
LEARNING PIECEWISE LIPSCHITZ FUNCTIONS IN CHANGING
ENVIRONMENTS

Maria-Florina Balcan
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
ninamf@cs.cmu.edu

Travis Dick
Department of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213
tdick@cs.cmu.edu

Dravyansh Sharma
Department of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213
drasha@cmu.edu

August 10, 2020

ABSTRACT

Optimization in the presence of sharp (non-Lipschitz), unpredictable (w.r.t. time and amount) changes
is a challenging and largely unexplored problem of great significance. We consider the class of
piecewise Lipschitz functions, which is the most general online setting considered in the literature for
the problem, and arises naturally in various combinatorial algorithm selection problems where utility
functions can have sharp discontinuities. The usual performance metric of static regret minimizes
the gap between the payoff accumulated and that of the best fixed point for the entire duration, and
thus fails to capture changing environments. Shifting regret is a useful alternative, which allows
for up to s environment shifts. In this work we provide an O(

√
sdT log T + sT 1−β) regret bound

for β-dispersed functions, where β roughly quantifies the rate at which discontinuities appear in
the utility functions in expectation (typically β ≥ 1/2 in problems of practical interest [5]). We
also present a lower bound tight up to sub-logarithmic factors. We further obtain improved bounds
when selecting from a small pool of experts. We empirically demonstrate a key application of our
algorithms to online clustering problems on popular benchmarks.

1 Introduction

Online optimization is well-studied in the online learning community [12, 21]. It consists of a repeated game with
T iterations. At iteration t, the player chooses a point ρt from a compact decision set C ⊂ Rd; after the choice is
committed, a bounded utility function ut : C → [0, H] is revealed. We treat ut as a reward function to be maximized,
although one may also consider minimizing a loss function. The goal of the player is to minimize the regret, defined as
the difference between the online cumulative payoff (i.e.

∑T
t=1 ut(ρt)) and the cumulative payoff using an optimal

offline choice in hindsight. In many real world problems, like online routing [4, 36], detecting spam email/bots [35, 15]
and ad/content ranking [37, 14], it is often inadequate to assume a fixed point will yield good payoff at all times. It is
more natural to compute regret against a stronger offline baseline, say one which is allowed to switch the point a few
times (say s shifts), to accommodate events which significantly change the function values for certain time periods.
The switching points are neither known in advance nor explicitly stated during the course of the game. This stronger
baseline is known as shifting regret [23].

Shifting regret is a particularly relevant metric for online learning problems in the context of algorithm configuration.
This is an important family of non-convex optimization problems where the goal is to decide in a data-driven way
what algorithm to use from a large family of algorithms for a given problem domain. In the online setting, one has a
configurable algorithm such as an algorithm for clustering data [6], and must solve a series of related problems, such as
clustering news articles each day for a news reader or clustering drugstore sales information to detect disease outbreaks.
For problems of this nature, significant events in the world or changing habits of buyers might require changes in
algorithm parameters, and we would like the online algorithms to adapt smoothly.

Our results: We present the first results for shifting regret for non-convex utility functions which potentially have sharp
discontinuities. Restricting attention to specific kinds of decision sets C and utility function classes yields several
important problems. If C is a convex set and utility functions are concave functions (i.e. corresponding loss functions
are convex), we get the Online Convex Optimization (OCO) problem [39], which is a generalization of online linear
regression [26] and prediction with expert advice [29]. Algorithms with O(

√
sT logNT ) regret are known for the case
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of s shifts for prediction with N experts and OCO on the N -simplex [23, 11] using weight-sharing or regularization. We
show how to extend the result to arbitrary compact sets of experts, and more general utility functions where convexity
can no longer be exploited. Our key insight is to view the regularization as simultaneously inducing multiplicative
weights update with restarts matching all possible shifted expert sequences, which allows us to use the dispersion
condition introduced in [5]. Related notions like adaptive regret [22], strongly adaptive regret [16, 25], dynamic regret
[39, 24] and sparse experts setting [10] have also been studied for finite experts.

Intuitively, a sequence of piecewise L-Lipschitz functions is well-dispersed if not too many functions are non-Lipschitz
in the same region in C. An assumption like this is necessary, since, even for piecewise constant functions, linear regret
is unavoidable in the worst case [13]. Our shifting regret bounds are O(

√
sdT log T + sT 1−β) which imply low regret

for sufficiently dispersed (large enough β) functions. In a large range of applications, one can show β ≥ 1
2 [5]. This

allows us to obtain tight regret bounds modulo sublogarithmic terms, providing a near-optimal characterization of the
problem. Our analysis also readily extends to the closely related notion of adaptive regret [22]. Note that our setting
generalizes the Online Non-Convex Learning (ONCL) problem where all functions are L-Lipschitz throughout [31, 38]
for which shifting regret bounds have not been studied.

We demonstrate the effectiveness of our algorithm in solving the algorithm selection problem for a family of clustering
algorithms parameterized by different ways to initialize k-means [7]. We consider the problem of online clustering,
but unlike prior work which studies individual data points arriving in an online fashion [28, 33], we look at complete
clustering instances from some distribution(s) presented sequentially. Our experiments provide the first empirical
evaluation of online algorithms for piecewise Lipschitz functions — prior work is limited to theoretical analysis
[5] or experiments for the batch setting [7]. Our results also have applications in non-convex online problems like
portfolio optimization [32] and online non-convex SVMs [19]. More broadly, for applications where one needs to tune
hyperparameters that are not nice, our results imply it is necessary and sufficient to look at dispersion.

Overview: We formally define the notion of changing environments in Section 2. We then present online algorithms that
perform well in these settings in Section 3. In Sections 4 and 5 we will provide theoretical guarantees of low regret for
our algorithms and describe efficient implementations respectively. We will present a near-tight lower bound in the next
section. In Section 7 we demonstrate the effectiveness of our algorithms in algorithm configuration problems for online
clustering.

2 Problem setup

Consider the following repeated game. At each round 1 ≤ t ≤ T we are required to choose ρt ∈ C ⊂ Rd, are presented
a piecewise L-Lipschitz function ut : C → [0, H] and experience reward ut(ρt).

In this work we will study s-shifted regret and (m-sparse, s-shifted) regret notions defined below.
Definition 1. The s-shifted regret (tracking regret in [23]) is given by

E

 max
ρ∗i∈C,

t0=1<t1···<ts=T+1

s∑
i=1

ti−1∑
t=ti−1

(ut(ρ
∗
i )− ut(ρt))


Note that for the i-th phase (i ∈ [s]) given by [ti−1, ti − 1], the offline algorithm uses the same point ρ∗i . The usual
notion of regret compares the payoff of the online algorithm to the offline strategies that pick a fixed point ρ∗ ∈ C for all
t ∈ [T ] but here we compete against more powerful offline strategies that can use up to s distinct points ρ∗i by switching
the expert s− 1 times. For s = 1, we retrieve the standard static regret.
Definition 2. Extend Definition 1 with an additional constraint on the number of distinct experts used,

∣∣{ρ∗i | 1 ≤ i ≤
s}
∣∣ ≤ m. We call this (m-sparse, s-shifted) regret [10].

This restriction makes sense if we think of the adversary as likely to reuse the same experts again, or the changing
environment to experience recurring events with similar payoff distributions.

