial to the question of which unbiased
f:{-1,1}" — {—1,1} has the least possible maximum influence:

Definition 9.26. Let f :{—1,1}* — R. The maximum influence of f is
MaxInflf]=max{Inf;[f]:i € [n]}.

Ben-Or and Linial constructed the (nearly) unbiased Tribes, : {-1,1}" —
{—1,1} function (from Chapter 4.2) and noted that MaxInf[Tribes, ] = O(lo%).

They further conjectured every unbiased function f has MaxInf[f] = Q(lo%).
This conjecture was famously proved by Kahn, Kalai, and Linial [KKLS88]:

Kahn-Kalai-Linial (KKL) Theorem. For any f :{—1,1}" — {-1,1},
logn)

MaxInflf] > Var{f]- Q(

Notice that the theorem says something sensible even for very biased
functions f, i.e., those with low variance. The variance of f is indeed the right
“scaling factor” since

%Var[f] < MaxInflf] < Var[f]

holds trivially, by the Poincaré Inequality and Exercise 2.8.

Before proving the KKL Theorem, let’s see an additional consequence for
Ben-Or and Linial’s problem.

Proposition 9.27. Let f :{—1,1}" — {—1,1} be monotone and assume E[f] =
—.99. Then there exists a subset J <[n] with |J| < O(n/logn) that if “bribed to
vote 1”7 causes the outcome to be 1 almost surely; i.e.,

Elf5,, 1))=.99. (9.14)

.....

.....

Proof. By symmetry it suffices to prove the result regarding bribery by can-
didate +1. The candidate executes the following strategy: First, bribe the
voter i; with the largest influence on fy = f; then bribe the voter iy with
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the largest influence on f; = f%1~D; then bribe the voter i3 with the largest
influence on fs = f#12~1; ete. For each t € N we have

Elf;+1] = E[f,] + MaxInf[f,].

If after ¢ bribes the candidate has not yet achieved (9.14) we have —.99 <
Elf:] <.99; thus Var[f;] = Q(1) and the KKL Theorem implies MaxInf]f;] =
Q(lo%). Thus the candidate will achieve a bias of at least .99 after bribing at

most (.99 — (—.99))/(2(10%) = 0(n/logn) voters. O

Thus in any monotone election scheme, there is always a candidate b €
{—1,1} and a o(1)-fraction of the voters that b can bribe such that the election
becomes 99%-biased in b’s favor. And if the election scheme was not terribly
biased to begin with, then both candidates have this ability. For a more
precise version of this result, see Exercise 9.27; for a nonmonotone version,
see Exercise 9.28. Note also that although the Tribes, function is essentially
optimal for standing up to a single bribed voter, it is quite bad at standing
up to bribed coalitions: by bribing just a single tribe (DNF term) — about
logn voters — the outcome can be completely forced to True. Nevertheless,
Proposition 9.27 is close to sharp: Ajtai and Linial [AL93] constructed an
unbiased monotone function f :{-1,1}* — {—1,1} such that bribing any set of
at most en/log? n voters changes the expectation by at most O(e).

The remainder of this section is devoted to the proof of the KKL The-
orem and some variants. As mentioned earlier, the proof quickly follows
from summing Corollary 9.12 over all coordinates; but let’s give a more
leisurely description. We’ll focus on the main case of interest: showing that

MaxInf[f] = Q(lo%) when f is unbiased (i.e., Var[f] = 1). If f’s total influ-

ence is at least, say, .1logn, then even the average influence is Q( 105”

may as well assume I[f]<.1logn.

). So we

This leads us to the problem of characterizing (unbiased) functions with
small total influence. (This is the same issue that arose at the end of Chap-
ter 8.4 when studying sharp thresholds.) It’s helpful to think about the case
that the total influence is very small — say I[f]< K where K =10 or K = 100,
though we eventually want to handle K = .1logn. Let’s think of f as the indi-
cator of a volume-1/2 set A c{-1,1}", so %f] is the fraction of Hamming cube
edges on the boundary of A. The edge-isoperimetric inequality (or Poincaré
Inequality) tells us that I[f]=1: at least a % fraction of the cube’s edges must
be on A’s boundary, with dictators and negated-dictators being the minimiz-
ers. Now what can we say if I[f] < K i.e., A’s boundary has only K times
more edges than the minimum? Must f be “somewhat similar” to a dictator
or negated-dictator? Kahn, Kalai, and Linial showed that the answer is yes:
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f must have a coordinate with influence at least 279%). This should be con-
sidered very large (and dictator-like), since a priori all of the influences could
have been equal to %{

KKL Edge-Isoperimetric Theorem. Let f : {—1,1}* — {-1,1} be noncon-
stant and let I[f1=1[f1/Varlf1= 1 (which is just I[f]if f is unbiased). Then
9 ).g971f1
MaxInf[f]> (ﬁ ﬂz) 911,
This theorem is sharp for T[f 1=1 (cf. Exercises 1.19, 5.35), and it’s non-

trivial (in the unbiased case) for I[f] as large as ®(logn). This last fact lets us
complete the proof of the KKL Theorem as originally stated:

Proof of the KKL Theorem from the Edge-Isoperimetric version.
We may assume f is nonconstant. If i[f 1=1[f)/Var[f] = .1logn, then we
are done: the total influence is at least .1Var[f]-logn and hence MaxInflf] =
.1Var[f]- logn Otherwise, the KKL Edge-Isoperimetric Theorem implies

n

MaxInflf]= Q (ﬁ) -9~ Hoen = O(n 189 = O(n~317) » Var[f]-Q (li) :
O

(You are asked to be careful about the constant factors in Exercise 9.30.)

We now turn to proving the KKL Edge-Isoperimetric Theorem. The high-
level idea is to look at the contrapositive: supposing all of f’s influences are
small, we want to show its total influence must be large. The assumption here
is that each derivative D; f is a {—1,0, 1}-valued function which is nonzero only
on a “small” set. Hence “small-set expansion” implies that each derivative has
“unusually large” noise sensitivity. (We are really just repeating Corollary 9.12
in words here.) In turn this means that for each i € [n], the Fourier weight
of f on coefficients containing i must be quite “high up”. Since this holds for
all i we deduce that all of f’s Fourier weight must be quite “high up” — hence
f must have “large” total influence. We now make this story formal:

Proof of the KKL Edge-Isoperimetric Theorem. We treat only the case
that f is unbiased, leaving the general case to Exercise 9.29 (see also the ver-
sion for product space domains in Chapter 10.3). The theorem is an immediate
consequence of the following chain of inequalities:

b $ d
3-311 2 3Stabyslf] € 199171 € Y Ink[f1P? ' MaxInflf1¥2-11f)

=1

The key inequality is (c), which comes from summing Corollary 9.12 over all
coordinates i € [n]. Inequality (d) is immediate from Inf;[f1*? < MaxInf[f]2.
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Inf;[f]. Inequality (b) is trivial from the Fourier formulas (recall Fact 2.53):

1(1/3)[f] — Z |S|(1/3)|S|—lf(s)2 >3 Z (1/3)|S|f(S)2 = 3Staby3[f]
1S|=1 |S1=1

(the last equality using f(@) = 0). Finally, inequality (a) is quickly proved
using the spectral sample: for S ~§; we have

3Stabys[f1=3 Y (1/3)5'7(S)? =3E[37181]> 3.3 FlISI = 3.37171 " (9.15)
Scln]

the inequality following from convexity of s — 375. O

We end this chapter by deriving an even stronger version of the KKL Edge-
Isoperimetric Theorem, and deducing Friedgut’s Junta Theorem (from the end
of Chapter 3.1) as a consequence. The KKL Edge-Isoperimetric Theorem tells
us that if f is unbiased and I[f] < K then f must look somewhat like a 1-junta,
in the sense of having a coordinate with influence at least 27°%). Friedgut’s
Junta Theorem shows that in fact / must essentially be a 2°®) junta. To
obtain this conclusion, you really just have to sum Corollary 9.12 only over
the coordinates which have small influence on f. It’s also possible to get
even stronger conclusions if f is known to have particularly good low-degree
Fourier concentration. In aid of this, we’ll start by proving the following
somewhat technical-looking result:

Theorem 9.28. Let f :{—1,1}" — {-1,1}. Given 0<e<1and k =0, define

62 —k

T= I[f]29 ,

J={jelnl:Inf;[f1=7},  sol|J|<(fI/e®)9".

Then f’s Fourier spectrum is e-concentrated on
F={8:ScJ}u{S:|S|>Fk}.

In particular, suppose f’s Fourier spectrum is also e-concentrated on degree up
to k. Then [’s Fourier spectrum is 2e-concentrated on

F'={S:8cd,|S|<k},

and [ is e-close to a |J|-junta b : {-1,1}Y — {-1,1}.

Proof. Summing Corollary 9.12 just over i ¢ J we obtain

Y Inf"[f1< Y Inf;[f1%? < max{Infi[1%}- ) Inf;[f1< 772 I[f1< 37",
igd igd igd igd
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where the last two inequalities used the definitions of JJ and 7, respectively.
On the other hand,

1/3 S|-17 T -S| 7
Y Inf 1= Y B)IIAS)? =Y 1S nd| -3V SIF(S)?
igd i¢J S3i S
> Y ISnd|-378IF(8)2=37F Y F(S)%
S¢F S¢F
Here the last inequality used that S ¢ % implies |[SndJ| =1 and 317151 = 3%,
Combining these two deductions yields Y ggg (S )2 <e, as claimed.

As for the second part of the theorem, when f’s Fourier spectrum is 2¢-
concentrated on &’ it follows from Proposition 3.31 that f is 2¢-close to the
Boolean-valued |J|-junta sgn(f<?). From Exercise 3.34 we may deduce that f
is in fact e-close to some A : {-1,1}Y — {-1,1}. O

Remark 9.29. As you are asked to show in Exercise 9.31, by using Corol-
lary 9.25 in place of Corollary 9.12, we can achieve junta size (I[f12*/el*).
C(n)* in Theorem 9.28 for any 7 > 0, where C(n) = (2/n+ 1)2.

In Theorem 9.28 we may always take £ =I[f1/e, by the “Markov argument”
Proposition 3.2. Thus we obtain as a corollary:

Friedgut’s Junta Theorem. Let f:{-1,1}" —{-1,1} and let 0<e < 1. Then
[ is e-close to an exp(O(I[fVe))-junta. Indeed, there is a set J < [n] with
|J| < exp(O[f1e)) such that f’s Fourier spectrum is 2e-concentrated on {S €
J 1S = I[f Vel

As mentioned, we can obtain stronger results for functions f that are e-
concentrated up to degree much less than I[f]/e. Width-w DNFs, for example,
are e-concentrated on degree up to O(wlog(1/¢)) (by Theorem 4.22). Thus:

Corollary 9.30. Any width-w DNF is e-close to a (1/¢)°™)-junta.

Uniformly noise-stable functions do even better. From Peres’s Theorem we
know that linear threshold functions are e-concentrated up to degree O(1/e2).
Thus Theorem 9.28 and Remark 9.29 imply:

Corollary 9.31. Let f :{-1,1}"* — {-1,1} be a linear threshold function and
let 0 <e,n<1/2. Then f is e-close to a junta on I[f1?*7 -(1/n)0(1/€2) coordinates.

Assuming € is a small universal constant we can take 1 = 1/log(O(I[f]1)) and
deduce that every LTF is e-close to a junta on I[£1?- polylog(I[f]) coordinates.
This is essentially best possible since I[Maj, ] = ©(y/n), but Maj,, is not even
.1-close to any o(n)-junta. By virtue of Theorem 5.37 on the uniform noise
stability of PTF's, we can also get this conclusion for any constant-degree PTF.
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One more interesting fact we may derive is that every Boolean function
has a Fourier coefficient that is at least inverse-exponential in the square of
its total influence:

Corollary 9.32. Assume f : {—1,1}* — {—1,1} satisfies Var[f]= 1/2. Then
there exists S < [n] with 0 < |S| < O[f]) such that f(S)? = exp(—~O[f1?)).

Proof. Taking ¢ = 1/8 in Friedgut’s Junta Theorem we get a set of coordinates
J with |J| < exp(O[f])) such that f has Fourier weight at least 1 —2¢ =
3/4 on F ={ScdJ:|S|<8I[f]}. Since f(¥)? =1-Var[f] < 1/2 we conclude
that f has Fourier weight at least 1/4 on &' = # \ {@}. But |F'| < |J|31/]1 =
exp(O(I[£1?)), so the result follows by the Pigeonhole Principle. (Here we used
that (1/4)exp(—O(I[f1%)) = exp(~OI[f1?)) because I[f]= Var[f] = %.) O

Remark 9.33. Of course, if Var[f] < 1/2, then f has a large empty Fourier
coefficient: f(@)? = 1/2. For a more refined version of Corollary 9.32, see
Exercise 9.32.

It is an open question whether Corollary 9.32 can be improved to give a
Fourier coefficient satisfying f(S )32 > exp(—OI[f1)) (but see Exercise 9.33).

9.7. Exercises and notes

9.1 For every 1 < b < B show that there is a b-reasonable random variable X
such that 1+ X is not B-reasonable.

9.2 For £ =1, improve the 9 in the Bonami Lemma to 3. More precisely,
suppose [ : {—1,1}" — R has degree at most 1 and that x1,...,x, are
independent 3-reasonable random variables satisfying E[x;] = E[x?] =0.
(For example, the x;’s may be uniform +1 bits.) Show that f(x) is also
3-reasonable. (Hint: By direct computation, or by running through the
Bonami Lemma proof with 2 = 1 more carefully.)

9.3 Let £ be a positive multiple of 3 and let n = 2% be an integer. Define
f:{-1,1}" - R by
f(x)= Z x5,

Scln]
IS|=Fk

(a) Show that

n
(k/3,k/3,k/3,k/3,k/3,k/3,n—2k)
2
()
where the numerator of the fraction is a multinomial coefficient —
specifically, the number of ways of choosing six disjoint size-k/3 sub-

sets of [n]. (Hint: Given such size-%/3 subsets, consider quadruples of
size-k subsets that hit each size-k/3 subset twice.)

E[f*]=> E[/?1?,
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(b) Using Stirling’s Formula, show that

li (k/3,k/3,k/3,k/g,k/3,k/3,n—2k)
e )

=0(k~29%).

Deduce the following lower bound for the Bonami Lemma: |f]|4 =
Q(Y2)- V3 Ifll. (In fact, Iflls = O~V V3" Ifll2 and such an
upper bound holds for all f homogeneous of degree k; see Exercise
and 9.38(f).)

9.4 Prove Corollary 9.6.

95 Let 0<d < Tloo and let £, ¢ be real numbers satisfying [/ — 1| > 39V/5
and |f| = 1. Show that |f — ¢|% = 1696. (This is a loose estimate; stronger
ones are possible.)

9.6 Theorem 9.21 shows that the (2,4)-Hypercontractivity Theorem implies
the Bonami Lemma. In this exercise you will show the reverse implication.

(a) Let f:{-1,1}" — R. For a fixed 6 € (0,1), use the Bonami Lemma to
show that

ITq_gyyaflla< ;;o(l =1 Fllp = 2 o

(b) For g:{-1,1}" R and d € N, let g®? : {-1,1}%" — IR be the function
defined by g®?(xD,..., D) = g(xV)g(x®?)--- g(x'?) (where each x? €
{—1,1}"). Show that IITp(gEBd)IIp = ||Tpg||g holds for every p e R* and
p €[—1,1]. Note the special case p =1.

(c) Deduce from parts (a) and (b) that in fact |IT(1_5)/\/§f||4 <|f . (Hint:
Apply part (a) to £ for larger and larger d.)

(d) Deduce that in fact ||T,, V3 flla<|fll2;i.e., the (2,4)-Hypercontractivity
Theorem follows from the Bonami Lemma. (Hint: Take the limit as
6—0%)

9.7 Suppose we wish to show that [T f llq < [Ifll, for all f :{—1,1}" — R. Show

that it suffices to show this for all nonnegative f. (Hint: Exercise 2.34.)

9.8 Fix k € N. The goal of this exercise is to show that “projection to degree &

is a bounded operator in all L? norms, p >1”. Let f: {—1,1}" — R.

(a) Let g = 2. Show that ||f5k lg <+vaq- lk I£1lg. (Hint: Use Theorem 9.21
to show the stronger statement IIfSk lg=va- lk £ 2.

(b) Let 1< g <2. Show that |£=*|, < (1/y/g—D*IIfll,. (Hint: Either
give a similar direct proof using the (p,2)-Hypercontractivity Theo-
rem, or explain how this follows from part () using the dual norm
Proposition 9.19.)

9.9 Let X be (p, g, p)-hypercontractive.
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(a) Show that c¢X is (p, g, p)-hypercontractive for any c € R.

1X||
(b) Show that p < ||X||Z'

9.10 Let X be (p,q, p)-hypercontractive. (For simplicity you may want to as-
sume X is a discrete random variable.)
(a) Show that E[X] must be 0. (Hint: Taylor expand |1+ peX]|, to one
term around € = 0; note that p < 1 by definition.)

(b) Show that p < ‘/%' (Hint: Taylor expand |1+ peX||, to two terms
around € =0.)

9.11 (a) Suppose E[X] =0. Show that X is (q,q,0)-hypercontractive for all

g = 1. (Hint: Use monotonicity of norms to reduce to the case ¢ =1.)

(b) Show further that X is (q, g, p)-hypercontractive for all 0 < p < 1.
(Hint: Write (a + pX) = (1 - p)a + p(a + X) and employ the triangle
inequality for || - [l4.)

(c) Show that if X is (p,q, p)-hypercontractive, then it is also (p,q, p’)-
hypercontractive for all 0 < p’ < p. (Hint: Use the previous exercise
along with Exercise 9.10(a).)

9.12 Let X be a (nonconstant) (2,4, p)-hypercontractive random variable. The
goal of this exercise is to show the following anticoncentration result: For
allfeRand 0<t<1,

Pri|X - 0| > t|X 2] = (1-¢*)%p".

(a) Reduce to the case | X | = 1.
(b) Letting Y = (X —0)2, show that E[Y]=1+62 and E[Y2] < (p~2 +6%)%.
(¢) Using the Paley—Zygmund inequality, show that

p2(1 - 2) + p202 2

Pr(|X -0|>t]=
r(| |>1] 15 207

(d) Show that the right-hand side above is minimized for 6 = 0, thereby
completing the proof.

9.13 Let m € Nt and let £ : {—1,1}" — [m] be “unbiased”, meaning Pr[f(x) =
i]l= % for all i € [m]. Let 0 <p <1 and let (x,y) be a p-correlated pair.
Show that Pr[f(x) = f(y)] < (1/m)1=P/1+P)  (More generally, you might
show that this is an upper bound on Stab,[f] for all f :{-1,1}" — A,
with E[f]= (%,...,%); see Exercise 8.33.)

9.14 (a) Let f:{-1,1}" — R have deg(f) < k. Provethat ||f|lo <(1/\/p — 1)* 171,

for any 1 < p < 2 using the Holder inequality strategy from our proof of

the (4/3,2)-Hypercontractivity Theorem, together with Theorem 9.21.

(b) Verify that exp(}% -1 < l/m for all 1 < p < 2; i.e., the trickier
Theorem 9.22 strictly improves on the bound from part (a).
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9.15 Prove Theorem 9.22 in full generality. (Hint: Let 6 be the solution of

% = % + %. You will need to show that % = (% - 1)% +(1—1) - %).)

9.16 As mentioned, it’s possible to deduce the (2,q)-Hypercontractivity The-
orem from the n = 1 case using induction by derivatives. From this
one can also obtain the (p,2)-Hypercontractivity Theorem via Proposi-
tion 9.19. Employing the notation x = (x',x,), T = Tl/\/qT, d=D,f(x'),
and e = E, f(x'), fill in details and justifications for the following proof
sketch:

2 _ 2lq 2 2\q/212/q
ITy, /5= 17 = E|E[/Te+ (U\/q =D, TdI?] | < E[(Te)? + (Td)*)"?]
= [(Te)*+(Td)?(l g2 < (Te)*ll g2+ (Td)?ll g2 = I Tel2+ITd|2 < llell5+Idl5 = I £

9.17 Deduce the p < 2 < ¢ cases of the Hypercontractivity Theorem from the
(2,q)- and (p,2)-Hypercontractivity Theorems. (Hint: Use the semigroup
property of Ty, Exercise 2.32.)

9.18 Let f:{-1,1}" — {0,1} have E[f]=a.
(@) Show that Wl[f]< %(amﬂ’) —a?)forany0<p<1.
(b) Deduce the sharp Level-1 Inequality W[f] < 2a?In(1/a). (Hint: Take
the limit p — 0%.)
9.19 For f:{-1,1}" — {0,1} with E[f] = a, show that WSk[f] =o(a) (as a — 0)
provided & < .3731In(1/a).

9.20 Show that the KKL Theorem fails for functions f :{—1,1}" —[-1,1], even

under the assumption Var[f]= Q(1). (Hint: f(x)= trunc[_lyl](x”\;gx” ).)

9.21 (a) Show ¢ ={f : {-1,1}" — {=1,1} | I[f]1 = O(y/logn)} is learnable from
queries to any constant error € > 0 in time poly(n). (Hint: Theo-
rem 9.28.)
(b) Show ¥ = {monotone [ : {—1,1}" — {—1,1} | I[f]1 < O(y/logn)} is learn-
able from random examples to any constant error € > 0 in time poly(n).
(¢) Show that € = {monotone f : {-1,1}"* — {—1,1} | DTz (f) < poly(n)}
is learnable from random examples to any constant error € > 0 in
time poly(n). (Hint: the OS Inequality and Exercise 8.43.)

9.22 Deduce the following generalization of the (2, g)-Hypercontractivity The-
orem: Let f:{-1,1}" — R, ¢ = 2, and assume 0 < p < 1 satisfies p’1 <
1/v/q — 1 for some 0 <A <1. Then

ITofllg < ITpf 5 IF 15

(Hint: Show I T,f1I2 < Xs(p?SIF(S))1*-(£(S)*)* and use Holder.)
9.23 Let f:{-1,1}* —[-1,1],let 0 <e <1, and assume q =2 + 2¢. Show that

2,1
IT1-cfllg < IITﬂlTZEfIIq <(If1)™.
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9.24 Recall the Gaussian quadrant probability A,(u) defined in Exercise 5.32
by Ap(u) = Prlzy > t,2z9 > t], where 21,22 are standard Gaussians with
correlation E[z122] = p and ¢ is defined by ®(¢) = u. The goal of this
exercise is to show that for fixed 0 < p <1 we have the estimate

Ap(p) = B(uts) (9.16)

as ¢ — 0. In light of Exercise 5.32, this will show that the Small-Set

Expansion Theorem for the p-stable hypercube graph is essentially sharp

due to the example of Hamming balls of volume p.

(a) First let’s do an imprecise “heuristic” calculation. We have Pr[z{ >
t] = Pr[z; = t] = u by definition. Conditioned on a Gaussian being
at least ¢ it is unlikely to be much more than ¢, so let’s just pretend
that z; = ¢. Then the conditional distribution of zg is pt + /1 - p?y,
where y ~ N(0,1) is an independent Gaussian. Using the fEllCt that
®(u) ~ p(u)u as u — oo, deduce that Prize > |21 =t] = @)(uﬁ) and
“hence” (9.16) holds.

(b) Let’s now be rigorous. Recall that we are treating 0 < p <1 as fixed
and letting u — 0 (hence ¢ — 00). Let ¢,(z1,22) denote the joint pdf of
21,29 so that

Ap([,t)=f f Pp(z1,22)dz1dzs.
t t

Derive the following similar-looking integral:

oy exp ———) 9.17)

(1_p2)3/2 ( 2 t2
1+p 2

f f (22—pzl)(zl—pt)gbp(21,22)d21d22=
t t

and show that the right-hand side is @(,u%).
(¢) Show that

Prz; > 5 = " per)der =B,

-1
P

~ 2
and that this is asymptotically smaller than O(u1+).
(d) Deduce (9.16). (Hint: Try to arrange that the extraneous factors
(29— pz1), (21— pt) in (9.17) are both at least 1.)

9.25 Let f: {-1,1}" — {-1,1}, let J < [n], and write J =[n]\J. Define the
coalitional influence of J on f to be

fﬁf'J[f] = Pr [fj is not constant].
z~{-1,1)7
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Furthermore, for b € {—1, +1} define the coalitional influence toward b of J
on f to be

iTlfS[f] = Pr [fj. can be made b]-Pr[f =b]
z2~{-1,1}7

= Pr [fy.#-bl-Prlf=bl.
z~{-1,1}Y

For brevity, we'll sometimes write ITlfj[ f1rather than ITlfjl[ fl

(@) Show that for coalitions of size 1 we have Inf;[f]=Inf;[f] = 2Inf,;[f].
(b) Show that 0 < Inf;[f]<1.

(c) Show that Inf,[f]1=Inf,[f]1+Inf,[f].

(d) Show that if f is monotone, then

.....

(e) Show that Inf,[y(,1=1 for all J # .

(f) Supposing we write ¢ = |J|/\/n, show that ﬁﬁ'j [Maj,, ] = () - % +o(1)
and hence Inf;[Maj,] = 20() — 1+ o(1). Thus Inf;[Maj,] = o(1) if
|J| = o(y/n) and fvan[Majn] =1-0(1) if |J| = w(y/n). (Hint: Central
Limit Theorem.)

(¢) Show that max{Inf) "“[Tribes,]: [J| < logn} = 1/2 + ©()%2). On the

n
other hand, show that max{fﬁ/fsalse[Tribesn] I <k}<k -0(10%). De-
duce that for some positive constant ¢ we have max{Inf[Tribes,] :
|| < cn/logn} < .51. (Hint: Refer to Proposition 4.12.)

9.26 Show that the exponential dependence on I[f] in Friedgut’s Junta Theo-
rem is necessary. (Hint: Exercise 4.15.)

9.27 Let f:{-1,1}" — {—1,1} be a monotone function with Var[f]=6 > 0, and
let 0 <€ < 1/2 be given.
(a) Improve Proposition 9.27 as follows: Show that there exists J < [n]
with |J| < O(log ;5) - & such that Elf5,; ;1= 1-e. (Hint: How
many bribes are required to move f’s mean outside the interval [1—
2n,1-n1?)
(b) Show that there exists J < [n] with |J]| < O(log%)- 102,1 such that
mJ[ f1=1-¢. (Hint: Use Exercise 9.25(d) and take the union of two

influential sets.)
9.28 Let f:{-1,1}" — {-1,1}.
(a) Let f*:{-1,1}" — {—1,1} be the “monotonization” of f as defined in
Exercise 2.52. Show that Inf [f*] < Inf[f] for all J < [n] and b €
{—1,1}, and hence also Inf;[f*] < Inf;[f].
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(b) Let Var[f]1=6 >0 and let 0 < ¢ < 1/2 be given. Show that there
exists J S [n] with |J| < O(log%)- logn such that Inf;[f]=1-¢. (Hint:
Combine part (a) with Exercise 9.27(b).)

9.29 Establish the general-variance case of the KKL Edge-Isoperimetric Theo-
rem. (Hint: You'll need to replace (9.15) with
3 Y (3)SF(S)* = 3Var[f]. 3 W/ VVarlfl
IS|=1
Use the same convexity argument, but applied to the random variable S
that takes on each outcome @ # S <[n] with probability f(S )2/ Var[f].)
9.30 The goal of this exercise is to attain the best known constant factor in the
statement of the KKL Theorem.

(a) By using Corollary 9.25 in place of Corollary 9.12, obtain the follow-
ing generalization of the KKL Edge-Isoperimetric Theorem: For any
(nonconstant) f:{—1,1}* - {-1,1}and 0<d <1,

) i)

Mastnt/ 12 (4] ()" (4

where I[f] denotes I[f)/Var[f]. (Hint: Write p = 1z2.) Deduce that
for any constant C > e? we have
MaxInflf] = Q(C 1Y),
(b) More carefully, show that by taking 6 =

)

1 .
—_— n achi
oiifps We can achieve

1/3

~ 201f] ~
MaxInf[f]= exp(-2I[f])-e2- (ﬁ) -exp(~L1T[£1Y3).

1
(Hint: Establish (%) ? > exp(~2 - 62) for 0< 6 < 1/2.)

(¢) By distinguishing whether or not I[f]= %(lnn —+/logn), establish the
following form of the KKL Theorem: For any f:{-1,1}* — {-1,1},

1
MaxInfif]> 1 Var(f]- %(1 —0,(1)).

9.31 Establish the claim in Remark 9.29.

9.32 Show that if f: {—1,1} — {—1,1} is nonconstant, then there exists S S[n]
with 0 < |S| < O[fVVar[f]) such that 7(S)? = exp(—OI[f1%/Var[£12)).
(Hint: By mimicking Corollary 9.32’s proof you should be able to establish
the lower bound Q(Var[f])-exp(-OI[f1?/Var[f]?)). To show that this
quantity is also exp(—O(I[f1?/Var[f1?)), use Theorem 2.39.)

9.33 Let f :{-1,1}" — {-1,1} be a nonconstant monotone function. Improve
on Corollary 9.32 by showing that there exists S # @ satisfying f(S)? =
exp(—O([f ) Var[f])). (Hint: You can even get |S| < 1; use the KKL Edge-
Isoperimetric Theorem and Proposition 2.21.)

9.34 Let f:{~1,1}" — R. Prove that ||f||4 < sparsity(F)Y4||fls.
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9.35 Let g = 2r be a positive even integer, let p =1/\/q — 1, and let f1,...,f;:
{—1,1}* - R. Generalize the (2, g)-Hypercontractivity Theorem by show-
ing that

E [H(Tpfiﬂ < [1EtfA.
i=1 i=1

(Hint: Holder’s inequality.)

9.36 In this exercise you will give a simpler, stronger version of Theorem 9.17
under the assumption that g = 2r is a positive even integer.

(a) Using the idea of Proposition 9.16, show that if x is a uniformly
random =1 bit then x is (2,q, p)-hypercontractive if and only if p <
V-1

(b) Show the same statement for any random variable x satisfying E[x%] =
1 and

r
E[x?j_l] =0, E[x?j] <2r- l)j% for all integers 1<j<r.
2j

(¢c) Show that none of the even moment conditions in part () can be
relaxed.

9.37 Let g = 2r be a positive even integer and let f : {—1,1}" — IR be homoge-
neous of degree k = 1 (i.e., f = f=%). The goal of this problem is to improve
slightly on the generalized Bonami Lemma, Theorem 9.21.

(a) Show that

E[f?=Y F(S1)---F(Sy) < Y IFSDI--1F(Sl, (9.18)

where the sum is over all tuples S1,...,S}, satisfying S1A---AS, = @.

(b) Let G denote the complete g-partite graph over vertex sets Vi,...,V,,
each of cardinality k. Let .# denote the set of all perfect matchings
in G. Show that the right-hand side of (9.18) is equal to

1 ~ ~
—— Y f(TyM, 0 |f(Tg(M, ), (9.19)

(k12 Med 0:M—(n]

where T'j(M,¢) denotes U{l(e):e€ M,enV; # ¢}.
(c) Show that (9.19) is equal to

1 LA T Y . P .
ng‘— .1:1i22:1'"irkZ:l|f(Ul(M:l'15"-’l’rk))| "'|f(Uq(M,l]_,.-.,lrk))|,
(9.20)

where M is the set of ordered perfect matchings of G, and now
U;(M,i1,...,i,z) denotes U{i; : M(t)NV; # @}.
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(d) Show that for any M € .4 we have

n n n _ - _
Yo Y UM, v, i) - I F Ug (M iv, i)
i1:1i2:1 irk:1

n r
<[ ¥ Fj,....0x)?
J1seesJr=1
(Hint: Use Cauchy—Schwarz rk times.)
(e) Deduce that || 11§ < g7 - 141 - (k) IIf 13" and hence

|J%|1/q

VE!

9.38 The goal of this problem is to estimate |.#| from Exercise 9.37 so as to
give a concrete improvement on Theorem 9.21.
(a) Show that for ¢ =4, £ =2 we have |.#| = 60.
(b) Show that |.#| < (gk — 1!!. (Hint: Show that (qk — 1)!! is the number
of perfect matchings in the complete graph on gk vertices.) Deduce
Ifllg <v/a*Ifle.
(¢c) Show that |.#| < (2r—r_1)"k(rk)!2, and thereby deduce

k
Iflg=Cqr-va—-11lflz,

1/
where C, , = ( (rk)! ) q. (Hint: Suppose that the first ¢ edges of the

k\rprk
perfect matching have been chosen; show that there are (@)(rk —t)?
choices for the next edge. The worst case is if the vertices used up so
far are spread equally among the ¢ parts.)
(d) Give a simple proof that C, ; <1, thereby obtaining Theorem 9.21.
(e) Show that in fact Cy = ©(1)- k14129 (Hint: Stirling’s Formula.)
(f) Can you obtain the improved estimate

./%l/q
'\/% =0, 1)k V-T2

(Hint: First exactly count — then estimate — the number of perfect
matchings with exactly e;; edges between parts i and j. Then sum
your estimate over a range of the most likely values for e;;.)

Ifllg = 1/l

Notes. The history of the Hypercontractivity Theorem is complicated. Its
earliest roots are in the work of Paley [Pal32] from 1932; he showed that for
1 < p < oo there are constants 0 < ¢, < C, < oo such that ¢, [ISfl, < Ifll, <
C,lISfllp holds for any f : {~1,1}" — R. Here Sf = Z?Zl,/Z?zl(dtfﬂ is the
“square function” of f, and d;f = }_g.max(S)=¢ F(S) 1s is the martingale differ-
ence sequence for f defined in Exercise 8.17. The main task in Paley’s work
is to prove the statement when p is an even integer; other values of p follow
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by the Riesz(—Thorin) interpolation theorem. Using this result, Paley showed
the following hypercontractivity result: If £ : {—1,1}" — R is homogeneous of
degree 2, then c; Iflleg<Iflp= C;) Ifll2 for any p € R*. Some extensions of
Paley’s work are in [Wat64].

In 1968 Bonami [Bon68] stated the following variant of Theorem 9.21:
If f:{-1,1} — R is homogeneous of degree k, then for all ¢ = 2, ||fl, <
czv/q|fll2, where the constant c; may be taken to be 1 if g is an even integer.
She remarks that this theorem can be deduced from Paley’s result but with a
much worse (exponential) dependence on q. The proof she gives is combinato-
rial and actually only treats the case 2 =2 and g an even integer; it is similar
to Exercise 9.37.

Independently in 1969, Kiener [Kie69] published his Ph.D. thesis, which
extended Paley’s hypercontractivity result as follows: If f: {-1,1}" — R is
homogeneous of degree k, then c,4llfllo < Iflp < Cprlflz for any p € R*.
The proof is an induction on %, and again the bulk of the work is the case of
even integer p. Kiener also gave a long combinatorial proof showing that if
f :{-1,1}* - R is homogeneous of degree 2, then E[f*] < 51E[f?]?. (Exer-
cise 9.38(a) improves this 51 to 15.)

Also independently in 1969, Schreiber [Sch69] considered multilinear
polynomials f over a general orthonormal sequence x1,...,x, of centered real
(or complex) random variables. He showed that if f has degree at most £,
then for any even integer q = 4 it holds that [|f[l; < C|fll2, where C depends
only on %, g, and the g-norms of the x;’s. Again, the proof is very similar to
Exercise 9.37; Schreiber does not estimate his analogue of |.#| but merely
notes that it’s finite. Schreiber was interested mainly in the case that the x;’s
are Gaussian; indeed, his 1969 work [Sch69] is a generalization of his earlier
work [Sch67] specific to the Gaussian case.

In 1970, Bonami published her Ph.D. thesis [Bon70], which contains the
full Hypercontractivity Theorem as stated at the beginning of the chapter. Her
proof follows the standard template seen in essentially all proofs of hypercon-
tractivity: first an elementary proof for the case n =1 and then an induction
to extend to general n. She also gives the sharper combinatorial result appear-
ing in Exercises 9.37 and 9.38(c). (The stronger bound from Exercise 9.38(f)
is due to Janson [Jan97, Remark 5.20].) As in Corollary 9.6, Bonami notes
that her combinatorial proof can be extended to a general sequence of sym-
metric orthonormal random variables, at the expense of including factors of
lx;llq into the bound. She points out that this includes the Gaussian case
independently studied by Schreiber.

Bonami’s work was published in French, and it remained unknown to
most English-language mathematicians for about a decade. In the late 1960s
and early 1970s, researchers in quantum field theory developed the theory
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of hypercontractivity for the Gaussian analogue of T,,, namely, the Ornstein—
Uhlenbeck operator U,. This is now recognized as essentially being a special
case of hypercontractivity for bits, in light of the fact that % tends
to a Gaussian as n — oco by the CLT (see Chapter 11.1). We summarize
here some of the work in this setting. In 1966 Nelson [Nel66] showed that
||U1/\/qT1f||q < Cylflg for all ¢ = 2. Glimm [Gli68] gave the alternative result
that for each g = 2 there is a sufficiently small p, > 0 such that [|U,,_fllg < I 2.
Segal [Seg70] observed that hypercontractive results can be proved by induc-
tion on the dimension n. In 1973 Nelson [Nel73] gave the full Hypercon-
tractivity Theorem in the Gaussian setting: U \/mf lg < Ifllp for all
1< p < q <o0. He also proved the combinatorial Exercise 9.37. The equiva-
lence to the Two-Function Hypercontractivity Theorem is from the work of
Neveu [Nev'76].