Without further assumptions, no algorithm achieves sublinear regret, even when the payout functions are piecewise
constant [13]. We will characterize our regret bounds in terms of the dispersion [5] of the utility functions, which
roughly says that discontinuities are not too concentrated. Several other restrictions can be seen as a special case
[34, 13].
Definition 3. The sequence of utility functions u1, . . . , uT is β-dispersed for the Lipschitz constant L if, for all T and
for all ε ≥ T−β , at most Õ(εT ) functions (the soft-O notation suppresses dependence on quantities beside ε, T and
β) are not L-Lipschitz in any ball of size ε contained in C. Further if the utility functions are obtained from some
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distribution, the random process generating them is said to be β-dispersed if the above holds in expectation, i.e. if for
all T and for all ε ≥ T−β ,

E
[
max
ρ∈C

∣∣{t | ut is not L-Lipschitz in B(ρ, ε)}
∣∣] ≤ Õ(εT )

For static regret, a continuous version of exponential weight updates gives a tight bound of Õ(
√
dT + T 1−β) [5]. They

further show that in several cases of practical interest one can prove dispersion with β = 1/2 and the algorithm enjoys
Õ(
√
dT ) regret. This algorithm may, however, have Ω(T ) s-shifted regret even with a single switch (s = 2), and hence

is not suited to changing environments (Appendix B).

3 Online algorithms with low shifting regret

In this section we describe online algorithms with good shifting regret, but defer the actual regret analysis to Section 4.
First we present a discretization based algorithm that simply uses a finite expert algorithm given a discretization of C.
This algorithm will give us the reasonable target regret bounds we should shoot for, although the discretization results
in exponentially many experts.

Algorithm 1 Discrete Fixed Share Forecaster
Input: β, the dispersion parameter
1. Obtain a T−β-discretization D of C (i.e. any c ∈ C is within T−β of some d ∈ D)
2. Apply an optimal algorithm for finite experts with points in D as the experts (e.g. fixed share [23])

We introduce a continuous version of the fixed share algorithm (Algorithm 2). We maintain weights for all points
similar to the Exponential Forecaster of [5] which updates these weights in proportion to their exponentiated scaled
utility eλut(.) (λ ∈ (0, 1/H] is a step size parameter which controls how aggressively the algorithm updates its weights).
The main difference is to update the weights with a mixture of the exponential update and a constant additive boost at
all points in some proportion α (the exploration parameter, optimal value derived in Section 4) which remains fixed for
the duration of the game. This allows the algorithm to balance exploitation (exponential update assigns high weights to
points with high past utility) with exploration, which turns out to be critical for success in changing environments. We
will show this algorithm has good s-shifted regret in Section 4. It also enjoys good adaptive regret [22] (see Appendix
D).

Algorithm 2 Fixed Share Exponential Forecaster (Fixed Share EF)
Input: step size parameter λ ∈ (0, 1/H], exploration parameter α ∈ [0, 1]

1. w1(ρ) = 1 for all ρ ∈ C
2. For each t = 1, 2, . . . , T :

i. Wt :=
∫
C wt(ρ)dρ

ii. Sample ρ with probability proportional to wt(ρ), i.e. with probability pt(ρ) = wt(ρ)
Wt

iii. Observe ut(·)
iv. Let et(ρ) = eλut(ρ)wt(ρ). For each ρ ∈ C, set

wt+1(ρ) =(1− α)et(ρ) +
α

VOL(C)

∫
C
et(ρ)dρ (1)

Notice that it is not clear how to implement the Algorithm 2 from its description. We cannot store all the weights or
sample easily since we have uncountably many points ρ ∈ C. We will show how to efficiently sample according to pt
without necessarily computing it exactly or storing the exact weights in Section 5.

As it turns out adding equal weights to all points for exploration does not allow us to exploit recurring environments of
the (m-sparse, s-shifted) setting very well. To overcome this, we replace the uniform update with a prior consisting of a
weighted mixture of all the previous probability distributions used for sampling (Algorithm 3). Notice that this includes
uniformly random exploration as the first probability distribution p1(·) is uniformly random, but the weight on this
distribution decreases exponentially with time according to discount rate γ (more precisely, it decays by a factor e−γ
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Algorithm 3 Generalized Share Exponential Forecaster (Generalized Share EF)
Input: step size parameter λ ∈ (0, 1/H], exploration parameter α ∈ [0, 1], discount rate γ ∈ [0, 1]

1. w1(ρ) = 1 for all ρ ∈ C
2. For each t = 1, 2, . . . , T :

i. Wt :=
∫
C wt(ρ)dρ

ii. Sample ρ with probability proportional to wt(ρ), i.e. with probability pt(ρ) = wt(ρ)
Wt

iii. Let et(ρ) = eλut(ρ)wt(ρ) and βi,t = e−γ(t−i)∑t
j=1 e

−γ(t−j) . For each ρ ∈ C, set

wt+1(ρ) = (1− α)et(ρ) + α

(∫
C
et(ρ)dρ

) t∑
i=1

βi,tpi(ρ)

with each time step). While exploration in Algorithm 2 is limited to starting afresh, here it includes partial resets to
explore again from all past states, with an exponentially discounted rate (cf. Theorems 6, 7).

4 Analysis of algorithms

We will now analyse the algorithms in Section 3. At a high level, the algorithms have been designed to ensure that the
optimal solution, and its neighborhood, in hindsight have a large total density. We achieve this by carefully setting the
parameters, in particular the exploration parameter which controls the rate at which we allow our confidence on good
experts to change. Lipschitzness and dispersion are then used to ensure that solutions sufficiently close to the optimum
are also good on average.

4.1 Regret bounds

In the remainder of this section we will have the following setting. We assume the utility functions ut : C → [0, H], t ∈
[T ] are piecewise L-Lipschitz and β-dispersed (definition 3), where C ⊂ Rd is contained in a ball of radius R.
Theorem 4. LetRfinite(T, s,N) denote the s-shifted regret for the finite experts problem onN experts, for the algorithm
used in step 2 of Algorithm 1. Then Algorithm 1 enjoys s-shifted regret RC(T, s) which satisfies

RC(T, s) ≤ Rfinite
(
T, s,

(
3RT β

)d)
+ (sH + L)O(T 1−β).

The proof of Theorem 4 is straightforward using the definition of dispersion and is deferred to Appendix A. This gives
us the following target bound for our more efficient algorithms.

Corollary 5. The s-shifted regret of Algorithm 1 is O(H
√
sT (d log(RT β) + log(T/s)) + (sH + L)T 1−β).

Proof. There are known algorithms e.g. Fixed-Share ([23]) which obtain Rfinite(T, s,N) ≤ O(
√
sT log(NT/s)).

Applying Theorem 4 gives the desired upper bound.

Under the same conditions, we will show the following bounds for our algorithms. In the following statements, we give
approximate values for the parameters α, γ and λ under the assumptions m� s, s� T . See proofs in Appendix C for
more precise values.

Theorem 6. The s-shifted regret of Algorithm 2 with α = s/T and λ =
√
s(d log(RT β) + log(T/s))/T/H is

O(H
√
sT (d log(RT β) + log(T/s)) + (sH + L)T 1−β).

Remark. The algorithms assume knowledge of s/T , the average number of shifts per time. For unknown s, the strongly
adaptive algorithms of [16, 25] can be used with the same meta-algorithms and substituting continuous exponential
forecasters as black-box algorithms.

Similarly for Algorithm 3 we can show low (m-sparse, s-shifted) regret as well. (In particular this implies s-shifted
regret almost as good as Algorithm 2.)

Theorem 7. The (m-sparse, s-shifted) regret of Algorithm 3 is O(H
√
T (md log(RT β) + s log(mT/s)) + (mH +

L)T 1−β) for α = s/T , γ = s/mT and λ =
√

(md log(RT β) + s log(T/s))/T/H .
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4.2 Proof sketch and insights

We start with some observations about the weights Wt in Algorithm 2.

Lemma 8 (Algorithm 2). Wt+1 =
∫
C e

λut(ρ)wt(ρ)dρ.

The update rule (1) had the uniform exploration term scaled just appropriately so this relation is satisfied. We will
now relate Wt with weights resulting from pure exponential updates, i.e. α = 0 in Algorithm 2 (also the Exponential
Forecaster algorithm of [5]). The following definition corresponds to weights for running Exponential Forecaster
starting at some time τ .

Definition 9. For any ρ ∈ C and τ ≤ τ ′ ∈ [T ] define w̃(ρ; τ, τ ′) to be the weight of expert ρ, and W̃ (τ, τ ′) to
be the normalizing constant, if we ran the Exponential Forecaster of [5] starting from time τ up till time τ ′, i.e.
w̃(ρ; τ, τ ′) := eλ

∑τ′−1
t=τ ut(ρ) and W̃ (τ, τ ′) :=

∫
C w̃(ρ; τ, τ ′)dρ.

We consider Algorithm 4 obtained by a slight modification in the update rule (1) of Fixed Share EF (Algorithm 2) which
makes it easier to analyze. Essentially we replace the deterministic α-mixture by a randomized one, so at each turn we
either explicitly restart with probability α by putting the same weight on each point, or else apply the exponential update.
We note that Algorithm 4 is introduced to simplify the proof of Theorem 6, and in particular does not result in low regret
itself. The issue is that even though the weights are correct in expectation (Lemma 10), their ratio (probability pt(ρ))
is not. In particular, the optimal parameter value of α for Fixed Share EF allows the possibility of pure exponential
updates over a long period of time with a constant probability in Algorithm 4, which implies linear regret (see Appendix
B, Theorem 20). This also makes the implementation of Fixed Share EF somewhat trickier (Section 5).

Algorithm 4 Random Restarts Exponential Forecaster (Random Restarts EF)
Input: step size parameter λ ∈ (0, 1/H], exploration parameter α ∈ [0, 1]

1. ŵ1(ρ) = 1 for all ρ ∈ C
2. For each t = 1, 2, . . . , T :

i. Ŵt :=
∫
C ŵt(ρ)dρ

ii. Sample ρ with probability proportional to ŵt(ρ), i.e. with probability pt(ρ) = ŵt(ρ)

Ŵt

iii. Sample zt uniformly in [0, 1] and set

ŵt+1(ρ) =

e
λut(ρ)ŵt(ρ) if zt < 1− α∫
C e

λut(ρ)ŵt(ρ)dρ

VOL(C) otherwise

The expected weights of Algorithm 4 (over the coin flips used in weight setting) are the same as the actual weights of
Algorithm 2 (proof in Appendix C).

Lemma 10. (Algorithm 2) For each t ∈ [T ], wt(ρ) = E[ŵt(ρ)] and Wt = E[Ŵt], where the expectations are over
random restarts zt = {z1, . . . , zt−1}.

The next lemma provides intuition for looking at our algorithm as a weighted superposition of several exponential
update subsequences with restarts. This novel insight establishes a tight connection between the algorithms and is
crucial for our analysis.
Lemma 11. (Algorithm 2) WT+1 equals the sum∑

s∈[T ]

∑
t0=1<t1···<ts=T+1

αs−1(1− α)T−s

VOL(C)s−1
s∏
i=1

W̃ (ti−1, ti)

Proof Sketch. Each term corresponds to the weight when we pick a number s ∈ [T ] for the number of times we start
afresh with a uniformly random point ρ at times ts = {t1, . . . , ts−1} and do the regular exponential weighted forecaster
in the intermediate periods. We have a weighted sum over all these terms with a factor α/VOL(C) for each time we
restart and (1− α) for each time we continue with the Exponential Forecaster.

We will now prove Theorem 6. The main idea is to show that the normalized exploration helps the total weights to
provide a lower bound for the algorithm payoff. Also the total weights are competitive against the optimal payoff as
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they contain the exponential updates with the optimal set of switching points in Lemma 11 with a sufficiently large
(probability) coefficient.

Proof sketch of Theorem 6. We provide an upper and lower bound to WT+1

W1
. The upper bound uses Lemma 8 and helps

us lower bound the performance of the algorithm (see Appendix C) as

WT+1

W1
≤ exp

(
P (A)(eHλ − 1)

H

)
(2)

where P (A) is the expected total payoff for Algorithm 2. We now upper bound the optimal payoff OPT by providing
a lower bound for WT+1

W1
. By Lemma 11 we have

WT+1 ≥
αs−1(1− α)T−s

VOL(C)s−1
s∏
i=1

W̃ (t∗i−1, t
∗
i )

by dropping all terms save those that restart exactly at the OPT expert switches t∗0:s. Now using β-dispersion we can
show (full proof in Appendix C)

WT+1

W1
≥α

s−1(1− α)T−s

(RT β)sd
eλ(OPT−(sH+L)O(T 1−β))

Putting together with the upper bound (2), rearranging and optimizing the difference for α and λ concludes the proof.
(See Appendix C for a full proof.)

We now analyze Algorithm 3 for the sparse experts setting. We can adapt proofs of Lemmas 8 and 11 to easily establish
Lemmas 12 and 13.

Lemma 12 (Algorithm 3). Wt+1 =
∫
C e

λut(ρ)wt(ρ)dρ.

Lemma 13. Let πt(ρ) =
∑t−1
i=1 βi,tpi(ρ). For Algorithm 3, WT+1 can be shown to be equal to the sum

∑
s∈[T ]

∑
t0=1<...ts=T+1

αs−1(1− α)T−s
s∏
i=1

W̃ (πti−1
; ti−1, ti)

where W̃ (p; τ, τ ′) :=
∫
C p(ρ)w̃(ρ; τ, τ ′)dρ.

Corollary 14. WT ≥ α(1− α)T−tW̃ (πt; t, T )Wt, for all t < T .

Proof. Consider the probability of last reset (setting wt(ρ) = Wtπt(ρ)) at time t when computing WT+1 as the
expected weight of a random restart version which matches Algorithm 3 till time t.

Now to prove Theorem 7, we show that the total weight is competitive with running exponential updates on all
partitions (in particular the optimal partition) of [T ] into m subsets with s switches, intuitively the property of restarting
exploration from all past points crucially allows us to jump across intervals where a given expert was inactive (or bad).

Proof sketch of Theorem 7. We provide an upper and lower bound to WT+1

W1
similar to Theorem 6. Using Lemma 12

we can show that inequality 2 holds here as well. By Corollary 14 and Lemma 22 (which relates πt(.) to past weights,
proved in Appendix C), and β-dispersion we can show a better lower bound.

WT+1

W1
≥ αs(1− α)T (1− e−γ)s

(e−γ + α(1− e−γ))−mT (RT β)
md

exp
(
λ
(
OPT − (mH + L)O(T 1−β)

))
(3)

Putting together the lower and upper bounds, rearranging and optimizing for γ, α, λ concludes the proof.
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5 Efficient implementation of algorithms

In this section we show that the Fixed Share Exponential Forecaster algorithm (Algorithm 2) can be implemented
efficiently when ut’s are piecewise concave (dimishing returns). In particular we overcome the need to explicitly
compute and update wt(ρ) (there are uncountably infinite ρ in C) by showing that we can sample the points according
to pt(ρ) directly.
The high-level strategy is to show (Lemma 16) that pt(ρ) is a mixture of t distributions which are Exponential
Forecaster distributions from [5] i.e. p̃i(ρ) := w̃(ρ;i,t)

W̃ (i,t)
for each 1 ≤ i ≤ t, with proportions Ci,t. As shown in [5] these

distributions can be approximately sampled from (exactly in the one-dimensional case, C ⊂ R), summarized below as
Algorithm BDV-18. We need to sample from one of these t distributions with probability Ct,i to get the distribution pt,
and we can approximate these coefficients efficently (or compute exactly in one-dimensional case). The rest of the
section discusses how to do these approximations efficiently, and with small extra expected regret. Asymptotically we
get the same bound as the exact algorithm. (Formal proofs in Appendix E).