In 1975 Gross [Gro75] introduced the notion of Log-Sobolev Inequalities
(see Exercise 10.23) and showed how to deduce hypercontractivity inequalities
from them. He established the Log-Sobolev Inequality for 1-bit functions, used
induction (citing Segal) to obtain it for n-bit functions, and then used the CLT
to transfer results to the Gaussian setting. (For some earlier results along
these lines, see the works of Federbush and Gross [Fed69, Gro72].) This gave
a new proof of Nelson’s result and also independently established Bonami’s
full Hypercontractivity Theorem. Also in 1975, Beckner [Bec75] published his
Ph.D. thesis, which proved a sharp form of the hypercontractive inequality for
purely complex p. (It is unfortunate that the influential paper of Kahn, Kalai,
and Linial [KKL88] miscredited the Hypercontractivity Theorem to Beckner.)
The case of general complex p was subsequently treated by Weissler [Wei79],
with the sharp result being obtained by Epperson [Epp89]. Weissler [Wei80]
also appears to have been the first to make the connection between this line
of work and Bonami’s thesis.

Independently of all this work, the (q,2)-Hypercontractivity Theorem was
reproved (without sharp constant) in the Banach spaces community by Rosen-
thal [Ros76] in 1975, using methods similar to those of Paley and Kiener. For
additional early references, see Miiller [Miil05, Chapter 1].

The term “hypercontractivity” was introduced in a work of Simon and
Hgegh-Krohn [SHK72]; Definition 9.13 of a hypercontractive random vari-
able is due to Krakowiak and Szulga [KS88]. The short inductive proof
of the Bonami Lemma may have appeared first in Mossel, O’'Donnell, and
Oleszkiewicz [MOO05a]. Theorems 9.22 and 9.24 appear in Janson [Jan97].
Theorem 9.23 dates back to Pisier and Zinn and to Borell [PZ78, Bor79].
As discussed further in the notes to Chapter 10, the Small-Set Expansion
Theorem originates in the work of Ahlswede and Gacs [AG76]. The Level-£
Inequalities appear in several places but can probably be fairly credited to
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Kahn, Kalai, and Linial [KKL88]. The optimal constants for Khintchine’s
Inequality were established by Haagerup [Haa82]; see also Nazarov and Pod-

korytov [NPOO]. They always occur either when ) ; a;x; is just \/lixl + \/igxz

or in the limiting Gaussian case of a; = \/iﬁ, n — oo.

Ben-Or and Linial’s work [BL85, BL90] was motivated both by game
theory and by the Byzantine Generals problem [LSP82] from distributed
computing; the content of Exercise 9.25 is theirs. In turn it motivated the
watershed paper by Kahn, Kalai, and Linial [KKLS88]. (See also the intermedi-
ate work of Chor and Geréb-Graus [CGG87].) The “KKL Edge-Isoperimetric
Theorem” (which is essentially a strengthening of the basic KKL Theorem)
was first explicitly proved by Talagrand [Tal94] (possibly independently of
Kahn, Kalai, and Linial [KKL88]?); he also treated the p-biased case. There
is no known combinatorial proof of the KKL Theorem (i.e., one which does not
involve real-valued functions). However, several slightly different analytic
proofs are known; see Falik and Samorodnitsky [FS07], Rossignol [Ros06],
and O’Donnell and Wimmer [OW13]. The explicit lower bound on the “KKL
constant” achieved in Exercise 9.30 is the best known; it appeared first in
Falik and Samorodnitsky [FS07]. It is still a factor of 2 away from the best
known upper bound, achieved by the tribes function.

Friedgut’s Junta Theorem dates from 1998 [Fri98]. The observation that
its junta size can be improved for functions which have W*[f] < ¢ for & < I[f /e
was independently made by Li-Yang Tan in 2011; so was the consequence
Corollary 9.31 and its extension to constant-degree PTFs. A stronger result
than Corollary 9.31 is known: Diakonikolas and Servedio [DS09] showed
that every LTF is e-close to a I[f1?poly(1/e)-junta. As for Corollary 9.30, it’s
incomparable with a result from Gopalan, Meka, and Reingold [GMR12],

which shows that every width-w DNF is e-close to a (wlog(1/e))°™ junta.

Exercise 9.3 was suggested to the author by Krzysztof Oleszkiewicz.
Exercise 9.12 is from Gopalan et al. [GOWZ10]. Exercise 9.21 appears in
O’Donnell and Servedio [0S07]; Exercise 9.22 appears in O’'Donnell and Wu
[OW09]. The estimate in Exercise 9.24 is from de Klerk, Pasechnik, and
Warners [dKPW04] (see also works of Rinott and Rotar’ [RR01] and Khot
et al. [KKMOO07]). Exercises 9.27 and 9.28 are due to Kahn, Kalai, and
Linial [KKL88]. Exercise 9.34 was suggested to the author by John Wright.
Exercise 9.36 appears in Kauers et al. [KOTZ16].
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Chapter 10

Advanced
hypercontractivity

In this chapter we complete the proof of the Hypercontractivity Theorem for
uniform +1 bits. We then generalize the (p,2) and (2,q) statements to the
setting of arbitrary product probability spaces, proving the following:

The General Hypercontractivity Theorem. Let (Qq,71), ..., (Qy,7,) be
finite probability spaces, in each of which every outcome has probability at
least A. Let f € L2(Qq1 x -+ xQ,,m11®---®7,,). Then for any ¢ >2 and 0 < p <

1. 412-1g

q-1 ’

ITofllg<llflle and [Tofllz=<Ifllg-

(And in fact, the upper bound on p can be slightly relaxed to the value stated
in Theorem 10.18.)

We can thereby extend all the consequences of the basic Hypercontrac-
tivity Theorem for f : {~1,1}* — R to functions f € L%(Q",n®"), except with
quantitatively worse parameters depending on “A”. We also introduce the tech-
nique of randomization/symmetrization and show how it can sometimes elim-
inate this dependence on A. For example, it’s used to prove Bourgain’s Sharp
Threshold Theorem, a characterization of Boolean-valued f € L2(Q" , ") with
low total influence that has no dependence at all on 7.

10.1. The Hypercontractivity Theorem for uniformly random
bits

In this section we’ll prove the full Hypercontractivity Theorem for uniform +1
bits stated at the beginning of Chapter 9:

283
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The Hypercontractivity Theorem. Let f :{—-1,1}* - Randletl1<p<g<oo.
Then | Tyfllq < Il for 0<p=< /B,

Actually, when neither p nor ¢ is 2, the following equivalent form of
theorem seems easier to interpret:

Two-Function Hypercontractivity Theorem. Let f,g:{-1,1}* - R, let
r,s=0, and assume 0<p <+/rs<1. Then

(Fy) f@)gWI=fl1+rllgll1+s-
p-corI:elated

As a reminder, the only difference between this theorem and its “weak” form
(proven in Chapter 9.4) is that we don’t assume r,s < 1. Below we will show
that the two theorems are equivalent, via Holder’s inequality. Given the
Two-Function Hypercontractivity Induction Theorem from Chapter 9.4, this
implies that to prove the Hypercontractivity Theorem for general n we only
need to prove it for n = 1. This is an elementary but technical inequality,
which we defer to the end of the section.

Before carrying out these proofs, let’s take some time to interpret the
Two-Function Hypercontractivity Theorem. One interpretation is simply as
a generalization of Holder’s inequality. Consider the case that the strings x
and y in the theorem are fully correlated; i.e., p = 1. Then the theorem states
that

Elf(x)g@)] < [If l1+r1&8ll1+1/r (10.1)

because the condition /s = 1 is equivalent to s = 1/r. This statement is
identical to Holder’s inequality, since (1+r) =1+ 1/r. Holder’s inequality is
often used to “break the correlation” between two random variables; in the
absence of any information about how f and g correlate then we can at least
bound E[f(x)g(x)] by the product of certain norms of f and g. (If f and g
have different “sizes”, then Holder lets us choose different norms for them; if f
and g have roughly the same “size”, then we can take r = s = 1 and get Cauchy—
Schwarz.) Now suppose we are considering E[f(x)g(y)] for p-correlated x,y
with p < 1. In this case we might hope to improve (10.1) by using smaller
norms on the right-hand side; in the extreme case of independent x,y (i.e.,
p = 0) we can use E[f(x)g(y)] = E[f1Elg] < |Ifll1llglli. The Two-Function
Hypercontractivity Theorem gives a precise interpolation between these two
cases; the smaller the correlation p is, the smaller the norms we may take on
the right-hand side.

In the case that f and g have range {0, 1}, these ideas yield another inter-
pretation of the Two-Function Hypercontractivity Theorem, namely a two-set
generalization of the Small-Set Expansion Theorem:
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Generalized Small-Set Expansion Theorem. Let 0 <p <1 Let A,BC
{—1,1}" have volumes exp(—%), exp(—%z) and assume 0 < pa<b=<a. Then

2_ 2
Pr [xEA,yEB]Sexp(—%%)_

(,y)
p-correlated

Proof. Apply the Two-Function Hypercontractivity Theorem with f = 14,

g = 1p and minimize the right-hand side by selecting r = p Z:Z‘Z, s=p Z:ZZ. O

Remark 10.1. When a and b are not too close the optimal choice of s in the
proof exceeds 1. Thus the Generalized Small-Set Expansion Theorem really
needs the full (non-weak) Two-Function Hypercontractivity Theorem; equiv-
alently, the full Hypercontractivity Theorem. Also note that the assumption
b = pa is needed to prevent r <O0.

Remark 10.2. This theorem is essentially sharp in the case that A and B
are concentric Hamming balls; see Exercise 10.5. In the case b = a we recover
the Small-Set Expansion Theorem. In the case b = pa we get only the trivial
bound that Pr[x€ A,y e Bl < exp(—%) = Pr[x € A]. However, not much better
than this can be expected; in the concentric Hamming ball case it indeed holds
that Pr[x € A,y € B] ~ Pr[x € A] whenever b < pa.

Remark 10.3. There is also a reverse form of the Hypercontractivity Theorem
and its Two-Function version; see Exercises 10.6-10.9. It directly implies the
following:

Reverse Small-Set Expansion Theorem. Let 0<p<1. Let A,B<{-1,1}"
have volumes exp(—%), exp(—%z), where a,b = 0. Then

2 2
Pr [xe€A,yeBl= exp(—%%)
(@,y) 1=p
p-correlated

We now turn to the proofs. We begin by showing that the Hypercontrac-
tivity Theorem and the Two-Function version are indeed equivalent. This is
a consequence of the following general fact (take T'=T,, p=1+r, g=1+1/s):

Proposition 10.4. Let T be an operator on L>(Q,n) and let 1 < p, ¢ < co. Then
ITfllg=1fllp (10.2)

holds for all f € L%(Q, ) if and only if
(Tf,8)=IIfliplgly (10.3)

holds for all f,g € L*(Q, ).
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Proof. For the “only if” statement, (T'f,g) < ITfllqligllq < Iflpllgly by Holder’s
inequality and (10.2). As for the “if” statement, by Hélder’s inequality and (10.3)
we have

ITfllg= sup (Tf,g)< sup lflplgly =I1flp. O
lglly=1 lgll,=1

Now suppose we prove the Hypercontractivity Theorem in the case n = 1.
By the above proposition we deduce the Two-Function version in the case
n = 1. Then the Two-Function Hypercontractivity Induction Theorem from
Chapter 9.4 yields the general-n case of the Two-Function Hypercontractivity
Theorem. Finally, applying the above proposition again we get the general-n
case of the Hypercontractivity Theorem, thereby completing all needed proofs.
These observations all hold in the context of more general product spaces, so
let’s record the following for future use:

Hypercontractivity Induction Theorem. Let 0<p<1, 1<p,q <oo, and
assume that |T,fllq < Ifll, holds for every f e L2(Qq,7m1),...,L3(Q,,,7,). Then
it also holds for every f € L2(Qq x -+ x Qp, M1 ® -+~ @ 7).

Remark 10.5. In traditional proofs of the Hypercontractivity Theorem for +1
bits, this theorem is proven directly; it’s a slightly tricky induction by deriva-
tives (see Exercise 10.3). For more general product spaces the same direct
induction strategy also works but the notation becomes quite complicated.

Our remaining task, therefore, is to prove the Hypercontractivity Theorem
in the case n = 1; in other words, to show that a uniformly random +1 bit is
(p,q,v/(p—1/(q —1))-hypercontractive. This fact is often called the “Two-
Point Inequality” because (for fixed p, g, and p) it’s just an “elementary”
inequality about two real variables.

Two-Point Inequality. Let 1< p<g<ocoandlet 0<p<+/(p—1)/(g—-1).
Then | Tof g < Ifllp for any f :{-1,1} — R. Equivalently (for p # 1), a uni-
formly random bit x ~{-1,1} is (p,q, p)-hypercontractive; i.e., |la + pbx|ly <
la+bxlp for all a,b € R.

Proof. As in Section 9.3, our main task will be to prove the inequality for
1< p < q =<2. Having done this, the 2 < p < g < 0o cases follow from Propo-
sition 9.19, the p <2 < g cases follow using the semigroup property of T,
(Exercise 9.17), and the p = ¢ cases follow from Exercise 2.33 (or continuity).
The proof for 1 < p < g <2 will be very similar to that of Theorem 9.18 (the
q =2 case). As in that proof we may reduce to the case that p = /(p —1)/(q¢ - 1),
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a =1, and b = ¢ satisfies |¢| < 1. It then suffices to show
11+ pexl|] < 11 +ex]}

—  (da+pe?+11-pe?) <l +e +11-eP

— (1 +y (2‘713)p2ke2k) <1+) (2’;)62}6. (10.4)
k=1 k=1

Again we used |e| < 1 to drop the absolute value signs and justify the Gen-
eralized Binomial Theorem. For each of the binomial coefficients on the left
in (10.4) we have

(Q) q(g=-1)(q—-2)(g—3)--(¢—(2k-2))q—(2k-1)) _ q(g—=1)2-¢)3=q)--((2k—-2)-¢)(2k—-1)—q) >0
2k (2R)! (2R)! '

(Here we reversed an even number of signs, since 1 < g < 2. We will later do
the same when expanding (2’2).) Thus we can again employ the inequality
(1+¢) <1+0t for ¢ =0 and 0 <0 < 1 to deduce that the left-hand side of (10.4)
is at most

1+Z )2k2k 1+Z (ql)( )e2k.

We can now complete the proof of (10.4) by showing the following term-by-
term inequality: for all 2 > 1,

k
p-1 p
(q 1) (57) = (5)
p-1 cI(q 1)(2-q)-((2k—1)—q) p(p 1)(2-p)---((2k-1)-p)
q-1 (2R)! k)
— 2-q 3—q 2k-1)—q _ 2-p 3-p . (2k-D-p

Va1 Va1 Vel T Vel Vel Vel

And indeed this inequality holds factor-by-factor. This is because p < ¢ and
Jj- d _Jj-r _
\/m drr-1 -~
_ =24 m
2(r—1)3/2 .

Remark 10.6. The upper-bound p < /(p — 1)/(g —1) in this theorem is best
possible; see Exercise 9.10(b).

=
q

is a decreasing function of r = 1 for all j = 2, as is evident from

10.2. Hypercontractivity of general random variables

Let’s now study hypercontractivity for general random variables. By the end
of this section we will have proved the General Hypercontractivity Theorem
stated at the beginning of the chapter.

Recall Definition 9.13 which says that X is (p,q, p)-hypercontractive if
E[|X]?] < co and

la+pbXl|4 <lla+bXl, forallconstantsa,beR.
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(By homogeneity, it’s sufficient to check this either with a fixed to 1 or with b
fixed to 1.) Let’s also collect some additional basic facts regarding the concept:

Fact 10.7. Suppose X is (p,q,p)-hypercontractive (1<p <qg<oco, 0<p<1).
Then:

(1) E[X]1=0 (Exercise 9.10).
(2) cX is (p,q,p)-hypercontractive for any c € R (Exercise 9.9).
(3) X is (p,q,p')-hypercontractive for any 0 < p' < p (Exercise 9.11).

4 p=< \/{;—j and p < llléllllz (Exercises 9.10, 9.9).

Proposition 10.8. Let X be (2,q, p)-hypercontractive. Then X is also (q',2, p)-
hypercontractive, where q' is the conjugate Holder index of q.

Proof. The deduction is essentially the same as (9.6) from Chapter 9.2. Since
E[X]=0 (Fact 10.7(1)) we have

la +pbX|l5 = Ela® +20abX + p26?X%] = El(a + bX)(a + p?bX)].

By Holder’s inequality and then the (2, g, p)-hypercontractivity of X this is at
most

la+bXllglla+p2bXll, < la+bXlyla+pbXlls.

Dividing through by |la + pbX |2 (which can’t be 0 unless X = 0) gives |a +
pbXll2 <lla+bX]l4 as needed. |

Remark 10.9. The converse does not hold; see Exercise 10.4.

Remark 10.10. As mentioned in Proposition 9.15, the sum of independent
hypercontractive random variables is equally hypercontractive. Furthermore,
low-degree polynomials of independent hypercontractive random variables
are “reasonable”. See Exercises 10.2 and 10.3.

Given X, p, and ¢, computing the largest p for which X is (p,q,p)-
hypercontractive can often be quite a chore. However, if you're not overly
concerned about constant factors then things become much easier. Let’s focus
on the most useful case, p = 2 and ¢ > 2. By Fact 10.7(2) we may assume
X2 =1. Then we can ask:

Question 10.11. Let E[X]=0, | X2 =1, and assume | X|l4 < co. For what p
is X (2,q, p)-hypercontractive?

In this section we’ll answer the question by showing that p = 0,(1/]X|l4)
is sufficient. By the second part of Fact 10.7(4), p < 1/| Xl is also necessary.
So for a mean-zero random variable X, the largest p for which X is (2,q, p)-

hypercontractive is always within a constant (depending only on q) of ”J}g”j .
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Let’s arrive at this result in steps, introducing the useful techniques of
symmetrization and randomization along the way. When studying hypercon-
tractivity of a random variable X, things are much more convenient if X is
a symmetric random variable, meaning —X has the same distribution as X.
One advantage of symmetric random variables X is that they have E[X*]=0
for all odd % € IN. Using this it is easy to prove (Exercise 10.11) the following
fact, similar to Corollary 9.6. (The proof similar to that of Proposition 9.16.)

Proposition 10.12. Let X be a symmetric random variable with | X| g = 1.
Assume that | X |4 = C (and hence X is “C*-reasonable”). Then X is (2,4,p)-
hypercontractive if and only if p < min(\%, %).

Given a symmetric random variable X, the randomization trick is to
replace X by the identically distributed random variable rX, where r ~ {—1, 1}
is an independent uniformly random bit. This trick sometimes lets you reduce
a probabilistic statement about X to a related one about r.

Theorem 10.13. Let X be a symmetric random variable with | X|2 =1 and

let | X|lq = C, where q > 2. Then X is (2,q, p)-hypercontractive for p = c 1 =
7

Proof. Let r ~ {—1,1} be uniformly random and let X denote X/C. Then for
any a € R,

e + pXII?I =|la+ erII?I (by symmetry of X)

-E[El xj77] %
X [r la+prXi ]
<E [E[Ia + er|2]q/2]2/q (ris (2,q L)-hypercontractive)
“Xxlr ¢ TP Vae-1
= El(a” + X%)a212a (Parseval)
= ||a2 + 1?2 llgr2 (norm with respect to X)
<a’+ ||I~(2 llgs2 (triangle inequality for || - [l4/2)
=a®+]X|3
=a?+1=a? +E[X?] = |a + X|2,

where the last step also used E[X]=0. U

Next, if X is not symmetric then we can use a symmetrization trick to
make it so. One way to do this is to replace X with the symmetric random
variable X — X', where X' is an independent copy of X. In general X — X’
has similar properties to X. In particular, if E[X] = 0 we can compare norms
using the following one-sided bound:
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Lemma 10.14. Let X be a random variable satisfying E[X]=0and | X| 4 < oo,
where g = 1. Then for any a € R,

/
la+Xllg<lla+X-Xlg,

where X' denotes an independent copy of X.

Proof. We have
la+X|g =Ella +X|?]1=Ella + X -E[X']|7],
where we used the fact that E[X’ | X]=0. But now
Ella+ X -E[X'1?]1=E[|Ela+ X - X191 <E[la+ X -X'|7] = la + X - X'||Z,

where we used convexity of ¢ — |¢£]9. O

A combination of the randomization and symmetrization tricks is to re-
place an arbitrary random variable X by rX, where r ~ {—1,1} is an indepen-
dent uniformly random bit. This often lets you extend results about symmet-
ric random variables to the case of general mean-zero random variables. For

example, the following hypercontractivity lemma lets us reduce to the case of
a symmetric random variable while only “spending” a factor of %:

Lemma 10.15. Let X be a random variable satisfying E[X]=0and | X |4 < oo,
where g = 1. Then for any a € R,

1
la+35Xllg<lla+rXilg,

where r ~{—1,1} is an independent uniformly random bit.

Proof. Letting X’ be an independent copy of X we have
la+3iXlly<la+3X-3X'll, (Lemma 10.14 applied to X)
=|la+ r(%X— %X’)Ilq (since %X— %X' is symmetric)
=l3a+3rX+ia-irX'|,
< II%a + %rXIIq + || %a - %rX'IIq (triangle inequality for |- |4)
=l3a+3rXlg+l3a+irXl, (-r distributed as r)
= la+rXll,. O

By employing these randomization/symmetrization techniques we obtain

a (2,q)-hypercontractivity statement for all mean-zero random variables X

with “g‘;—”; bounded, giving a good answer to Question 10.11:

Theorem 10.16. Let X satisfy E[X]1=0, X2 =1, X4 =C, where q > 2.
Then X is (2,q, % p)-hypercontractive for p = —= (If X is symmetric, then

Cy/q-1

the factor of % may be omitted.)
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Proof. By Lemma 10.15 we have
la+3pXI2 < lla+prXI2.

Since rX is a symmetric random variable satisfying [|[rX|2 = 1, [[rX|, = C,
Theorem 10.13 implies

la+prX|2<la+rX|2=a?+1=la+X]|3
This completes the proof. U

If X is a discrete random variable then instead of computing ”iﬁ”j it can

sometimes be convenient to use a bound based on the minimum value of
X’s probability mass function. The following is a simple generalization of
Proposition 9.5, whose proof is left for Exercise 10.17:

Proposition 10.17. Let X be a discrete random variable with probability
mass function n. Write

A=min(7r)= min ){Pr[X =xl}.

x€erange(X

Then for any q > 2 we have | X4 < (1/A)V2-Va. 1X19o.

As a consequence of Theorem 10.16, if in addition E[X] = 0 then X
: 1 . _ 1 1/2—-1/ . 1
is (2,q, 3 p)-hypercontractive for p = W= -A 9, and X is also (q',2, 5p)-

hypercontractive by Proposition 10.8. (If X is symmetric then the factor of %
may be omitted.)

For each g > 2, the value p = ©,(12719) in Proposition 10.17 has the
optimal dependence on A, up to a constant. In fact, a perfectly sharp version
of Proposition 10.17 is known. The most important case is when X is a
A-biased bit; more precisely, when X = ¢(x;) for x; ~ 7 in the notation of
Definition 8.39. In that case, the below theorem (whose very technical proof
is left to Exercises 10.19-10.21) is due to Latala and Oleszkiewicz [LLO0O0].
The case of general discrete random variables is a reduction to the two-valued
case due to Wolff [Wol07].

Theorem 10.18. Let X be a mean-zero discrete random variable and let
A < 1/2 be the least value of its probability mass function, as in Proposi-
tion 10.17. Then for q > 2 it holds that X is (2,q,p)-hyperconiractive and
(¢',2, p)-hypercontractive for

exp(u/q) — exp(-u/q) sinh(u/q) . R

- = th u defined b —u)= A
P \/exp(u/q’)—exp(—u/q’) \/sinh(u/q’)’ with u defined by exp(-u) = 173
(10.5)

This value of p is optimal, even under the assumption that X is two-valued.
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Remark 10.19. It’s not hard to see that for A — 1/2 (hence u — 0) we get
Vg—(-Vq) _ _1
P= N\ Tg==1igh = Va1
tion 10.1. Also, for A — 0 (hence u — oc0) we get p ~ 4/ /,11_-_11//; = AV2-V4_ showing
that Proposition 10.17 is sharp up to a g-dependent constant. Exercise 10.18
asks you to investigate the function defining p in (10.5) more carefully. In

particular, you’ll show that p = —2= - 12714 holds for all A. Hence we can
vaq-1

consistent with the Two-Point Inequality from Sec-

omit the factor of % from the simpler bound in Proposition 10.17 even for
nonsymmetric random variables.

Corollary 10.20. Let (2,7) be a finite probability space, |Q| = 2, in which
every outcome has probability at least A. Let f € L2(Q, 7). Then for any q > 2

and 0<p < —A=-AV2"Vq

ITofllg=llfllz and [Tofllz=<Iflg-

Proof. Recalling Chapter 8.3, this follows from the decomposition f(x) =
£2 + =1 under which Tof = 2+ pf=1. Note that for x ~ 7 the random
variable f=!(x) has mean zero, and the least value of its probability mass
function is at least A. O

The General Hypercontractivity Theorem stated at the beginning of the chap-
ter now follows by applying the Hypercontractivity Induction Theorem from
Section 10.1.

10.3. Applications of general hypercontractivity

In this section we will collect some applications of the General Hypercontrac-
tivity Theorem, including generalizations of the facts from Section 9.5. We
begin by bounding the g-norms of low-degree functions. The proof is essen-
tially the same as that of Theorem 9.21; see Exercise 10.28.

Theorem 10.21. In the setting of the General Hypercontractivity Theorem,
if f has degree at most k, then

Iflly < (Vg —1-AYa Y2y 715,

Next we turn to an analogue of Theorem 9.22; getting a relationship
between the 2-norm and the 1-norm for low-degree functions. The proof (Ex-
ercise 10.31) needs (2, q, p)-hypercontractivity with g tending to 2, so to get
the most elegant statement requires appealing to the sharp bound from Theo-
rem 10.18:
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Theorem 10.22. In the setting of the General Hypercontractivity Theorem, if
[ has degree at most k, then

1/(1-21)
Ifllz < cQOFIfllL, where c(A) = /1A

We have c(A) ~1/vVA1as A —0, c(A) —eas A — %, and in general, c(1) <e/v2A.

Just as in Chapter 9.5 we obtain (Exercise 10.32) the following as a corol-
lary:

Theorem 10.23. In the setting of the General Hypercontractivity Theorem, if
f is a nonconstant function of degree at most k, then

Pr [f(x)>EIf]] = 122" = a5/1) 7",

Extending Theorem 9.23, the concentration bound for degree-£ functions,
is straightforward (see Exercise 10.33). We again get that the probability of
exceeding ¢ standard deviations decays like exp(—0(¢%*)), though the constant
in the ©(-) is linear in A:

Theorem 10.24. In the setting of the General Hypercontractivity Theorem, if
[ has degree at most k, then for any t = \/2e/7tk,

Pr [If ()] > ¢l ]2 < A* exp - £ 2%,
X~

Next, we give a generalization of the Small-Set Expansion Theorem, the
proof being left for Exercise 10.34.

Theorem 10.25. Let (0, 7) be a finite probability space, |QQ| =2, in which every
outcome has probability at least A. Let A < Q™ have “volume” a; i.e., suppose
Pry_,en[x € Al = a. Let ¢ = 2. Then for any

1-2/
0<ps< ﬁ ALa
(or even p as large as the square of the quantity in Theorem 10.18) we have
Stab,[14]1= Pr [veA,ycAl<a®?9.
y{Z\;Tp(x)
Similarly, we can generalize Corollary 9.25, bounding the stable influence of
a coordinate by a power of the usual influence:

Theorem 10.26. In the setting of Theorem 10.25, if f : Q" — {-1,1}, then
pInf”[f] < Inf[f12~21.
for all i € [n]. In particular, by selecting q = 4 we get

Y (VS £75)12 < Inf; [£TP2. (10.6)
Sai
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Proof. Applying the General Hypercontractivity Theorem to L;f and squar-
ing we get
IT pLif 115 < ILiF 12,

By definition, the left-hand side is pInf/’[f]. The right-hand side is
(IL; f||‘qlﬁ)2—2/q, and ||L; f||‘qlﬁ < Inf;[f] by Exercise 8.10(b). 0

The KKL Edge-Isoperimetic Theorem in this setting now follows by an
almost verbatim repetition of the proof from Chapter 9.6.

KKL Isoperimetric Theorem for general product space domains. In
the setting of the General Hypercontractivity Theorem, suppose [ has range
{—1,1} and is nonconstant. Let I[f1=1[f1)/Var[f1=1. Then

_1 . -1if]
MaxInflf] 2 i - (9/4) 1/,

As a consequence, MaxInf[f] = Q(Wlm)) -Var[f]- 10%.

Proof. (Cf. Exercise 9.29.) The proof is essentially identical to the one in
Chapter 9.6, but using (10.6) from Theorem 10.26. Summing this inequality
over all i € [n] yields

Y ISIVABYSIFS 12 < Y Inf[f1P% < MaxInfl/ T2 T(F1. (10.7)
Scln] =1

On the left-hand side above we will drop the factor of |S| for |S| > 0. We also in-
troduce a set-valued random variable S defined by Pr[S =S1= ||/~ IIE/ Var([f]
for S # @. Note that E[|S|] =I[f]. Thus

LHS(10.7) = Var[f] -g[(ﬁ/s)'sl] > Varlf1-(VA/3)EIS! = Var[£1- (VA/3)Lf1,

where we used that s — (v/A/3)° is convex. The first statement of the theorem
now follows after rearrangement. As for the second statement, there is some
universal ¢ > 0 such that

- < T 1
-1 |
Tf1<c paigmlogn = i @ =0an = N

say, in which case our lower bound for MaxInflf] is \/iﬁ > 1"%. On the other
hand,

Ifl=c- log(ﬁ Jdogn = I[f]l= Q(W)-Var[f]-logn,

in which case even the average influence of f is Q(log(ﬁ) -Var([f]- loffn. O

Similarly, essentially no extra work is required to generalize Theorem 9.28
and Friedgut’s Junta Theorem to general product space domains; see Exer-
cise 10.35. For example, we have:
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Friedgut’s Junta Theorem for general product space domains. In the
setting of the General Hypercontractivity Theorem, if f has range {—1,1} and
0<e<1, then f is e-close to a (VAN°W VO junta b : Q" — {-1,1} (that is,
Pry_qen[f(x) # h(x)] <¢).

We conclude this section by establishing “sharp thresholds” — in the sense
of Chapter 8.4 — for monotone transitive-symmetric functions with critical
probability in the range [1/n°P,1 - 1/n°D]. Let f:{-1,1)* — {-1,1} be a
nonconstant monotone function and define the (strictly increasing) curve
F:[0,1]1-1[0,1]1 by F(p) = PrxNH;z;n [f(x) = —1]. Recall that the critical proba-
bility p. is defined to be the value such that F(p.) = 1/2; equivalently, such
that Var[f?<)] = 1. Recall also the Margulis—Russo Formula, which says that

i _i. (p)
25 F =25 P,

where
o2 =0%(p)= Varlx;] = 4p(1 - p) = ©(min(p, 1~ p)).

Remark 10.27. Since we will not be concerned with constant factors, it’s
helpful in the following discussion to mentally replace o2 with min(p,1— p).
In fact it’s even more helpful to always assume p < 1/2 and replace o2 with p.

Now suppose f is a transitive-symmetric function, e.g., a graph property.
This means that all of its influences are the same, i.e.,

Inf;[f?)] = MaxInf{fP)] = %I[f(p)]

for all i € [n]. It thus follows from the KKL Theorem for general product
spaces that

(p) 1 (p) .
If Pz Q(log(l/min(p,l—p))) -Var[f P 1-logn;
hence

diF(p) > Var[fP]-Q(
p

(As mentioned in Remark 10.27, assuming p < 1/2 you can read o21n(e/o?) as
plog(1/p).)

If we take p = p. in inequality (10.8) we conclude that F(p) has a large
derivative at its critical probability: F'(p.) = Q(m)-logn, assuming
pe < 1/2. In particular if log(1/p.) < logn — that is, p, > 1/n°Y — then F'(p,.) =
a)(plc). This suggests that f has a “sharp threshold”; i.e., F(p) jumps from
near 0 to near 1 in an interval of the form p. (1 +0(1)). However, largeness of
F'(p.) is not quite enough to establish a sharp threshold (see Exercise 8.30);
we need to have F'(p) large throughout the range of p near p. where Var{f?’]
is large. Happily, inequality (10.8) provides precisely this.

o? ln(le/az)) -logn. (10.8)
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Remark 10.28. Even if we are only concerned about monotone functions f
with p. = 1/2, we still need the KKL Theorem for general product spaces to
establish a sharp threshold. Though F’'(1/2) = Q(logn) can be derived using
just the uniform-distribution KKL Theorem from Chapter 9.6, we also need
to know that F'(p) = Q(logn) continues to hold for p = 1/2+0(1/logn).

Making the above ideas precise, we can establish the following result of
Friedgut and Kalai [FK96] (cf. Exercises 8.28, 8.29):

Theorem 10.29. Let f : {—1,1}" — {—1, 1} be a nonconstant, monotone, transitive-
symmetric function and let F :[0,1] — [0, 1] be the strictly increasing function
defined by F(p) = PrxN,,gn [f(x)=—1]. Let p. be the critical probability such
that F(p.) = 1/2 and assume without loss of generality that p. < 1/2. Fix

0<e<1/4 and let
log(1/p.)

logn ’
where B > 0 is a certain universal constant. Then assuming n < 1/2,

F(p.-(1-m)<e, F(p.-(1+n)=1-¢.

1 =Blog(1/e)-

Proof. Let p be in the range p.-(1+7). By the assumption 1 < 1/2 we also
have % Pc<p=< % Pe < %. It follows that the quantity o2In(e/o?) in the KKL
corollary (10.8) is within a universal constant factor of p.log(1/p.). Thus for
all p in the range p.-(1+n) we obtain

F’(p) zVar[f(p)] Q(m) logn

Using Var[f?)] = 4F(p)(1 — F(p)), the definition of 7, and a suitable choice
of B, this is equivalent to

21n(1/2
F'(p)= %F(p)(l —-F(p)). (10.9)

c
We now show that (10.9) implies that F(p.—np.) < € and leave the implication
F(p.+np.)=1-¢€ to Exercise 10.36. For p < p. we have 1-F(p) = 1/2 and
hence

11’1(1/26)F(p) . ilnF(p) _ F'(p) - 1n(1/2€).

F'(p)= >
NP dp F(p) nPec

It follows that
InF(p,—np:) <InF(p.)—1In(1/2¢) =1n(1/2) — In(1/2¢) = In¢;
ie., F(p.—np.) <€ as claimed. O
This proof establishes that every monotone transitive-symmetric func-
tion with critical probability at least 1/n°? (and at most 1—1/n°) has a

sharp threshold. Unfortunately, the restriction on the critical probability
can’t be removed. The simplest example illustrating this is the logical OR
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function OR,, : {True, False}” — {True, False} (equivalently, the graph property
of containing an edge), which has critical probability p. ~ 1%2 Even though
OR,, is transitive-symmetric, it has constant total influence at its critical
probability, I[ORE{D“)] ~ 2In2. Indeed, OR,, doesn’t have a sharp threshold;
i.e., it’s not true that Pr; [OR,(x) = True] = 1—0(1) for p = p.(1+0(1)). For
example, if x is drawn from the (2p.)-biased distribution we still just have
Pr[OR,(x) = True] = 3/4. On the other hand, most “interesting” monotone
transitive-symmetric functions do have a sharp threshold; in Section 10.5
we’ll derive a more sophisticated method for establishing this.

10.4. More on randomization/symmetrization

In Section 10.3 we collected a number of consequences of the General Hy-
percontractivity Theorem for functions f € L2(Q",7%"%). All of these had a
dependence on “A1”, the least probability of an outcome under n. This can
sometimes be quite expensive; for example, the KKL Theorem and its conse-
quence Theorem 10.29 are trivialized when A = 1/n®W).

However, as mentioned in Section 10.2, when working with symmetric
random variables X, the “randomization” trick sometimes lets us reduce
to the analysis of uniformly random +1 bits (which have A = 1/2). Further,
Lemma 10.15 suggests a way of “symmetrizing” general mean-zero random
variables (at least if we don’t mind applying T 1 ). In this section we will de-
velop the randomization/symmetrization technique more thoroughly and see
an application: bounding the L? — L? norm of the “low-degree projection”
operator.

Informally, applying the randomization/symmetrization technique to f €
L2(Q",7®") means introducing n independent uniformly random bits r =
(ri,...,rn) ~{—1,1}"* and then “multiplying the ith input to f by r;”. Of course
Q is just an abstract set so this doesn’t quite make sense. What we really
mean is “multiplying L; f, the ith part of f’s Fourier expansion (orthogonal
decomposition), by r;”. Let’s see some examples:

Example 10.30. Let f: {—1,1}* — R be a usual Boolean function with Fourier
expansion

f =Y FS)[] =

Sclnl] ieS
Its randomization/symmetrization will be the function
fr,x)= Z F(9) H rix; = Z f(S)xSrS.
Scln] ieS Scinl]

The key observation is that for random inputs x,r ~ {—1,1}"*, the random
variables f(x) and f(r,x) are identically distributed. This is simply because
x; is a symmetric random variable, so it has the same distribution as r;x;.
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Example 10.31. Let’s return to Examples 8.10 and 8.15 from Chapter 8.1.
Here we had Q = {a,b,c} with 7 the uniform distribution, and we defined a
certain Fourier basis {¢g = 1, ¢1,2). A typical £ : Q% — R here might look like

f(x1,29,%3) = 2 — 2 p1(x1) + 3 - pa(w1) +p1(x2) + 1 - pa(wo) — £ - pa(w3)
+ % “p1(x1) - pa(x3) + % -p1(x2) - Pp1(x3)
— & p1(x1) - Pa(a2) - P3(x3) + £ - Pa(x1) - Palara) - Palws).

The randomization/symmetrization of this function would be the following

function f € L2({-1,1}3 x (23,7[?/% ® 1®3):

fr,x)= % — 2p1(x1) 11+ (1) 71+ Pr(we) o+ Sha(an) 1o — %(,bz(x3)-r3
+ 2 1(x1)- Po(x3) - T1rg + FP1(x2) - P1(x3) - rarg
— 5 p1(201) - Pa(x2) - p3(x3) - P1rars + Eha(x1) - Pala) - Palars) - rirers.

There’s no obvious way to compare the distributions of f(x) and f(r,x). How-
ever, looking carefully at Example 8.10 we see that the basis function ¢2 has
the property that ¢o(x;) is a symmetric real random variable when x; ~ 7.
In particular, r; - ¢2(x;) has the same distribution as ¢o(x;). Therefore if
g € L2(Q",n®") has the lucky property that its Fourier expansion happens
to only use ¢2 and never uses ¢, then we do have that g(x) and g(r,x) are
identically distributed.

Let’s give a formal definition of randomization/symmetrization.

Definition 10.32. Let f € L2(Q",7°"). The randomization | symmetrization

of f is the function f € L2({—1,1}" x Q", 7% ® 1°") defined by

fro=Y rSrSw), (10.10)
Scin]

where we recall the notation r° = [Liesri.

Remark 10.33. Another way of defining f is to stipulate that for each x € Q"
the function ﬁx :{-1,1}" - R is defined to be the Boolean function whose
Fourier coefficient on S is =5(x). (This is more evident from (10.10) if you
swap the positions of 75 and f=5(x).)

In light of this remark, the basic Parseval formula for Boolean functions
implies that for all x € Q",
Ificl3 = Y F5@2
N=i]
(The notation |- [l2» emphasizes that the norm is computed with respect to
the random inputs r.) If we take the expectation of the above over x ~ 7",
the left-hand side becomes || f 12 and the right-hand side becomes | f (12

2,rx 2,x°
by Parseval’s formula for L2(Q", 7%"). Thus:
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Proposition 10.34. Let f € L2(Q",7n®"). Then ||fll2 = IIf ll2.

Thus randomization/symmetrization doesn’t change 2-norms. What about
g-norms for g # 2? As discussed in Examples 10.30 and 10.31, there may be
cases where f’s Fourier expansion is already symmetric; in such cases f(r,x)
and f(x) will have identical distributions, so their g-norms will be identical.
The essential feature of the randomization/symmetrization technique is that
even for general f the ¢g-norms don’t change much — if you are willing to apply
T, for some constant p:

Theorem 10.35. For f € L2(Q",7n®") and ¢ > 1,
IT1fllg <1fllg < ITe1f llg- (10.11)

Equivalently,
ITe, fllg <Ufllg <1Tafllg-

Here 0 < ¢4 < 11is a constant depending only on q; in particular, we may take
2

C4=C43= 5.

The two inequalities in (10.11) are not too difficult to prove; for example,
you might already correctly guess that the left-hand inequality follows from
our first randomization/symmetrization Lemma 10.15 and an induction. We'll
give the proofs at the end of this section. But first, let’s illustrate how you
might use them by solving the following basic problem concerning low-degree
projections:

Question 10.36. Let k€ N, let 1 < g < oo, and let f € L>(Q",n°"). Can
IIfSk lq be much larger than |flq? To put the question in reverse, suppose
g € L2(Q", 1®") has degree at most k; is it possible to make the g-norm of g
much smaller by adding terms of degree exceeding k to its Fourier expansion?

The question has a simple answer if ¢ = 2: in this case we have | f <k llg <
£l always. This follows from Paresval:

k . n .
IF=*12 = Y WiFl< Y. WiFl= If13. (10.12)

J=0 Jj=0
When g # 2 things are not so simple, so let’s first consider the most familiar
setting of Q ={-1,1}, 7 = m1/9. In this case we can relate the g-norm and the
2-norm via the Hypercontractivity Theorem:
Proposition 10.37. Let k € N and let g :{-1,1}* — R. Then for q = 2 we have
< k <
lg=* lg = Va-1lgllq and for 1 < q <2 we have lg=* lg =(1/\/q- 1)k lgllg

This proposition is an easy consequence of the Hypercontractivity Theo-
rem and already appeared as Exercise 9.8. The simplest case, q¢ =4, follows
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from the Bonami Lemma alone:
< k. < k k
lg=*1ls < V3" l1g=*lla < V3 liglla < V3" liglls. (10.13)

Now let’s consider functions f € L%(Q",7°") on general product spaces;
for simplicity, we’ll continue to focus on the case ¢ = 4. One possibility is to
repeat the above proof using the General Hypercontractivity Theorem (more
specifically, Theorem 10.21). This would give us |f=<*ll4 < V3/A'IIf 5. How-
ever, we will see that it’s possible to get a bound completely independent of A
—1i.e., independent of (2, 7) — using randomization/symmetrization.

First, suppose we are in the lucky case described in Example 10.31 in
which f’s Fourier spectrum only uses symmetric basis functions. In this case
f=k(x) and f=*(r,x) have the same distribution for any %, and we can leverage
the L2({-1,1}) bound (10.13) to get the same result for f. First,

1F=H e = 11y = | 1=l

4.x

For each outcome x = x, the inner function g(r) = fA{km(r) is a degree-k func-
tion of r € {—1,1}". Therefore we can apply (10.13) with this g to deduce

| 17 el = V3 IFle= V3 I f L

hx H \/gk”flx(r)llzx,r

Thus we see that we can deduce (10.13) “automatically” for these luckily sym-
metric f, with no dependence on “A”. We’ll now show that we can get some-
thing similar for a completely general f using the randomization/symmetrization
Theorem 10.35. This will cause us to lose a factor of (2- g)k, due to application
of Ty and Tg ; to prepare for this, we first extend the calculation in (10.13)
slightly.

Lemma 10.38. Let k€ N and let g:{—1,1}" — R. Then forany 0<p<1,
lg=*lla < (V3/p) I Ty glla-

Proof. We have
< k <
lg=*lls< V3 1g%* 2 < (V3/p)* I T, gl < (V3/p)* I T, g4

Here the first inequality is Bonami’s Lemma and the second is because

k . k . ) n ) .
lg=F12 =Y WI[f1<(WpH* Y p¥WIf1< (1/p>"* Y p* W/ [f]1=Up**IT,gl2.
Jj=0 Jj=0 Jj=0
O

We can now give a good answer to Question 10.36, showing that low-
degree projection doesn’t substantially increase any g-norm:

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.



10.4. More on randomization/symmetrization 301

Theorem 10.39. Let k € N and let f € L(Q",7%"). Then for q¢ > 1 we have
IIfSk lg < C’; |£llg. Here Cg is a constant depending only on q; in particular we
may take C4,Cy3=5vV3<09.

Proof. We will give the proof for ¢ = 4; the other cases are left for Exer-
cise 10.16. Using the randomization/symmetrization Theorem 10.35,

1F=* 14 = IT2f 1 = | ITof =) la,r

4.x

For a given outcome x = x, let’s write g = 'If‘é?bc :{-1,1}" — R, so that we have
| gSk(r)||4 on the inside above. For clarity, we remark that g is the Boolean
function whose Fourier coefficient on S is 2/S'/=5(x). We apply Lemma 10.38
to this g, with p = % Note that T,g is then the Boolean function whose

Fourier coefficient on S is (%)'S I =S(x); i.e., it is TE?I . Thus we deduce
X

| 12 = e

oo 5| BVRMITLE )l

=BV T la= GV If s,

where the last step is the “un-randomization/symmetrization” inequality from
Theorem 10.35. O

The remainder of this section is devoted to the proof of Theorem 10.35,
which lets us compare norms of a function and its randomization/symmetrization.
It will help to view randomization/symmetrization from an operator perspec-
tive. To do this, we need to slightly extend our T, notation, allowing for
“different noise rates on different coordinates”.

Definition 10.40. For i e[n] and p e R, let Tf) be the operator on L2(Q", n®")
defined by

Tif =pf +(1-p)Eif =Eif +pLif =) fS+p Y f=5. (10.14)
S7i S3i

Furthermore, for r = (r1,...,r,) € R, let T, be the operator on L2(Q",7%")
defined by T, = T T2 T;ln From the third formula in (10.14) we have

riy-rg
T.f= Y r¥f, (10.15)
Scln]

where we use the notation r° = [lies7i. In particular, T, . o) is the usual T,
operator. We remark that when r € [0,1]* we have

T, f(x)= E [f 1, 30)]

¥1~Npy (X1),e0s¥, ~Npp ()

These generalizations of the noise operator behave the way you would ex-
pect; you are referred to Exercise 8.11 for some basic properties. Now compar-
ing (10.15) and (10.10) reveals the connection to randomization/symmetrization:
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Fact 10.41. For f € L2(Q",n®"), x € Q", and r € {-1,1}",
f(r,x) =T, f(x).
In other words, randomization/symmetrization of f means applying

T(+1,41,..+1) to f for a random choice of signs. We use this viewpoint to prove
Theorem 10.35, which we do in two steps:

Theorem 10.42. Let f € L2(Q",7®"). Then for any ¢ =1,
”T%f(x)”q,x = ”Trf(x)”q,r,x (1016)

for x ~ %", r ~{-1,1}*. In other words, IIT%qu < II}?IIq.

Proof. In brief, the result follows from our first randomization/symmetrization
result, Lemma 10.15, and an induction. To fill in the details, we begin by
showing that if & € L2(Q, ) is any one-input function and w ~ 7, b ~ {-1,1},
then

IT1 2@l < IToh(@)lg b0 (10.17)

This follows immediately from Lemma 10.15 because 2= (x) is a mean-zero
random variable (cf. the proof of Corollary 10.20). Next, we show that for any
g€ L%(Q",n®") and any i € [n],

IT, gl g < I T gl g,r - (10.18)
2

Assuming i = 1 for notational simplicity, and writing x = (x1,x’) where ' =
(x9,...,x,), we have

||T"%g(x)||q,x: ||Ti%g<x1,x’)nq,x1

q,x'

= | 1T s gw0@ g 3,
g%

(You are asked to carefully justify the second equality here in Exercise 10.10.)
Now for each outcome of x’ we can apply (10.17) with & = g to deduce

| 173 g0 @Dl g,

e = NN 1)@ g, [ 00 = ITE g)llg,ria-
Finally, we illustrate the first step of the induction. For distinct indices i, j,

ITS T, F@lg.e < IT, T f@lg.r, 2
2 2

by applying (10.18) with g =T, f. Then
2

b
q,ri

”Ti‘iT];.f(x)”q,ri,x = H ”T;LT]lf(x)”q,x

= H T TE £ @)llg,

q,r;

where we used that Téi and ’I‘Z,J. commute. Now for each outcome of r; we can
apply (10.18) with g = Tf,if to get

“ IT T F )l g

<| LT @l | =TT @l g,

q,ri
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Thus we have shown
ITYT, F@g,x < ITH T, F @)
2 2

Continuing the induction in the same way completes the proof. O

To prove the “un-randomization/symmetrization” inequality in Theorem
10.35, we first establish an elementary lemma about mean-zero random vari-
ables:

Lemma 10.43. Let q = 2. Then there is a small enough 0 < cq <1 such that
la—ceXlg<lla+Xlyg

for any a € R and any random variable X satisfying E[X]=0 and | X| 4 < oo.
In particular we may take cq4 = %

Proof. We will only prove the statement for g = 4; you are asked to establish
the general case in Exercise 10.13. By homogeneity we may assume a = 1;
then raising the inequality to the 4th power we need to show

E[(1-cX)*1<E[(1+X)4]

for small enough ¢. Expanding both sides and using E[X] = 0, this is equiva-
lent to

E[(1-cHX*+ 4 +4c3)X3 +(6-6c2)X?]=0. (10.19)
It suffices to find ¢ such that
1-cHa®? +(@+4c®)x+(6-6¢%) =0 VxeR; (10.20)

then we can multiply (10.20) by x? and take expectations to obtain (10.19).
This last problem is elementary, and Exercise 10.14 asks you to find the
largest ¢ that works (the answer is ¢ = .435). To see that ¢ = % suffices, we
use the fact that x = —%xz - % for all x (because the difference of the left- and
right-hand sides is 7—12(4x +9)2). Putting this into (10.20), it remains to ensure

(% - gc?’ —chx? +(% —6c%- 303) >0 VxelR,
and when ¢ = % this is the trivially true statement %xZ + % =0. O
Theorem 10.44. Let f € L2(Q",n®"). Then for any q > 1,
ITe,rf g re<1f g

for x ~ %", r ~{=1,1}". In other words, II'IEJfIIq <|fllg- Here 0<c4y<1lisa
constant depending only on q; in particular we may take c4,c43 = %
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Proof. In fact, we can show that for every outcome r =r € {—-1,1}* we have

ITe,rf@gx=<1f@)lgx
for sufficiently small ¢, > 0. Note that on the left-hand side we have

IS, T2, - The, F@ g x-

We know that Ti, is a contraction in L? for any p = 0 (Exercise 8.11). Hence it
suffices to show that Ti_cq is a contraction in LY, i.e., that

1T, 8@l gx < 18®)lg.x (10.21)

for all g € L2(Q",7n®"). Similar to the proof of Theorem 10.42, it suffices to
show
IT-c,hllg <lhlg (10.22)

for all one-input functions 4 € L?(Q,n), because then (10.21) holds point-
wise for all outcomes of x1,...,x;-1,%;+1,...,%,. By Proposition 9.19, if we
prove (10.22) for some g, then the same constant ¢, works for the conjugate
Hoélder index g’; thus we may restrict attention to ¢ = 2. Now the result
follows from Lemma 10.43 by taking a = ~~% and X = A= (x). O

10.5. Highlight: General sharp threshold theorems

In Chapter 8.4 we described the problem of “threshold phenomena” for mono-
tone functions f :{—1,1}" — {—1,1}. As p increases from 0 to 1, we are inter-
ested in whether Prx~ﬂ§n [f(x) = —1] has a “sharp threshold”, jumping quickly
from near 0 to near 1 around the critical probability p = p.. The “sharp
threshold principle” tells us that this occurs (roughly speaking) if and only
if the total influence of f under its critical distribution, I[f?<)], is w(1). (See
Exercise 8.28 for more precise statements.) This motivates finding a charac-
terization of functions with small total influence. Indeed, finding such a char-
acterization is a perfectly natural question even for not-necessarily-monotone
Boolean-valued functions f € L2(Q", 7%").

For the usual uniform distribution on {—1,1}", Friedgut’s Junta Theorem
from Chapter 9.6 provides a very good characterization: f:{—1,1}" —{-1,1}
can only have O(1) total influence if it’s (close to) an O(1)-junta. By the
version of Friedgut’s Junta Theorem for general product spaces (Section 10.3),
the same holds for Boolean-valued f € L?({—1,1}*,7%") so long as p is not too
close to 0 or to 1. However, for p as small as 1/n®®, the “junta”-size promised
by Friedgut’s Junta Theorem may be larger than n. (Cf. the breakdown of
Friedgut and Kalai’s sharp threshold result Theorem 10.29 for p < 1/n®®))
This is a shame, as many natural graph properties for which we’d like to show
a sharp threshold — e.g., (non-)3-colorability — have p = 1/n®1. At a technical
level, the reason for the breakdown for very small p is the dependence on the
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“A” parameter in the General Hypercontractivity Theorem. But there’s a more
fundamental reason for its failure, as suggested by the example at the end of
Section 10.3: Friedgut’s Junta Theorem simply isn’t true for such small p.

Example 10.45. Here are some examples of Friedgut’s Junta Theorem failing
for small p:

e The logical OR function OR,, : {-1,1}" — {-1,1} has critical probabil-
ity p¢ ~ 1%2, and its total influence at this probability is I[OR%’C)] ~2In2,
a small constant. Yet it’s easy to see that under the p.-biased distri-
bution, OR,, is not even, say, .1-close to any junta on o(n) coordinates.
(That is, for every o(n)-junta h, PrxN,,g?[ f(x)#h(x)]>.1.)

e Consider the function f :{-1,1}* — {-1,1} that is True (-1) if and only
if there exists a “run” of three consecutive —1’s in its input. (We allow
runs to “wrap around”, thus making f a transitive-symmetric function.)
It’s not hard to show that the critical probability for this f satisfies p. =
O(1/n3). Furthermore, since f is a computable by a DNF of width 3,
Exercise 8.26(b) shows that I[f?<)] < 12, a small constant. But again,
this f is not close to any o(n)-junta under the p.-biased distribution.
A similar example is Cliqueg : {True, False}(2) — {True, False}, the graph
property of containing a triangle.

We see from these examples that for p very small, we can’t hope to show
that low-influence functions are close to juntas. However, these counterex-
ample functions still have low complexity in a weaker sense — they are com-
putable by narrow DNFs. Indeed, Friedgut [Fri99] suggests this as a charac-
terization:

Friedgut’s Conjecture. There is a function w : R* x(0,1) - R such that
the following holds: If f : {True, False}® — {True, False} is a monotone function,
0<p<1/2 and I[fP1<K, then [ is e-close under nﬁ” to a monotone DNF of
width at most w(K,e).

The assumption of monotonicity is essential in this conjecture; see Exer-
cise 10.38.

Short of proving his conjecture, Friedgut managed to show:

Friedgut’s Sharp Threshold Theorem. The above conjecture holds when
f is a graph property.

This gives a very good characterization of monotone graph properties with
low total influence, one that works no matter how small p is. Friedgut also
extended his result to monotone hypergraph properties; this was sufficient
for him to show that several interesting hypergraph (or hypergraph-like)
properties have sharp thresholds — for example, the property of a random
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3-uniform hypergraph containing a perfect matching, or the property of a
random width-3 DNF formula being a tautology. (Interestingly, for neither
of these properties do we know precisely where the critical probability p.
is; nevertheless, we know there is a sharp threshold around it.) Roughly
speaking one needs to show that at the critical probability, these properties
can’t be well-approximated by narrow DNF's because they are almost surely
not determined just by “local” information about the (hyper)graph. This kind
of deduction takes some effort in random graph theory and we won’t discuss
it further here beyond Exercise 10.42; for a survey, see Friedgut [Fri05].

Friedgut’s proof is rather long and it relies heavily on the function being a
graph or hypergraph property. Following Friedgut’s work, Bourgain [Bou99]
gave a shorter proof of an alternative characterization. Bourgain’s characteri-
zation is not as strong as Friedgut’s for monotone graph properties; however,
it has the advantage that it works for low-influence functions on any product
probability space. (In particular, there is no monotonicity assumption since
the domain need not be {True, False}*.) We first make a quick definition and
then state Bourgain’s theorem.

Definition 10.46. Let f € L2(Q",7®") be {—1,1}-valued. For T c[n], ye QT
and 7 > 0, we say that the restriction yr is a 7-booster if f<T(y) = E[f]+1.
(Recall that f<T(y) = E[fﬂy]‘) In case 7 < 0 we say that yr is a 7-booster if

T (y) <Elf]1-I7l.

Bourgain’s Sharp Threshold Theorem. Let f € L2(Q",7%") be {-1,1}-
valued with I[f]1 < K. Assume Var[f] = .01. Then there is some T (either
positive or negative) with |t| = exp(—O(K?)) such that

Pr [3T <[n],|T| < O(K) such that x is a T-booster] = |1|.
x~m®n

(We emphasize that here and throughout, the constants hidden in the O(-) are
absolute and do not depend on Q or 7.)

Thinking of K as an absolute constant, the above theorem says that for a
typical input string x, there is a large chance that it contains a constant-sized
substring that is an Q(1)-booster for f. In the particular case of monotone
fe L2({True, False}®, n?”) with p small, it’s not hard to deduce (Exercise 10.40)
that in fact there exists a T with |T'| < O(K) such that restricting all coordi-
nates in T to be True increases Prngn [f = True] by exp(—O(Kz)). This is a
qualitatively weaker conclusion than what you get from Friedgut’s Sharp
Threshold Theorem when f is a graph property with I[f] < O(1) — in that case,
by taking T to be any of the width-O(1) terms in the approximating DNF one
can increase Prnﬁn [f = True]l not just by Q(1) but up to almost 1. Nevertheless,
Bourgain’s theorem apparently suffices to deduce any of the sharp thresholds
results obtainable from Friedgut’s theorem [Fri05]. For a very high-level
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sketch of how Bourgain’s theorem would apply in the case of 3-colorability of
random graphs, see Exercise 10.42.

The last part of this section will be devoted to proving Bourgain’s Sharp
Threshold Theorem. Before doing this, we add a remark. Hatami [Hat12] has
significantly generalized Bourgain’s work, establishing the following charac-
terization of Boolean-valued functions with low total influence:

Hatami’s Theorem. Let f € L2(Q",7°") be a {-1,1}-valued function with
I[f1< K. Then for every € > 0, the function f is e-close (under n®") to an
exp(O(K?3/e))-“pseudo-junta” h : Q" — {-1,1}.

The term “pseudo-junta” is defined in Exercise 10.39. A K-pseudo-junta A
has the property that I[A] < 4K; thus Hatami’s Theorem shows that having
0(1) total influence is essentially equivalent to being an O(1)-pseudo-junta.
A downside of the result, however, is that being a K-pseudo-junta is not a
“syntactic” property; it depends on the probability distribution 7®".

Let’s now turn to proving Bourgain’s Sharp Threshold Theorem. In fact,
Bourgain proved the theorem as a corollary of the following main result:

Theorem 10.47. Let (Q2, ) be a finite probability space and let f : Q" — {—1,1}
Let 0 <e<1/2 and write k =1[f1/e. Then for each x € Q" it’s possible to define
a set of “notable coordinates” J, < [n] satisfying |J,| < exp(O(k)) such that

Z f:S(x)2

S¢Fy

E

x~m®"

< 2e.

Here %, ={S :S € J,,|S| <k}, a collection always satisfying |F,| < exp(O(k2)).

You may notice that this theorem looks extremely similar to Friedgut’s
Junta Theorem from Chapter 9.6 (and the exp(—-O(I[f1%)) quantity in Bour-
gain’s Sharp Threshold Theorem looks similar to the Fourier coefficient lower
bound in Corollary 9.32). Indeed, the only difference between Theorem 10.47
and Friedgut’s Junta Theorem is that in the latter, the “notable coordinates” /
can be “named in advance” — they’re simply the coordinates j with Inf;[f]=
2.85) F(S)? large. By contrast, in Theorem 10.47 the notable coordinates de-
pend on the input x. As we will see in the proof, they are precisely the
coordinates j such that } g5;f =S(x)? is large. Of course, in the setting of
f:{-1,1}" - {-1,1} we have }”:S(x)2 = }?(S)2 for all x, so the two definitions
coincide. But in the general setting of f € L?(Q",7®") it makes sense that
we can’t name the notable coordinates in advance and rather have to “wait
until x is chosen”. For example, for the OR,, function as in Example 10.45,
there are no notable coordinates to be named in advance, but once x is chosen
the few coordinates on which x takes the value True (if any exist) will be the
notable ones.
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The proof of Theorem 10.47 mainly consists of adding the randomiza-
tion/symmetrization technique to the proof of Friedgut’s Junta Theorem (more
precisely, Theorem 9.28) to avoid dependence on the minimum probability of 7.
This randomization/symmetrization is applied to what are essentially the key
inequalities in that proof:

||T%Lif||§ <ILif 135 = ILif 155 - IL: I35 < L £ 1155 - Inf;[£].

(The last inequality here is Exercise 8.10(b).) The overall proof needs one
more minor twist: since we work on a “per-x” basis and not in expectation, it’s
possible that the set of notable coordinates can be improbably large. (Think
again about the example of OR,,; for x ~ nf/fl we expect only a constant number
of coordinates of x to be True, but it’s not always uniformly bounded.) This
is combated using the principle that low-degree functions are “reasonable”

(together with randomization/symmetrization).

Proof of Theorem 10.47. By the simple “Markov argument” (see Proposi-
tion 3.2) we have

E | Y fFSw? =Y IfSI3<Iflk=c
R AISTPY ISI>k
Thus it suffices to define the sets ¢/, so that
Y W se (10.23)
o~ | |S|<k, SgJ,

We'll first define “notable coordinate” sets </, < [n] which almost do the trick:

J. = {je[n]: Zf_s(x)zzr}, r=c*,
S3j

(where ¢ > 1 is a universal constant). Using this definition, the main effort of

the proof will be to show

E

x~m®n

Yo WP

IS|<k, SZJ;

<e€/2. (10.24)

This looks better than (10.23); the only problem is that the sets ¢/, don’t always
satisfy |J,.| < exp(O(k)) as needed. However, “in expectation” |J.| ought not be
much larger than 1/7 = ¢*. Thus we introduce the event

“J! istoo big” < |JL|=CF
(where C > ¢ is another universal constant) and define

_JJ, if J} is not too big,
*“lg ifJ.is too big.
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The last part of the proof will be to show that

E [1[J,istoobigl- Y. f™@)?|=e2. (10.25)

x~m® 0<IS|<k

Together, (10.25) and (10.24) establish (10.23). We will first prove (10.24) and
then prove (10.25). As a small aside, we'll see that for both inequalities we
could obtain a bound much less than €/2 if desired.

To prove (10.24), we mimic the proof of Theorem 9.28 but add in random-
ization/symmetrization. The key step is encapsulated in the following lemma.
Note that the lemma also holds with the more natural definition g = L;f; the
additional T 2 is to facilitate future “un-randomization/symmetrization”.

Lemma 10.48. Fix x € Q" and i ¢ J).. Then writing g = TgLif we have

~ 12 1/3, = ;4/3
”T%gleZST ||g|x||4/3'

Proof. Here g is the randomization/symmetrization of g, so g, = 8|x(r) is a
function on the uniform-distribution hypercube. Applying the basic (4/3,2)-
Hypercontractivity Theorem we have

~ 12 ~ 12 ~ 12 \1/8 =~ 4/3 ~ 2\1/3 = 4/3
”T%gleQS ||g|x||4/3:(||g|x”4/3) '”g\x”4/3 S(”glxllz) '||g|x||4/3~

But by the usual Parseval Theorem,

18113 = > g5 = 2(2/5)2'S|f:s(x)2 =) FSw?<r,
Scin] S3i S5i

the last inequality due to the assumption that i ¢ oJ. [l
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We now establish (10.24):

El Y 7 S@?|<6V32*.E|Y (T f5)@)?
* 1iS1<k, SgJ. ¥ lsgg. V3
<20"-E (T2 f=5))?
x LQZJ;SX‘;L 5V3
k o2 i
=20"-E ‘Z/ ||T\}§gllx”2] (for g =T L; )
i,
<20t E| Y ||§7|x||j§§] (Lemma 10.48)
¥ ligd,
n
<20%7 V8. Y L FI1YS (Theorem 10.35)
i=1
n
<20°713. Y Infi[f] (Exercise 8.10(b))
i=1

=20% 73 . 1[f1=(20c " V3)* ke < /2,

the last inequality because (20¢ Y3)¢E < 1/2 for all k£ = 0 once ¢ is a large
enough constant.

The last task in the proof is to establish (10.25). Using Cauchy—Schwarz,

E [1[J; is too bigl- Y. f75(x)?

X~ 0<IS|<k

(10.26)

( > f:S(x)2)2.

0<|S|<k

< \/E [1[J”, is too big]?] \l E
X X

For the first factor on the right of (10.26) we use Markov’s inequality:

E [1[J,, is too bigl?] = I;I'[J;7 is too big] = I;r[lchl >k

<C*ENJL1<C*E
¥ ¥ N=183i

(i > (x)2)/r} =C ke TIf1. (10.27)
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As for the second factor on the right of (10.26), let’s write A =T 2 (f=f=%). (We
are being slightly finicky about f=? just in case it’s very large.) Then
2
(¥ rSw?) ( Y (Tsf S)(x)2) ]
0<|S|<k S#p
= (5/2)" ‘E |11 l3]

E <(5/2)* .E

x

< 40" -E[lAxl3]

<40"- | f - F=2I% (Theorem 10.35)

< 40" -221;;[(,0 —f7®)?] (since |f — f=?| < 2 always)

=4-40" . Var[f1<4-40" -1[f]. (10.28)
Substituting (10.27) and (10.28) into (10.26) gives

E |1[J istoobigl- Y fS(x)?

e 0<|S|<k
<V Ckck.4-40k T[f]1=2(2) ke < /2,

the last inequality again holding for all 2 = 0 once C is chosen large enough
compared to c. O

We end this chapter by deducing Bourgain’s Sharp Threshold Theorem
from Theorem 10.47.

Proof of Bourgain’s Sharp Threshold Theorem. We take ¢ =.001 in The-
orem 10.47 and obtain the associated collections of subsets %,, where each
|Fxl < exp(O(K2)) and each S € &, satisfies |S| < O(K). Using the fact that
f=2(x)? =1—-Var[f]< .99 for each x we get

Z f:S(x)2

SeZ\{o}

E

x~7[®”

=1-2¢-.99=.008.

We always have | %, \ {9}| < exp(O(K 2)), and there’s also no harm in assuming
|Z \{@}| > 0. It follows that

008
=S 2
sdmax {f7() }] p(O(K2))

Thus for each x we can define a set S, with 0 < |S,| < O(K) such that
[£75+(@)?] = exp(-0K2). (10.29)

= exp(—O(K?)).

x~n-®n

x~ﬂ®n

By Exercise 8.19 we have |f=5=(x)| < 2!+ < 20 and hence f=5+(x)? < exp(O(K))
always. It follows from (10.29) that we must have

e |75 (%) = exp(-O(K?)| = exp(-O(K?).

x~7[®”
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We will complete the proof by showing that whenever f=5=(x)2 = exp(-O(K?2))
occurs, there exists T < Sy such that x7 is a +exp(—O(K?))-booster for f. So
we either have a + exp(—O(K?))-booster with probability at least % exp(—O(K?)),
or a —exp(—O0(K?))-booster with probability at least % exp(—O(K?)); either way,
the proof will be complete.

Assume then that f =Sx(x)2 > exp(—O(K 2)); equivalently,
IF=5(x)| = exp(~O(K?)).

Let’s now work with g = f —E[f]. Of course g=T = f=T for all T # @; since
S, # @ the above inequality tells us that |g=5+(x)| = exp(—O(K?)). Recall the
formula

g5 = Y (ST,
@#T<S,

we dropped the T = @ term since it’s 0. As there are only 2!/ — 1 = exp(O(K))
terms in the above sum, we deduce there must exist some T'< S, with 0 <
|T'| = O(K) such that

18T ()] = exp(—O(K?))/ exp(O(K)) = exp(—O(K?)).
But g<T = f<T —E[f], so the above gives us |f<T(x) — E[f]| = exp(-O(K?)).
This precisely says that xr is a +exp(—O(K 2))-booster, as desired. |

For a relaxation of the assumption Var[f]= .01 in this theorem, see Exer-
cise 10.41.

10.6. Exercises and notes

10.1 Let X be a random variable and let 1 <r < oco. Recall that the triangle
(Minkowski) inequality implies that for real-valued functions f1, fo,

171(X) + fo(XO - < | /1 (XDl + 1 f2(XOl .

More generally, if wq,...,w,, are nonnegative reals f1,..., [ are real func-
tions, then

lw1f1X) + -+ wn [ (XN swil AN+ + Wi | frn (XDl

Still more generally, if Y is a random variable independent of X and
f(X,Y) is a (measurable) real-valued function, then it holds that

|ELF XN, x < BIIFX,Y)lx].
Using this last fact, show that whenever 0 < p < g < oo,

I &y l,x < 1FEDlgx ||,y -

(Hint: Raise the inequality to the power of p and use r = q/p.)
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10.2

10.3

104

The goal of this exercise is to prove Proposition 9.15: If X and Y are
independent (p, g, p)-hypercontractive random variables, then sois X +Y.
Let a,b € R.

(a) First obtain

la+pbX +V)llgxy <|| la+pbX +bY lpy ||, x-
(b) Next, upper-bound this by
| la +8Y +pbXllgx |,y

(Hint: Exercise 10.1.)
(c) Finally, upper-bound this by

| la+6Y +bXllpx ||,y =lla+bX+Y)l,xy.

Let X1,...,X,, be independent (p, g, p)-hypercontractive random variables.
Let F(x) = ng[n]ﬁ(s )xS be an n-variate multilinear polynomial. Define
formally the multilinear polynomial T, F(x) = Y g, p'SIF(8)xS. The goal
of this exercise is to show

IToF(X1,...,X)lg < IF(X1,...,.X)lp. (10.30)

Note that this result yields an alternative deduction of the Hypercontrac-

tivity Theorem for +1 bits from the Two-Point Inequality. A (notationally

intense) generalization of this exercise can also be used as an alternative

inductive strategy for deducing the General Hypercontractivity Theorem

from Proposition 10.17 or Theorem 10.18.

(a) Why is Exercise 10.2 a special case of (10.30)?

(b) Begin the inductive proof of (10.30) by showing that the base case
n =0 is trivial.

(¢) For the case of general n, first establish

IT,Fll < || 1T, BX) + X, TyDX ), x,

¢.X"’

where we are using the notation x' = (x1,...,%,-1), F(x) = E(x) +
x,D(x"), and T;) for the operator acting formally on (n — 1)-variate
multilinear polynomials.

(d) Complete the inductive step, using steps similar to Exercises 10.2(b),(c).
(Hint: For X, a real constant, why is T;JE(X’) + XnT;D(X’) =T,(E +
X,D)X")?)

This exercise is concerned with the possibility of a converse for Proposi-

tion 10.8.

(a) In our proof of the Two-Point Inequality we used Proposition 9.19 to
deduce that a uniform bit x ~ {-1,1} is (p, g, p)-hypercontractivity if
it’s (¢', p’, p)-hypercontractive. Why can’t we use Proposition 9.19 to
deduce this for a general random variable X?
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10.5

10.6

(b) For each 1 < p < 2, exhibit a random variable X that is (p,2,p)-
hypercontractive (for some p) but not (2, p/, p)-hypercontractive.

(a) Regarding Remark 10.2, heuristically justify (in the manner of Exer-
cise 9.24(a)) the following statement: If A,B < {—1,1}" are concentric
Hamming balls with volumes exp(—%) and exp(—%z) and pa<b<a
(where 0 < p < 1), then

1 a2-2pab+b?%) .
p-correlated
and further, if b < pa, then Pr[x € A,y € B] ~ Pr[x € A]. Here you
should treat p as fixed and a,b — co.
(b) Similarly, heuristically justify that the Reverse Small-Set Expansion
Theorem is essentially sharp by considering diametrically opposed
Hamming balls.

The goal of this exercise (and Exercise 10.7) is to prove the Reverse Hy-
percontractivity Theorem and its equivalent Two-Function version:

Reverse Hypercontractivity Theorem. Let [ : {-1,1}* — R>° be a
nonnegative function and let —co<q <p <1. Then |T,flq = Ifll, for

O<sp=vA-p)(1-9).

Reverse Two-Function Hypercontractivity Theorem. Let
f,g:{-1,1}" — R=0 pe nonnegative, let r,s <0, and assume 0 < p < \/rs <
1. Then

(Ey) [F@)gWI= f l1+rlgll1+s-
p-correlated
Recall that for —co < p < 0 and for positive functions f € L%(Q, ) the
“norm” ||f ||, retains the definition E[fP]"VP. (The cases of p = —00, p =0,
and nonnegative functions are defined by appropriate limits; in particular
If|—00 is the minimum of f’s values, ||f | is the geometric mean of f’s
values, and ||, is 0 whenever f is not everywhere positive. We also
define p' by & + 2, =1, with 0' = 0.)
The Reverse Two-Function Hypercontractivity Theorem can be thought

of as a generalization of the lesser known “reverse Holder inequality” in

the setting of L2({~1,1}", 7{7):

Reverse Holder inequality. Let f € L2(Q, 1) be a positive function. Then
forany p<1,

I, =inf{Elfgl:g>0,lgl, =1}

In particular, for r <0 and f,g >0 we have E[f gl = | fll1+r11€l11+1/r-
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10.7

10.8

10.9

10.10

10.11
10.12

(a) Show that to prove these two Reverse Hypercontractivity Theorems it
suffices to consider the case of f,g: {—1,1}" — R", i.e., strictly positive
functions.

(b) Show that the Reverse Two-Function Hypercontractivity Theorem is
equivalent (via the reverse Holder inequality) to the Reverse Hyper-
contractivity Theorem.

(¢) Reduce the Reverse Two-Function Hypercontractivity Theorem to the
n =1 case. (Hint: Virtually identical to the Two-Function Hypercon-
tractivity Induction.) Further reduce to following:

Reverse Two-Point Inequality. Let —co<g<p<landletO<p=<

V@ -p)(1-q). Then |Tpfllq = Ifllp for any f:{-1,1} - R".