Algorithm BDV-18: Simply integrate pieces of the exponentiated utility function, pick a piece with proba-
bility proportional to its integral, and sample from that piece. [30] show how to efficient sample from and integrate
logconcave distributions. See [5] for more details.

The coefficients have a simple form in terms of normalizing constants Wt’s of the rounds so far, so we first
express Wt+1 in terms of Wt’s from previous rounds and some W̃ (i, j)’s.

Lemma 15. In Algorithm 2, for t ≥ 1,

Wt+1 =(1− α)t−1W̃ (1, t+ 1)+

α

VOL(C)

t∑
i=2

[
(1− α)t−iWiW̃ (i, t+ 1)

]

As indicated above, pt(ρ) is a mixture of t distributions.

Lemma 16. In Algorithm 2, for t ≥ 1, pt(ρ) =
∑t
i=1 Ct,i

w̃(ρ;i,t)

W̃ (i,t)
. The coefficients Ct,i are given by

Ct,i =


1 i = t = 1

α i = t > 1

(1− α)Wt−1

Wt

W̃ (i,t)

W̃ (i,t−1)Ct−1,i i < t

and (Ct,1, . . . , Ct,t) lies on the probability simplex ∆t−1.

The observations above allow us to write the algorithms for efficiently implementing Fixed Share EF, for which we
obtain formal guarantees in Theorem 17. We present an approximate algorithm (Algorithm 5) with the same expected
regret as in Theorem 6 (and also present an exact algorithm, Algorithm 6 in Appendix E, for d = 1). We say Algorithm
5 gives a (η, ζ) estimate of Algorithm 2, i.e. with probability at least 1− ζ, its expected payoff is within a factor of eη
of that of Algorithm 2.

Algorithm 5 Fixed Share Exponential Forecaster - efficient approximate implementation
Input: approximation parameter η ∈ (0, 1), confidence parameter ζ ∈ (0, 1)

1. W1 = VOL(C)
2. For each t = 1, 2, . . . , T :

i. Estimate Ct,j using Lemma 16 for each 1 ≤ j ≤ t.
ii. Sample i with probability Ct,i.

iii. Sample ρ with probability approximately proportional to w̃(ρ; i, t) by running Algorithm BDV-18 with
approximation-confidence parameters (η/3, ζ/2).

iv. Estimate Wt+1 using Lemma 15. Algorithm BDV-18 to get (η/6T, η/2T 2) estimates for all W̃ (τ, τ ′) and
memoize values of Wi, i ≤ t.

7



Theorem 17. If utility functions are piecewise concave and L-Lipschitz, we can approximately sample a point
ρ with probability pt+1(ρ) in time Õ(Kd4T 4) for approximation parameters η = ζ = 1/

√
T and λ =√

s(d ln(RT β) + ln(T/s))/T/H and enjoy the same regret bound as the exact algorithm. (K is the number of
discontinuities in ut’s).

Note that in this section we concerned ourselves with developing a poly(d, T ) algorithm. For special cases of practical
interest, like one-dimensional piecewise constant functions, we can implement much faster O(K logKT ) algorithms
as noted in Section 7.

6 Lower bounds

We prove our lower bound for C = [0, 1] and H = 1. Also we will consider functions which are β-dispersed and
0-Lipschitz (piecewise constant). For such utility functions u1, . . . , uT we have shown in Section 4 that the s-shifted
regret is O(

√
sT log T + sT 1−β). Here we will establish a lower bound of Ω(

√
sT + sT 1−β).

We show a range of values of s, β where the stated lower bound is achieved. For s = 1, this improves over the lower
bound construction of [5] where the lower bound is shown only for β = 1/2. In particular our results establish an
almost tight characterization of static and dynamic regret under dispersion.

Theorem 18. For each β > log 3s
log T , there exist utility functions u1, . . . , uT : [0, 1]→ [0, 1] which are β-dispersed, and

the s-shifted regret of any online algorithm is Ω(
√
sT + sT 1−β).

Proof. We perform the construction in Θ(s) phases, each phase accumulating Ω(
√
T/s+ T 1−β) regret, yielding the

desired lower bound.

Let I1 = [0, 1]. In the first phase, for the first T−3sT 1−β

s functions we have a single discontinuity in the in-
terval

(
1
2

(
1− 1

3s

)
, 12
(
1 + 1

3s

))
⊆ ( 1

3 ,
2
3 ). The functions have payoff 1 before or after (with probability 1/2 each)

their discontinuity point, and zero elsewhere. We introduce 3T 1−β functions each for the same discontinuity point,
and set the discontinuity points T−β apart for β-dispersion. This gives us 1/3s

T−β
− 1 potential points inside [ 13 ,

2
3 ], so

we can support 3T 1−β
(

1/3s
T−β
− 1
)

= T
s − 3T 1−β such functions (Ts − 3T 1−β > 0 since β > log 3s

log T ). By Lemma 30

(Appendix F) we accumulate Ω(
√

T−3sT 1−β

s ) = Ω(
√
T/s) regret for this part of the phase in expectation.

Let I ′1 be the interval from among [0, 12
(
1− 1

3s

)
] and [ 12

(
1 + 1

3s

)
, 1] with more payoff in the phase so far.

The next function has payoff 1 only at first or second half of I ′1 (with probability 1/2) and zero everywhere else. Any
algorithm accumulates expected regret 1/2 on this round. We repeat this in successively halved intervals. β-dispersion
is satisfied since we use only Θ(T 1−β) functions in the interval I ′ of size greater than 1/3, and we accumulate an
additional Ω(T 1−β) regret. Notice there is a fixed point used by the optimal adversary for this phase.

Finally we repeat the construction inside the largest interval with no discontinuities at the end of the last
phase for the next phase. Note that at the i-th phase the interval size will be Θ( 1

i ). Indeed at the end of the first round
we have unused intervals of size 1

2

(
1− 1

3s

)
, 14
(
1− 1

3s

)
, 18
(
1− 1

3s

)
, . . . At the i = 2j-th phase, we’ll be repeating

inside an interval of size 1
2j+1

(
1− 1

3s

)
= Θ( 1

i ). This allows us to run Θ(s) phases and get the desired lower bound
(intervals must be of size at least 1

s to support the construction).