The goal of this exercise is to prove the Reverse Two-Point Inequality.

(a) Similar to the non-reverse case, the main effort is proving the inequal-
ity assuming that 0 < g < p <1 and that p = /(1 -p)/(1—q). Do this
by mimicking the proof of the Two-Point Inequality. (Hint: You will
need the inequality (1+ £)Y >1+0tfor 0> 1, and you will need to show

that \;% is an increasing function of 7 on [0,1) for all j > 2.)

(b) Extend to the case of 0 < p < /(1 - p)/(1-q). (Hint: Use the fact that
for any f :{—1,1}* - R=? and —oco < p < ¢ < oo we have Iflp<Iflg-
You can prove this generalization of Exercise 1.13 by reducing to the
case of negative p and ¢ to the case of positive p and q.)

(c) Establish the g = —oo case of the Reverse Two-Point Inequality.

(d) Show that the cases —oco < ¢ < p <0 follow by “duality”. (Hint: Like
Proposition 9.19 but with the reverse Hélder inequality.)

(e) Show that the cases g <0 < p follow by the semigroup property of T,.

(f) Finally, treat the cases of p =0 or g =0.

Give a simple proof of the n =1 case of the Reverse Two-Function Hyper-
contractivity Theorem when r = s = —1/2. (Hint: Replace f and g by 2
and g2; then you don’t even need to assume f and g are nonnegative.)
Can you also give a simple proof when r =s = —1 + 1/k for integers k& > 2?

. @y pa+b @o» _ a+pb
By selecting “r” = —p_+ b and “s” = —p pa+h» brove the Reverse Small-

Set Expansion Theorem mentioned in Remark 10.3. (Hint: The negative
norm of a 0-1-indicator is 0, so be sure to verify no negative norms arise.)

Let g € L2(Q",n®"). Writing x = (x1,x'), where &’ = (x3,...,x,), carefully
justify the following identity of one-input functions: (T,l,g)\xr =Tp(gx).
(Hint: You may want to refer to Exercise 8.21.)

Prove Proposition 10.12.

Let X be a random variable and let Y denote its symmetrization X — X',
where X' is an independent copy of X. Show for any ¢,0 € R that Pr[|Y| >
t]<2Pr[| X -0| = ¢t/2].
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10.13 The goal of this exercise is to establish Lemma 10.43.
(a) Show that we may take c9 =1 (and that equality holds). Henceforth
assume q > 2.
(b) By following the idea of our g = 4 proof, reduce to showing that there
exists 0 < ¢4 <1 such that

1-cqx|?+cqqx—1<|1+x/7—gx-1 VxeR.
(c) Further reduce to showing there exists 0 < ¢, < 1 such that

l-cox|?+cogx—1 1+x|2-gx—-1
1-cqrliteqqr—1 _[1+al"-gx-1 | p (10.31)

x2 x2
Here you should also establish that both sides are continuous func-
tions of x € R once the value at x = 0 is defined appropriately.

(d) Show that there exists M > 0 such that for every 0 <c4 < %, inequal-
ity (10.31) holds once |x| = M. (Hint: Consider the limit of both sides
as |x| — oc0.)

(e) Argue that it suffices to show that

[1+x/9—qgx—1

. > (10.32)

X
for some universal positive constant 1 > 0. (Hint: A uniform continu-
ity argument for (x,c,) € [-M,M1x[0, 1.

(f) Establish (10.32). (Hint: The best possible 7 is 1, but to just achieve

. . oy . . |]_+x|q—qx—]_ .

some positive 7, argue using Bernoulli’s inequality that =———— is
everywhere positive and then observe that it tends to co as |x| — 00.)

(g) Possibly using a different argument, what is the best asymptotic

bound you can achieve for c,? Is ¢4 = Q(lo%) possible?

10.14 Show that the largest ¢ for which inequality (10.20) holds is the smaller
real root of ¢* —2¢3® —2¢ + 1 =0, namely, ¢ ~ .435.

10.15 (a) Show that 1+6c2x2 + c*x* < 1+ 6x2 +4x3 + x* holds for all x € R when
¢ =1/2. (Can you also establish it for ¢ = .52697?)
(b) Show that if X is a random variable satisfying E[X]=0 and || X4 <
oo, then |a + %rXII4 < |la+ X4 for all « € R, where r ~{-1,1} is a
uniformly random bit independent of X. (Cf. Lemma 10.15.)
(c) Establish the following improvement of Theorem 10.44 in the case of
q =4: for all f € L2(Q",n®"),

||T%rf(x)”4,r,x = ||f(x)||4,x
(where x ~ n®", r ~ {-1,1}").

10.16 Complete the proof of Theorem 10.39. (Hint: You’ll need to rework Exer-
cise 9.8 as in Lemma 10.38.)

10.17 Prove Proposition 10.17.
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10.18

10.19

Recall from (10.5) the function p = p(1) defined for A € (0,1/2) (and fixed
q > 2) by

()= exp(u/q)—exp(-u/q) | sinh(u/q)
P=PI=N exp(u/q) —exp(—ulq’) _ \| sinh(u/q’)’

where u = u(A) is defined by exp(—u) = %

(a) Show that p is an increasing function of A. (Hint: One route is to
reduce to showing that p? is a decreasing function of u € (0,00), reduce
to showing that gtanh(u/q) is an increasing function of g € (1,00),

reduce to showing @ is a decreasing function of r € (0,00), and

reduce to showing sinh(2r) = 2r.)

(b) Verify the following statements from Remark 10.19:

for fixed g and A — 1/2, p—

g-1
for fixed g and 1 — 0, p~AYV2 Ve,

Also show:

/ /1
for fixed A and ¢ — o0, p~ .uh -
sinhu \ ¢

and |/ =t ~ v2AIn(1/1) for A — 0.
(c) Show that p = ﬁxlyz_l/q holds for all A.
=

Let (Q,7) be a finite probability space, |Q2| = 2, in which every outcome

has probability at least A. Let 1 < p <2 and 0 < p <1. The goal of this

exercise is to prove the result of Wolff [Wol07] that, subject to [T, fll2 =1,
every f € Lz(Q,n) that minimizes [|f|, takes on at most two values (and

there is at least one minimizing f).

(a) We consider the equivalent problem of minimizing F'(f) = || f ||§ subject
to G(f) = ||Tpf||§ =1. Show that both F(f) and G(f) are ¢! function-
als (identifying functions f with points in R%).

(b) Argue from continuity that the minimum value for ||f II§ subject to
ITof ||§ = 11is attained. Henceforth write f to denote any minimizer;
the goal is to show that f) takes on at most two values.

(c) Show that fj is either everywhere nonnegative or everywhere nonpos-
itive. (Hint: By homogeneity our problem is equivalent to maximizing
ITof l2 subject to [|f]l, = 1; now use Exercise 2.34.) Replacing fo by
|fol if necessary, henceforth assume fj is nonnegative.

(d) Show that VF(fo) = - pfL ™" and VG(fo) = n-2T 2 fo. Here n- g signi-
fies the pointwise product of functions on Q, with 7 thought of as a
function Q — R>%. (Hint: For the latter, write G(f) = (Tpef, 1))
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(e) Use the method of Lagrange Multipliers to show that ¢ fé’ 1= Ty fo
for some ¢ € R*. (Hint: You'll need to note that VG(fy) #0.)
(f) Writing u = E[fy], argue that each value y = f(w) satisfies the equa-
tion
eyP 1 =ply+(1-pHp. (10.33)

(g) Show that (10.33) has at most two solutions for y € R*, thereby com-
pleting the proof that fy takes on at most two values. (Hint: Strict
concavity of y?~1.)

(h) Suppose g > 2. By slightly modifying the above argument, show that
subject to |Iglle = 1, every g € L%(Q,n) that maximizes IToglly takes
on at most two values (and there is at least one maximizing g). (Hint:
At some point you might want to make the substitution g =T, f; note
that g is two-valued if f is.)

10.20 Fix1<p<2and 0<A<1/2. Let Q={-1,1} and 7 = 73, meaning n(-1) =
A, m(1) = 1 - A. The goal of this exercise is to show the result of Latala
and Oleszkiewicz [LLO00]: the largest value of p for which [ T,fll2 < [If 1
holds for all f € L2(Q, ) is as given in Theorem 10.18; i.e., it satisfies
o . _expu/p')—exp(-u/p')

=r*= 10.34
P =T = explulp) — exp(—ulp) ’ ( .

where u is defined by exp(-u) = % (Here we are using p = ¢’ to facili-
tate the proof; we get the (2, ¢)-hypercontractivity statement by Proposi-
tion 9.19.)

(a) Let’s introduce the notation a = AYP, = (1-21)P. Show that

_af [32—17 —a?PpP
- a— ’32

*
r

(b) Let f € L%(Q, 7). Write p=E[fland 6 =D;f = f(l). Our goal will be
to show

WE+8%r* =T = fl5 < 112, (10.35)

In the course of doing this, we’ll also exhibit a nonconstant function f
that makes the above inequality sharp. Why does this establish that
no larger value of p is possible?
(c) Show that without loss of generality we may assume
1+ 1-
fn=—"2 rm=-""2
a p

for some —1 < y < 1. (Hint: First use Exercise 2.34 and a continuity
argument to show that we may assume f > 0; then use homogeneity
of (10.35).)
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(d) The left-hand side of (10.35) is now a quadratic function of y. Show
that our r* is precisely such that

LHS(10.35)=Ay*+C

for some constants A,C; i.e., r* makes the linear term in y drop

out. (Hint: Work exclusively with the a,  notation and recall from

Definition 8.44 that 62 = A(1 - A)(f(1) - f(-1))? = a? BP(f(1) - f(-1))%.)
(e) Compute that

_ 10.36
f—a ( )

(Hint: You’ll want to multiply the above expression by a? + P =1.)
(f) Show that

RHS(10.35) = (1 + y)P + (1 — y)P)?P.

Why does it now suffice to show (10.35) just for 0 <y <1?

(g) Let y* = g;—g > 0. Show that if y = —y*, then f is a constant function
and both sides of (10.35) are equal to ﬁ.

(h) Deduce that both sides of (10.35) are equal to ﬁ
that after scaling, this yields the following nonconstant function for
which (10.35) is sharp: f(x) = exp(—xu/p).

(i) Write y = /z for 0 <z < 1. By now we have reduced to showing

for y = y*. Verify

Az +C<((1+V2)P +(1-2)P)2P,

knowing that both sides are equal when /z = y*. Calling the expres-
sion on the right ¢(z), show that
d
— =A.
22" oy
(Hint: You'll need a? + P =1, as well as the fact from part (%) that
P(z) = ﬁ when /z = y*.) Deduce that we can complete the proof
by showing that ¢(2) is convex for z € [0, 1).
() Show that ¢ is indeed convex on [0,1) by showing that its derivative
is a nondecreasing function of z. (Hint: Use the Generalized Binomial
Theorem as well as 1 < p <2 to show that (1 + V2P + (1 - /2)P is
expressible as .77 b ;27 where each b is positive.)
10.21 Complete the proof of Theorem 10.18. (Hint: Besides Exercises 10.19
and 10.20, you’ll also need Exercise 10.18(a).)

10.22 (a) Let ®:[0,00) — R be defined by ®(x) = xInx, where we take 01n0 = 0.
Verify that ® is a smooth, strictly convex function.
(b) Consider the following:
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Definition 10.49. Let g € L%(Q,7) be a nonnegative function. The
entropy of g is defined by

Entlg]= E [0(g(x)]- [ E [g@)]).

Verify that Entlg] = 0 always, that Ent[g] = 0 if and only if g is
constant, and that Ent[cg] = cEnt[g] for any constant ¢ = 0.

(c) Suppose ¢ is a probability density on {—1,1}" (recall Definition 1.20).
Show that Ent[¢] =Dk (¢ | ﬂf/’é), the Kullback—Leibler divergence of
the uniform distribution from ¢ (more precisely, the distribution with

density ¢).
10.23 The goal of this exercise is to establish:

The Log-Sobolev Inequality. Let f: {—1,1}* — R. Then %Ent[ F21<10f).
(@) Writing p = e, the (p,2)-Hypercontractivity Theorem tells us that

2 2
||Te‘tf||2 = ”f||1+exp(—2t)

for all £ = 0. Denote the left- and right-hand sides as LHS(¢), RHS(¢).
Verify that these are smooth functions of ¢ € [0,00) and that LHS(0) =
RHS(0). Deduce that LHS'(0) < RHS'(0).

(b) Compute LHS'(0) = —2I[f]. (Hint: Pass through the Fourier represen-
tation; cf. Exercise 2.18.)

(¢) Compute RHS'(0) = —Ent[f?2], thereby deducing the Log-Sobolev In-
equality. (Hint: As an intermediate step, define F(¢) = E[|f|1+exP(-20)]
and show that RHS'(0) = F(0)InF(0) + F'(0).)

10.24 (a) Let f:{-1,1}* — R. Show that Ent[(1+¢f)?] ~2Var[f]e? as ¢ — 0.
(b) Deduce the Poincaré Inequality for f from the Log-Sobolev Inequality.

10.25 (a) Deduce from the Log-Sobolev Inequality that for f:{-1,1}* — {-1,1}
with @ = min{Pr[f = 1], Pr[f = -11},

2aln(l/a) <I[f]. (10.37)

This is off by a factor of In2 from the optimal edge-isoperimetric in-
equality Theorem 2.39. (Hint: Apply the inequality to either % - %
or % + % fJ)

(b) Give a more streamlined direct derivation of (10.37) by differentiating
the Small-Set Expansion Theorem.

10.26 This exercise gives a direct proof of the Log-Sobolev Inequality.

(a) The first step is to establish the n = 1 case. Toward this, show that we
may assume [ :{-1,1} — R is nonnegative and has mean 1. (Hints:
Exercise 2.14, Exercise 10.22(b).)

(b) Thus it remains to establish %Ent[(l +bx)%] < b? for b e[-1,1]. Show
that g(b) = b%— %Ent[(1+bx)2] is smooth on [-1,1] and satisfies g(0) =
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0, g'0)=0, and g"(b) = 225 +In 128 >0 for b € (~1,1). Explain why
this completes the proof of the n = 1 case of the Log-Sobolev Inequality.

(c) Show that for any two functions f.,f- :{-1,1}* - R,

VEIf21-y/EIf2 2 fo—fo)2
(T =E (T) -
(Hint: The triangle inequality for || - ||2.)

(d) Prove the Log-Sobolev Inequality via “induction by restrictions” (as
described in Section 9.4). (Hint: For the right-hand side, establish
Inflf] = E[(X55)?1 + 410£, 1+ LI[f_]. For the left-hand side, apply
induction, then the n = 1 base case, then part (c).)

10.27 (a) By following the strategy of Exercise 10.23, establish the following:

Log-Sobolev Inequality for general product space domains.
Let f € L?(Q",7®") and write A = min(n), ' = 1- A, exp(-u) = %
Then %QEnt[f 21 <I[f], where

tanh(u/2) _ A'-A
u/2  “InA-InA’

(b) Show that p(1) ~ 2/In(1/1)) as 1 — 0.

(c¢) Let f:{-1,1}* — {-1,1} and treat {—1,1}" as having the p-biased
distribution 73". Write ¢ = 1-p. Show that if @ = min{Pr, [f =
11,Pry, [f = -11}, then

q—Pp
4lnq —Inp

o=p0) =

aln(l/a) <I[fP]

and hence, for p — 0,

alog,a<(1+o0p,(1))p- E [sens(x)]. (10.38)

We remark that (10.38) is known to hold without the 0,(1) for all
p=<1/2.
10.28 Prove Theorem 10.21. (Hint: Recall Proposition 8.28.)

10.29 Let X71,...,X,, be independent (2, g, p)-hypercontractive random variables
and let F(x) = Y s< F(S )25 be an n-variate multilinear polynomial of
degree at most 2. Show that

1F(X1,...,.Xn)lg < (1/P)k||F(X1,---,Xn)||2-
(Hint: You’ll need Exercise 10.3.)

10.30 Let 0 < 1 <1/2 and let (Q2,7) be a finite probability space in which some
outcome wg € Q has 7(wg) = A. (For example, Q ={-1,1}, 7 = m).) Define
f € L2(Q,n) by setting f(wo) =1, f(w) =0 for w # wy. For g = 2, com-
pute [|fl4/Ilfll2 and deduce (in light of the proof of Theorem 10.21) that
Corollary 10.20 cannot hold for p > AV2-Ve,
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10.31 Prove Theorem 10.22.
10.32 Prove Theorem 10.23.

10.33 Prove Theorem 10.24. (Hint: Immediately worsen g —1 to ¢ so that finding
the optimal choice of g is easier.)

10.34 Prove Theorem 10.25.

10.35 Prove Friedgut’s Junta Theorem for general product spaces as stated in
Section 10.3.

10.36 Show that (10.9) implies F(p.+np.) = 1—¢ in the proof of Theorem 10.29.
(Hint: Consider % In(1-F(p)).)

10.37 Justify the various calculations and observations in Example 10.45.

10.38 (a) Let p = % and let f € L2({-1,1}*,7%") be any Boolean-valued function.
Show that I[f]< 4. (Hint: Proposition 8.45.)

(b) Let us specialize to the case f = y[,). Show that f is not .1-close
to any width-O(1) DNF (under the %-biased distribution, for n suffi-
ciently large). This shows that the assumption of monotonicity can’t
be removed from Friedgut’s Conjecture. (Hint: Show that fixing any
constant number of coordinates cannot change the bias of y[,; very
much.)

10.39 A function A : Q" — X is said to expressed as a pseudo-junta if the follow-
ing hold: There are “juntas” f1,..., fm : Q" — {True,False} with domains
J1,...,dm S[n] respectively. Further, g : (Qu {*})" — X, where * is a new
symbol not in Q. Finally, for each input x € Q" we have A(x) = g(y), where
for j € [n],

{xj if j € J; for some i with f;(x) = True,
yj=

*  else.

An alternative explanation is that on input x, the junta f; decides whether
the coordinates in its domain are “notable”; then, A(x) must be determined
based only on the set of all notable coordinates. Finally, if 7 is a distribu-
tion on , we say that the pseudo-junta has width-k under n®" if

E #y; £l <k

in other words, the expected number of notable coordinates is at most k.
For h € L2(Q", 7®") we simply say that & is a k-pseudo-junta. Show that
if such a k-pseudo-junta A is {—1,1}-valued, then I[f] < 4%k. (Hint: Re-
ferring to the second statement in Proposition 8.24, consider the notable
coordinates for both x and x' = (x;,...,%;-1,%},%i+1,...,%,).)

10.40 Establish the following further consequence of Bourgain’s Sharp Thresh-
old Theorem: Let f : {True, False}” — {True, False} be a monotone function
with I[f?] < K. Assume Var[f]=.01 and 0 < p < exp(-cK?2), where c is a
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large universal constant. Then there exists T' < [n] with |T'| < O(K) such
that

Pr [f(x)=True|x; = Truefor alli € T1= Pr [f(x) = Truel + exp(—O(K?)).

X~

1041

10.42

n
D x~T

;.;n

(Hint: Bourgain’s Sharp Threshold Theorem yields a booster either to-
ward True or toward False. In the former case you're easily done; to rule
out the latter case, use the fact that p|T| < exp(—O(K?)).)

Suppose that in Bourgain’s Sharp Threshold Theorem we drop the as-
sumption that Var[f] = .01. (Assume at least that f is nonconstant.)
Show that there is some 7 with |7| = stddev[f]- exp(—OI[f1?/Var[f1?))
such that

Pr [3T <[n],|T| < Odlf)/Varlf]) such that x7 is a t-booster] = |7|.
x~7—[®n

(Cf. Exercise 9.32.)

In this exercise we give the beginnings of the idea of how Bourgain’s Sharp

Threshold Theorem can be used to show sharp thresholds for interesting

monotone properties. We will consider —3Col, the property of a random

v-vertex graph G ~ %(v, p) being non-3-colorable.

(a) Prove that the critical probability p. satisfies p. < O(1/v); i.e., estab-
lish that there is a universal constant C such that

Pr[G ~%(v,C/v) is 3-colorable] = 0,(1).

(Hint: Union-bound over all potential 3-colorings.)

(b) Toward showing (non-)3-colorability has a sharp threshold, suppose
the property had constant total influence at the critical probability.
Bourgain’s Sharp Threshold Theorem would imply that there is a 7
of constant magnitude such that for G ~%4(v, p.), there is a |7| chance
that G contains a 7-boosting induced subgraph G7. There are two
cases, depending on the sign of 7. It’s easy to rule out that the boost
is in favor of 3-colorability; the absence of a few edges shouldn’t in-
crease the probability of 3-colorability by much (cf. Exercise 10.40).
On the other hand, it might seem plausible that the presence of a
certain constant number of edges chould boost the probability of non-
3-colorability by a lot. For example, the presence of a 4-clique imme-
diately boosts the probability to 1. However, the point is that at the
critical probability it is very unlikely that G contains a 4-clique (or in-
deed, any “local” witness to non-3-colorability). Short of showing this,
prove at least that the expected number of 4-cliques in G ~ 4(v, p) is
0,(1) unless p = Qv ~3) > p,.
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Notes. As mentioned, the standard template introduced by Bonami [Bon70]
for proving the Hypercontractivity Theorem for +1 bits is to first prove the
Two-Point Inequality, and then do the induction described in Exercise 10.3.
Bonami’s original proof of the Two-Point Inequality reduced tothe 1< p <gq <
2 case as we did, but then her calculus was a little more cumbersome. We fol-
lowed the proof of the Two-Point Inequality appearing in Janson [Jan97]. An-
other approach to proving the Hypercontractivity Theorem is to derive it from
the Log-Sobolev Inequality (Exercise 10.23), as was done by Gross [Gro75].

Our use of two-function hypercontractivity theorems to facilitate an in-
ductive proof (and avoid the use of Exercise 10.1) follows the communica-
tion/coding theory viewpoint of Ahlswede and Gacs [AG76]. (We were also
inspired by Mossel et al. [MOR"*06], Barak et al. [BBH"12], and Kauers
et al. [KOTZ16].) Ahlswede and Gacs established the close connection be-
tween hypercontractivity and small-set expansion in general product spaces,
and independently obtained the sharp Hypercontractivity Theorem for +1
bits, relying in part on a result of Witsenhausen [Wit75].

Our statement of the Generalized Small-Set Expansion Theorem is mod-
eled after the almost identical Reverse Small-Set Expansion Theorem, first
proved by Mossel et al. [MOR*06]. The Reverse Hypercontractivity Inequal-
ity itself is due to Borell [Bor82]; the presentation in Exercises 10.6-10.9
follows Mossel et al. [MOR*06]. For more on reverse hypercontractivity, in-
cluding the very surprising fact that the Reverse Hypercontractivity Inequal-
ity holds with no change in constants for every product probability space, see
Mossel, Oleszkiewicz, and Sen [MOS12].

As mentioned in Chapter 9 the definition of a hypercontractive random
variable is due to Krakowiak and Szulga [KS88]. Many of the basic facts from
Section 10.2 (and also Exercise 10.2) are from this work and the earlier work of
Borell [Bor84]; see also various other works [KW92, Jan97, Szu98, MOO10].
As mentioned, the main part of Theorem 10.18 (the case of biased bits) is es-
sentially from Latala and Oleszkiewicz [LLO0O]; see also Oleszkiewicz [Ole03].
Our Exercise 10.20 fleshes out (and slightly simplifies) their computations but
introduces no new idea. Earlier works [BKK*92, Tal94, FK96, Fri98] had
established forms of the General Hypercontractivity Theorem for A-biased
bits, giving as applications KKL-type theorems in this setting with the correct
asymptotic dependence on 1. We should also mention that the sharp Log-
Sobolev Inequality for product space domains (mentioned in Exercise 10.27)
was derived independently of Latala and Oleszkiewicz’s work by Higuchi and
Yoshida [HY95] (without proof), by Diaconis and Saloff-Coste [DSC96] (with
proof), and possibly also by Oscar Rothaus (see [BL98]). Unlike in the case of
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uniform *1 bits, it’s not known how to derive Latala and Oleszkiewicz’s opti-
mal biased hypercontractive inequality from the optimal biased Log-Sobolev
Inequality.

Kahane [Kah68] has been credited with pioneering the randomization/
symmetrization trick for random variables. The entirety of Section 10.4 is
due to Bourgain [Bou79], though our presentation was significantly informed
by the expertise of Krzysztof Oleszkiewicz (and our proof of Lemma 10.43 is
slightly different). Like Bourgain, we don’t give any explicit dependence for
the constant C,; in Theorem 10.39; however, Kwapien [Kwal0] has shown
that one may take Cy = Cy = O(q/logq) for ¢ = 2. Our proof of Bourgain’s
Theorem 10.47 follows the original [Bou99] extremely closely, though we also
valued the easier-to-read version of Bal [Bal13].

The biased edge-isoperimetric inequality (10.38) from Exercise 10.27 was
proved by induction on n, without the additional 0,(1) error, by Russo [Rus82]
(and also independently by Kahn and Kalai [KK07]). We remark that this
work and the earlier [Rus81] already contain the germ of the idea that
monotone functions with small influences have sharp thresholds. Regarding
the sharp threshold for 3-colorability discussed in Exercise 10.42, Alon and
Spencer [AS08] contains a nice elementary proof of the fact that at the critical
probability for 3-colorability, every subgraph on ev vertices is 3-colorable, for
some universal € > 0. The existence of a sharp threshold for £-colorability was
proven by Achlioptas and Friedgut [AF99], with Achlioptas and Naor [ANO05]
essentially determining the location.
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Chapter 11

(Gaussian space and
Invariance Principles

The final destination of this chapter is a proof of the following theorem due to
Mossel, O’Donnell, and Oleszkiewicz [MOO05b, MOO10], first mentioned in
Chapter 5.2:

Majority Is Stablest Theorem. Fix p € (0,1). Let f :{-1,1}" —[-1,1] have
E[f1=0. Then, assuming MaxInf[f] < €, or more generally that f has no
(e,€)-notable coordinates,

Stab,[f]1<1- % arccos p + o.(1).

This bound is tight; recalling Theorem 2.45, the bound 1—% arccos p is achieved
by taking f = Maj,,, the volume—% Hamming ball indicator, for n — co. More
generally, in Section 11.7 we'll prove the General-Volume Majority Is Stablest
Theorem, which shows that for any fixed volume, “Hamming ball indicators
have maximal noise stability among small-influence functions”.

There are two main ideas underlying this theorem. The first is that “func-
tions on Gaussian space” are a special case of small-influence Boolean func-
tions. In other words, a Boolean function may always be a “Gaussian function
in disguise”. This motivates analysis of Gaussian functions, the topic intro-
duced in Sections 11.1 and 11.2. It also means that a prerequisite for proving
the (General-Volume) Majority Is Stablest Theorem is proving its Gaussian
special cases, namely, Borell’s Isoperimetric Theorem (Section 11.3) and the
Gaussian Isoperimetric Inequality (Section 11.4). In many ways, working
in the Gaussian setting is nicer because tools like rotational symmetry and
differentiation are available.

327
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The second idea is the converse to the first: In Section 11.6 we prove the
Invariance Principle, a generalization of the Berry—Esseen Central Limit The-
orem, which shows that any low-degree (or uniformly noise-stable) Boolean
function with small influences is approximable by a Gaussian function. In
fact, the Invariance Principle roughly shows that given such a Boolean func-
tion, if you plug any independent mean-0, variance-1 random variables into
its Fourier expansion, the distribution doesn’t change much. In Section 11.7
we use the Invariance Principle to prove the Majority Is Stablest Theorem by
reducing to its Gaussian special case, Borell’s Isoperimetric Theorem.

11.1. Gaussian space and the Gaussian noise operator

We begin with a few definitions concerning Gaussian space.

Notation 11.1. Throughout this chapter we write ¢ for the pdf of a standard

Gaussian random variable, ¢(z) = \/%71 exp(—%zz). We also write @ for its cdf,

and @ for the complementary cdf ®(¢) = 1 — ®(¢) = (—¢). We write z ~ N(0,1)"
to denote that z =(z1,...,2,) is a random vector in R” whose components z;
are independent Gaussians. Perhaps the most important property of this
distribution is that it’s rotationally symmetric; this follows because the pdf
at z is W exp(—%(z% +et z%)), which depends only on the length ||Z||§ of z.

Definition 11.2. For n € N* and 1 < p < oo we write LP(IR",y) for the space
of Borel functions f :IR” — R that have finite pth moment | f ||§ under the

Gaussian measure (the “y” stands for Gaussian). Here for a function f on
Gaussian space we use the notation

If1,=_ B [F@P1".

s

All functions f : R” — R and sets A € R" are henceforth assumed to be Borel
without further mention.

Notation 11.3. When it’s clear from context that f is a function on Gaussian
space we'll use shorthand notation like E[f]1=E_. n,1):[f(2)]. If f =14 is the
0-1 indicator of a subset A < IR" we'll also write

vol (A)=E[14]1= Pr [z€A]
2~N(0,1)

for the Gaussian volume of A.

Notation 11.4. For f,g € L2(R",y) we use the inner product notation (f,g) =
E[fg], under which L?(R",7) is a separable Hilbert space.

If you're only interested in Boolean functions f : {—-1,1}" — {-1,1} you
might wonder why it’s necessary to study Gaussian space. As discussed at the
beginning of the chapter, the reason is that functions on Gaussian space are
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11.1. Gaussian space and the Gaussian noise operator 329

special cases of Boolean functions. Conversely, even if you’re only interested
in studying functions of Gaussian random variables, sometimes the easiest
proof technique involves “simulating” the Gaussians using sums of random
bits. Let’s discuss this in a little more detail. Recall that the Central Limit
Theorem tells us that for x ~ {-1,1}*, the distribution of \/Lﬂ(xl +o )
approaches that of a standard Gaussian as M — co. This is the sense in
which a standard Gaussian random variable z ~ N(0, 1) can be “simulated” by
random bits. If we want d independent Gaussians we can simulate them by
summing up M independent d-dimensional vectors of random bits.

Definition 11.5. The function BitsToGaussians,, : {-1, 1M — R is defined by

BitsToGaussians,,(x) = \/Lﬁ(xl +- t+xp).

More generally, the function BitsToGaussians%I {=1,1}%M . R is defined on
an input x € {-1,1}**™ thought of as a matrix of column vectors %1, ...,% €
{-1,1)4, by
. . d 1 = -
BitsToGaussiansj,(x) = \/_M(xl +- +XpM).

Although M needs to be large for this simulation to be accurate, many of
the results we’ve developed in the analysis of Boolean functions f : {—-1,1}¥ —
R are independent of M. A further key point is that this simulation preserves
polynomial degree: if p(2z1,...,24) is a degree-£ polynomial applied to d inde-
pendent standard Gaussians, the “simulated version” p o BitsToGaussians%[ :
{-1,1}*™ _. R is a degree-k Boolean function. These facts allow us to transfer
many results from the analysis of Boolean functions to the analysis of Gauss-
ian functions. On the other hand, it also means that to fully understand
Boolean functions, we need to understand the “special case” of functions on
Gaussian space: a Boolean function may essentially be a function on Gaussian
space “in disguise”. For example, as we saw in Chapter 5.3, there is a sense in
which the majority function Maj,, “converges” as n — oo; what it’s converging
to is the sign function on 1-dimensional Gaussian space, sgn € L1(RR,y).

We’ll begin our study of Gaussian functions by developing the analogue
of the most important operator on Boolean functions, namely the noise oper-
ator T,. Suppose we take a pair of p-correlated M-bit strings (x,x’) and use
them to form approximate Gaussians,

y = BitsToGaussians,,(x), y' =BitsToGaussians,, (x').

For each M it’s easy to compute that E[y] = E[y'] =0, Var[y] = Var[y'] =1,
and E[yy'] = p. As noted in Chapter 5.2, a multidimensional version of the
Central Limit Theorem (see, e.g., Exercises 5.33, 11.46) tells us that the joint
distribution of (y,y’) converges to a pair of Gaussian random variables with
the same properties. We call these p-correlated Gaussians.
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Definition 11.6. For —1 < p <1, we say that the random variables (z,2’) are
p-correlated (standard) Gaussians if they are jointly Gaussian and satisfy
E[z] = E[2'] =0, Var[z] = Var[z'] = 1, and E[z2'] = p. In other words, if

Note that the definition is symmetric in 2z, 2’ and that each is individually
distributed as N(0,1).

0
0

1 p

(z,z')~N( 1

b

Fact 11.7. An equivalent definition is to say that z = (ii,g) and 2’ = (U, 8),
where g ~N(0,1)¢ and i,5 € R% are any two unit vectors satisfying (ii,0) = p.
In particular we may choose d = 2, i = (1,0), and U = (p,\/1— p2), thereby
defining z=g, and 2' = pg;++/1-p2gs.

Remark 11.8. In Fact 11.7 it’s often convenient to write p = cos6 for some
0 € R, in which case we may define the p-correlated Gaussians as z = (i, g)
and 2’ = (¥, g) for any unit vectors %, making an angle of 0; e.g., i = (1,0),
U =(cos0,sin0).

Definition 11.9. For a fixed z € R we say random variable 2’ is a Gaussian
p-correlated to z, written 2’ ~ N (2), if 2’ is distributed as pz+/1— p%g where
g ~N(0,1). By Fact 11.7, if we draw z ~ N(0, 1) and then form 2z’ ~ Ny(z), we
obtain a p-correlated pair of Gaussians (z,2').

Definition 11.10. For -1 < p <1 and n € N* we say that the R"-valued
random variables (z,2') are p-correlated n-dimensional Gaussian random
vectors if each component pair (zl,z'l), ..., (2n,2}) is a p-correlated pair of
Gaussians, and the n pairs are mutually independent. We also naturally
extend the definition of 2/ ~ N p(2) to the case of z € R"; this means 2 =

pz++/1-p2g for g ~N(0,1)".

Remark 11.11. Thus, if z ~ N(0,1)” and then 2z’ ~ Ny(2z) we obtain a p-
correlated n-dimensional pair (z,2'). It follows from this that (z,2’) has the
same distribution as (Qz,Qz’) for any rotation @ on R™.

Now we can introduce the Gaussian analogue of the noise operator.

Definition 11.12. For p € [-1,1], the Gaussian noise operator U, is the linear
operator defined on the space of functions f € LY(R",y) by

Upf(2) =z’~%

P

N = _ 2
JHEN = E [f(pz+1/1-p%g)l

Fact 11.13. (Exercise 11.3.) If f € Ll(lR",y) is an n-variate multilinear poly-
nomial, then U,f(2) = f(p2).
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Remark 11.14. Our terminology is nonstandard. The Gaussian noise op-
erators are usually collectively referred to as the Ornstein—-Uhlenbeck semi-
group (or sometimes as the Mehler transforms). They are typically defined for
p=ete[0,1] (.e., for ¢ € [0,00]) by

P,f(z)= E [felz+V1-e2g)]=U,f(2).
g~N(0,1)"

The term “semigroup” refers to the fact that the operators satisfy P; P, =
Pt 44, i€, Up Uy, = Uy p, (Which holds for all p1,p2 € [-1,1]; see Exer-
cise 11.4).

Before going further let’s check that U, is a bounded operator on all of
LP(R",y) for p = 1; in fact, it’s a contraction (cf. Exercise 2.33):

Proposition 11.15. For each p € [-1,1] and 1 < p < oo the operator U, is a
contraction on LP(R",y); i.e, [Upflp < Iflp.

Proof. The proof for p = cois easy; otherwise, the result follows from Jensen’s
inequality, using that ¢ — |¢|? is convex:

p
p = E p = E [ E , ]
IUpf Nl z~N(0,1)n[|Upf(Z)| 1 2~N(0,1)" z’~Np(z)[f(z )N
= E E NP1l — p. -
< 2~N(0,1)” erNp(z)[lf(z )P ] ”f”p

As in the Boolean case, you should think of the Gaussian noise operator
as having a “smoothing” effect on functions. As p goes from 1 down to O,
U, involves averaging f’s values over larger and larger neighborhoods. In
particular U; is the identity operator, U1 f = f, and Ugf = E[f], the constant
function. In Exercises 11.5, 11.6 you are asked to verify the following facts,
which say that for any f, as p — 1~ we get a sequence of smooth (i.e., €*°)
functions U, f that tend to f.

Proposition 11.16. Let f € LY(R",y) and let -1 < p < 1. Then U,f isa
smooth function.

Proposition 11.17. Let f € LY(R",y). As p — 1~ we have [U,f — fll1 — 0.

Having defined the Gaussian noise operator, we can also make the natural
definition of Gaussian noise stability (for which we’ll use the same notation
as in the Boolean case):

Definition 11.18. For f € L2(R",y) and p € [-1, 1], the Gaussian noise stabil-
ity of f at p is defined to be

Stab,[f1= o -dE . 1[f(z)f(z’)]:<f,Upf>:<Upf,f>.
p-(?o’:related Gaissians
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(Here we used that (2’,2) has the same distribution as (z,z’) and hence U, is
self-adjoint.)

Example 11.19. Let f: R — {0,1} be the 0-1 indicator of the nonpositive
halfline: f = 1(_s 07. Then

1 1 arccos
Stab,[f]= E  [ff)=Prlz=0,z'<0]=5- = ZT2F
(2,2') p-correlated 2 2 b4
standard Gaussians
(11.1)

with the last equality being Sheppard’s Formula, which we stated in Sec-
tion 5.2 and now prove.

Proof of Sheppard’s Formula. Since (—2z,—2) has the same distribution
as (z,2'), proving (11.1) is equivalent to proving

Priz<02 <0orz>02 >0]=1— arecosp.
T

The complement of the above event is the event that f(2) # f(2') (up to mea-
sure 0); thus it’s further equivalent to prove
Pr  [f@)#f@)]= g (11.2)

2,2
cosO-correlated

for all 0 € [0,7]. As in Remark 11.8, this suggests defining z = (i, 8), 2’ = (U, 8),
where i,7 € R2 is some fixed pair of unit vectors making an angle of 6, and
£ ~N(0,1)2. Thus we want to show

_ Pr [(4,8)<0& (U,8) >0 or vice versa] = %.

£~N(0,1)
But this last identity is easy: If we look at the diameter of the unit circle that
is perpendicular to g, then the event above is equivalent (up to measure 0)
to the event that this diameter “splits” & and . By the rotational symmetry
of g, the probability is evidently 6 (the angle between i,7) divided by 7 (the
range of angles for the diameter). U

Corollary 11.20. Let H c R" be any halfspace (open or closed) with boundary
hyperplane containing the origin. Let h = +1g. Then Stab,[h]=1- % arccos p.

Proof. We may assume H is open (since its boundary has measure 0). By
the rotational symmetry of correlated Gaussians (Remark 11.11), we may
rotate H to the form H = {z € R" : z; > 0}. Then it’s clear that the noise
stability of A = +1g doesn’t depend on n, i.e., we may assume n = 1. Thus
h=sgn=1-2f, where f = 1(_w 0] as in Example 11.19. Now if (z,2') denote
p-correlated standard Gaussians, it follows from (11.1) that

Stab,[2] = E[h(2)h(2)] = E[(1-2f(2))(1 - 2f(2")]
=1-4E[f]+4Stab,[f]1=1- 2arccosp. O
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Remark 11.21. The quantity Stab,[sgn]=1- % arccos p is also precisely the
limiting noise stability of Maj,,, as stated in Theorem 2.45 and justified in
Chapter 5.2.

We've defined the key Gaussian noise operator U, and seen (Proposi-
tion 11.15) that it’s a contraction on all L?(IR",y). Is it also hypercontractive?
In fact, we’ll now show that the Hypercontractivity Theorem for uniform +1
bits holds identically in the Gaussian setting. The proof is simply a reduction
to the Boolean case, and it will use the following standard fact (see Jan-
son [Jan97, Theorem 2.6] or Teuwen [Teul2, Section 1.3] for the proof in
case of L2; to extend to other L? you can use Exercise 11.1):

Theorem 11.22. For each n € N*, the set of multivariate polynomials is dense
in LP(R",y) for all 1 < p < oco.

Gaussian Hypercontractivity Theorem. Let f,g € L'(R",y), let r,s =0,
and assume 0< p < \/rs<1. Then
(f,Upg) =(Uypf,8) = E [f(2)g@N<Ifl1+rlgl1+s

(2,2') p-correlated
n-dimensional Gaussians

Proof. (We give a sketch; you are asked to fill in the details in Exercise 11.2.)
We may assume that f € L1*7(R",y) and g € L*5(R",y). We may also assume
f,g € L>(R",y) by a truncation and monotone convergence argument; thus the
left-hand side is finite by Cauchy—Schwarz. Finally, we may assume that f
and g are multivariate polynomials, using Theorem 11.22. For fixed M €
N* we consider “simulating” (z,z’) using bits. More specifically, let (x,x) €
{=1,1"M x {—1,1}"™ be a pair p-correlated random strings and define the joint
IR"-valued random variables y,y’ by

y = BitsToGaussiansj, (x), y' = BitsToGaussians}, (x').

By a multidimensional Central Limit Theorem we have that
Elf(»g(y)] = E, [f@ee)]
2,2
p-correlated

(Since f and g are polynomials, we can even reduce to a Central Limit Theo-
rem for bivariate monomials.) We further have

E 1+r91/(1+r) M—oo E 1+r91/(1+r)
IF TN === & ]

and similarly for g. (This can also be proven by the multidimensional Central
Limit Theorem, or by the one-dimensional Central Limit Theorem together
with some tricks.) Thus it suffices to show

E[f(y)g(y/)] < E[|f(y)|1+r]1/(1+r)E[lg(y/)|1+S]1/(1+s)
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for any fixed M. But we can express f(y) = F(x) and g(y') = G(x') for some
F,G:{-1,1)" _. R and so the above inequality holds by the Two-Function
Hypercontractivity Theorem (for +1 bits). O

An immediate corollary, using the proof of Proposition 10.4, is the stan-
dard one-function form of hypercontractivity:

Theorem 11.23. Let 1< p < g <ooand let f € L°P(R",y). Then [[U,flq < Iflp
for0<p< \/‘;’%}.

We conclude this section by discussing the Gaussian space analogue of
the discrete Laplacian operator. Taking our cue from Exercise 2.18 we make
the following definition:

Definition 11.24. The Ornstein—-Uhlenbeck operator L (also called the in-
finitesimal generator of the Ornstein—Uhlenbeck semigroup, or the number
operator) is the linear operator acting on functions f € L2(]R”,)/) by

d

d
Lf =350 | = =39l

(provided Lf exists in L2(R",y)). Notational warning: It is common to see
this as the definition of —L.

Remark 11.25. We will not be completely careful about the domain of the
operator L in this section; for precise details, see Exercise 11.18.

Proposition 11.26. Let f € L?(R",y) be in the domain of L, and further
assume for simplicity that f is €°. Then we have the formula

Lf(x)=x-Vf(x)-Af(x),

where A denotes the usual Laplacian differential operator, - denotes the dot
product, and V denotes the gradient.

Proof. We give the proof in the case n = 1, leaving the general case to Exer-
cise 11.7. We have

—t _ -2t _
Lf)=— lim E. noylfe"x+V1-e22)] f(x)‘

11.3
t—0+ t ( )

Applying Taylor’s theorem to f we have
flelx+V1i-e22)=fle 'x)+f (e x)V1—e 2tz + %f"(e_tx)(l —e 22,

where the =~ denotes that the two quantities differ by at most C(1—e~2t)%2|z3
in absolute value, for some constant C depending on f and x. Substituting
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this into (11.3) and using E[z] = 0, E[22] = 1, and that E[|z|3] is an absolute
constant, we get

) — Lemo=ty)(1=e 2t
LA =~ Jim [ K2 f@) | 3f"Ce xz( e~21)

K

using the fact that w — 0. But this is easily seen to be xf'(x) — f"(x), as

claimed. O

An easy consequence of the semigroup property is the following:

Proposition 11.27. The following equivalent identities hold:
d - -
-Upf =p 'LUyf =p U, Lf,
p
d

Z;Uetf = ~LUtf = UL

Proof. This follows from
U,-t-sf(x) = Up—f(x)
0
. UeﬂsUe—tf(x) —Ue—zf(x) . Ue—tUe—tsf(x)—Ue—tf(x)
=lim =lim .0
5—0 0 6—0 0

d .
iV =l

We also have the following formula:

Proposition 11.28. Let f,g € L>(R",y) be in the domain of L, and further
assume for simplicity that they are €°. Then

(f,Lg)=«(Lf,8)=(Vf,Vg). (11.4)

Proof. It suffices to prove the inequality on the right of (11.4). We again
treat only the case of n =1, leaving the general case to Exercise 11.8. Using
Proposition 11.26,

Lf.) = [ f'@)- " @g@ptds
=fof'(x)g(x)(p(x)dx+fRf’(x)(g(p)’(x)dx (integration by parts)
= fﬁ xf'(x)g(x)p(x) dax + fRf’(x)(g'(x)w(x)+g(x)<,0'(x))dx
Zf]Rf'(x)g'(x)(p(x)dx,

using the fact that ¢'(x) = —x(x). O

Finally, by differentiating the Gaussian Hypercontractivity Inequality we
obtain the Gaussian Log-Sobolev Inequality (see Exercise 10.23; the proof is
the same as in the Boolean case):
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Gaussian Log-Sobolev Inequality. Let f € L2(R",y) be in the domain of L.
Then

TEnt[f*1< E[|V£]?].

It’s tempting to use the notation I[f] for E[||V/]|?]; however, you have to
be careful because this quantity is not equal to 3.7 | E[Var;,[f]] unless f is a
multilinear polynomial. See Exercise 11.13.

11.2. Hermite polynomials

Having defined the basic operators of importance for functions on Gaussian
space, it’s useful to also develop the analogue of the Fourier expansion. To
do this we'll proceed as in Chapter 8.1, looking for a complete orthonormal
“Fourier basis” for L2(RR,y), which we can extend to L2(R",y) by taking prod-
ucts. It’s natural to start with polynomials; by Theorem 11.22 we know that
the collection (¢;)jen, ¢j(2) = 2/ is a complete basis for L?(R,y). To get an
orthonormal (“Fourier”) basis we can simply perform the Gram—Schmidt pro-
cess. Calling the resulting basis () jen (with “A” standing for “Hermite”), we
get
22-1 23 -3z

ho(2)=1, hi(2)=2, ha(2)= 7 h3(2) = 7
Here, e.g., we obtained h3(z) in two steps. First, we made ¢3(z) = 23 orthogo-
nal to hg,...,ho as

(11.5)

3 3 3 3 22-1\ 22-1_ 3 _
z2°—(z2°,1)-1-(2°,2) -2 —(=2°, 7 Y. 7 =2z°-3z,
where z ~N(0, 1) and we used the fact that 2% and 23 - zf/_él are odd functions
and hence have Gaussian expectation 0. Then we defined h3(z) = 23\;%32 after

determining that E[(z3 — 32)%] = 6.

Let’s develop a more explicit definition of these Hermite polynomials. The
computations involved in the Gram—Schmidt process require knowledge of
the moments of a Gaussian random variable 2 ~ N(0, 1). It’s most convenient
to understand these moments through the moment generating function of z,
namely

Elexp(t2)] = \%ﬂfﬁe”e—%zzdz:e%fzﬁfﬁe—%(z—“zdz:exp(%ﬂ). (11.6)

In light of our interest in the U, operators, and the fact that orthonormality
involves pairs of basis functions, we’ll in fact study the moment generating
function of a pair (z,2’) of p-correlated standard Gaussians. To compute it,
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assume (z,2') are generated as in Fact 11.7 with &, unit vectors in R2. Then

E [exp(sz+t2))]= E [exp(s(u1g1 +usge) +t(v181 +v282))]
(2,2) &1,82~N(0,1)
p-correlated independent
= E +1 E +t
g1~N(O’1)[exp((su1 v)g ] on OJ)[exp((suz v2)89)]

= eXp(%(Sul + tv1)2)exp(%(su2 +tvg)?)
= exp(3 1@ 135> + (i, D)st + S 1152
= exp(%(s2 +2pst + £2)),

where the third equality used (11.6). Dividing by exp(%(s2 +12)) it follows that

0 H] .
E [exp(sz— 1s?)exp(tz' - 1Dl =explpst) = Y P-sit/.  (11.7)
(Z,Z’) j:0 J!

p-correlated

Inside the expectation above we essentially have the expression exp(¢z — %tz)
appearing twice. It’s easy to see that if we take the power series in ¢ for
this expression, the coefficient on #/ will be a polynomial in z with leading
term %zj . Let’s therefore write

exp(tz—3t%) =Y ﬁHj(z)tj, (11.8)
J=0J*

where H j(z) is a monic polynomial of degree j. Now substituting this into (11.7)
yields

o q - ol
Z -0 E [Hj(z)Hk(z,)]SJt = Z —s/t.
= Jlk! (2,2) — J!
j,k 0 J 0
p-correlated
Equating coefficients, it follows that we must have
o/ if j=F,
E [H@H={"" "7
(2,2") 0 if j #E.
p-correlated
In particular (taking p = 1),
itoif =k,
HjHy={" "7 (11.9)
0 ifj#k;

i.e., the polynomials (H);en are orthogonal. Furthermore, since H; is monic
and of degree j, it follows that the H’s are precisely the polynomials that
arise in the Gram—Schmidt orthogonalization of {1,z,22,...}. We also see
from (11.9) that the orthonormalized polynomials (4 ;);en are obtained by
setting hj = LHj.

NG

Let’s summarize and introduce the terminology for what we’ve deduced.
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Definition 11.29. The probabilists’ Hermite polynomials (Hj)jen are the
univariate polynomials defined by the identity (11.8). An equivalent definition

(Exercise 11.9) is _ _
(-1 d’
Hi(z)= —— —¢(2). 11.10
i(2) o) d @(2) ( )
The normalized Hermite polynomials (h;)jcn are defined by A j = %H j; the
J!

first four are given explicitly in (11.5). For brevity we’ll simply refer to the
hj’s as the “Hermite polynomials”, though this is not standard terminology.

Proposition 11.30. The Hermite polynomials (h;)jen form a complete or-
thonormal basis for L*(R, Y). They are also a “Fourier basis”, since hg = 1.

Proposition 11.31. For any p € [-1,1] we have

o ifj=k

E [hj(2)h(2)]1=(h;,Ushy) = Uphj,ht) = {0 if k.

(2,2")

p-correlated

>

From this “Fourier basis” for L2(1R,y) we can construct a “Fourier basis’
for L2(R",y) just by taking products, as in Proposition 8.13.

Definition 11.32. For a multi-index a € N" we define the (normalized multi-
variate) Hermite polynomial hy :IR® — R by

n
ha(@) =[] ha,(2)).
j=1
Note that the total degree of 2 is |a| =} a;. We also identify a subset S < [n]

with its indicator a defined by a; = 1jcg; thus ~2g(z) denotes 25 =11 jeS Zj-

Proposition 11.33. The Hermite polynomials (hy)qen» form a complete or-
thonormal (Fourier) basis for L>(R",y). Further, for any p € [-1,1] we have

plel ifa=p,

E ho(2)hp(2) = (ha,Uphp) = (Uyhg,hp) =
) [ha(2)hp(2)] = ohp)=(Up ) {O if a#p.

(2,2
p-correlated

We can now define the “Hermite expansion” of Gaussian functions.

Definition 11.34. Every f € L2(1R”,y) is uniquely expressible as
f=73 f@hg,

aeN”
where the real numbers f(«) are called the Hermite coefficients of f and the
convergence is in LZ(]R”,)/); ie.,

—-0 ask—oo.
2
This is called the Hermite expansion of f.

”f— Y. fl@hq

la|<k
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Remark 11.35. If f :IR" — R is a multilinear polynomial, then it “is its own
Hermite expansion”:

f@=Y f8)25= Y FfShs)= Y Fl@hy).

Scln] Sclnl ag,...,ap<1

Proposition 11.36. The Hermite coefficients of f € L>(R",y) satisfy the for-
mula

f/\(a): <f’ha)a
and for f,g € LA(IR",y) we have the Plancherel formula
f.8)= ), f@ga)

aeN”
From this we may deduce:

Proposition 11.37. For f € L2(R”,y), the function U,f has Hermite expan-
sion

Uyf= Y pf(ah,

aeN"
and hence

Stab,[f1= ) p!“f(a).

aeN”
Proof. Both statements follow from Proposition 11.36, with the first using
U, f(@) = (U,f,ha) = <%Upf(ﬂ)hﬁ,ha> = %f(ﬁ><Uphﬁ,ha> = p! fla);

we also used Proposition 11.33 and the fact that U, is a contraction in L2(R™,y).
O

Remark 11.38. When f :R” — R is a multilinear polynomial, this formula
for U,f agrees with the formula f(pz) given in Fact 11.13.

Remark 11.39. In a sense it’s not very important to know the explicit for-
mulas for the Hermite polynomials, (11.5), (11.8); it’s usually enough just to
know that the formula for U, f from Proposition 11.37 holds.

Finally, by differentiating the formula in Proposition 11.37 at p =1 we de-
duce the following formula for the Ornstein—Uhlenbeck operator (explaining
why it’s sometimes called the number operator):

Proposition 11.40. For f € L2(R",y) in the domain of L we have
Lf= Y lalf(@)hq.

acN”

(Actually, Exercise 11.18 asks you to formally justify this and the fact that
f is in the domain of L if and only if }_, la|? f (a)? < 00.) For additional facts
about Hermite polynomials, see Exercises 11.9-11.14.
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11.3. Borell’s Isoperimetric Theorem

If we believe that the Majority Is Stablest Theorem should be true, then
we also have to believe in its “Gaussian special case”. Let’s see what this
Gaussian special case is. Suppose f : R"” —[—1,1] is a “nice” function (smooth,
say, with all derivatives bounded) having E[f] = 0. You’re encouraged to
think of f as (a smooth approximation to) the indicator +14 of some set
A cR" of Gaussian volume vol,(A) = % Now consider the Boolean function
g: (-1, 11" _ {—1,1} defined by

g = f o BitsToGaussians,.

Using the multidimensional Central Limit Theorem, for any p € (0,1) we

should have
M—oco

Stab,[g]

where on the left we have Boolean noise stability and on the right we have
Gaussian noise stability. Using E[g] — E[f] = 0, the Majority Is Stablest
Theorem would tell us that

Stab,[f],

Stab,[g]<1- %arccos o+ 0.(1),

where ¢ = MaxInflg]. But € = e(M) — 0 as M — co. Thus we should simply
have the Gaussian noise stability bound

Stabp[f]sl—%arccosp. (11.11)

(By a standard approximation argument this extends from “nice” f : R" —
[—1,1] with E[f]=0 to any measurable f : R" —[-1,1] with E[f] = 0.) Note
that the upper bound (11.11) is achieved when f is the +1-indicator of any
halfspace through the origin; see Corollary 11.20. (Note also that if » =1 and
f =sgn, then the function g is simply Maj,,.)

The “isoperimetric inequality” (11.11) is indeed true, and is a special case
of a theorem first proved by Borell [Bor85].

Borell’s Isoperimetric Theorem (volume-% case). Fix p €(0,1). Then for
any f € L2(R",y) with range [-1,11 and E[f1=0,

Stab,[f1<1- % arccos p,
with equality if f is the +1-indicator of any halfspace through the origin.

Remark 11.41. In Borell’s Isoperimetric Theorem, nothing is lost by restrict-
ing attention to functions with range {—1,1}, i.e., by considering only f = +14
for A <IR”. This is because the case of range [—1,1] follows straightforwardly
from the case of range {—1, 1}, essentially because \/Wp[f] = |IU\/,3f||2 isa
convex functional of f; see Exercise 11.25.
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More generally, Borell showed that for any fixed volume «a € [0,1], the
maximum Gaussian noise stability of a set of volume a is no greater than that
of a halfspace of volume a. We state here the more general theorem, using
range {0,1} rather than range {—1,1} for future notational convenience (and
with Remark 11.41 applying equally):

Borell’s Isoperimetric Theorem. Fix p €(0,1). Then for any f € L2(IR”,y)
with range [0,1] and E[f]= a,

Stab,[f]=< Ay(a).

Here Ay(a) is the Gaussian quadrant probability function, discussed in Exer-
cises 5.32 and 11.19, and equal to Stab,[1x] for any (every) halfspace H < R"
having Gaussian volume vol,(H) = a.

We've seen that the volume-% case of Borell’s Isoperimetric Theorem is a
special case of the Majority Is Stablest Theorem, and similarly, the general
version of Borell’s theorem is a special case of the General-Volume Majority
Is Stablest Theorem mentioned at the beginning of the chapter. As a conse-
quence, proving Borell’s Isoperimetric Theorem is a prerequisite for proving
the General-Volume Majority Is Stablest Theorem. In fact, our proof in Sec-
tion 11.7 of the latter will be a reduction to the former.

The proof of Borell’s Isoperimetric Theorem itself is not too hard; one of
five known proofs, the one due to Mossel and Neeman [MIN12], is outlined in
Exercises 11.26-11.29. If our main goal is just to prove the basic Majority Is
Stablest Theorem, then we only need the volume-% case of Borell’s Isoperi-
metric Inequality. Luckily, there’s a very simple proof of this Volume—% case
for “many” values of p, as we will now explain.

Let’s first slightly rephrase the statement of Borell’s Isoperimetric Theo-
rem in the volume-% case. By Remark 11.41 we can restrict attention to sets;
then the theorem asserts that among sets of Gaussian volume %, halfspaces
through the origin have maximal noise stability, for each positive value of p.
Equivalently, halfspaces through the origin have minimal noise sensitivity
under correlation cos0, for 0 € (0,Z). The formula for this minimal noise sen-
sitivity was given as (11.2) in our proof of Sheppard’s Formula. Thus we have:

Equivalent statement of the volume-% Borell Isoperimetric Theorem.
Fix 0 €(0,%). Then for any A c R™ with vol,(A) = %,

Pr  [1a(@)#1a(N2 2,
(2,2")
cosB-correlated

with equality if A is any halfspace through the origin.

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.



342 11. Gaussian space and Invariance Principles

In the remainder of this section we’ll show how to prove this formulation
of the theorem whenever 6 = J;, where ¢ is a positive integer. This gives
the volume—% case of Borell’s Isoperimetric Inequality for all p of the form
arccos 5, £ € IN*; in particular, for an infinite sequence of p’s tending to 1. To
prove the theorem for these values of 0, it’s convenient to introduce notation
for the following noise sensitivity variant:

Definition 11.42. For A cR" and 6 € R (usually 6 € [0,7]) we write RS4(5)
for the rotation sensitivity of A at 6, defined by

RS4(6) = (PI;) [14(2) # 14(2")].

cos §-correlated
The key property of this definition is the following:
Theorem 11.43. For any A € IR” the function RS4(6) is subadditive; i.e.,
RSA(O1+-+0¢)=RSA(1)+---+RS4(6).
In particular, for any 6 € R and ¢ € N¥,
RS4(6) = ¢-RS4(0/0).

Proof. Let g,g' ~N(0,1)"” be drawn independently and define 2(0) = (cos0)g+
(sinf)g’. Geometrically, as 6 goes from 0 to 7 the random vectors z(0) trace
from g to g’ along the origin-centered ellipse passing through these two points.
The random vectors 2(0) are jointly normal, with each individually distributed
as N(0,1)". Further, for each fixed 0,0’ € R the pair (2(0),2(0)) constitute p-
correlated Gaussians with

p =cosBcosO’ +sinfsinf’ = cos(’ - 0).

Now consider the sequence 6, ...,0, defined by the partial sums of the 0;i’s,
ie., 0;= 2{2151'- We get that 2(6y) and 2z(6/) are cos(d1 + - + d¢)-correlated,
and that 2(0;_1) and 2(8;) are cosé j-correlated for each j € [¢]. Thus

RSA(51 +--+87) = Pr{14(2(00)) # 14(2(6,))]
l 4

< Y Prila(z(0,) # 1a(z(0;-1))]1 = Y RS4(6)), (11.12)

j=1 j=1

where the inequality is the union bound. O

With this subadditivity result in hand, it’s indeed easy to prove the equiv-
alent statement of the volume—% Borell Isoperimetric Theorem for any 6 €
16> 870s--+1- As we'll see in Section 11.7, the case of 6 = § can be used to
give an excellent UG-hardness result for the Max-Cut CSP.
Corollary 11.44. The equivalent statement of the volume-% Borell Isoperimet-
ric Theorem holds whenever 6 = % for £ e N™.
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Proof. The exact statement we need to show is RS A(%) = %. This follows
by taking § = § in Theorem 11.43 because

RSA(3)= (Px;) [1a(2) # 1a(2)] =3,
2,2
0-correlated

using that O-correlated Gaussians are independent and that vol,(A) = % [l

Remark 11.45. Although Sheppard’s Formula already tells us that equality
holds in this corollary when A is a halfspace through the origin, it’s also
not hard to derive this directly from the proof. The only inequality in the
proof, (11.12), is an equality when A is a halfspace through the origin, because
the elliptical arc can only cross such a halfspace 0 or 1 times.

Remark 11.46. Suppose that A € R” not only has volume %, it has the

property that x € A if and only if —x ¢ A; in other words, the +1-indicator

of A is an odd function. (In both statements, we allow a set of measure 0 to

be ignored.) An example set with this property is any halfspace through the

origin. Then RS4 () = 1, and hence we can establish Corollary 11.44 more
n n T T

generally for any 0 €{7,5,5,%,%,---} by taking 6 =7 in the proof.

11.4. Gaussian surface area and Bobkov’s Inequality

This section is devoted to studying the Gaussian Isoperimetric Inequality.
This inequality is a special case of the Borell Isoperimetric Inequality (and
hence also a special case of the General-Volume Majority Is Stablest Theorem);
in particular, it’s the special case arising from the limit p — 1.

Restating Borell’s theorem using rotation sensitivity we have that for any
A cR", if H< R"” is a halfspace with the same Gaussian volume as A then
for all ¢,

RS (e) = RSy (e).
Since RS4(0) = RSz (0) =0, it follows that
RS/, (0%) = RS} (07).

(Here we are considering the one-sided derivatives at 0, which can be shown
to exist, though RSA(0+) may equal +oo; see the notes at the end of this
chapter.) As will be explained shortly, RS;\(OJr) is precisely v2/x - surfy(A),

where surfy(A) denotes the “Gaussian surface area” of A. Therefore the above
inequality is equivalent to the following:

Gaussian Isoperimetric Inequality. Let A < R" have vol,(A) = @ and let
H cR" be any halfspace with vol,(H) = a. Then surf,(A) = surf, (H).

Remark 11.47. As shown in Proposition 11.49 below, the right-hand side
in this inequality is equal to % (a), where % is the Gaussian isoperimetric
function, encountered earlier in Definition 5.26 and defined by % = @ o ®~ 1.
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Let’s now discuss the somewhat technical question of how to properly
define surf,(A), the Gaussian surface area of a set A. Perhaps the most
natural definition would be to equate it with the Gaussian Minkowski content
of the boundary 6A of A,

vol,({z : dist(z,0A) < €/2})
- .

(11.13)

y+(6A) =liminf
e—0*

(Relatedly, one might also consider the surface integral over A of the Gauss-
ian pdf ¢.) Under the “official” definition of surf,(A) we give below in Defini-
tion 11.48, we'll indeed have surf,(A) = y*(0A) whenever A is sufficiently nice
— say, a disjoint union of closed, full-dimensional, convex sets. However, the
Minkowski content definition is not a good one in general because it’s possible
to have y"(0A1) # y*(0Ag) for some sets A1 and Ag that are equivalent up to
measure 0. (For more information, see Exercise 11.15 and the notes at the
end of this chapter.)

As mentioned above, one “correct” definition is surf,(A) = Vr/2- RS'A(OJ').
This definition has the advantage of being insensitive to measure-0 changes
to A. To connect this unusual-looking definition with Minkowski content,
let’s heuristically interpret RS', (0"). We start by thinking of it as w for
“infinitesimal €”. Now RS 4 (¢) can be thought of as the probability that the line
segment £ joining two cose-correlated Gaussians crosses 0A. Since sine = ¢,
cose = 1 up to O(e?), we can think of these correlated Gaussians as g and
g +¢eg’ for independent g,g’ ~ N(0,1)". When g lands near 0A, the length
of £ in the direction perpendicular to 0A will, in expectation, be e E[|N(0,1)|] =
V2/me. Thus RS (¢) should essentially be %voly({z - dist(z,04) < V2/ne}) and
we have heuristically justified

Vala-RS,(0%) = Va2 lim ToAE) 2 1+ ap), (11.14)

e—07 €

One more standard idea for the definition of surfy,(A) is “E[[|[V14]l]]". This
doesn’t quite make sense since 14 € L'(IR",7) is not actually differentiable.
However, we might consider replacing it with the limit of E[|Vfy,|] for a
sequence (f;,,) of smooth functions approximating 14. To see why this notion
should agree with the Gaussian Minkowski content y*(0A) for nice enough A,
let’s suppose we have a smooth approximator f to 14 that agrees with 14 on
{z :dist(z,0A) = €/2} and is (essentially) a linear function on {z : dist(z,0A) <
€/2}. Then ||Vf| will be 0 on the former set and (essentially) constantly 1/e
on the latter (since it must climb from 0 to 1 over a distance of €). Thus we
indeed have

vol,({z : dist(z,0A) < €/2})

€

E[lIVfill= =y"(0A),
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as desired. We summarize the above technical discussion with the following
definition/theorem, which is discussed further in the notes at the end of this
chapter:

Definition 11.48. For any A € R", we define its Gaussian surface area to be
surf,(A4) = Vn/2-RS), (07) € [0,00].

An equivalent definition is

surfy,(A) = inf{l%ingNN% 1)n[||me(z)||]} )

5

where the infimum is over all sequences (f;,)men of smooth f,, : R" — [0,1]
with first partial derivatives in LQ(R”,}/) such that ||, —14ll1 — 0. Further-
more, this infimum is actually achieved by taking f,,, = U, , f for any sequence
pm — 17. Finally, the equality surf,(A) = y*(dA) with Gaussian Minkowski
content holds if A is a disjoint union of closed, full-dimensional, convex sets.

To get further acquainted with this definition, let’s describe the Gaussian
surface area of some basic sets. We start with halfspaces, which as men-
tioned in Remark 11.47 have Gaussian surface area given by the Gaussian
isoperimetric function.

Proposition 11.49. Let H < R" be any halfspace (open or closed) with vol,(H) =

a €(0,1). Then surf,(H) =% (a) = (@ Ya)). In particular, if a = 1/2 —i.e., H’s
1
Nz

Proof. Just as in the proof of Corollary 11.20, by rotational symmetry we
may assume H is a 1-dimensional halfline, H = (-0, ¢]. Since vol,(H) = a, we
have ¢ = ®1(a). Then surfy(H) is equal to

voly(lz € R+ dist(z,0H) < §) _ 2 o(s)ds
€

€ e—0"

boundary contains the origin — then surf,(H) =

y"(OH) = lim = p(t) = U(a).

]

Here are some more Gaussian surface area bounds:

Example 11.50. In Exercise 11.16 you are asked to generalize the above
computation and show that if A € R is the union of disjoint nondegenerate in-
tervals [¢1,¢2],[¢3,4],...,[t2m-1,%2m] then surf,(A) = Z?;”l @(t;). Perhaps the
next easiest example is when A € IR” is an origin-centered ball; Ball [Bal93]
gave an explicit formula for surfy(A) in terms of the dimension and radius,

one which is always less than \/g (see Exercise 11.17). This upper bound
was extended to non-origin-centered balls in Klivans et al. [KOS08]. Ball also
showed that every convex set A < R" satisfies surf,(A) < O(nV*); Nazarov
[Naz03] showed that this bound is tight up to the constant, using a construc-
tion highly reminiscent of Talagrand’s Exercise 4.18. As noted in Klivans
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et al. [KOSO08], Nazarov’s work also immediately implies that an intersection
of £ halfspaces has Gaussian surface area at most O(y/logk) (tight for appro-
priately sized cubes in R*), and that any cone in R” with apex at the origin
has Gaussian surface area at most 1. Finally, by proving the “Gaussian spe-
cial case” of the Gotsman-Linial Conjecture, Kane [Kan11] established that
if A< R" is a degree-k “polynomial threshold function” —i.e., A = {z : p(z) > 0}

for p an n-variate degree-k polynomial — then surf,(A) < \/];7[. This is tight

for every k (even when n = 1).

Though we’ve shown that the Gaussian Isoperimetric Inequality follows
from Borell’s Isoperimetric Theorem, we now discuss some alternative proofs.
In the special case of sets of Gaussian volume %, we can again get a very
simple proof using the subadditivity property of Gaussian rotation sensitivity,
Theorem 11.43. That result easily yields the following kind of “concavity

property” concerning Gaussian surface area:

Theorem 11.51. Let A € R". Then for any 6 >0,

RSA(6
V/2- g( ) < surfy(A).

Proof. For § >0 and ¢ =6/¢, ¢ e N*, Theorem 11.43 is equivalent to
RSA(5) - RSA(e)

) €
Taking ¢ — oo hence € — 0%, the right-hand side becomes RS/, (0) = v2/r -
surf), (A). U

If we take 6 = /2 in this theorem, the left-hand side becomes

Vol , 11:\.11(‘0 N [14(2) #14(2N]1=2V2/n -voly,(A)(1-vol,(A)).
2,2/~ ,1)"
independent

Thus we obtain a simple proof of the following result, which includes the
Gaussian Isoperimetric Inequality in the volume-% case:
Theorem 11.52. Let A <IR". Then

2V 2/m-voly (A)(1 - voly(A)) < surfy(A).

In particular, if vol,(A) = %, then we get the tight Gaussian Isoperimetric
. 1 _gyl
Inequality statement surf, (A) = Work U (3).

As for the full Gaussian Isoperimetric Inequality, it’s a pleasing fact that
it can be derived by pure analysis of Boolean functions. This was shown
by Bobkov [Bob97], who proved the following very interesting isoperimetric
inequality about Boolean functions:
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Bobkov’s Inequality. Let f :{—1,1}" —[0,1]. Then
U E[fD < . {El - [I(2(f (x)), VI (eI (11.15)

s

Here Vf is the discrete gradient (as in Definition 2.34) and | - || is the usual
Euclidean norm (in R™Y). Thus to restate the inequality,

wE[f]D < . E1

., \/%(f(x))2+ .éDif(xﬂ .

In particular, suppose f =14 is the 0-1 indicator of a subset A < {-1,1}*. Then
since 2(0) = %(1) = 0 we obtain % (E[141) <E[||IV14]|]

As Bobkov noted, by the usual Central Limit Theorem argument one can
straightforwardly obtain inequality (11.15) in the setting of functions f €
L2(R",y) with range [0, 1], provided f is sufficiently smooth (for example, if f
is in the domain of L; see Exercise 11.18). Then given A € R", by taking a
sequence of smooth approximations to 14 as in Definition 11.48, the Gaussian
Isoperimetric Inequality % (E[14]) < surf,(A) is recovered.

Given A c {-1,1}" we can write the quantity E[|V14]]] appearing in
Bobkov’s Inequality as

E[IV1ll=3- E [Vsensa@), (11.16)

)

using the fact that for 14 : {—1,1}" — {0, 1} we have
D;1a(x)? = % -1[coordinate i is pivotal for 14 on x].

The quantity in (11.16) — (half of) the expected square-root of the number of
pivotal coordinates —is an interesting possible notion of “Boolean surface area”
for sets A < {—1,1}". It was first essentially proposed by Talagrand [Tal93].
By Cauchy—Schwarz it’s upper-bounded by (half of) the square-root of our
usual notion of boundary size, average sensitivity:

E[|V14l1</E[IV1al?]1= VI[14] (11.17)

(Note that I[14] here is actually one quarter of the average sensitivity of A,
because we're using 0-1 indicators as opposed to +1). But the inequality
in (11.17) is often far from sharp. For example, while the majority function has
average sensitivity ©(y/n), the expected square-root of its sensitivity is ©(1)
because a O(1/y/n)-fraction of strings have sensitivity [n/2] and the remainder
have sensitivity 0.

Let’s turn to the proof of Bobkov’s Inequality. As you are asked to show
in Exercise 11.20, the general-n case of Bobkov’s Inequality follows from the
n =1 case by a straightforward “induction by restrictions”. Thus just as in
the proof of the Hypercontractivity Theorem, it suffices to prove the n =1
“two-point inequality”, an elementary inequality about two real numbers:
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Bobkov’s Two-Point Inequality. Let f:{-1,1} — [0,1]. Then
& ELfD <ELI@ (), VI
Writing f(x) = a + bx, this is equivalent to saying that provided a +b €[0,1],
U(a) < 31(%(a+b),b)| + 31(%(a - b),b)|.

Remark 11.53. The only property of % used in proving this inequality is
that it satisfies (Exercise 5.43) the differential equation %" = —1 on (0,1).

Bobkov’s proof of the two-point inequality was elementary but somewhat
long and hard to motivate. In contrast, Barthe and Maurey [BMO00] gave
a fairly short proof of the inequality, but it used methods from stochastic
calculus, namely Itd’s Formula. We present here an elementary discretization
of the Barthe-Maurey proof.

Proof of Bobkov’s Two-Point Inequality. By symmetry and continuity we
may assume 6 <a—-b <a+b<1-§ for some § >0. Let 7 = 7(5) > 0 be a small
quantity to be chosen later such that b/7 is an integer. Let yy,¥1,¥s,... be
a random walk within [a — b,a + b] that starts at y,; = a, takes independent
equally likely steps of +7, and is absorbed at the endpoints a + b. Finally, for
t €N, define z; = II(UZZ(yt),T\/Z)II. The key claim for the proof is:

Claim 11.54. Assuming 1 =1(0) > 0 is small enough, (2;); is a submartingale
with respect to (y,):, i.e., Elz¢11 | ¥g,-.., ¥ 1 =Elz:41 | y,12 2.

Let’s complete the proof given the claim. Let T be the stopping time at
which y, first reaches a +b. By the Optional Stopping Theorem we have
Elzol<Elz7r];i.e.,

U(a) <El(%(z7),7VDI]. (11.18)
In the expectation above we can condition on whether the walk stopped at
a+b or a—b. By symmetry, both events occur with probability 1/2 and neither
changes the conditional distribution of T'. Thus we get

U(a) < L E[I(%(a+b), TVD)|1+ 3 Ell(%(a - b),7VT)I|]
< 31 (a+b), VER2TD| + }|(%(a - b), VEIT2 T,

with the second inequality using concavity of v — Vu2+v. But it’s a well-
known fact (following immediately from Exercise 11.22) that E[T] = (b/1)%.
Substituting this into the above completes the proof.