7 Experiments

The simplest demonstration of significance of our algorithm in a changing environment is to consider the 2-shifted
regret when a single expert shift occurs. We consider an artifical online optimization problem first, and will then look at
applications to online clustering. Let C = [0, 1]. Define utility functions

u(0)(ρ) =

{
1 if ρ < 1

2

0 if ρ ≥ 1
2

and u(1)(ρ) =

{
0 if ρ < 1

2

1 if ρ ≥ 1
2

8



Figure 1: Average 2-shifted regret vs game duration T for a game with single expert shift. Color scheme: Exponential
Forecaster, Fixed Share EF

Now consider the instance where u(0)(ρ) is presented for the first T/2 rounds and u(1)(ρ) is presented for the remaining
rounds. We observe constant average regret for the Exponential Forecaster algorithm, while Fixed Share regret decays
as O(1/

√
T ) (Figure 1). While the example is simple and artificial, it qualitatively captures why Fixed Share dominates

Exponential Forescaster here — because the best expert changes and the old expert is no longer competitive. (cf.
Appendix B)

k-means++ is a celebrated algorithm [2] which shows the importance of initial seed centers in clustering using the
k-means algorithm (also called Llyod’s method). Balcan et al. [7] generalize it to (ᾱ, 2)-Lloyds++-clustering, which
interpolates between random initial seeds (vanilla k-means, ᾱ = 0), k-means++ (ᾱ = 2) and farthest-first traveral
(ᾱ =∞) [20, 17] using a single parameter ᾱ. The clustering objective (we use the Hamming distance to the optimal
clustering, i.e. the fraction of points assigned to different clusters by the algorithm and the target clustering) is a
piecewise constant function of ᾱ, and the best clustering may be obtained for a value of ᾱ specific to a given problem
domain. In an online problem, where clustering instances arrive in a sequential fashion, determining good values of ᾱ
becomes an online optimization problem on piecewise Lipshitz functions. Furthermore the functions are β-dispersed
for β = 1/2 [7].

We perform our evaluation on four benchmark datasets to cover a range of examples-set sizes, N and number of clusters,
k: MNIST, 28× 28 binary images of handwritten digits with 60,000 training examples for 10 classes [18]; Omniglot,
105× 105 binary images of handwritten characters across 30 alphabets with 19,280 examples [27]; Omniglot_small_1,
a minimal Omniglot split with only 5 alphabets and 2720 examples.

We consider a sequence of clustering instances drawn from the four datasets and compare our algorithms Fixed Share EF
(Algorithm 2) and Generalized Share EF (Algorithm 3) with the Exponential Forecaster algorithm of [5]. At each time
t ≤ T ≤ 60 we sample a subset of the dataset of size 100. For each T , we take uniformly random points from half the
classes (even class labels) at times t = 1, . . . , T/2 and from the remaining classes (odd class labels) at T/2 < t ≤ T .
We determine the hamming cost of (ᾱ, 2)-Lloyds++-clustering for α ∈ C = [0, 10] which is used as the piecewise
constant loss function (or payoff is the fraction of points assigned correctly) for the online optimization game. Notice
the Lipschitz constant L = 0 since we have piecewise constant utility, and utility function values lie in [0, 1]. We set
exploration parameter α = 1/T and decay parameter γ = 1/T in our algorithms. We plot average 2-shifted regret
until time T (i.e. RT /T ) and take average over 20 runs to get smooth curves. (Figure 2). Unlike Figure 1, the optimal
clustering parameters before the shift might be relatively competitive to new optimal parameters. So the Exponential
Forecaster performance is not terrible, although our algorithms still outperform it noticeably.

(a) MNIST (b) Omniglot_small_1 (c) Omniglot (full)

Figure 2: Average 2-shifted regret vs game duration T for online clustering against 2-shifted distributions. Color
scheme: Exponential Forecaster, Fixed Share EF, Generalized Share EF
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We observe that our algorithms have significantly lower regrets (about 15-40% relative for the datasets considered, for
T ≥ 40) compared to the Exponential Forecaster algorithm across all datasets. We also note that the exact advantage
of adding exploration to exponential updates varies with datasets and problem instances. In Appendix G we have
compiled further experiments that reaffirm the strengths of our approach against different changing environments and
also compare against the static setting.

Remark. The applications considered, for which the algorithms have been implemented and empirically evaluated,
have piecewise constant utility functions with d = 1. For these it is possible to simply maintain the weight on each
piece of Σtut(ρ) in O(K logKt) time for round t where each ut(·) has O(K) pieces by using a simple interval
tree data structure [13]. The tree lazily maintains weight for each of O(Kt) pieces, takes O(logKt) time for lazy
insertion of O(K) new pieces and allows drawing with probability proportional to weight in O(logKt) time. Similarly
O(K logKt) updates are possible for Algorithm 3 as well in this case. Section 5 of the paper addresses the harder
problem of polynomial time implementation for arbitrary d (for Algorithm 2).

8 Discussion and open problems

We presented approaches which trade off exploitation with exploration for the online optimization problem to obtain
low shifting regret for the case of general non-convex functions with sharp but dispersed discontinuities. Optimizing for
the stronger baseline of shifting regret leads to empirically better payout, as we have shown via experiments bearing
applications to algorithm configuration. Our focus here is on the full-information setting which corresponds to the
entire utility function being revealed at each iteration, and we present almost tight theoretical results for the same. Other
relevant settings include bandit and semi-bandit feedback where the function value is revealed for only the selected
point or a subset of the space containing the point. It would be interesting to obtain low shifting regret in these settings
[3].
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Appendix

A Discretization based algorithm

Recall that C ⊂ Rd is contained in a ball of radius R. A standard greedy construction gives an r-discretization of size at
most (3R/r)d [5]. Given the dispersion parameter β, a natural choice is to use a T−β-discretization as in Algorithm 1.

Theorem 4. LetRfinite(T, s,N) denote the s-shifted regret for the finite experts problem onN experts, for the algorithm
used in step 2 of Algorithm 1. Then Algorithm 1 enjoys s-shifted regret RC(T, s) which satisfies

RC(T, s) ≤ Rfinite
(
T, s,

(
3RT β

)d)
+ (sH + L)O(T 1−β).

Proof of Theorem 4. We show we can round the optimal points in C to points in the (T−β)-discretization D with a
payoff loss at most (sH+L)T 1−β in expectation. But inD we know a way to bound regret by Rfinite(T, s,N), where
N , the number of points in D, is at most

(
3R
T−β

)d
=
(
3RT β

)d
.

Let t0:s denote the expert switching times in the optimal offline payoff, and ρ∗i be the point picked by the optimal
offline algorithm in [ti−1, ti − 1]. Consider a ball of radius T−β around ρ∗i . It must have some point ρ̂∗i ∈ D. We then
must have that {ut | t ∈ [ti−1, ti − 1]} has at most O(T−βT ) = O(T 1−β) discontinuities due to β-dispersion, which
implies

ti−1∑
t=ti−1

ut(ρ̂
∗
i ) ≥

ti−1∑
t=ti−1

ut(ρ
∗
i )−O(T 1−β)H − L(ti − ti−1)T−β

Let ρ̂t = ρ̂∗i for each ti−1 ≤ t ≤ ti − 1. Summing over i gives

T∑
t=1

ut(ρ̂t) ≥ OPT −O(T 1−β)sH − LT 1−β = OPT − (sH + L)O(T 1−β)

Now payoff of this algorithm is bounded above by the payoff of the optimal sequence of experts with s shifts

T∑
t=1

ut(ρ̂t) ≤ OPT finite

Let the finite experts algorithm with shifted regret bounded by Rfinite(T, s,N) choose ρt at round t. Then, using the
above inequalities,

T∑
t=1

ut(ρt) ≥ OPT finite −Rfinite(T, s,N) ≥ OPT − (sH + L)O(T 1−β)−Rfinite(T, s,N)

We use this to bound the regret for the continuous case

RC(T, s) = OPT −
T∑
t=1

ut(ρt)

≤ OPT − (OPT − (sH + L)O(T 1−β)−Rfinite(T, s,N))

= Rfinite(T, s,N) + (sH + L)O(T 1−β)

B Counterexamples

We will construct problem instances where some sub-optimal algorithms mentioned in the paper suffer high regret.