It remains to verify Claim 11.54. Actually, although the claim is true
as stated (see Exercise 11.23) it will be more natural to prove the following
slightly weaker claim:

Elz/ 41|y, 2,-Cs7° (11.19)
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for some constant Cs depending only on §. This is still enough to com-
plete the proof: Applying the Optional Stopping Theorem to the submartin-
gale (z;+Cs7%t); we get that (11.18) holds up to an additive Cst>E[T] =
Csb%7. Then continuing with the above we deduce Bobkov’s Inequality up
to C5b27, and we can make 7 arbitrarily small.

Even though we only need to prove (11.19), let’s begin a proof of the
original Claim 11.54 anyway. Fix ¢t € N* and condition on y, =y. If yisa + b,
then the walk is stopped and the claim is clear. Otherwise, y,,; is y £ 7 with
equal probability, and we want to verify the following inequality (assuming
7 > 0 is sufficiently small as a function of §, independent of y):

12 (), TVl < 312Uy + 1), 7VE+ DIl + 31Uy - 1), TVE+ D) (11.20)

=sl(Vu+rP+ 2oV + 3] (V2 -2+ 72,7V

By the triangle inequality, it’s sufficient to show

Uy) < WU+ +12+ T Uy -1 472,

and this is actually necessary too, being the ¢ = 0 case of (11.20). (In fact,
this is identical to Bobkov’s Two-Point Inequality itself, except now we may
assume 7 is sufficiently small.) Finally, since we actually only need the weak-
ened submartingale statement (11.19), we’ll instead establish

Uy) - Co1® < 1\ /Uy + 12 + 12+ 1\ Uy - 1) 472 (11.21)

for some constant Cs depending only on § and for every 7 < g. We do this
using Taylor’s theorem. Write V,(7) for the function of 7 on the right-hand
side of (11.21). For any y € [a —b,a + b] the function V) is smooth on [0,2]
because % is a smooth, positive function on [Q, 1- %]. Thus

Vy(@) = Vy(0) + V()7 + 3V, (0)7* + 3V, ()r°

for some ¢ between 0 and 7. The magnitude of V;"({) is indeed bounded by
some Cy depending only on §, using the fact that % is smooth and positive on
[2,1- g]. But V,(0) =%(y), and it’s straightforward to calculate that

Vy0=0, V) (O)=2"(y)+ Uy =0,

the last identity used the key property %" = —1/% mentioned in Remark 11.53.
Thus we conclude V,(7) = %(y) - C573, verifying (11.21) and completing the
proof. O

As a matter of fact, by a minor adjustment (Exercise 11.24) to this ran-
dom walk argument we can establish the following generalization of Bobkov’s
Inequality:

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.



350 11. Gaussian space and Invariance Principles

Theorem 11.55. Let f :{-1,1}" — [0,1]. Then E[(%(T,f),VT, )] is an
increasing function of p €[0,1]. We recover Bobkouv’s Inequality by considering
p=0,1

We end this section by remarking that De, Mossel, and Neeman [DMN13]
have given a “Bobkov-style” Boolean inductive proof that yields both Borell’s
Isoperimetric Theorem and also the Majority Is Stablest Theorem (albeit with
some aspects of the Invariance Principle-based proof appearing in the latter
case); see Exercise 11.30 and the notes at the end of this chapter.

11.5. The Berry-Esseen Theorem

Now that we’ve built up some results concerning Gaussian space, we’re mo-
tivated to try reducing problems involving Boolean functions to problems
involving Gaussian functions. The key tool for this is the Invariance Princi-
ple, discussed at the beginning of the chapter. As a warmup, this section is
devoted to proving (a form of) the Berry—Esseen Theorem. As discussed in
Chapter 5.2, the Berry—Esseen Theorem is a quantitative form of the Central
Limit Theorem for finite sums of independent random variables. We restate
it here:

Berry-Esseen Theorem. Let X4,...,X,, be independent random variables
with E[X;] =0 and Var[X;] = U?, and assume 2?210? =1 Let S=%7 , X;
and let Z ~N(0,1) be a standard Gaussian. Then for all u € R,

|Pr[S <ul-Pr[Z <u]| <cy,

where
Y 3
y=_IXil3
i=1

and c is a universal constant. (For definiteness, ¢ = .56 is acceptable.)

In this traditional statement of Berry—Esseen, the error term vy is a little
opaque. To say that y is small is to simultaneously say two things: the random
variables X; are all “reasonable” (as in Chapter 9.1); and, none is too domi-
nant in terms of variance. In Chapter 9.1 we discussed several related notions
of “reasonableness” for a random variable X. It was convenient there to use
the definition that | X IIi is not much larger than || X ||‘21. For the Berry—Esseen
Theorem it’s more convenient (and slightly stronger) to use the analogous
condition for the 3rd moment. (For the Invariance Principle it will be more
convenient to use (2,3, p)- or (2,4, p)-hypercontractivity.) The implication for
Berry-Esseen is the following:
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Remark 11.56. In the Berry—Esseen Theorem, if all of the X;’s are “reason-
able” in the sense that | X; II§ <B|X; |Ig = Ba?, then we can use the bound

Y < B -max{o;}, (11.22)
2
as this is a consequence of

n n n
Y= Z ||Xi||§ <B Zof’ < B-max{o;}- a? =B -max{o;}.
i=1 i=1 v i=1 v
(Cf. Remark 5.15.) Note that some “reasonableness” condition must hold if
S =) ; X, is to behave like a Gaussian. For example, if each X; is the “unrea-
sonable” random variable which is ++/n with probability # each and 0 other-
wise, then S = 0 except with probability at most % — quite unlike a Gaussian.
Further, even assuming reasonableness we still need a condition like (11.22)
ensuring that no X; is too dominant (“influential”) in terms of variance. For
example, if X; ~ {—1,1} is a uniformly random bit and Xo,...,X, =0, then

S = X1, which is again quite unlike a Gaussian.

There are several known ways to prove the Berry—Esseen Theorem; for ex-
ample, using characteristic functions (i.e., “real” Fourier analysis), or Stein’s
Method. We'll use the “Replacement Method” (also known as the Lindeberg
Method, and similar to the “Hybrid Method” in theoretical cryptography). Al-
though it doesn’t always give the sharpest results, it’s a very flexible technique
which generalizes easily to higher-degree polynomials of random variables (as
in the Invariance Principle) and random vectors. The Replacement Method
suggests itself as soon as the Berry—Esseen Theorem is written in a slightly
different form: Instead of trying to show

X{+Xo+---+X,~Z, (11.23)
where Z ~N(0,1), we'll instead try to show the equivalent statement
Xi1+Xo+-+X,=Z1+Zo+---+Z,, (11.24)

where the Z;’s are independent Gaussians with Z; ~ N(O,a?). The state-
ments (11.23) and (11.24) really are identical, since the sum of independent
Gaussians is Gaussian, with the variances adding. The Replacement Method
proves (11.24) by replacing the X;’s with Z;’s one by one. Roughly speaking,
we introduce the “hybrid” random variables

H=Z\+ - +Z;+X; 1+ +X,,

show that H;_1 = H, for each ¢ € [n], and then simply add up the n errors.

As a matter of fact, the Replacement Method doesn’t really have anything
to do with Gaussian random variables. It actually seeks to show that

X1+Xo++ X, =Y 1+Yo+--+Y,
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whenever X1,...,X,,Y1,...,Y, are independent random variables with “match-
ing first and second moments”, meaning E[X;] = E[Y ;] and E[X ?] = E[Y?] for
each i € [n]. (The error will be proportional to Y ;(| X; 13+ 1Y; |I§).) Another
way of putting it (roughly speaking) is that the linear form x{ +--- + x,, is in-
variant to what independent random variables you substitute in for x1,...,x,,
so long as you always use the same first and second moments. The fact that
we can take the Y;’s to be Gaussians (with Y; ~ N(E[X;],Var[X;])) and then
in the end use the fact that the sum of Gaussians is Gaussian to derive the
simpler-looking

S = i X; = N(E[S],Var[S])
i=1

is just a pleasant bonus (and one that we’ll no longer get once we look at
nonlinear polynomials of random variables in Section 11.6). Indeed, the re-
mainder of this section will be devoted to showing that

Sx =X;+--+X, is “close” to Sy =Y{+---+Y,

whenever the X;’s and Y ;’s are independent, “reasonable” random variables
with matching first and second moments.

To do this, we’ll first have to discuss in more detail what it means for two
random variables to be “close”. A traditional measure of closeness between
two random variables Sy and Sy is the “cdf-distance” used in the Berry—
Esseen Theorem: Pr[Sx < u] = Pr[Sy < u] for every u € R. But there are
other natural measures of closeness too. We might want to know that the
absolute moments of Sy and Sy are close; for example, that ||Sx |1 = ISy ll1.
Or, we might like to know that Sx and Sy stray from the interval [-1,1]
by about the same amount: E[dist[_1 1(Sx)] = Eldist;_1 1(Sy)]. Here we are
using:

Definition 11.57. For any interval ¢ #I C R the function dist; : R — R>? is
defined to measure the distance of a point from I; i.e., dist;(s) = inf,c7{|s — u|}.

All of the closeness measures just described can be put in a common frame-
work: they are requiring E[y(Sx)] = E[y(Sy)] for various “test functions” (or
“distinguishers”) v : R — R.
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NN

u 1

Y(s) =15y w(s) =|s| w(s) =dist[_1,15(s)

Figure 11.1. The test functions ¥ used for judging Pr[Sx <ul=Pr[Sy <
ul, ISxll1 = ISy ll1, and Eldist;_1 11(Sx)] = E[dist[_1, 1](Sy)], respectively

It would be nice to prove a version of the Berry—Esseen Theorem that
showed closeness for all the test functions y depicted in Figure 11.1, and
more. What class of tests might we able to handle? On one hand, we can’t be
too ambitious. For example, suppose each X; ~{—1,1}, each Y; ~N(0,1), and
w(s) = 1sez. Then E[¢(Sx)] =1 because Sx is supported on the integers, but
E[y(Sy)] = 0 because Sy ~ N(0,n) is a continuous random variable. On the
other hand, there are some simple kinds of tests ¢ for which we have exact
equality. For example, if w(s) = s, then E[y¢(Sx)] = E[w(Sy)]; this is by the
assumption of matching first moments, E[X;] = E[Y;] for all i. Similarly, if
w(s)=s2, then

Ely(Sx1=E|(}X,)’| =Y EIX?1+ ) EIX,X,]

i#]
= ZE[X?] +> EIX;]E[X]] (11.25)
i i£]
(using independence of the X;’s); and also
Ely(Sy)l=Y E[YZ?]+ ) E[Y;1E[Y;]. (11.26)
i i#]

The quantities (11.25) and (11.26) are equal because of the matching first and
second moment conditions.

As a consequence of these observations we have E[y(Sx)] = E[y(Sy)] for
any quadratic polynomial ¥(s) = a + bs + cs?. This suggests that to handle
a general test ¢ we try to approximate it by a quadratic polynomial up to
some error; in other words, consider its 2nd-order Taylor expansion. For this
to make sense the function ¥ must have a continuous 3rd derivative, and
the error we incur will involve the magnitude of this derivative. Indeed, we
will now prove a variant of the Berry—Esseen Theorem for the class of €3
test functions ¥ with ¢’ uniformly bounded. You might be concerned that
this class doesn’t contain any of the interesting test functions depicted in
Figure 11.1. But we’ll be able to handle even those test functions with some
loss in the parameters by using a simple “hack” — approximating them by
smooth functions, as suggested in Figure 11.2.
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—_ 1
o
u w1 & wta
Y(s) = 1s<y Yn(s)
1

NS NS

T T
y(s) = dist_1,11(s) (Z16)

Figure 11.2. The step function y(s) = 13<; can be smoothed out on the
interval [u —7,u + 7] so that the resulting function ¥, satisfies ||1I~/;7N loo <

O(1/n?). Similarly, we can smooth out ¥(s) = dist_1,13(s) to a function ¥y,
satisfying ||¢ — ¥lloo <0 and ||1/7§/”||oo <0(1/52).

Invariance Principle for Sums of Random Variables. Let X;,...,X,,
Y1,...,Y, be independent random variables with matching lst and 2nd mo-
ments; i.e., E[X*1=E[Y*] for i e[n], k € {1,2}. Write Sx =Y;X; and Sy =
Y.; Y. Then for any v : R — R with continuous third derivative,

|Ely(Sx)]-Ely(Sy)]| < Ly oo yxv,
where yxy = Y;(1X; ||§ +1Y; ||§)-
Proof. The proof is by the Replacement Method. For 0 < ¢ < n, define the
“hybrid” random variable
H;=Y{+ - +Y:+X;1+-+X,,
so Sy =Hy and Sy = H,,. Thus by the triangle inequality,

[Ely(Sx)1-Elw(Sy)l| < 3 |Elw(H,_1)] - Ely(H,)].
t=1

Given the definition of yxy, we can complete the proof by showing that for
each ¢ €[n],
v oo - (BIX, P1+EY %) = [Ely(H —1)] - Ely(H,)]|
= |Ely(H;-1)-y(H))]|
= |E[W(Ut+Xt)—1//(Ut+Yt)]|, (11.27)
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where
Ui=Y 1+ +Y 1+ X1+ + X,

Note that U, is independent of X; and Y ;. We are now comparing y’s values
atU;+X; and U;+Y,, with the presumption that X; and Y ; are rather small
compared to U;. This clearly suggests the use of Taylor’s theorem: For all
u,0eR,

Y(u+8) =) +y'@s + 2y"w)o* + 2y w*)s?,

for some u* = u*(u,6) between u and u + 5. Applying this pointwise with
u= Ut, 0 :Xt,Yt ylelds

YU+ X) =yU)+y' UDX, + 39" UDX7 + v UHX]
YW +Y ) =ypU)+y/'U)Y, + 5y" UIY; + gy (U; Y}

for some random variables U;,U;*. Referring back to our goal of (11.27),
what happens when we subtract these two identities and take expectations?
The w(U,) terms cancel. The next difference is

Ely'(U)X;-Y )1 =Ely'(U)I-EX; - Y1 =Ely'(U»)]-0=0,

where the first equality used that U; is independent of X; and Y, and the
second equality used the matching 1st moments of X; and Y;. An identical
argument, using matching 2nd moments, shows that the shows that the dif-
ference of the quadratic terms disappears in expectation. Thus we’re left only
with the “error term”:

[Ely(U, +X,) - y(U, +Y ]| =} |[Ely" (U)X} - y" WY
< 219" oo - (BIIX, P1+ E[Y%]),

where the last step used the triangle inequality. This confirms (11.27) and
completes the proof. O

We can now give a Berry—Esseen-type corollary by taking the Y;’s to be
Gaussians:

Variant Berry-Esseen Theorem. In the setting of the Berry—Esseen Theo-
rem, for all €2 functions v:R—-R,

[Ely(S)] - Ely(2)]] < 20+2\/ 219" ooy < 43314 0.

Proof. Applying the preceding theorem with Y ; ~ N(O,a?) (and hence Sy ~
N(0, 1)), it suffices to show that

n n
yxy = YUK +IY D =1 +2\/ D)y = +2/D- Y 1Xi08. (11.28)
i=1 i=1
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In particular, we just need to show that ||Y; 12 < 2\/gIIXi II§ for each i. This
holds because Gaussians are extremely reasonable; by explicitly computing
3rd absolute moments we indeed obtain

17013 = 0P INCO, I3 = 21/ 20% = 2,/21X:13 =20/ 21X15. O

This version of the Berry—Esseen Theorem is incomparable with the stan-
dard version. Sometimes it can be stronger; for example, if for some reason
we wanted to show E[cosS] = E[cosZ] then the Variant Berry—Esseen Theo-
rem gives this with error .433y, whereas it can’t be directly deduced from the
standard Berry—Esseen at all. On the other hand, as we’ll see shortly, we can
only obtain the standard Berry—Esseen conclusion from the Variant version
with an error bound of O(y'4) rather than O(y).

We end this section by describing the “hacks” which let us extend the

Variant Berry—Esseen Theorem to cover certain non-%2 tests . As mentioned
the idea is to smooth them out, or “mollify” them:
Proposition 11.58. Let v : R — R be c-Lipschitz. Then for any n > 0 there
exists ¥ : R — R satisfying v — 9l < cn and ||1/~/(nk)||OO < Ckc/nk_1 for each
k € N*. Here C}, is a constant depending only on k, and ﬁ%k ) denotes the kth
derivative of V.

The proof of this proposition is straightforward, taking ,(s) = 1\];%0 1)[1,1/(3 +
g~N(,

ng)l; see Exercise 11.38.

As 1 — 0 this gives a better and better smooth approximation to v, but

also a larger and larger value of ||1/~/f7" loo. Trading these off gives the following:

Corollary 11.59. In the setting of the Invariance Principle for Sums of Ran-
dom Variables, if we merely have that v : IR — R is c-Lipschitz, then

[Ely(Sx)1- Ely(Sy)]| < 0()- v 3.

Proof. Applying the Invariance Principle for Sums of Random Variables with
the test 17, from Proposition 11.58 we get

|E[¥,(Sx)] - E[§7,(Sy)]| = O(c/n®) - yxy.
But ||, — ¥l < ¢ implies
|E[7,(Sx)] - Elw(Sx)]| < Ell#,(Sx) - w(Sx)l] < ¢n
and similarly for Sy. Thus we get
|E[y(Sx)1-E[y(Sy)]| < O(c)-(n+yxy/n®

which yields the desired bound by taking n = y}g [l
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Remark 11.60. It’s obvious that the dependence on ¢ in this theorem should
be linear in c; in fact, since we can always divide ¥ by c it would have sufficed
to prove the theorem assuming ¢ = 1.

This corollary covers all Lipschitz tests, which suffices for the functions
w(s) = |s| and y(s) = dist{_y1,1)(s) from Figure 11.1. However, it still isn’t
enough for the test y(s) = 1;<, —i.e., for establishing cdf-closeness as in the
usual Berry—Esseen Theorem. Of course, we can’t hope for a smooth approxi-
mator vy, satisfying |y/,(s)—1s<,| < 7 for all s because of the discontinuity at .
However, as suggested in Figure 11.2, if we're willing to exclude s € [u—n,u+n]
we can get an approximator with third derivative bound O(1/73), and thereby
obtain (Exercises 11.41, 11.42):

Corollary 11.61. In the setting of the Invariance Principle for Sums of Ran-
dom Variables, for all u € R we have

Pr(Sy <u-¢€]-e¢<Pr[Sx <ul<Pr[Sy <u+el+e
for e =0(yy3); i.e., Sx and Sy have Lévy distance d1(Sx,Sy) < O(yy3).
Finally, in the Berry—Esseen setting where Sy ~ N(0, 1), we can appeal to
the “anticoncentration” of Gaussians:

Pr[N(0,1) < u+€] =Pr[N(0,1) < u]+Pr[u <N(0,1) < u+e] < Pr[N(0,1) < u]+\/%7[,

and similarly for Pr[N(0,1) < u —¢]. This lets us convert the Lévy distance
bound into a cdf-distance bound. Recalling (11.28), we immediately deduce
the following weaker version of the classical Berry—Esseen Theorem:

Corollary 11.62. In the setting of the Berry—Esseen Theorem, for all u € R,
IPr[S < ul-Pr(Z < u| < O(y'),

where the O(-) hides a universal constant.

Although the error bound here is weaker than necessary by a power of 1/4,
this weakness will be more than made up for by the ease with which the
Replacement Method generalizes to other settings. In the next section we’ll
see it applied to nonlinear polynomials of independent random variables. Ex-
ercise 11.46 outlines how to use it to give a Berry—Esseen theorem for sums
of independent random vectors; as you’ll see, other than replacing Taylor’s
theorem with its multivariate form, hardly a symbol in the proof changes.

11.6. The Invariance Principle

Let’s summarize the Variant Berry—Esseen Theorem and proof from the pre-
ceding section, using slightly different notation. (Specifically, we'll rewrite
X; =a;x; where Var[x;]1=1,s0a; = +0;.) We showed thatifx;,...,x,,51,...,%,
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are independent mean-0, variance-1 random variables, reasonable in the
sense of having third absolute moment at most B, and if a1,...,a, are real
constants assumed for normalization to satisfy }_; alz. =1, then

a1xX1+--+tapxXp a1y t+--+any,,
with error bound proportional to Bmax{|a;|}.

We think of this as saying that the linear form aix1 +---+a,x, is (roughly)
invariant to what independent mean-0, variance-1, reasonable random vari-
ables are substituted for the x;’s, so long as all |a;|’s are “small” (compared to
the overall variance). In this section we generalize this statement to degree-
k multilinear polynomial forms, ¥ |g<zas xS. The appropriate generaliza-
tion of the condition that “all |a;|’s are small” is the condition that all “in-
fluences” Y g5; a% are small. We refer to these nonlinear generalizations of
Berry—Esseen as Invariance Principles.

In this section we’ll develop the most basic Invariance Principle, which
involves replacing bits by Gaussians for a single Boolean function f. We’'ll
show that this doesn’t change the distribution of f much provided f has small
influences and provided that f is of “constant degree” — or at least, provided f
is uniformly noise-stable so that it’s “close to having constant degree”. In-
variance Principles in much more general settings are possible — for example
Exercises 11.48 and 11.49 describe variants which handle several functions
applied to correlated inputs, and functions on general product spaces. Here
we’ll just focus on the simplest possible Invariance Principle, which is already
sufficient for the proof of the Majority Is Stablest Theorem in Section 11.7.

Let’s begin with some notation.

Definition 11.63. Let F be a formal multilinear polynomial over the sequence
of indeterminates x = (x1,...,%,):
Fx)= Y F©S[]x,
Scln] €S
where the coefficients F(S) are real numbers. We introduce the notation
Var[Fl= Y F(S)?, Infj[Fl=) F(S).
S#p Sai

Remark 11.64. To justify this notation, we remark that we’ll always con-
sider F' applied to a sequence z =(z1,...,2,) independent random variables
satisfying E[z;] = 0, E[z?] = 1. Under these circumstances the collection of
monomial random variables [];cs2; is orthonormal and so it’s easy to see
(cf. Chapter 8.2) that

ElF(2)1=F(¢), ElF()’1= ) F(S)®, Var[F(z)]=Var[Fl= ) F(S).
Scln] S#p

We also have E[Var,, [F(z)]] =Inf;[F] =) g5; F(S)?, though we won’t use this.
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As in the Berry—Esseen Theorem, to get good error bounds we’ll need our
random variables z; to be “reasonable”. Sacrificing generality for simplicity
in this section, we’ll take the bounded 4th-moment notion from Definition 9.1
which will allow us to use the basic Bonami Lemma (more precisely, Corol-
lary 9.6):

Hypothesis 11.65. The random variable z; satisfies E[z;] = 0, E[z?] =1,
E[z?] =0, and is “9-reasonable” in the sense of Definition 9.1; i.e., E[z?] <9.

The main examples we have in mind are that each z; is either a uniform +1
random bit or a standard Gaussian. (There are other possibilities, though;
e.g., z; could be uniform on the interval [-v/3,/3].)

We can now prove the most basic Invariance Principle, for low-degree
multilinear polynomials of random variables:

Basic Invariance Principle. Let F be a formal n-variate multilinear poly-
nomial of degree at most k € N,

Fx)= Y  F© ][]«
Scnl,IS|sk ieS

Let x = (x1,...,x,) and y = (¥1,...,¥,) be sequences of independent random
variables, each satisfying Hypothesis 11.65. Assume v : R — R is €* with
Iy oo < C. Then

|Ely(F ()] - Ely(F(y)]| < & -9%- Y Inf,[FI2. (11.29)
t=1

Remark 11.66. The proof will be very similar to the one we used for Berry—
Esseen except that we’ll take a 3rd-order Taylor expansion rather than a
2nd-order one (so that we can use the easy Bonami Lemma). As you are asked
to show in Exercise 11.47, had we only required that v be €2 and that the
x;’s and y;’s be (2,3, p)-hypercontractive with 2nd moment equal to 1, then
we could obtain

|Ely(F@)] - ElyFy)]| < Lole . (1/0)% . 3" Inf[F]32,
t=1

Proof. The proof uses the Replacement Method. For 0 < ¢ < n we define
H;=F(y{,....,¥:,Xt+1,---,%n),
so F(x)=H and F(y) = H,,. We will show that
|Ely(H;_1) - yw(H]| = & - 9% Infy[F1?; (11.30)

as in our proof of the Berry—Esseen Theorem, this will complete the proof
after summing over ¢ and using the triangle inequality. To analyze (11.30)
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we separate out the part of F(x) that depends on x;; i.e., we write F(x) =
E;F(x)+ x;D:F(x), where the formal polynomials E;F and D;F are defined by
EFx) =) FS[[xi, DFx=Y F©S) [] .
Szt 1eS Sat 1eS\{t}
Note that neither E;F nor D;F depends on the indeterminate x;; thus we can
define

U;= EtF(yb--~,yt—1,',xt+1,-~~,xn),
A= DtF(yla'"ayt—la',xt+17~~'axn)a

so that
H; 1=U;+Axy, H;=U;+M\y,.

We now use a 3rd-order Taylor expansion to bound (11.30):

Y(H—1) =y (U ) +y' U DAw, + 39" UDATx} + 2y (U DA} + 59" (U;)AT %y
Y(H) =y (U )+ (UDAy, + 2y U A y? + 2y (U AR y? + Ly (U )AL y}
for some random variables U; and U;*. As in the proof of the Berry—Esseen
Theorem, when we subtract these and take the expectation there are signifi-
cant simplifications. The Oth-order terms cancel. As for the 1st-order terms,

E[w/(Ut)Atxt—U//(Ut)Atyt] = E[w/(Ut)At'(xt_yt)] = E(w,(Ut)At]'E[xt_yt] =0.

The second equality here crucially uses the fact that x;, y, are independent of
U;, A;. The final equality only uses the fact that x; and y, have matching 1st
moments (and not the stronger assumption that both of these 1st moments
are 0). The 2nd- and 3rd-order terms will similarly cancel, using the fact that
x; and y, have matching 2nd and 3rd moments. Finally, for the “error” term
we'll just use |y (U, ly""(U;*)| < C and the triangle inequality; we thus
obtain
|Ely(H 1) - wH]| < & - EBLlAx)*1+E[Ay)*D.

To complete the proof of (11.30) we now just need to bound
El(Asx,)"], El(A;y,)*] < 9* - Inf,[F T,

which we’ll do using the Bonami Lemma. We'll give the proof for E[(A;x,)*],
the case of E[(A; yt)4] being identical. We have

Atxt = LtF(yla'"7yt—]_)xt7xt+17"~axn))

where

LF(x)=x,DF(x)= Y F(S)[] x;.
Sat ieS

Since L;F has degree at most 2 we can apply the Bonami Lemma (more
precisely, Corollary 9.6) to obtain

E[(Ax) 1< O EILF(yq,...,¥, 1,%,%511,-.,%0) 1.
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But since yq,...,¥,_1,%t,...,%, are independent with mean 0 and 2nd mo-
ment 1, we have (see Remark 11.64)

E[LF(y1,....¥ 1,50 %¢:1,-.,0)°1= Y. LF(S)P =Y F(S)? =Inf,[F].
Sclnl] Sat

Thus we indeed have E[(A;x,)*] < 9% -Inf;[F12, and the proof is complete. [

Corollary 11.67. In the setting of the preceding theorem, if we furthermore
have Var[Fl<1 and Inf;[Fl<¢ for all t € [n], then

|Ely(F(x))] - Ely(F(y)]| < & - k9" -e.

Proof. We have Y, Inf;[F12 <cY,Inf,[F]1<eY g |S|F(S)? < ek Var[F]. O

Corollary 11.68. In the setting of the preceding corollary, if we merely have
that v : IR — R is c-Lipschitz (rather than ‘64), then

|E[y(F(x)] - E[y(F ()] < O(c)- 2k,

Proof. Just as in the proof of Corollary 11.59, by using v/, from Proposi-
tion 11.58 (which has ||f,(7§7’”||oo < O(c/n?)) we obtain

|Ely(F(x)] - E[y(F(y)]| < Oc)- (n + k9*e/n®).
The proof is completed by taking 1 = V E9ke < 2kel/4, [l

Let’s connect this last corollary back to the study of Boolean functions.
Suppose f :{—1,1}* — R has e-small influences (in the sense of Definition 6.9)
and degree at most k. Letting g =(g4,...,&,) be a sequence of independent
standard Gaussians, Corollary 11.68 tells us that for any Lipschitz v we have

_ k 1/4
x~{F1,1}n[w(f(x))] gNN%’l)n[w(f(g))] <0(2%™). (11.31)

Here the expression “f(g)” is an abuse of notation indicating that the real

numbers g4,...,&, are substituted into f’s Fourier expansion (multilinear
polynomial representation).

At first it may seem peculiar to substitute arbitrary real numbers into the
Fourier expansion of a Boolean function. Actually, if all the numbers being
substituted are in the range [—1, 1] then there’s a natural interpretation: as
you were asked to show in Exercise 1.4, if ue[-1,1]", then f(u) = E[f(y)]
where y ~ {—1,1}" is drawn from the product distribution in which E[y;] = p;.
On the other hand, there doesn’t seem to be any obvious meaning when real
numbers outside the range [—1,1] are substituted into f’s Fourier expansion,
as may certainly occur when we consider f(g).

Nevertheless, (11.31) says that when f is a low-degree, small-influence
function, the distribution of the random variable f(g) will be close to that
of f(x). Now suppose [ :{-1,1}* — {-1,1} is Boolean-valued and unbiased.
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Then (11.31) might seem impossible; how could the continuous random vari-
able f(g) essentially be —1 with probability 1/2 and +1 with probability 1/2?
The solution to this mystery is that there are no low-degree, small-influence,
unbiased Boolean-valued functions. This is a consequence of the OSSS In-
equality — more precisely, Exercise 8.44(b) — which shows that in this setting
we will always have € = 1/k3 in (11.31), rendering the bound very weak. If the
Aaronson—-Ambainis Conjecture holds (see the notes in Chapter 8.7), a similar
statement is true even for functions with range [-1,1].

The reason (11.31) is still useful is that we can apply it to small-influence,
low-degree functions which are almost {—1,1}-valued, or [-1,1]-valued. Such
functions can arise from truncating a very noise-stable Boolean-valued func-
tion to a large but constant degree. For example, we might profitably ap-
ply (11.31)to f = Maj,fk and then deduce some consequences for Maj,, (x) using
the fact that E[(Maj:* (x)— Maj,(x))%] = W>*[Maj, 1 < O(1/v’%k) (Corollary 5.23).
Let’s consider this sort of idea more generally:

Corollary 11.69. Let f :{—1,1}* — R have Var[f]1< 1. Let k =0 and suppose
f=* has e-small influences. Then for any c-Lipschitz v : R — R we have

'ME G- E (@) <0 (2% + 1/ ). (11.32)

&~N(0,1

In particular, suppose h : {—1,1Y* — R has Var[h] < 1 and no (e¢,5)-notable
coordinates (we assume €<1, § < 2—10). Then

<0(c)-3.

xN{E)l}n[W(Tl—ah(x))] - gNng)’l)n[W(Tl—&h(g))]

Proof. For the first statement we simply decompose f = f=F + f>*. Then the
left-hand side of (11.32) can be written as

\E[wsk(x) + 7R ()] - Ely(f=*(g) + f>k(g))]|
< |E[z//(f5k(x))] —E[w<ffk(g))]| + cElf @)1+ cENf (@)1,

using the fact that v is c-Lipschitz. The first quantity is at most O(c)-2*e/4,
by Corollary 11.68 (even if & is not an integer). As for the other two quantities,
Cauchy—Schwarz implies

Elf* @) < \VEIf>*x)21= | Y F(S)2= 1|,

IS|>k

and the same bound also holds for E[|£>*(g)|]; this uses the fact that E[f~*(g)%] =
Y iS|>k 7(S)? just as in Remark 11.64. This completes the proof of (11.32).

As for the second statement of the corollary, let f = T1_sh. The assump-
tions on A imply that Var[f]< 1 and that /=* has e-small influences for any k;
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the latter is true because

Inf,[f<"1= Y 1-6*5h©S)1P =Y 1-6)5hS? =Inf' V[n]<e
|S|<k,S>i S3i

since A has no (¢,6)-notable coordinate. Furthermore,

IF7*12= Y 1-8257(8)? < (1 - 8)* Var[h] < (1 - 8)** < exp(-2k5)
|S|>Fk

for any k£ = 1;i.e., |/ %o < exp(—k5). So applying the first part of the corollary
gives

|ELy(f ()] - Ely(f (g)]] < O(c)- (2F eV + exp(~k5)) (11.33)
for any £ = 0. Choosing % = %ln(l/e), the right-hand side of (11.33) becomes

0(c)- (6—(1/3)111261/4 +€5/3) <0(c)-e3,

where the inequality uses the assumption 6 < % (numerically, % — %ln2 ~ %).
This completes the proof of the second statement of the corollary. U

Finally, if we think of the Basic Invariance Principle as the nonlinear
analogue of our Variant Berry—Esseen Theorem, it’s natural to ask for the
nonlinear analogue of the Berry—Esseen Theorem itself, i.e., a statement
showing cdf-closeness of F(x) and F(g). It’s straightforward to obtain a Lévy
distance bound just as in the degree-1 case, Corollary 11.61; Exercise 11.44
asks you to show the following:

Corollary 11.70. In the setting of Corollary 11.67 we have the Lévy distance
bound di,(F(x),F(y)) < 0(2%eV3), In the setting of Remark 11.66 we have the
bound di(F(x),F(y)) < (l/p)o(k)el/s.

Suppose we now want actual cdf-closeness in the case that y ~ N(0,1)".
In the degree-1 (Berry—Esseen) case we used the fact that degree-1 polyno-
mials of independent Gaussians have good anticoncentration. The analogous
statement for higher-degree polynomials of Gaussians is not so easy to prove;
however, Carbery and Wright [CWO01, Theorem 8] have obtained the following
essentially optimal result:

Carbery-Wright Theorem. Let p : R" — R be a polynomial (not necessarily
multilinear) of degree at most k, let g ~ N(0,1)", and assume E[p(g)?] = 1.
Then for all € >0,

Prl|p(g)| <€l < O(ke'®),

where the O(-) hides a universal constant.

Using this theorem it’s not hard (see Exercise 11.45) to obtain:
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Theorem 11.71. Let [ : {-1,1}" — R be of degree at most k, with e-small
influences and Varlf1= 1. Then for all u € R,

IPrif(x) < ul—Prif(g) < ull < O(k)- e/ #+D,

where the O(-) hides a universal constant.

11.7. Highlight: Majority Is Stablest Theorem

The Majority Is Stablest Theorem (to be proved at the end of this section) was
originally conjectured in 2004 [KKMO04, KKMOO07]. The motivation came
from studying the approximability of the Max-Cut CSP. Recall that Max-Cut
is perhaps the simplest possible constraint satisfaction problem: the domain
of the variables is Q = {—1,1} and the only constraint allowed is the binary
non-equality predicate, #: {—1,1}?> — {0, 1}. As we mentioned briefly in Chap-
ter 7.3, Goemans and Williamson [GW95] gave a very sophisticated efficient
algorithm using “semidefinite programming” which (cgw 8, f)-approximates
Max-Cut for every 3, where cqw = .8786 is a certain trigonometric constant.

Turning to hardness of approximation, we know from Theorem 7.40 (devel-
oped in [KKMOO04]) that to prove UG-hardness of (a + 0, f — §)-approximating
Max-Cut, it suffices to construct an (a, f)-Dictator-vs.-No-Notables test which
uses the predicate #. As we’ll see in this section, the quality of the most nat-
ural such test can be easily inferred from the Majority Is Stablest Theorem.
Assuming that theorem (as Khot et al. [KKMOO04] did), we get a surprising
conclusion: It’'s UG-hard to approximate the Max-Cut CSP any better than the
Goemans—Williamson Algorithm does. In other words, the peculiar approxi-
mation guarantee of Goemans and Williamson on the very simple Max-Cut
problem is optimal (assuming the Unique Games Conjecture).

Let’s demystify this somewhat, starting with a description of the Goemans—
Williamson Algorithm. Let G = (V,E) be an n-vertex input graph for the algo-
rithm; we’ll write (v,w) ~ E to denote that (v,w) is a uniformly random edge
(i.e., #-constraint) in the graph. The first step of the Goemans—Williamson
Algorithm is to solve following optimization problem:

maximize . ul;]) . % - %(ﬁ(v), U(w))
W)~ (SDP)
subject to U:V — 8™ 1.

Here S™~1 denotes the set of all unit vectors in R”. Somewhat surprisingly,
since this optimization problem is a “semidefinite program” it can be solved
in polynomial time using the Ellipsoid Algorithm. (Technically, it can only be
solved up to any desired additive tolerance ¢ > 0, but we’ll ignore this point.)
Let’s write SDPOpt(G) for the optimum value of (SDP), and Opt(G) for the
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optimum Max-Cut value for G. We claim that (SDP) is a relaxation of the
Max-Cut CSP on input G, and therefore

SDPOpt(G) = Opt(G).

To see this, simply note that if F* : V — {-1,1} is an optimal assignment
(“cut”) for G then we can define U(v) = (F*(v),0,...,0) € S*! for each v e V
and achieve the optimal cut value Valg(#*) in (SDP).

The second step of the Goemans—Williamson Algorithm might look famil-
iar from Fact 11.7 and Remark 11.8. Let U* : V — S"! be the optimal solu-
tion for (SDP), achieving SDPOpt(®); abusing notation we’ll write U*(v) = 3.
The algorithm now chooses g ~ N(0,1)" at random and outputs the assign-
ment (cut) F : V — {—1,1} defined by F(v) = sgn({J,g)). Let’s analyze the
(expected) quality of this assignment. The probability the algorithm’s assign-
ment F cuts a particular edge (v,w) € E is

. Pr [sgn((7,8)) # sgn((@, &)].

£~N(0,1)"
This is precisely the probability that sgn(z) # sgn(z’) when (z,z’) is a pair
of (U, w)-correlated 1-dimensional Gaussians. Writing Z(v,w) € [0, 7] for the
angle between the unit vectors 7,0, we conclude from Sheppard’s Formula
(see (11.2)) that

Z(0,)
Pr[F cuts edge (v,w)]= ———.
g T

By linearity of expectation we can compute the expected value of the algo-
rithm’s assignment F':

E[Valg(F)= E [£Z@,w)/x]. (11.34)
g (v,w)~E
On the other hand, by definition we have
SDPOpt(G)= E [1-1cos/(@,w)]. (11.35)
(v,w)~E
It remains to compare (11.34) and (11.35). Define
. 0/
cgw = min { ——— » = .8786. (11.36)
0€l0,7] % - % cosf

Then from (11.34) and (11.35) we immediately get
E[Valg(F)] = cgw - SDPOpt(G) = caw - Opt(G);
g

i.e., in expectation the Goemans—Williamson Algorithm delivers a cut of
value at least cqgw times the Max-Cut. In other words, it’s a (cgwp, B)-
approximation algorithm, as claimed. By being a little bit more careful about
this analysis (Exercise 11.33) you can show following additional result:
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Theorem 11.72. [GW95]. Let 6 € [0*, 7], where 0* =~ 747 is the minimizing 0
in (11.36) (also definable as the positive solution of tan(8/2) = 0). Then on any
graph G with SDPOpt(G) = % - %cos@, the Goemans—Williamson Algorithm
produces a cut of (expected) value at least /5. In particular, the algorithm is
a 0/, % - %cos 0)-approximation algorithm for Max-Cut.

Example 11.73. Consider the Max-Cut problem on the 5-vertex cycle graph Zs.
The best bipartition of this graph cuts 4 out of the 5 edges; hence Opt(Zs5) = %.
Exercise 11.32 asks you to show that taking

U(v) = (cos 4%,sin 4%), v € Zs,

in the semidefinite program (SDP) establishes that SDPOpt(Zs5) = % - % cos %”.
(These are actually unit vectors in R? rather than in R® as (SDP) requires,
but we can pad out the last three coordinates with zeroes.) This exam-
ple shows that the Goemans—Williamson analysis in Theorem 11.72 lower-
bounding Opt(G) in terms of SDPOpt(G) cannot be improved (at least when
SDPOpt(G) = %). This is termed an optimal integrality gap. In fact, Theo-
rem 11.72 also implies that SDPOpt(Z5) must equal % - %cos 4?”, for if it were
greater, the theorem would falsely imply that Opt(Zs5) > %. Note that the
Goemans—Williamson Algorithm actually finds the maximum cut when run
on the cycle graph Zs. For a related example, see Exercise 11.35.

Now we explain the result of Khot et al. [KKMOO04], that the Majority Is
Stablest Theorem implies it’s UG-hard to approximate Max-Cut better than
the Goemans—Williamson Algorithm does:

Theorem 11.74. [KKMOO04]. Let 0 € (%,7). Then for any 6 > 0 it’s UG-hard
to (O/m + 5,% - %cos 0)-approximate Max-Cut.

Proof. It follows from Theorem 7.40 that we just need to construct a (6/x, % -
% cos)-Dictator-vs.-No-Notables test using the predicate #. (See Exercise 11.36
for an extremely minor technical point.) It’s very natural to try the following,
with = % - %cosH € (%, 1):

p-Noise Sensitivity Test. Given query access to [ :{-1,1}" —{-1,1}:

e Choose x ~{—1,1}" and form x' by reversing each bit of x independently
11

with probability p = 5 — 5 cosO. In other words let (x,x') be a pair of
cosB-correlated strings. (Note that cos6 <0.)
e Query f at x, x'.

e Accept if f(x) £ f(x').

By design,
Prithe test accepts f1=NSglf]1= 5 — $Stabcosolf]. (11.37)
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(We might also express this as “RS;(0)”.) In particular, if f is a dictator,
it’s accepted with probability exactly 8 = % - %cos 6. To complete the proof
that this is a (6/71,% - %cos9)-Dictat0r—vs.-No-Notables test, let’s suppose [ :
{—1,1}* - [-1,1] has no (¢,€)-notable coordinates and show that (11.37) is at

most 0/7 + 0¢(1). (Regarding f having range [-1,1], recall Remark 7.38.)

At first it might look like we can immediately apply the Majority Is Sta-
blest Theorem; however, the theorem’s inequality goes the “wrong way” and
the correlation parameter p = cos6 is negative. These two difficulties actually
cancel each other out. Note that

Pr[the test accepts f]1= % - %Stabcosﬁ[f ]

n

=1-1Y (cos0)*W[f]
k=0

<3+1 Y (~cos®)'WFf] (since cosf < 0)
k odd

= % + %Stab—cose[f()dd], (11.38)

where £°49: {1, 1}" — [-1,1] is the odd part of / (see Exercise 1.8) defined by

U = 2(f@) - f—) = Y F(S)aS.
|S| odd
Now we'’re really in a position to apply the Majority Is Stablest Theorem
to £°4d pecause —cos6 € (0,1), E[£°44] = 0, and f°%9 has no (¢,€e)-notable coor-
dinates (since it’s formed from f by just dropping some terms in the Fourier
expansion). Using —cos8 = cos(r — 6), the result is that

Stab_cosg[f"dd] <1- 72—[ arccos(cos(t —0)) + 0.(1) =20/m — 1+ 0.(1).
Putting this into (11.38) yields
Prlthe test accepts f]1=< % + %(26/n —1+40.(1))=0/m+0.(1),

as needed. O

Remark 11.75. There’s actually still a mismatch between the algorithmic
guarantee of Theorem 11.72 and the UG-hardness result Theorem 11.74, con-
cerning the case of 0 € (£,0). In fact, for these values of 6 —i.e. 1< B < 8446

’ 2
— neither result is sharp; see O’'Donnell and Wu [OWO08].

Remark 11.76. If we want to prove UG-hardness of (0'/n +6,% - %cos@’)-
approximating Max-Cut, we don’t need the full version of Borell’s Isoperi-
metric Theorem; we only need the volume—% case with parameter 0 =71 -0'.
Corollary 11.44 gave a simple proof of this result for 6 = Z, hence 6’ = %n.
This yields UG-hardness of (% +0, % + ﬁé)-approximating Max-Cut. The ratio
between @ and f here is approximately .8787, very close to the Goemans—

Williamson constant cgw =~ .8786.
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Finally, we will prove the General-Volume Majority Is Stablest Theorem,
by using the Invariance Principle to reduce it to Borell’s Isoperimetric Theo-
rem.

General-Volume Majority Is Stablest Theorem. Let f :{-1,1}" —[0,1].
Suppose that MaxInflf] < €, or more generally, that f has no (¢, log(;l/e))-notable
coordinates. Then forany 0<p <1,

Stab,[f1= A,BIfD+O0(E&52) - 5. (11.39)

(Here the O(-) bound has no dependence on p.)

Proof. The proof involves using the Basic Invariance Principle twice (in the
form of Corollary 11.69). To facilitate this we introduce f’ = T1_sf, where
(with foresight) we choose

_ o loglog(1/e) 1
6=3 log(1/e) = log(1/e) "

(We may assume ¢ is sufficiently small so that 0 <§ < %.) Note that E[f'] =
E[f] and that

Stab,[f'1= Y p¥l(1-6)*5£(S)* =Stab,_splf].
Scin]
But
|Staby,_s:[f]1-Stab,lf1] < (p - p(1-6)*)- {5 -Varlf1<26- &5 (11.40)
by Exercise 2.46, and with our choice of § this can be absorbed into the error
of (11.39). Thus it suffices to prove (11.39) with f’ in place of f.

Let Sq: R — R be the continuous function which agrees with ¢ — t2 for ¢ €
[0,1] and is constant outside [0,1]. Note that Sq is 2-Lipschitz. We will apply
the second part of Corollary 11.69 with “A” set to T 5/ (and thus T1_sh =
T 5f ’). This is valid since the variance and (1 — §)-stable influences of A are
only smaller than those of f. Thus

6/3
E 1}n[Sq(T\/ﬁf’(s\V))]—gNI\II(i‘Emn[Sq(T\/,jf’(g))] =0(™) = O(mg+/a)’

x~{-1,
(11.41)
using our choice of §. (In fact, it’s trading off this error with (11.40) that led
to our choice of §.) Now T \/ﬁf "(x)=T-s) \/ﬁf (x) is always bounded in [0, 1], so

! _ ! 2 ! _ !
Sq(T pf ®) = (T 5f (x))* = xN{E,l}n[Sq(T vof ' @)1= Stab,[f'].

Furthermore, T 5f'(g) is the same as U ;/'(g) because f' is a multilinear
polynomial. (Both are equal to f'(pg); see Fact 11.13.) Thus in light of (11.41),
to complete the proof of (11.39) it suffices to show

o 118U 5/ (@D < A (EIf D + O 1o5m)- (11.42)
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Define the function F : IR™* — [0, 1] by
0 if f'(g) <0,
F(g) = truncpo1)(f'(g) =< f'(g) if f(g)€[0,1],
1 if f'(g)>1.
We will establish the following two inequalities, which together imply (11.42):
gNNI(*JO’l)n[Sq(U\/ﬁf'(g))] - NI(EO, [Sa(U zF(gNl| < Ohog(;l/e)k (11.43)

B 84U F @)= A ELF D+ O 1ot 5)- (11.44)

Both of these inequalities will in turn follow from

g~NIf](),1)n[|fl(g) —F(g)l= gNng)’l)n[dist[o,l](f'(g))] < O(m). (11.45)

Let’s show how (11.43) and (11.44) follow from (11.45), leaving the proof
of (11.45) to the end. For (11.43),

E[Sq(U 5/ (@N1-ElSqU ;F(@)]| <2ElU ;f'(g)-U ;F(g)l]

< 2Ellf'(&) - F@I1 =0 (1575),

where the first inequality used that Sq is 2-Lipschitz, the second inequality
used the fact that U s is a contraction on LY(R™,y), and the third inequality
was (11.45). As for (11.44), U\/ﬁF is bounded in [0, 1] since F is. Thus

E[Sq(U ;F(g))] = EI(U, ;F(g))*] = Stab,[F] < A, (E[F(g))),

where we used Borell’s Isoperimetric Theorem. But |E[F(g)]-E[f'(g)]l <
O(IOg(l/e)) by (11.45), and A, is easily shown to be 2-Lipschitz (Exercise 11.19(e)).
This establishes (11.44).

It therefore remains to show (11.45), which we do by applying the Invari-
ance Principle one more time. Taking v to be the 1-Lipschitz function distyg 1
in Corollary 11.69 we deduce

E ldiston(r'@- E [distion(f @) <0 =0 (rgs).

g~N(0,1)"
But E[distjo 11/'(x)] = 0 since f'(x) = T1_sf(x) € [0,1] always. This estab-
lishes (11.45) and completes the proof. [l

We conclude with one more application of the Majority Is Stablest Theo-
rem. Recall Kalai’s version of Arrow’s Theorem from Chapter 2.5, i.e., Theo-
rem 2.56. It states that in a 3-candidate Condorcet election using the voting
rule f: {-1,1}* — {-1,1}, the probability of having a Condorcet winner — often
called a rational outcome — is precisely % - %Stab_l/g[f ]. As we saw in the
proof of Theorem 11.74 near (11.38), this is in turn at most % + %Stab1/3[f0dd],
with equality if f is already odd. It follows from the Majority Is Stablest
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Theorem that among all voting rules with e-small influences (a condition all
reasonable voting rules should satisfy), majority rule is the “most rational”.
Thus we see that the principle of representative democracy can be derived
using analysis of Boolean functions.

11.8. Exercises and notes

11.1 Let of be the set of all functions f : R” — IR which are finite linear combi-
nations of indicator functions of boxes. Prove that < is dense in LY(R",y).

11.2 Fill in proof details for the Gaussian Hypercontractivity Theorem.

11.3 Prove Fact 11.13. (Cf. Exercise 2.25.)

11.4 Show that U, U,, =U,,,, for all p1, p2 €[-1,1]. (Cf. Exercise 2.32.)

11.5 Prove Proposition 11.16. (Hint: For p # 0, write g(z) = U,f(z) and show

that g(z/p) is a smooth function using the relationship between convolu-
tion and derivatives.)

11.6 (a) Prove Proposition 11.17. (Hint: First prove it for bounded continu-
ous f; then make an approximation and use Proposition 11.15.)
(b) Deduce more generally that for f € Ll(R”,y) the map p — U,f is
“strongly continuous” on [0, 1], meaning that for any p € [0,1] we have
IUpf -=Upflli — 0 as p’ — p. (Hint: Use Exercise 11.4.)

11.7 Complete the proof of Proposition 11.26 by establishing the case of gen-
eral n.

11.8 Complete the proof of Proposition 11.28 by establishing the case of gen-
eral n.

11.9 (a) Establish the alternative formula (11.10) for the probabilists’ Hermite
polynomials H ;(z) given in Definition 11.29; equivalently, establish
the formula

. d\
Hj(z)= (-1 exp(32®)- (E) exp(-12%).

(Hint: Complete the square on the left-hand side of (11.8); then differ-
entiate j times with respect to ¢ and evaluate at 0.)
(b) Establish the recursion

Hiz)=(z- L) H; 1(z2) hj(z)=ij-(z—%)hj_1(z)

7

for j € N*, and hence the formula H;(z)=(z- %)jl.
(c) Show that 4 ;(2) is an odd function of z if j is odd and an even function
of z if j is even.

11.10 (a) Establish the derivative formula for Hermite polynomials:
Hi(2)=j-Hj1() < h@=Vjhji@).
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(b) By combining this with the other formula for H ;.(z) implicit in Exer-
cise 11.9(b), deduce the recursion

H;1(z)=2zHj(z)- jHj_1(2).
(c) Show that H ;(z) satisfies the second-order differential equation
JHj(2)=zH'(2) - H}(2).
(It’s equivalent to say that A ;(z) satisfies it.) Observe that this is
consistent with Propositions 11.26 and 11.40 and says that H; (equiv-

alently, 4 ;) is an eigenfunction of the Ornstein—Uhlenbeck operator L,
with eigenvalue j.

11.11 Prove that _
J(:\ ..
Hix+y)=)_ (é)xj_’Hi(y),

i=0
and, relatedly, that for p + ¢ =1 we have

me(VPx+Vay) = Y. \/(F)pia hih ().

i+j=k
11.12 (a) By equating both sides of (11.8) with

g~1\114%0,1)[eXp(t(2 +ig))]

(b) Establish the explicit formulas

Bl 2k, j-2k
Hiz)= Y (-1 i
f@= X )(2k)g~N(0,1)[g le
:jl.( — — - + - — - +..e ]
o1 21.G-2)! 4-(G—4) 6l-(j—6)

11.13 (a) Establish the formula
ELVAIP1= Y lalf(a)?

acN"

for all f e Lz(R”,y) (or at least for all n-variate polynomials f).
(b) For f € L2(R”,y), establish the formula

Y ElVarlfll= ) (a)f (@)
i=1 '

aeN”

11.14 Show that for all j € N and all z€ R we have
(771)—1/2 -K(-n) (z _zg) n—oo0

j J 2 —_— hJ(z)’
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where K;n) is the Kravchuk polynomial of degree j from Exercise 5.28
(with its dependence on n indicated in the superscript).

11.15 Recall the definition (11.13) of the Gaussian Minkowski content of the
boundary A of a set A € R”. Sometimes the following very similar
definition is also proposed for the Gaussian surface area of A:

vol,({z : dist(z,A) < €}) —vol,(A)

€

M(A) = lig(i){lf
Consider the following subsets of R:
A1=9¢, Ay={0}, A3z3=(-00,0), As4=(-00,0], As=R\{0}, Ag=R.
(a) Show that

Y (A =0 MAD=0 surf, (A1) =0
Y (Ag) = \/2—” M(As) = \/E surfy(A2) =0
Y (A3) = \/2—” M(A3) = \/27 surfy(A3) = T
Y (Ay) = \/2—7[ M(Ay) = \/_Tr surfy,(Ay) = T
Y (A5) = T M(A5) = surfy(A5) =0

Y (A)=0 M(Ag)=0 surf,(Ag) = 0.

(b) For A cIR", the essential boundary (or measure-theoretic boundary)
of A is defined to be

1,(AnB
G*A:{xEIRn:h M ,1},
6—0*  voly(Bs(x))

where Bs(x) denotes the ball of radius é centered at x. In other words,
0. A is the set of points where the “local density of A” is strictly be-
tween 0 and 1. Show that if we replace 0A with 0. A in the defini-
tion (11.13) of the Gaussian Minkowski content of the boundary of A,
then we have the identity y*(9.A;) = surf,(A;) for all 1 <i <6. Re-
mark: In fact, the equality y*(d.A) = surf,(A) is known to hold for
every set A such that d. A is “rectifiable”.

11.16 Justify the formula for the Gaussian surface area of unions of intervals
stated in Example 11.50.
11.17 (a) Let B, < R"™ denote the ball of radius r > 0 centered at the origin.
Show that

_ n n-1_-r%/2
surfy(Br) = mr e . (1146)

(b) Show that (11.46) is maximized when r = vn — 1. (In case n =1, this
should be interpreted as r — 0%.)
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11.18

11.19

(c) Let S(n) denote this maximizing value, i.e., the value of (11.46) with

r =vn—1. Show that S(n) decreases from \/g to a limit of \/%»[ asn
increases from 1 to co.

(a) For f € L2(R",y), show that Lf is defined, i.e.,

li f _Ue’tf
m-—---
t—0 t

exists in L2(R",y), if and only if ¥ gen- |a|2f(a)? < co. (Hint: Proposi-
tion 11.37.)
(b) Formally justify Proposition 11.40.
(c) Let f € L2(IR",y). Show that U,f is in the domain of L for any p €
(-1,1).
Remark: It can be shown that the €2 hypothesis in Propositions 11.26
and 11.28 is not necessary (provided the derivatives are interpreted in
the distributional sense); see, e.g., Bogachev [Bog98, Chapter 1] for more
details.

This exercise is concerned with (a generalization of) the function appear-
ing in Borell’s Isoperimetric Theorem.

Definition 11.77. For p €[-1,1] we define the Gaussian quadrant prob-
ability function A, :[0,1]1% —[0,1] by

Npla,p) = Pr [z<tz2' <t],
0
(2,2') p-correlated
standard Gaussians

where ¢ and ¢’ are defined by ®(¢) = a, ®(¢') = B. This is a slight reparametriza-
tion of the bivariate Gaussian cdf. We also use the shorthand notation

Ap(a) = Ap(a, a),

which we encountered in Borell’s Isoperimetric Theorem (and also in Ex-
ercises 5.32 and 9.24, with a different, but equivalent, definition).

(a) Confirm the statement from Borell’s Isoperimetric Theorem, that for
every halfspace H € R" with vol,(H) = @ we have Stab,[15]= A,(a).
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11.20

11.21

11.22

11.23

11.24

11.25

(b) Verify the following formulas:

Apl(a, B) = Ap(B, @),
Ao(a,p) = ap,
Ai(a, B) = min(a, B),

A_i(a, B) =max(a+ —-1,0),
Ap(a,0)=A,(0,a) =0,
Apla,1)=Ap(1,a) = a,

A pla,f)=a-Ap(a,1-p)=p-A,(1-a,p),
N

(c) Prove that A,(a,B) = af according as p 20, forall 0<a,f < 1.
(d) Establish
t—pt' )

V1-p?

d

t' - pt d
_p), — Ap(a,f)=

V1-p? dp
where t = Xa), ¢’ = ®~1(B) as usual.
(e) Show that

IAp(a,B) = Ap(a, ) <la—a'| + 1B~ B,

and hence A,(a) is a 2-Lipschitz function of a.

Show that the general-n case of Bobkov’s Inequality follows by induction
from the n =1 case.

Let f:{-1,1}" — {-1,1} and let a = min{Pr[f = 1],Pr[f = —1]}. Deduce
I[f]1= 4% (a)? from Bobkov’s Inequality. Show that this recovers the edge-
isoperimetric inequality for the Boolean cube (Theorem 2.39) up to a
constant factor. (Hint: For the latter problem, use Proposition 5.27.)

Let d1,ds € N. Suppose we take a simple random walk on 7, starting
from the origin and moving by +1 at each step with equal probability.
Show that the expected time it takes to first reach either —d or +ds is
dids.

Prove Claim 11.54. (Hint: For the function V) (7) appearing in the proof
of Bobkov’s Two-Point Inequality, youw'll want to establish that V,""(0) =0

and that V}/"(0) = 20200 > 0 )

Prove Theorem 11.55. (Hint: Have the random walk start at y, =a + pbd
with equal probability, and define z; = [(%(y,), pb,7v/1)|. You'll need the
full generality of Exercise 11.22.)

Justify Remark 11.41 (in the general-volume context) by showing that
Borell’s Isoperimetric Theorem for all functions in K = {f : R* — [0,1] |
E[f] = a} can be deduced from the case of functions in 6K = {f : R" —

Copyright © Ryan O'Donnell, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021.



11.8. Exercises and notes 375

11.26

{0,1} | EIf] = a}. (Hint: As stated in the remark, the intuition is that
y/Stab,[f]is a norm and that K is a convex set whose extreme points
are 0K. To make this precise, you may want to use Exercise 11.1.)

The goal of this exercise and Exercises 11.27-11.29 is to give the proof of
Borell’s Isoperimetric Theorem due to Mossel and Neeman [MN12]. In
fact, their proof gives the following natural “two-set” generalization of
the theorem (Borell’s original work [Bor85] proved something even more
general):

Two-Set Borell Isoperimetric Theorem. Fix p € (0,1) and a,B€[0,1].
Then for any A,B € IR" with vol,(A) = a, vol,(B) = B,
[z€A,2 e Bl<Ay(a,p). (11.47)

(2,2') p-correlated
n-dimensional Gaussians

By definition of A,y(a, §), equality holds if A and B are parallel halfs-
paces. Taking f = a and B = A in this theorem gives Borell’s Isoperimet-
ric Theorem as stated in Section 11.3 (in the case of range {0, 1}, at least,
which is equivalent by Exercise 11.25). It’s quite natural to guess that
parallel halfspaces should maximize the “joint Gaussian noise stability”
quantity on the left of (11.47), especially in light of Remark 10.2 from
Chapter 10.1 concerning the analogous Generalized Small-Set Expansion
Theorem. Just as our proof of the Small-Set Expansion Theorem passed
through the Two-Function Hypercontracitivity Theorem to facilitate in-
duction, so too does the Mossel-Neeman proof pass through the following
“two-function version” of Borell’s Isoperimetric Theorem:

Two-Function Borell Isoperimetric Theorem. Fix p € (0,1) and let
f,g € L2(R",y) have range [0,1]. Then
E [Ay(f(2),8(' N =< A, (E[f1,ElLgD.
(2,2') p-correlated
n-dimensional Gaussians

(a) Show that the Two-Function Borell Isoperimetric Theorem implies
the Two-Set Borell Isoperimetric Theorem and the Borell Isoperimet-
ric Theorem (for functions with range [0, 1]). (Hint: You may want to
use facts from Exercise 11.19.)

(b) Show conversely that the Two-Function Borell Isoperimetric Theorem
(in dimension n) is implied by the Two-Set Borell Isoperimetric Theo-
rem (in dimension n +1). (Hint: Given f : R* — [0, 1], define A ¢ R"**1
by (z,t) e A < f(z2)=D(t).)

(c) Let ¢1,¢2 : R™ — R be defined by ¢;(z) = {a,z) + b; for some a € R",
b1,b2 € R. Show that equality occurs in the Two-Function Borell
Isoperimetric Theorem if f(2) = 14,(z)=0, 8(2) = 1g,(z)=0 or if f(2) =
D(41(2)), g(z) = D(£2(2)).
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11.27 Show that the inequality in the Two-Function Borell Isoperimetric The-
orem “tensorizes” in the sense that if it holds for n» = 1, then it holds for
all n. Your proof should not use any property of the function A,, nor any
property of the p-correlated n-dimensional Gaussian distribution besides
the fact that it’s a product distribution. (Hint: Induction by restrictions as
in the proof of the Two-Function Hypercontractivity Induction Theorem
from Chapter 9.4.)

11.28 Let I1,I3 € R be open intervals and let & : 11 x I3 — IR be 2. For peR,
define the matrix
H,F =(HF)o 1 p] ,
p 1

where H% denotes the Hessian of & and o is the entrywise (Hadamard)
product. We say that & is p-concave (this terminology introduced by
Ledoux [Led13]) if H,.% is everywhere negative semidefinite. Note that
the p =1 case corresponds to the usual notion of concavity, and the p =0
case corresponds to concavity separately along the two coordinates. The
goal of this exercise is to show that the Gaussian quadrant probability A,
function is p-concave for all p €(0,1).
(a) Extending Exercise 11.19(d), show that for any p € (-1, 1),

2 ! _
L @ p=——P ] gb(t ”t),

da? -2 o) T\ 12 02
and deduce a similar formula for j—;Ap(a, B).
(b) Show that

d? 1 1 t' —pt
L Aya,p)= | =,
dadp VI=pZ o) T\/1=p2

and deduce a similar (in fact, equal) formula for 7% A,(a, ).
(c) Show that det(H,A,) =0 on all of (0, 1)2.

(d) Show that if p € (0,1), then £z A,, 45 A, <0 on (0,1)2. Deduce that

A, is p-concave.

11.29 This exercise is devoted to Mossel and Neeman’s proof [MN12] of the
Two-Function Borell Isoperimetric Theorem in the case n = 1. For an-
other approach, see Exercise 11.30. By Exercise 11.27, this is sufficient
to establish the case of general n. (Actually, the proof in this exercise
works essentially verbatim in the general n case, but we stick to n =1 for
simplicity.)

(a) More generally, we intend to prove that for f,g:R —[0,1],
Mo) = E [A,(Usf(2),Usg(2'))]

(z,2') p-correlated
standard Gaussians
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is a nonincreasing function of 0 < ¢ < 1 (cf. Theorem 11.55). Obtain
the desired conclusion by taking o — 07,1~. (Hint: You'll need Exer-
cises 11.6 and 11.19(e).)

(b) Write fo =Usf, g6 = Ugg for brevity, and write 9; A, (i = 1,2) for the
partial derivatives of A,. Also let h1,hg denote independent standard
Gaussians. Use the Chain Rule and Proposition 11.27 to establish

oA'(0) =E[01Ap)(fo(h1),85(ph1 +1/ 1~ p2h2))- Lfs(h1)] (11.48)

+E[(02A,)(fo(phg +1/1-p2h1),85(h2))-Lg(h2)l. (11.49)
(¢) Use Proposition 11.28 to show that the first expectation (11.48) equals

El0110p /) fo,80) (f2)? + 0021 Ao ) f o, 80) - frr - &l

where f5,f, are evaluated at h; and g,,g); are evaluated at ph; +
v/1-p2hs. Give a similar formula for (11.49).
(d) Deduce that

fo(2)

O'A,(O') = E [f(,r(z) g;r(z,)] : (HPAP)(fO'(z)’gU(z,)) . [g;(z/)

(2,2') p-correlated
standard Gaussians

)

where H, is as in Exercise 11.28, and that indeed A is a nonincreasing
function.

11.30 (a) Suppose the Two-Function Borell Isoperimetric Theorem were to hold
for 1-bit functions, i.e., for f,g : {—1,1} — [0,1]. Then the easy in-
duction of Exercise 11.27 would extend the result to n-bit functions
f,g:{-1,1}* — [0,1]; in turn, this would yield the Two-Function
Borell Isoperimetric Theorem for 1-dimensional Gaussian functions
(i.e., Exercise 11.29), by the usual Central Limit Theorem argument.
Show, however, that dictator functions provide a counterexample to a
potential “1-bit Two-Function Borell Isoperimetric Theorem”.

(b) Nevertheless, the idea can be salvaged by proving a weakened version
of the inequality for 1-bit functions that has an “error term” that is a
superlinear function of f and g’s “influences”. Fix p €(0,1) and some
small € > 0. Let f,g:{-1,1} — [¢,1 —€]. Show that

( E/) [Ap(f(x),g(x"N] < A, (E[f],E[g]) + Cp,g-(E[|D1f|3] +E[D1g%)),

x,x

p-correlated
where C, ¢ is a constant depending only on p and e. (Hint: Perform a
2nd-order Taylor expansion of A, around (E[f], E[g]); in expectation,
the quadratic term should be

D:.f
Dig

As in Exercise 11.29, show this quantity is nonpositive.)

[D1f Dig]-(H,A)EIf]Elg])-
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(c) Extend the previous result by induction to obtain the following theo-
rem of De, Mossel, and Neeman [DMN13]:

Theorem 11.78. For each p € (0,1) and € > 0, there exists a con-
stant Cy ¢ such that the following holds: If f,g : {—1,1}" — [¢,1—¢€],
then

E 0@, < A(EIfLELD + Cpe (Anlf1+ Anlg).

p-correlated

Here we using the following inductive notation: A1[f1=EI|f —E[f1],
and

— cin}
An[f]_xn~El,l} [An—l[flxn]] + A1l

(d) Prove by induction that A,[f]< 82;‘:1 IIDifllg.

(e) Suppose that f,g € L2(R,y) have range [¢,1—¢] and are c-Lipschitz.
Show that for any M € N*, the Two-Function Borell Isoperimetric
Theorem holds for f,g with an additional additive error of O(M -2y
where the constant in the O(-) depends only on p, €, and c¢. (Hint: Use
BitsToGaussians,,.)

(f) By an approximation argument, deduce the Two-Function Borell Isoperi-
metric Theorem for general f, g € L?(R,y) with range [0,1]; i.e., prove
Exercise 11.29.

11.31 Fix 0 < p < 1 and suppose f € L'(RR,y) is nonnegative and satisfies E[f] =
1. Note that E[U,f]=1 as well. The goal of this problem is to show that
U, f satisfies an improved Markov inequality: Pr[U,f > ¢] = O(t\/%) =

o(%) as t — oo. This gives a quantitative sense in which U, is a “smoothing

operator”: U, f can never look too much like like a step function (the tight

example for Markov’s inequality).

(a) For simplicity, let’s first assume p = 1/v/2. Given ¢ > V2, select & >0
such that ¢(h) = 1/(y/nt). Show that A ~ v2Int.

(b) Let H={z:U,f(2) > t}. Show that if H < (-oo,—h]U[h,00), then we

have Pr{U,f > t] < t%’ as desired. (Hint: You'll need ®(u) < ow)u.

(¢) Otherwise, we wish to get a contradiction. First, show that there
exists y € (—h,h) and 69 > 0 such that U,f(z) > ¢ for all £ € (y — 6o,y +
60). (Hint: You'll need that U, f is continuous; see Exercise 11.5.)

(d) For 0 < 6 < 8, define g € LL(R,y) by g(2) = 551(,-5,y+6)- Show that
0=U,g= \/iﬁ pointwise. (Hint: Why is U,g(z) maximized at V2y?)
(e) Show that %ﬁ > (f,U,g) > tE[gl.
(f) Derive a contradiction by taking 6 — 0, thereby showing that indeed
< N2l
Pr(U,f >t < Ving’

(g) Show that this result is tight by constructing an appropriate f.
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11.32

11.33
11.34

11.35

11.36

(h) Generalize the above to show that for any fixed 0 < p < 1 we have

< 1 1
PriU,f >3 7(1-p2) tVInt"

As described in Example 11.73, show that SDPOpt(Z5) = % - %cos%” =

5. V5
st%-

Prove Theorem 11.72.

Consider the generalization of the Max-Cut CSP in which the variable
set is V, the domain is {—1,1}, and each constraint is an equality of two
literals, i.e., it’s of the form bF(v) = b'F(v’) for for some v,v’ € V and
b,b’ € {~1,1}. This CSP is traditionally called Max-E2-Lin. Given an
instance 2, write (v,v’,b,b’) ~ 2 to denote a uniformly chosen constraint.
The natural SDP relaxation (which can also be solved efficiently) is the
following:

maximize E % + %(bl_}(v), b'ﬁ(v'))
(v,v',b,b")~?

subjectto U:V — S L,

Show that the Goemans—Williamson algorithm, when using this SDP, is
a (cqgwf, B)-approximation algorithm for Max-E2Lin, and that it also has
the same refined guarantee as in Theorem 11.72.

This exercise builds on Exercise 11.34. Consider the following instance &
of Max-E2-Lin: The variable set is Z4 and the constraints are

F0)=FQ1), F(1)=F(2), F(2)=F@3), F(3)=-F(0).

(@) Show that Opt(2) = 2.

(b) Show that SDPOpt(£?) = %+ﬁ (Hint: Very similar to Exercise 11.32;
you can use four unit vectors at 45° angles in R2.)

(¢) Deduce that SDPOpt(Z?) = % + ﬁi and that this is an optimal SDP
integrality gap for Max-E2Lin. (Cf. Remark 11.76.)

In our proof of Theorem 11.74 it’s stated that showing the f-Noise Sensi-
tivity Test is a (B/n,% — %cos 0)-Dictator-vs.-No-Notables test implies the
desired UG-hardness of (6/7 + 6, % - %cos 0)-approximating Max-Cut (for
any constant § > 0). There are two minor technical problems with this:
First, the test can only actually be implemented when f is a rational
number. Second, even ignoring this, Theorem 7.40 only directly yields
hardness of (6/m +9, % - % cos — §)-approximation. Show how to overcome
both technicalities. (Hint: Continuity.)

11.37 Use Corollary 11.59 (and (11.28)) to show that in the setting of the Berry—

Esseen Theorem, |||S|l1 — V2/7| < O(}/l/?’). (Cf. Exercise 5.31.)

11.38 The goal of this exercise is to prove Proposition 11.58.

(a) Reduce to the case c=1.
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(b) Reduce to the case n=1. (Hint: Dilate the input by a factor of 17.)

() Assuming henceforth that ¢ =7 =1, we define y/(s) = E[y/(s + g)] for
£ ~N(0,1) as suggested; i.e., ¥ = ¥ * ¢, where ¢ is the Gaussian pdf.
Show that indeed ||/ — |00 < V2/m < 1.

(d) To complete the proof we need to show that for all se R and 2 € N*
we have |7¥)(s)| < C},. Explain why, in proving this, we may assume
w(s) = 0. (Hint: This requires £ = 1.)

(e) Assuming y(s) = 0, show [F*)(s)| = |y * p¥(s)| < C;. (Hint: Show
that (p(k)(s) = p(s)p(s) for some polynomial p(s) and use the fact that
Gaussians have finite absolute moments.)

11.39 Establish the following multidimensional generalization of Proposition 11.58:

Proposition 11.79. Let v : R — R be c-Lipschitz. Then for any 1> 0
there exists Vy : R - R satisfying 1y — ¥yl < C\/En and IIOﬁfﬁnIIoo <
C|,3|C\/E/T]|m_l for each multi-index p e N¢ with || =Y; f; = 1, where C,

is a constant depending only on k.

11.40 In Exercise 11.38 we “mollified” a function ¥ by convolving it with the
(smooth) pdf of a Gaussian random variable. It’s sometimes helpful to
instead use a random variable with bounded support (but still with a
smooth pdfon all of R). Here we construct such a random variable. Define
b:R—Rby

—_1 1 if-
b(x):{exp( 1_x2) 1ﬁ l<x<1,
else.

(a) Verify that b(x) = 0 for all x and that b6(—x) = b(x).

(b) Prove the following statement by induction on 2 € N: On (-1,1), the
kth derivative of b at x is of the form p(x)(1—x2)~2% . b(x), where p(x)
is a polynomial.

(c) Deduce that b is a smooth (¥°°) function on RR.

(d) Verify that C = f_ll b(x)dx satisfies 0 < C < oo and that we can there-
fore define a real random variable y, symmetric and supported on
(=1,1), with the smooth pdf b(y) = b(y)/C. Show also that for & € N,
the numbers cp, = II’Z;(k)IIoo are finite and positive, where 5®) denotes
the kth derivative of b.

(e) Give an alternate proof of Exercise 11.38 using y in place of g.

1141 Fixue R, w(s)=15<y4,and 0 <n < 1/2.
(a) Suppose we approximate y by a smooth function v/, as in Exercise 11.38,
i.e., we define v/, (s) = E[y(s + ng)] for g ~N(0,1). Show that v, satis-
fies the following properties:
e ¥, is a decreasing function with ¥;,(s) < y(s) for s < u and
Yy(s) > y(s) for s > u.

o |y,(s)—y(s)| < n provided |s — u| = O(n+/log(1/n)).
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. IIfP(nk)IIoo < Ck/nk for each k2 € N, where Cj, depends only on k.

(b) Suppose we instead approximate v by the function v/,(s) = E[y(s +
ny)]l, where y is the random variable from Exercise 11.40. Show
that vy, satisfies the following slightly nicer properties:

e 1/, is a nonincreasing function which agrees with  on (co,u -1l
and on [u +1,00).