We first show that the Exponential Forecaster algorithm of [5] suffers linear s-shifted regret even for s = 2. This
happens because pure exponential updates may accumulate high weights on well-performing experts and may take a
while to adjust weights when these experts suddenly start performing poorly.

Lemma 19. There exists an instance where Exponential Forecaster algorithm of [5] suffers linear s-shifted regret.
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Proof. Let C = [0, 1]. Define utility functions

u(0)(ρ) =

{
1 if ρ < 1

2

0 if ρ ≥ 1
2

and u(1)(ρ) =

{
0 if ρ < 1

2

1 if ρ ≥ 1
2

Now consider the instance where u(0)(ρ) is presented for the first T/2 rounds and u(1)(ρ) is presented for the remaining
rounds. In the second half, with probability at least 1

2 , the Exponential Forecaster algorithm will select a point from
[0, 12 ] and accumulate a regret of 1. Thus the expected 2-shifted regret of the algorithm is at least T2 ·

1
2 = Ω(T ). Notice

that the construction does not depend on the step size parameter λ.

We further look at the performance of Random Restarts EF (Algorithm 4), an easy-to-implement algorithm which looks
deceptively similar to Algorithm 2, against this adversary. Turns out Random Restarts EF may not restart frequently
enough for the optimal value of the exploration parameter, and have sufficiently long chains of pure exponential updates
in expectation to suffer high regret.
Theorem 20. There exists an instance where Random Restarts EF (Algorithm 4) with parameters λ and α as in
Theorem 6 suffers linear s-shifted regret.

Proof. The probability of pure exponential updates from t = T/4 through t = 3T/4 is at least

(1− α)T/2 =

(
1− 1

T − 1

)T/2
>

1

2

for T > 5. By Lemma 19, this implies at least T8 regret in this case, and so the expected regret of the algorithm is at
least T

16 = Ω(T ).

C Analysis of algorithms

In this section we will provide detailed proofs of lemmas and theorems from Section 4. We will restate them for easy
reference.
Lemma 10. (Algorithm 2) For each t ∈ [T ], wt(ρ) = E[ŵt(ρ)] and Wt = E[Ŵt], where the expectations are over
random restarts zt = {z1, . . . , zt−1}.

Proof of Lemma 10. wt(ρ) = E[ŵt(ρ)] implies Wt = E[Ŵt] by Fubini’s theorem (recall C is closed and bounded).
wt(ρ) = E[ŵt(ρ)] follows by simple induction on t. In the base case, z1 is the empty set and w1(ρ) = 1 = ŵt(ρ) =
E[ŵt(ρ)]. For t > 1,

E[ŵt(ρ)] = (1− α)E[eλut(ρ)ŵt−1(ρ)] +
α

VOL(C)
E
[∫
C
eλut(ρ)ŵt−1(ρ)dρ

]
(definition of ŵt)

= (1− α)eλut(ρ)E[ŵt−1(ρ)] +
α

VOL(C)

∫
C
eλut(ρ)E[ŵt−1(ρ)]dρ (expectation is over zt)

= (1− α)eλut(ρ)wt−1(ρ) +
α

VOL(C)

∫
C
eλut(ρ)wt−1(ρ)dρ (inductive hypothesis)

= wt(ρ) (definition of wt)

Lemma 11. (Algorithm 2) WT+1 equals the sum∑
s∈[T ]

∑
t0=1<t1···<ts=T+1

αs−1(1− α)T−s

VOL(C)s−1
s∏
i=1

W̃ (ti−1, ti)

Proof of Lemma 11. Recall that we wish to show that ŵT+1(ρ) | s, ts (weights of Algorithm 4 at time T + 1 given
restarts occur exactly at ts) can be expressed as the product of weight w̃(ρ; ts−1, ts) at ρ of regular Exponential
Forecaster since the last restart times the normalized total weights accumulated over previous runs, i.e.

ŵT+1(ρ) | s, ts = w̃(ρ; ts−1, ts)

s−1∏
i=1

W̃ (ti−1, ti)

VOL(C)
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We show this by induction on s. For s = 1, we have no restarts and

w̃(ρ; ts−1, ts)

s−1∏
i=1

W̃ (ti−1, ti)

VOL(C)
= w̃(ρ; t0, t1)

0∏
i=1

W̃ (ti−1, ti)

VOL(C)
= w̃(ρ; 1, T + 1) = ŵT+1(ρ) | 1, t1

For s > 1, the last restart occurs at ts−1 > 1. By inductive hypothesis for time ts−1 − 1 until which we’ve had s− 2
restarts,

ŵts−1−1(ρ) | s, ts = ŵts−1−1(ρ) | s− 1, ts−1 = w̃(ρ; ts−2, ts−1 − 1)

s−2∏
i=1

W̃ (ti−1, ti)

VOL(C)
Due to restart at ts−1,

ŵts−1
(ρ) | s, ts =

∫
C e

λut(ρ)ŵts−1−1(ρ)dρ

VOL(C)
=

s−1∏
i=1

W̃ (ti−1, ti)

VOL(C)
It’s regular exponential updates from this point to ts, which gives the result.

Theorem 6. The s-shifted regret of Algorithm 2 with α = s/T and λ =
√
s(d log(RT β) + log(T/s))/T/H is

O(H
√
sT (d log(RT β) + log(T/s)) + (sH + L)T 1−β).

Full proof of Theorem 6. We first provide an upper and lower bound to WT+1

W1
.

Upper bound: The proof is similar to the upper bound for exponential weighted forecaster in [5] and uses
Lemma 8 for Wt.

Wt+1

Wt
=

∫
C e

λut(ρ)wt(ρ)dρ

Wt
=

∫
C
eλut(ρ)

wt(ρ)

Wt
dρ =

∫
C
eλut(ρ)pt(ρ)dρ

Finally use inequalities eλz ≤ 1 + (eλ − 1)z for z ∈ [0, 1] and 1 + z ≤ ez to get
Wt+1

Wt
≤
∫
C
pt(ρ)

(
1 + (eHλ − 1)

ut(ρ)

H

)
dρ = 1 + (eHλ − 1)

Pt
H
≤ exp

(
(eHλ − 1)

Pt
H

)
where Pt denotes the expected payoff of the algorithm in round t. Let P (A) be the expected total payoff. Then we can
write WT+1

W1
as a telescoping product which gives

WT+1

W1
=

T∏
t=1

Wt+1

Wt
≤ exp

(
(eHλ − 1)

∑
t Pt
H

)
= exp

(
P (A)(eHλ − 1)

H

)
(4)

Lower bound: Again the proof is similar to [5] and the major difference is use of Lemma 11.
We first lower bound payoffs of points close to the optimal sequence of experts using dispersion. If the optimal sequence
with s shifts has shifts at t∗i (1 ≤ i ≤ s− 1), by β-dispersion for any ρi ∈ B(ρ∗i , w)

t∗i−1∑
t=t∗i−1

ut(ρi) ≥
t∗i−1∑
t=t∗i−1

ut(ρ
∗
i )− kH − L(t∗i − t∗i−1)w (5)

where w = T−β and k = O(T 1−β). Summing both sides over i ∈ [s− 1] helps us relate the lower bound to the payoff
OPT of the optimal sequence.

s∑
i=1

t∗i−1∑
t=t∗i−1

ut(ρi) ≥
s∑
i=1

t∗i−1∑
t=t∗i−1

ut(ρ
∗
i )− kH − L(t∗i − t∗i−1)w = OPT − ksH − LTw (6)

Now to lower bound WT+1

W1
, we first lower bound WT+1. We use Lemma 11 and lower bound by picking the term

corresponding to times of expert shifts in the optimal sequence with s-shifted expert.

WT+1 =
∑
s∈[T ]

[ ∑
t0=1<t1···<ts=T+1

(
αs−1(1− α)T−s

VOL(C)s−1
s∏
i=1

W̃ (ti−1, ti)

)]
(Lemma 11) (7)

≥ αs−1(1− α)T−s

VOL(C)s−1
s∏
i=1

W̃ (t∗i−1, t
∗
i ) (8)
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The product of W̃ ’s can in turn be lower bounded by restricting attention to points close (i.e. within a ball of radius w
centered at optimal expert ρ∗i ) to the optimal sequence. The payoffs of such points was lower-bounded in (5) and (6) in
terms of the optimal payoff.

s∏
i=1

W̃ (t∗i−1, t
∗
i ) =

s∏
i=1

∫
C

exp

(
λ

t∗i−1∑
t=t∗i−1

ut(ρ)

)
dρ

≥
s∏
i=1

∫
B(ρ∗i ,w)

exp

(
λ

t∗i−1∑
t=t∗i−1

ut(ρ)

)
dρ (Restrict integration domains)

≥
s∏
i=1

∫
B(ρ∗i ,w)

exp

(
λ
( t∗i−1∑
t=t∗i−1

ut(ρ
∗
i )− kH − L(t∗i − t∗i−1)w

))
dρ (Using equation 5)

= VOL(B(w))s exp

(
s∑
i=1

λ

( t∗i−1∑
t=t∗i−1

ut(ρ
∗
i )− kH − L(t∗i − t∗i−1)w

))
(Integrand independent of ρ)

= VOL(B(w))s exp

(
λ
(
OPT − ksH − LTw

))
(Using equation 6)

Plugging into equation (8) we get

WT+1 ≥
αs−1(1− α)T−sVOL(B(w))s

VOL(C)s−1
exp

(
λ
(
OPT − ksH − LTw

))
Also, W1 =

∫
C w1(ρ)dρ = VOL(C). Thus, using the fact that ratio of volume of balls B(w) and B(R) in d-dimensions

is (w/R)d, and assuming C is bounded by some ball B(R).

WT+1

W1
≥ αs−1(1− α)T−sVOL(B(w))s

VOL(C)s
exp

(
λ
(
OPT − ksH − LTw

))

≥ αs−1(1− α)T−s
(
w

R

)sd
exp

(
λ
(
OPT − ksH − LTw

))
(9)

Putting together: Combining upper and lower bounds from (D) and (9) respectively,

log
(
αs−1(1− α)T−s

)
− sd log

R

w
+ λ(OPT − ksH − LTw) ≤ P (A)(eHλ − 1)

H

which rearranges to

OPT − P (A) ≤ P (A)
(eHλ − 1−Hλ)

Hλ
+
sd log(R/w)

λ
+ ksH + LTw − log(αs−1(1− α)T−s)

λ

Using P (A) ≤ HT and using ez ≤ 1 + z + (e− 2)z2 for z ∈ [0, 1] we have

OPT − P (A) ≤ HT (eHλ − 1−Hλ)

Hλ
+
sd log(R/w)

λ
+ ksH + LTw − log(αs−1(1− α)T−s)

λ

< H2Tλ+
sd log(R/w)

λ
+ ksH + LTw − log(αs−1(1− α)T−s)

λ

Now we tighten the bound, first w.r.t. α then w.r.t. λ. Note minα− log(αs−1(1− α)T−s) occurs for α0 = s−1
T−1 and

− log(αs−10 (1− α0)T−s) = (T − 1)

[
− s− 1

T − 1
log

s− 1

T − 1
− T − s
T − 1

log
T − s
T − 1

]
≤ (s− 1) log e

T − 1

s− 1

(binary entropy function satisfies h(x) ≤ x ln(e/x) for x ∈ [0, 1]). Finally minimizing over λ gives

OPT − P (A) ≤ O(H
√
sT (d log(R/w) + log(T/s)) + ksH + LTw)

for λ =
√
s(d log(R/w) + log(T/s))/T/H . Plugging back w = T−β and k = O(T 1−β) completes the proof.
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The rest of this section is concerned with the analysis of Algorithm 3 for the sparse experts setting.

Lemma 21. For any t < T ,
wT (ρ) ≥ α(1− α)T−tπt(ρ)w̃(ρ; t, T )Wt

Proof. Follows using the restart algorithm technique used in Lemmas 11 and 13. Consider the probability of last restart
being at time t. Notice this also implies Corollary 14.

Lemma 22. Let πt(ρ) =
∑t
i=1 βi,tpi(ρ) in Algorithm 3. Then

πt(ρ) =
α1,t

W1
+

t−1∑
i=1

αi+1,t
eλui(ρ)wi(ρ)

Wi+1

where

αi,t ≥
1− α
et

(
e−γ +

α

et

)t−i
and et :=

∑t
i=1 e

−γ(i−1).

Proof. Notice, by definition of weight update in Algorithm 3,

pt(ρ) = (1− α)
eλut−1(ρ)wt−1(ρ)

Wt
+ α

t−1∑
i=1

βi,t−1pi(ρ) = (1− α)
eλut−1(ρ)wt−1(ρ)

Wt
+ απt−1(ρ)

This gives us a recursive relation for αi,t.

αi,t =

{
βi,t(1− α) + α

∑t
j=i+1 βj,tαi,j−1 if i > 1

βi,t + α
∑t
j=i+1 βj,tαi,j−1 if i = 1

Thus for each 1 ≤ i ≤ t

αi,t ≥ βi,t(1− α) + α

t∑
j=i+1

βj,tαi,j−1

We proceed by induction on t− i. For i = t,

αt,t ≥ βt,t(1− α) =
1− α
et

(
e−γ +

α

et

)t−t
For i < t, by inductive hypothesis

αi,t ≥ βi,t(1− α) +

t∑
j=i+1

βj,tααi,j−1

≥ (1− α)
e−γ(t−i)

et
+ α

1− α
et

t∑
j=i+1

e−γ(t−j)

et

(
e−γ +

α

et

)j−1−i

=
1− α
et

e−γ(t−i) +
αe−γt

et

t∑
j=i+1

eγj
(
e−γ +

α

et

)j−1−i
=

1− α
et

e−γ(t−i) +
αe−γt

et

eγ(t+1)
(
e−γ + α

et

)t−i
− eγ(i+1)

eγ
(
e−γ + α

et

)
− 1


=

1− α
et

(
e−γ +

α

et

)t−i
which completes the induction step.
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Corollary 23. Let wt(ρ),Wt be as in Algorithm 3 and πt as in Lemma 13. For each τ < τ ′ < t and any bounded f
defined on C. ∫

C
πt(ρ)f(ρ)dρ ≥ α(1− α)τ

′−τ (1− e−γ)

(e−γ + α(1− e−γ))
τ ′−t

Wτ

Wτ ′

∫
C
πτ (ρ)w̃(ρ; τ, τ ′)f(ρ)dρ

Proof. By Lemma 22,∫
C
πt(ρ)f(ρ)dρ =

∫
C
πt(ρ)f(ρ)dρ

≥
∫
C
ατ ′,t

eλuτ′−1(ρ)wτ ′−1(ρ)

Wτ ′
f(ρ)dρ

≥ 1− α
et

(
e−γ +

α

et

)t−τ ′
1

Wτ ′

∫
C
eλuτ′−1(ρ)wτ ′−1(ρ)f(ρ)dρ

≥ 1− α
et

(
e−γ +

α

et

)t−τ ′
α(1− α)τ

′−1−τWτ

Wτ ′

∫
C
πτ (ρ)w̃(ρ; τ, τ ′)f(ρ)dρ

where for the last inequality we have used Lemma 21. The lemma then follows by noting

1

et
=

1− e−γ

1− e−γt
≥ 1− e−γ

where et =
∑t
i=1 e

−γ(i−1) as defined in Lemma 22.