* 1/, is smooth and satisfies IW%k) loo < Cp/n* for each k € N, where C},
depends only on k.

11.42 Prove Corollary 11.61 by first proving
PriSy <u-2n]1-0( 3)yxy <Pr[Sx <ul <Pr[Sy < u + 211+ 010 3)yxy.

(Hint: Obtain Pr[Sx < u —nl < E[y,(Sx)] = E[y,(Sy)] < Pr[Sy < u +1]
using properties from Exercise 11.41. Then replace u with u +2n and also
interchange Sx and Sy.)

11.43 (a) Fix q € N. Establish the existence of a smooth function f;, : R — R
that is 0 on (—oo, —%] and that agrees with some polynomial of degree
exactly q on [%,oo). (Hint: Induction on ¢; the base case ¢ =0 is
essentially Exercise 11.41, and the induction step can be achieved by
integration.)

(b) Deduce that for any prescribed sequence ag,a1,a9,... that is eventu-
ally constantly 0, there is a smooth function g: R — R that is 0 on
(—00,— 31 and has g®(3) =ay, for all ke N.

(¢) Fix a univariate polynomial p : IR — IR. Show that there is a smooth
function ¥ : R — R that agrees with p on [-1,1] and is identically 0
on (—oo,—2]U[2,00).

11.44 Establish Corollary 11.70.
11.45 Prove Theorem 11.71.

11.46 (a) By following our proof of the d = 1 case and using the multivariate
Taylor theorem, establish the following:

Invariance Principle for Sums of Random Vectors. Let X 1yenn ,X' n
f’l,...,f’n be independent R%-valued random variables with match-
ing means and covariance matrices; i.e., E[f( = E[f/t] and Cov[f( =
Cov[l?'t] for all t € [n]. (Note that the d individual components of
a particular X, or Y, are not required to be independent.) Write
Sx = Z:‘:lit and Sy = X Y,. Then for any €2 function v : R¢ - R
satisfying 110°y oo < C for all |f] = 3,

Ely(Sx)]-Ely(Sy)l| < Cyzs,
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where

Y3 = 2

BeN? ﬂ
1B1=3

(b) Show that y3y satisfies

Z ENX 1+ B,

d nod ->3ei —>3ei
Y3 < E;;(Enxt 1+E[Y, ')

Here X?ei denotes the cube of the ith component of vector X +, and
similarly for l7t. (Hint: abc < %(a?’ +b3+¢3) fora,b,c=0.)

(¢) Deduce multivariate analogues of the Variant Berry—Esseen Theorem,
Remark 11.56, and Corollary 11.59 (using Proposition 11.79).

11.47 Justify Remark 11.66. (Hint: You’ll need Exercise 10.29.)
11.48 (a) Prove the following:

Multifunction Invariance Principle. Let FO FD pe formal
n-variate multilinear polynomials each of degree at most k € N. Let
x1,...,X, and y4,...,¥, be independent R¢-valued random variables
such that E[x;] = Ely,]1 = 0 and M; = Cov[x;] = Covly,] for each t € [n].
Assume each M, has all its diagonal entries equal to 1 (i.e., each of
the d components of %; has variance 1, and similarly for y,). Fur-

ther assume each component random variable x(J ) and y(J ) is (2,3,p)-

hypercontractive (t € [n], j € [d]). Then for any ‘63 function v :R* - R
satisfying ||6/31,1/|Ioo <Cforall |Bl =3,

n d .
Ely(F@))] - Ely(FG)]| < €€ . (1/p)* - Y Y Inf,[FVP2,
t=1j=1
Here we are using the following notation: If 2 = (21,...,%2,) is a se-
quence of R%-valued random variables, F(2) denotes the vector in R%

whose jth component is FY )(*(J ) *(J ))

(Hint: Combine the proofs of the Basic Invariance Principle and the
Invariance Principle for Sums of Random Vectors, Exercise 11.46. The
only challenging part should be notation.)

(b) Show that if we further have Var[F“’]1< 1 and Inft[F(j )] < ¢ for all
Jjeldl, te[n], then

Ely(FG)] - Ely(F@)]| < && - k(1/p)** €2,
11.49 (a) Prove the following:

Invariance Principle in general product spaces. Let (,7) be
a finite probability space, Q2] = m = 2, in which every outcome has
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probability at least A. Suppose f € L2(Q",7°") has degree at most k;
thus, fixing some Fourier basis ¢y,...,0mn-1 for L2(Q,7), we have

f= Y Ffla,.

aeNZ
#a<k

Introduce indeterminates x = (x; j)ie[n], jeim-1] and let F' be the formal
(m — Dn-variate polynomial of degree at most k defined by
Fx)= Y f@ J] =ia-

#a<k iesupp(a)

Then for any v : R — R that is €2 and satisfies | " |l oo < C we have

E E]- E [yl = ¢.eve/nt- Y Inf[f172.

x~{=1,1}0m-Dn =
(Hint: For 0 <t < n, define h; € L2(Qf x{-1, 1}(’”_1)(”_”,n®t®nf/(2m_l)(”_t))
via
ht(wla"'7wtaxt+1,17"'>xn,m—l): Z f(a) l_[ (,bai(wi) 1_[ xi,a'i~
#a<k iesupp(a) iesupp(a)
i<t >t
Express
m
ht = Etht +Ltht = Etht + Z D] (/)](wt)

J=1

where

Dj= Z fA(a) H (pai(wi) H Xia;s

aa;=j iesupp(a) iesupp(a)
i<t 1>t

and note that h;_1 = E;h; +Z;.”:1Dj “X45.)
(b) In the setting of the previous theorem, show also that

n

E [yF@)l- E [y(fl)]l<Z.-@v2nk. Y Inf[f12
g~N(Q’1)(m—1)n w~T®" b

(Hint: Apply the Basic Invariance Principle in the form of Exer-
cise 11.47. How can you bound the (m — 1)n influences of F' in terms
of the n influences of f?)
11.50 Prove the following version of the General-Volume Majority Is Stablest
Theorem in the setting of general product spaces:

Theorem 11.80. Let (2, 7) be a finite probability space in which each out-
come has probability at least A. Let f € L>(Q",n®") have range [0,1]. Sup-
pose that f has no (e, m)-notable coordinates. Then forany 0<p<1,

Stab,[f1< A (E[f])+O(PE2Er)- 8L,

(Hint: Naturally, you'll need Exercise 11.49(b).)
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Notes. The subject of Gaussian space is too enormous to be surveyed here;
some recommended texts include Janson [Jan97] and Bogachev [Bog98], the
latter having an extremely thorough bibliography. The Ornstein—Uhlenbeck
semigroup dates back to the work of Uhlenbeck and Ornstein [UO30] whose
motivation was to refine Einstein’s theory of Brownian motion [Ein05] to
take into account the inertia of the particle. The relationship between the
action of U, on functions and on Hermite expansions (i.e., Proposition 11.31)
dates back even further, to Mehler [Meh66]. Hermite polynomials were first
defined by Laplace [Lap11], and then studied by Chebyshev [Che60] and Her-
mite [Her64]. See Lebedev [Leb72, Chapter 4.15] for a proof of the pointwise
convergence of a piecewise-%! function’s Hermite expansion.

As mentioned in Chapter 9.7, the Gaussian Hypercontractivity Theorem
is originally due to Nelson [Nel66] and now has many known proofs. The idea
behind the proof we presented — first proving the Boolean hypercontractivity
result and then deducing the Gaussian case by the Central Limit Theorem
— is due to Gross [Gro75] (see also Trotter [Tro58]). Gross actually used
the idea to prove his Gaussian Log-Sobolev Inequality, and thereby deduced
the Gaussian Hypercontractivity Theorem. Direct proofs of the Gaussian
Hypercontractivity Theorem have been given by Neveu [Nev76] (using sto-
chastic calculus), Brascamp and Lieb [BL76] (using rearrangement), and
Ledoux [Led13] (using a variation on Exercises 11.26—11.29); direct proofs of
the Gaussian Log-Sobolev Inequality have been given by Adams and Clarke
[AC79], by Bakry and Emery [BE85], and by Ledoux [Led92], the latter two
using semigroup techniques. Bakry’s survey [Bak94] on these topics is also
recommended.

The Gaussian Isoperimetric Inequality was first proved independently
by Borell [Bor75] and by Sudakov and Tsirel’'son [ST78]. Both works de-
rived the result by taking the isoperimetric inequality on the sphere (due
to Lévy [Lév22] and Schmidt [Sch48], see also Figiel, Lindenstrauss, and
Milman [FLM77]) and then taking “Poincaré’s limit” — i.e., viewing Gaussian
space as a projection of the sphere of radius /n in n dimensions, with n — co
(see Lévy [Lév22], McKean [McK73], and Diaconis and Freedman [DF87]).
Ehrhard [Ehr83] gave a different proof using a symmetrization argument
intrinsic to Gaussian space. This may be compared to the alternate proof of
the spherical isoperimetric inequality [Ben84] based on the “two-point sym-
metrization” of Baernstein and Taylor [BT76] (analogous to Riesz rearrange-
ment in Euclidean space and to the polarization operation from Exercise 2.52).

To carefully define Gaussian surface area for a broad class of sets re-
quires venturing into the study of geometric measure theory and functions
of bounded variation. For a clear and comprehensive development in the Eu-
clidean setting (including the remark in Exercise 11.15(b)), see the book by
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Ambrosio, Fusco, and Pallara [AFP00]. There’s not much difference between
the Euclidean and finite-dimensional Gaussian settings; research on Gauss-
ian perimeter tends to focus on the trickier infinite-dimensional case. For a
thorough development of surface area in this latter setting (which of course
includes finite-dimensional Gaussian space as a special case) see the work of
Ambrosio, Miranda, Maniglia, and Pallara [AMMP10]; in particular, Theo-
rem 4.1 in that work gives several additional equivalent definitions for surf),
besides those in Definition 11.48. Regarding the fact that RS;‘(0+) is an
equivalent definition, the Euclidean analogue of this statement was proven in
Miranda et al. [MPPPO07] and the statement itself follows similarly [Mir13]
using Ambrosio et al. [AFR13]. (Our heuristic justification of (11.14) is simi-
lar to the one given by Kane [Kan11].) Additional related results can be found
in Hino [Hin10] (which includes the remark about convex sets at the end of
Definition 11.48), Ambrosio and Figalli [AF11], Miranda et al. [MNP12], and
Ambrosio et al. [AFR13].

The inequality of Theorem 11.51 is explicit in Ledoux [Led94] (see also
the excellent survey [Led96]); he used it to deduce the Gaussian Isoperimet-
ric Inequality. He also noted that it’s essentially deducible from an earlier
inequality of Pisier and Maurey [Pis86, Theorem 2.2]. Theorem 11.43, which
expresses the subadditivity of rotation sensitivity, can be viewed as a dis-
cretization of the Pisier—Maurey inequality. This theorem appeared in work
of Kindler and O’Donnell [KO12], which also made the observations about
the volume-% case of Borell’s Isoperimetric Theorem at the end of Section 11.3
and in Remark 11.76.

Bobkov’s Inequality [Bob97] in the special case of Gaussian space had
already been implicitly established by Ehrhard [Ehr84]; the striking nov-
elty of Bobkov’s work (partially inspired by Talagrand [Tal93]) was his re-
duction to the two-point Boolean inequality. The proof of this inequality
which we presented is, as mentioned a discretization of the stochastic cal-
culus proof of Barthe and Maurey [BMO00]. (In turn, they were extending
the stochastic calculus proof of Bobkov’s Inequality in the Gaussian setting
due to Capitaine, Hsu, and Ledoux [CHL97].) The idea that it’s enough
to show that Claim 11.54 is “nearly true” by computing two derivatives
— as opposed to showing it’s exactly true by computing four derivatives —
was communicated to the author by Yuval Peres. Following Bobkov’s pa-
per, Bakry and Ledoux [BL96] established Theorem 11.55 in very general
infinite-dimensional settings including Gaussian space; Ledoux [Led98] fur-
ther pointed out that the Gaussian version of Bobkov’s Inequality has a very
short and direct
semigroup-based proof. See also Bobkov and Goétze [BG99] and Tillich and
Zémor [TZ00] for results similar to Bobkov’s Inequality in other discrete set-
tings.
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Borell’s Isoperimetric Theorem is from Borell [Bor85]. Borell’s proof used
“Ehrhard symmetrization” and actually gave much stronger results — e.g.,
that if f,g € L2(R",y) are nonnegative and ¢ = 1, then ((U,f)4,g) can only
increase under simultaneous Ehrhard symmetrization of f and g. There are
at least four other known proofs of the basic Borell Isoperimetric Theorem.
Beckner [Bec92] observed that the analogous isoperimetric theorem on the
sphere follows from two-point symmetrization; this yields the Gaussian result
via Poincaré’s limit (for details, see Carlen and Loss [CL90]). (This proof is
perhaps the conceptually simplest one, though carrying out all the technical
details is a chore.) Mossel and Neeman [MN12] gave the proof based on
semigroup methods outlined in Exercises 11.26-11.29, and later together
with De [DMN12] gave a “Bobkov-style” Boolean proof (see Exercise 11.30).
Finally, Eldan [E1ld13] gave a proof using stochastic calculus.

As mentioned in Section 11.5 there are several known ways to prove the
Berry—Esseen Theorem. Aside from the original method (characteristic func-
tions), there is also Stein’s Method [Ste72, Ste86b]; see also, e.g., [Bol84,
BH84, CGS11]. The Replacement Method approach we presented originates
in the work of Lindeberg [Lin22]. The mollification techniques used (e.g.,
those in Exercise 11.40) are standard. The Invariance Principle as presented
in Section 11.6 is from Mossel, O’'Donnell, and Oleszkiewicz [MOQO10]. Fur-
ther extensions (e.g., Exercise 11.48) appear in the work of Mossel [Mos10].
In fact the Invariance Principle dates back to the 1971 work of Rotar’ [Rot73,
Rot74]; therein he essentially proved the Invariance Principle for degree-2
multilinear polynomials (even employing the term “influence” as we do for
the quantity in Definition 11.63). Earlier work on extending the Central
Limit Theorem to higher-degree polynomials had focused on obtaining suffi-
cient conditions for polynomials (especially quadratics) to have a Gaussian
limit distribution; this is the subject of U-statistics. Rotar’ emphasized the
idea of invariance and of allowing any (quadratic) polynomial with low in-
fluences. Rotar’ also credited Girko [Gir73] with related results in the case
of positive definite quadratic forms. In 1975, Rotar’ [Rot75] generalized his
results to handle multilinear polynomials of any constant degree, and also
random vectors (as in Exercise 11.48). (Rotar’ also gave further refinements
in 1979 [Rot79].)

The difference between the results of Rotar’ [Rot75] and the results of
Mossel et al. [MOO10] comes in the treatment of the error bounds. It’s some-
what difficult to extract simple-to-state error bounds from Rotar’ [Rot75], as
the error there is presented as a sum over i € [n] of expressions E[F (x)1|r(x) >y, ],
where u; involves Inf;[F]. (Partly this is so as to generalize the statement
of the Lindeberg CLT.) Nevertheless, the work of Rotar’ implies a Lévy dis-
tance bound as in Corollary 11.70, with some inexplicit function o0(1) in place
of (1/p)9®eV/8 By contrast, the work of Mossel et al. [MOO10] shows that
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a straightforward combination of the Replacement Method and hypercon-
tractivity yields good, explicit error bounds. Regarding the Carbery—Wright
Theorem [CWO01], an alternative exposition appears in Nazarov, Sodin, and
Vol’berg [NSV02].

Regarding the Majority Is Stablest Theorem (conjectured in Khot, Kindler,
Mossel, and O’Donnell [KKMOO04] and proved originally in Mossel, O’'Donnell,
and Oleszkiewicz [MOOO05b]), it can be added that additional motivation for
the conjecture came from Kalai [Kal02]. The fact that (SDP) is an efficiently
computable relaxation for the Max-Cut problem dates back to the 1990 work
of Delorme and Poljak [DP93]; however, they were unable to give an anal-
ysis relating its value to the optimum cut value. In fact, they conjectured
that the case of the 5-cycle from Example 11.73 had the worst ratio of Opt(G)
to SDPOpt(G@). Goemans and Williamson [GW94] were the first to give a
sharp analysis of the SDP (Theorem 11.72), at least for 8 = 8*. Feige and
Schechtman [FS02] showed an optimal integrality gap for the SDP for all
values 0 = 0* (in particular, showing an integrality gap ratio of cqw); inter-
estingly, their construction essentially involved proving Borell’s Isoperimetric
Inequality (though they did it on the sphere rather than in Gaussian space).
Both before and after the Khot et al. [KKMOO04] UG-hardness result for
Max-Cut there was a long line of work [Kar99, Zwi99, AS00, ASZ02, CW04,
KV05, FL06, KO06] devoted to improving the known approximation algo-
rithms and UG-hardness results, in particular for 8 < 8*. This culminated
in the results from O’Donnell and Wu [OW08] (mentioned in Remark 11.75),
which showed explicit matching (a, f)-approximation algorithms, integral-
ity gaps, and UG-hardness results for all % < f < 1. The fact that the best
integrality gaps matched the best UG-hardness results proved not to be a co-
incidence; in contemporaneous work, Raghavendra [Rag08] showed that for
any CSP, any SDP integrality gap could be turned into a matching Dictator-
vs.-No-Notables test. This implies the existence of matching efficient (a, B)-
approximation algorithms and UG-hardness results for every CSP and ev-
ery . See Raghavendra’s thesis [Rag09] for full details of his earlier publica-
tion [Rag08] (including some Invariance Principle extensions building further
on Mossel [Mos10]); see also Austrin’s work [Aus07, Aus10] for precursors
to the Raghavendra theory.

Exercise 11.31 concerns a problem introduced by Talagrand [Tal89]. Tala-
grand offers a $1,000 prize [Tal06] for a solution to the following Boolean ver-
sion of the problem: Show that for any fixed 0 < p < 1 and for f : {-1,1}" — R>°
with E[f]=1 it holds that Pr[T,f > t] = 0o(1/t) as t — co. (The rate of decay

may depend on p but not, of course, on n; in fact, a bound of the form O( - \/i_t)
og
is expected.) The result outlined in Exercise 11.31 (obtained together with

James Lee) is for the very special case of 1-dimensional Gaussian space; Ball,
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Barthe, Bednorz, Oleszkiewicz, and Wolff [BBB*13] obtained the same result

loglog t) for d-dimensional Gaussian space (but

and also showed a bound of O(
og
with the constant in the O(-) dependlng on d).

The Multifunction Invariance Principle (Exercise 11.48 and its special
case Exercise 11.46) are from Mossel [Mos10]; the version for general product
spaces (Exercise 11.49) is from Mossel, O’'Donnell, and Oleszkiewicz [MOO10].
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Some tips

* You might try using analysis of Boolean functions whenever you're faced
with a problems involving Boolean strings in which both the uniform
probability distribution and the Hamming graph structure play a role.
More generally, the tools may still apply when studying functions on (or
subsets of) product probability spaces.

o If you're mainly interested in unbiased functions, or subsets of volume %,
use the representation f :{—1,1}* — {—1,1}. If you're mainly interested
in subsets of small volume, use the representation f :{—1,1}" — {0,1}.

o As for the domain, if you're interested in the operation of adding two
strings (modulo 2), use IFj. Otherwise use {-1,1}".

o If you have a conjecture about Boolean functions:
— Test it on dictators, majority, parity, tribes (and maybe recursive
majority of 3). If it’s true for these functions, it’s probably true.
— Try to prove it by induction on 7.
— Try to prove it in the special case of functions on Gaussian space.

e Try not to prove any bound on Boolean functions f : {-1,1}" — {-1,1}
that involves the parameter n.

e Analytically, the only multivariate polynomials we really know how to
control are degree-1 polynomials. Try to reduce to this case if you can.

o Hypercontractivity is useful in two ways: (i) It lets you show that low-
degree functions of independent random variables behave “reasonably”.
(i1) It implies that the noisy hypercube graph is a small-set expander.

e Almost any result about functions on the hypercube extends to the case
of the p-biased cube, and more generally, to the case of functions on
products of discrete probability spaces in which every outcome has prob-
ability at least p — possibly with a dependence on p, though.

e Every Boolean function consists of a junta part and Gaussian part.

389
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(2,4)-hypercontractivity, see Bonami
Lemma, 253, 271

(2, g)-hypercontractivity, see
hypercontractivity, (2,q)- and (p,2)-

3-Lin, see Max-3-Lin

3-Sat, see Max-3-Sat

k-wise independent, 154-155, 170

0-1 multilinear representation, 35

% Theorem, 127

Aaronson—Ambainis Conjecture, 246
ACO, see constant-depth circuits
affine function, 38
affine subspace, 72
algebraic normal form, see I[F'o-polynomial
representation
almost k-wise independent, see (¢, k)-wise
independent
(a, B)-approximation algorithm, 188
(a, B)-distinguishing algorithm, 196
Ambainis function, see sortedness function
analysis of Boolean functions, 19-388
analysis of Gaussian functions, 328-350
AND function, 44
ANOVA decomposition, see orthogonal
decomposition
anticoncentration, 249, 272
Gaussians, 357
polynomials of Gaussians, see
Carbery—Wright Theorem
approximating polynomial, 117, 136
approximation algorithm, see
(a, B)-approximation algorithm

arity (CSP), 184

Arrow’s Theorem, 58, 175, 369
assignment (CSP), 186

assignment tester, see PCPP

assisted proof, see PCPP

attenuated influence, see stable influence
automorphism group, 39, 64, 241
average sensitivity, see total influence

B-reasonable, see reasonable random
variable
balanced, see unbiased
bent functions, 151-152, 170
Berry—Esseen Theorem, 119, 350-357,
386
multidimensional, 138
multivariate, 357, see Invariance
Principle for sums of random vectors
nonuniform, 137
Variant, 355, 357
biased Fourier analysis, 220
bit, 19, 20
BLR (Blum-Luby-Rubinfeld) Test, 32,
174, 176, 197
derandomized, 159, 171
BLR+NAE Test, 176
Bobkov’s Inequality, 346-350, 374, 385
Bonami Lemma, 247, 250, 271
Boolean cube, see cube, Hamming
Boolean function, 19
real-valued, 21, 28
Boolean-valued function, 28
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Index

Borell’s Isoperimetric Theorem, 327,
340-343, 369, 373-378, 385
volume-§ case, 340-342, 367
Bourgain’s Sharp Threshold Theorem,
306-312

Carbery—Wright Theorem, 363, 387
Central Limit Theorem, 118, 119, 329, 350
multidimensional, 120, 138
Chang’s Inequality, see Level-1 Inequality
character, 227-229
chi-squared distance, 38
Chow parameters, 114
Chow’s Theorem, 114
for polynomial threshold functions, 116
Circuit-Sat, 188
circuits, see also constant-depth circuits
circuits (De Morgan), 108
CLT, see Central Limit Theorem
CNF, 94
codimension, 72
collision probability, 38
complete quadratic function, 34, 109, 135,
144,152, 197
compression, see polarization
concentration, spectral, 69, 79
Condorcet Paradox, 57-58, 369
constant-depth circuits, 103-107, 135
learning, 106
spectrum, 106
constraint satisfaction problem, see CSP
convolution, 29-30, 229
correlated Gaussians, 330
vectors, 330
correlated strings, 53
correlation distillation, 66, 134
correlation immune, 147, 170
coset, see affine subspace
covariance, 27
cryptography, 82, 90, 107
CSP, 183-193
equivalence with testing, 186-187
cube, Hamming, 20

decision list, 87

decision tree, 73, 229
depth, 74
expected depth, 230
Fourier spectrum, 74
learning, 82, 89, 159, 242, 273
product space domains, 230
randomized, 230, 242

read-once, 87
size, 74
decision tree process, 234
degree, 28, 36, 149, 150
product space domains, 215
degree-1 Fourier weight, see Fourier
weight, degree-1
degree k part, 28
general product space, 220
density function, see probability density
derandomization, 157-160
derivative operator, 47
biased Fourier analysis, 222
Dickson’s Theorem, 165
dictator, 44
biased Fourier analysis, 221
dictator testing, see testing, dictatorship
Dictator-vs.-No-Notables test, 191, 366
connection with hardness, 192, 364
for Max-E3-Lin, 193-195
directional derivative, 161
discrete cube, see cube, Hamming
discrete derivative, see derivative operator
discrete gradient, see gradient operator
distance, relative Hamming, 26
DNF, 93
Fourier spectrum, 96, 101-102, 108
read-once, 108
size, 94
width, 94, 269
domain (CSP), 184
dual group, 229, 241
dual norm, 259
dual, Boolean, 35

edge boundary, 46, 50

Efron—Stein decomposition, see orthogonal
decomposition

Efron—Stein Inequality, see Poincaré
Inequality

entropy functional, 319

(e,0)-small stable influences, 145, 191

(e,k)-regular, 146

(e,k)-wise independent, 146, 155

e-biased set, see probability density,
e-biased density

e-close, 31

e-fools, see fooling

e-regular, 144

e-uniform, see e-regular

equality function, 34, 164
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Erdés—Rényi random graph, see random
graph

even function, 35

exclusive-or, see parity

expansion, 52

small-set, 52, 126, 255, 263, 267, 284,

320

expectation operator, 48, 212

Fo-degree, 149, 150, 160
Fo-polynomial representation, 148-150,
169
learning, 167
FZ[ (finite field), 153
Fast Walsh-Hadamard Transform, 37
FKN Theorem, 61, 129, 252
folding, 199
fooling, 160
Fourier analysis of Boolean functions, see
analysis of Boolean functions
Fourier basis, 209, 336, 338
Fourier coefficient, 22
formula, 25
product space domains, 211
Fourier expansion, 20-23
product space domains, 211
Fourier norm, 72
1-, 36, 83, 86, 87, 91, 157-159
4-, 38, 145, 160, 168
Fourier sparsity, 72, 89, 276
Fourier spectrum, 22
Fourier weight, 27
degree-1, 60, 124-125, 139
general product space, 220
Fp (finite field), 229
Friedgut’s Conjecture, 305
Friedgut’s Junta Theorem, 268—-269, 307
product space domains, 294, 304
Friegut’s Sharp Threshold Theorem, 305

Gaussian isoperimetric function, 125, 139,
343

Gaussian Isoperimetric Inequality,
343-347, 384-385

Gaussian Minkowski content, see
Gaussian surface area

Gaussian noise operator, 330, 384

Gaussian quadrant probability, 120, 138,
274,373, 376

Gaussian random variable, 118, 119

simulated by bits, 329
Gaussian space, 328, 384

Gaussian surface area, 343-347, 372, 384

Gaussian volume, 328

General Hypercontractivity Theorem, see
Hypercontractivity Theorem, General

Goemans—Williamson Algorithm, 189,
364-366, 379

Goldreich—Levin Algorithm, 82-85,
157-159

Gotsman-Linial Conjecture, 133, 346

Gotsman—Linial Theorem, 114, 116

Gowers norm, 168

gradient operator, 51

granularity, Fourier spectrum, 36, 72-74,
89, 165

graph property, 223, 295

monotone, 224, 305
Guilbaud’s Formula, 59

Hadamard Matrix, 36
halfspace, see linear threshold function
Hamming ball, 61
degree-1 weight, 125
Hamming cube, see cube, Hamming
Hamming distance, 20
harmonic analysis of Boolean functions,
see analysis of Boolean functions
Hatami’s Theorem, 307
Hausdorff~Young Inequality, 86
hemi-icosahedron function, 34
Hermite expansion, 338
Hermite polynomials, 336-338, 370-372,
384
multivariate, 338
Hoeffding decomposition, see orthogonal
decomposition
Holder inequality, 253
hypercontractivity, 40, 116, 256-257, 273,
278281, 283, 287-292, 324
(2,9)- and (p,2)-, 257-261
(2,q)- and (p,2)—, 247
biased bits, 291
general product probability spaces,
316-319
induction, 259—-261, 286, 313
preserved by sums, 256, 313
Hypercontractivity Theorem, 247, 273,
283-287
Gaussian, 333-334, 384
General, 283, 292
Reverse, 324
Two-Function, 259-261, 280, 284286,
375
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Hypercontractivity Theory
Reverse, 314
hypercube, see cube, Hamming

impartial culture assumption, 45
indicator basis, 208
indicator function, 29, 33
indicator polynomial, 21
induction, 259
influence, 46-48
p-stable, see stable influence
average, 64, 131
biased Fourier analysis, 222
coalitional, 274
maximum, 265
product space domains, 213-214
inner product, 24
inner product mod 2 function, 34, 117,
144, 149, 151, 160, 197
instance (CSP), 185
Invariance Principle, 386
basic, 359, 368
for sums of random variables, 354
for sums of random vectors, 381
general product spaces, 382
multifunction, 382
Invariance Principles, 357-364, 381-383
isomorphic, 39
isoperimetric inequality
Hamming cube, 52, 138, 266, 320, 347
1t6’s Formula, 348

junta, 44, 269
learning, 89, 155-156, 167, 171

k-wise independent, 147
Kahn—Kalai—Linial Theorem, see KKL
Theorem
Khintchine(—Kahane) Inequality, 66, 115,
262
KKL Theorem, 97, 265-268, 281
edge-isoperimetric version, 267
product space domains, 294
Kravchuk polynomials, 137, 371
Krawtchouk polynomials, see Kravchuk
polynomials
Kushilevitz function, see
hemi-icosahedron function
Kushilevitz—Mansour Algorithm, see
Goldreich—Levin Algorithm

L2, 207
Lévy distance, 357, 363

Laplacian operator, 51
ith coordinate, 49, 213
learning theory, 78-82, 130, 157-159
Level-£ Inequalities, 256, 264
level-1 Fourier weight, see Fourier weight,
degree-1
Level-1 Inequality, 126, 264, 273
Lindeberg Method, see Replacement
Method
linear (over [Fg), 31
linear threshold function, 44, 113-114,
269
Fourier weight, 114-115
learning, 130
noise stability, 121, 130-133, 138
literal, 93
LMN Theorem, 106
locally correctable, 33
locally testable proof, see PCPP
Log-Sobolev Inequality, 280, 320-321
Gaussian, 335, 384
product space domains, 321
Low-Degree Algorithm, 81, 90
low-degree projection, see projection,
low-degree
LTF, see linear threshold function

Mbobius inversion, 164
majority, 21, 34, 43
Fourier coefficients, 122
Fourier weight, 121-124
noise stability, 54, 120-121, 136, 138
total influence, 51, 118-119
Majority Is Least Stable Conjecture, 133
Majority Is Stablest Theorem, 121, 127,
327, 358, 364, 368—-369
general product spaces, 383
Mansour’s Conjecture, 96
Margulis—Russo Formula, 224, 239, 295
martingale
Doob, 237
martingale difference sequence, 237, 278
Max-2-Lin, 379
Max-3-Coloring, 184, 185
Max-3-Lin, 184, 185, 188, see also
Dictator-vs.-No-Notables test for
Max-E3-Lin
Hastad’s hardness for, 190
Max-3-Sat, 184, 185, 190, 197
Hastad’s hardness for, 190
Max-w, 185
Max-CSP(¥), 184-186
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Max-Cut, 184, 185, 189, 364—368
May’s Theorem, 45
mean, 26, 146
Mehler transform, see Gaussian noise
operator
Minkowski content, see Gaussian
Minkowski content
mod 3 function, 34, 166
mollification, 356, 379-381
monotone
DNF, 107
monotone function, 45
learning, 81, 273
monotone graph property, see graph
property, monotone
multi-index, 210
multilinear polynomial, 20

n-cube, see cube, Hamming
NAE Test, 175
noise operator, 55
applied to individual coordinates, 301
Gaussian, see Gaussian noise operator
product space domains, 214
noise sensitivity, 54, 366
Gaussian, see rotation sensitivity
vs. total influence, 131
Noise Sensitivity Test, 366
noise stability, 5357
product space domains, 214
uniform, see uniformly noise-stable
noisy hypercube graph, 254, 274
noisy influence, see stable influence
norm, 24
normal random variable, see Gaussian
random variable
not-all-equal (NAE) function, 34, 58
notable coordinates, 57, 145, 191
NP-hard, 188, 197

number operator, see Ornstein—Uhlenbeck

operator

odd function, 35, 45

optimum value (CSP), 186

OR function, 44, 305

Ornstein—Uhlenbeck operator, 334, 339

Ornstein—Uhlenbeck semigroup, see
Gaussian noise operator

orthogonal complement, see perpendicular

subspace
orthogonal decomposition, 216-219, 244
orthonormal, 24, 209

OS Inequality, 232, 273
OSSS Inequality, 232, 243, 362
OXR function, 34, 201

p-biased Fourier analysis, see biased
Fourier analysis
(p,2)-hypercontractivity, see
hypercontractivity, (2,q)- and (p,2)-
PAC learning, see learning theory
Paley-Zygmund inequality, 249
parity, 23, 106, 108, 109, 148
parity decision tree, 88
Parseval’s Theorem, 25, 211, 339
complex case, 240
PCP Theorem, 183, 189
PCPP, 179-182
PCPP reduction, 182-183
Peres’s Theorem, 130, 269
perpendicular subspace, 72
pivotal, 46, 61, 238
Plancherel’s Theorem, 26, 211, 339
complex case, 227, 240
Poincaré Inequality, 52, 266, 320
Poisson summation formula, 78
polarization, 65, 275
polynomial linear threshold function
Fourier spectrum, 116
polynomial threshold function, 115-116,
269
degree, 136
Fourier spectrum, 116
noise stability, 133, 139
sparsity, 116, 117, 136
total influence, 133-134, 139
predicates (CSP), 184
probabilistically checkable proof of
proximity, see PCPP
probability density, 29
e-biased, 144, 152—-154
probability density, e-biased, 169
probability density,e-biased, 157
product basis, 209, 338
product probability space, 207
product space domains, 207-220
projection
low-degree, 271, 299-301
projection onto coordinates, 88, 212
property testing, see testing
local tester, 174, 178
pseudo-junta, 307, 322
PTF, see polynomial threshold function
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Rademacher functions, 39
random function, 35, 62, 89, 135, 136, 143,
163
random graph, 223, 323
random subset, 98
randomization/symmetrization, 289-291,
297-304, 308, 315, 316, 325
randomized assignment, 198
reasonable random variable, 248, 289,
350, 359
recursive majority, 44, 231, 242
regular, see e-regular
relevant coordinate, 47
Replacement Method, 351, 359
resilient, 147, 170
restriction, 74-77
Fourier, 76
random, 98-100
to subspaces, 77-78
revealment, 230, 231, 242, 243
Reverse Hypercontractivity Theorem, see
Hypercontractivity Theorem, Reverse
Reverse Small-Set Expansion Theorem,
see Small-Set Expansion Theorem,
Reverse
p-correlated Gaussians, see correlated
Gaussians
p-correlated strings, see correlated strings
p-stable hypercube graph, see noisy
hypercube graph
rotation sensitivity, 342, 385
subadditivity, 342, 346
Russo—Margulis Formula, see
Margulis—Russo Formula

satisfiable, 186

SDP, see semidefinite programming

second moment method, see
Paley—Zygmund inequality

selection function, 34

semidefinite programming, 364

semigroup property, 63, 273, 331, 370

sensitivity, 49

set system, 19

Shapley value, 239

Shapley—Shubik index, see Shapley value

sharp threshold, see threshold, sharp

Sheppard’s Formula, 120, 332

shifting, see polarization

Siegenthaler’s Theorem, 150-151, 156,
170

small stable influences, see (¢,5)-small
stable influences
Small-Set Expansion Theorem, 263, 274
generalized, 284, 324, 375
product space domains, 293
Reverse, 285, 314, 315, 324
social choice, 43
social choice function, 43
sortedness function, 34
sparsity (fractional), 86
spectral concentration, see concentration,
spectral
spectral norm, see Fourier norm
spectral sparsity, see Fourier sparsity
stable influence, 57, 145, 255, 264
product space domains, 215, 293
Stirling’s Formula, 62
string, 19
subcube, 73
degree-1 weight, 125
subcube partition, 87
subspaces, 72
Switching Lemma
Baby, 100, 110
Hastad’s, 100, 104-106
symmetric function, 45
symmetric random variable, 289

Tp, see noise operator
tensorization, see hypercontractivity,
induction
term (DNF), 93
test functions, 352
Lipschitz, 356
testing, 31, 173-175
dictatorship, 175
linearity, 32
threshold function, see linear threshold
function
threshold phenomena, 223
threshold, sharp, 225, 226, 238, 295-297,
304, 306, 323
threshold-of-parities circuit, 116, 135
total influence, 49-52
DNF formulas, 95, 99, 109, 238
monotone functions, 51
product space domains, 213, 304
total variation distance, 37
transitive-symmetric function, 45, 64, 223,
241, 295
decision tree complexity, 231
tribes function, 45, 62, 68, 96-97, 108, 265
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Two-Point Inequality, 286
Reverse, 315

U), see Gaussian noise operator
UG-hardness, 192, 201, 364

unate, 61, 132

unbiased, 26

uncertainty principle, 87

uniform distribution, 24

uniform distribution on A, 29
uniformly noise-stable, 130, 269, 358
Unique-Games, 192, 200, 204, 364

value (CSP), 186

variance, 26

Viola’s Theorem, 161

voting rule, see social choice function

Walsh functions, 39

Walsh—-Hadmard Matrix, 36

weight, see Fourier weight

weighted majority, see linear threshold
function

XOR, see parity

Yao’s Conjecture, 231
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