Theorem 7. The (m-sparse, s-shifted) regret of Algorithm 3 is O(H
√
T (md log(RT β) + s log(mT/s)) + (mH +

L)T 1−β) for α = s/T , γ = s/mT and λ =
√

(md log(RT β) + s log(T/s))/T/H .

Proof of Theorem 7. Like Theorem 6 we first provide an upper and lower bound to WT+1

W1
. The upper bound proof is

identical to that of Theorem 6 by replacing Lemma 8 by Lemma 12.

For the lower bound we use Corollaries 14 and 23. Applying corollary 23 repeatedly to collect exponential updates
for the times OPT played the same expert lets us use the arguments for Theorem 6 to get Equation 3. Indeed if
{(si, fi) | 1 ≤ i ≤ l} are the start and finish times of a particular expert ρ in the OPT sequence, we can use Corollary
14 to write

Wfl+1 ≥ α(1− α)fl+1−slWslW̃ (πsl ; sl, fl + 1)

Applying Corollary 23 repeatedly now gets us

Wfl+1 ≥
αl(1− α)

∑l
j=1 fj+1−sj (1− e−γ)l−1

(e−γ + α(1− e−γ))
∑l−1
j=1 fj+1−sj+1

∏l
i=1Wsi∏l−1
i=1Wfi+1

∫
C

πs1(ρ)

l∏
j=1

w̃(ρ; sj , fj + 1)

 dρ

or ∏l
i=1Wfi+1∏l
i=1Wsi

≥ αl(1− α)
∑l
j=1 fj+1−sj (1− e−γ)l−1

(e−γ + α(1− e−γ))
∑l−1
j=1 fj+1−sj+1

∫
C

πs1(ρ)

l∏
j=1

w̃(ρ; sj , fj + 1)

 dρ

Multiplying these inequalities for each of m experts in the optimal sequence gives us WT+1

W1
on the left side. Also note∫

C
πt(ρ)f(ρ)dρ ≥ α1,t

W1

∫
C
f(ρ)dρ

and, using dispersion as in proof of Theorem 6,

∏
experts in OPT

∫
C

 l∏
j=1

w̃(ρ; sj , fj + 1)

 dρ ≥ VOL(B(T−β))m exp
(
λ
(
OPT − (mH + L)O(T 1−β)

))
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Putting it all together gives Equation 3. Combining the lower and upper bounds on WT+1

W1
gives us a bound on

OPT − P (A).

OPT − P (A) < H2Tλ+
md log(RT β)

λ
+ (mH + L)O(T 1−β)− log

(
αs(1− α)T (1− e−γ)s

(e−γ + α(1− e−γ))−mT

)
/λ

We now chose parameters γ, α, λ to get the tightest regret bound. Note that − log(αs(1− α)T ) is minimized for α =
s

T+s = Θ( sT ) and − log((1− e−γ)s(e−γ + α(1− e−γ))mT ) is minimized for γ = log
(

1+s/mT
1−sα/mT (1−α)

)
= Θ( s

mT ).
The corresponding minimum values can be bounded as

− log(αs(1− α)T ) = s log
T + s

s
+ T log

(
1 +

s

T

)
≤ s log

T + s

s
+ s = O

(
s log

T

s

)
using log(1 + x) ≤ x, and substituting e−γ = 1−sα/mT (1−α)

1+s/mT

− log((1− e−γ)s(e−γ + α(1− e−γ))mT ) = −s log

s
mT ·

1
(1−α)

1 + s
mT

−mT log
1

1 + s
mT

= s log

(
(1− α)

(
mT

s
+ 1

))
+mT log

(
1 +

s

mT

)
≤ s log

(
(1− α)

(
mT

s
+ 1

))
+ 1

= O

(
s log

mT

s

)
Finally we minimize w.r.t. λ, to obtain the desired regret bound.

D Adaptive Regret

It is known that the fixed share algorithm obtains good adaptive regret for finite experts and OCO [1]. We show that it is
the case here as well.
Definition 24. The τ -adaptive regret (due to [22]) is given by

E

[
max
ρ∗∈C,

1≤r<s≤T,s−r≤τ

s∑
t=r

(ut(ρ
∗)− ut(ρt))

]

The goal here is to ensure small regret on all intervals of size up to τ simultaneously. Adaptive regret measures how well
the algorithm approximates the best expert locally, and it is therefore somewhere between the static regret (measured on
all outcomes) and the shifted regret, where the algorithm is compared to a good sequence of experts.

Theorem 25. Algorithm 2 enjoys O(H
√
τ(d log(R/w) + log τ) + (H + L)τ1−β) τ -adaptive regret for λ =√

(d log(Rτβ) + log(τ))/τ/H and α = 1/τ .

Proof sketch of Theorem 25. Apply arguments of Theorem 6 to upper and lower bound Ws+1/Wr for any interval
[r, s] ⊆ [1, T ] of size τ . We get

Ws+1

Wr
≤ exp

(
P (A)(eHλ − 1)

H

)
where P (A) is the expected payoff of the algorithm in [r, s], Also, by Corollary 14 (equivalent for Algorithm 2)

Ws+1 ≥
α(1− α)s+1−r

VOL(C)
W̃ (r, s)Wr =

α(1− α)τ

VOL(C)
W̃ (r, s)Wr

By dispersion, as in proof of Theorem 6,

W̃ (r, s) ≥ VOL(B(τ−β)) exp
(
λ
(
OPT − (H + L)O(τ1−β)

))
Putting the upper and lower bounds together gives us a bound on OPT − P (A), which gives the desired regret bound
for α = 1

τ .
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E Efficient Sampling

In Section 5 we introduced Algorithm 5 for efficient implementation of Algorithm 2 in Rd. We present proofs of the
results in that section, and an exact algorithm for the case d = 1.

Algorithm 6 Fixed Share Exponential Forecaster - exact algorithm for one dimension
Input: λ ∈ (0, 1/H]

1. W1 = VOL(C)
2. For each t = 1, 2, . . . , T :

Estimate Ct,j using Lemma 16 for each 1 ≤ j ≤ t using memoized values for weights.
Sample i with probability Ct,i.
Sample ρ with probability proportional to w̃(ρ; i, t).
Estimate Wt+1 using Lemma 15.

Lemma 15. In Algorithm 2, for t ≥ 1,

Wt+1 =(1− α)t−1W̃ (1, t+ 1)+

α

VOL(C)

t∑
i=2

[
(1− α)t−iWiW̃ (i, t+ 1)

]

Proof of Lemma 15. For t = 1, first term is W̃ (1, 2) =
∫
C e

λu1(ρ)dρ = W2 and second term is zero. Also, by Lemma
8, for t > 1

Wt+1 =

∫
C
eλut(ρ)wt(ρ)dρ =

∫
C
eλut(ρ)

[
(1− α)eλut−1(ρ)wt−1(ρ) +

α

VOL(C)

∫
C
eλut−1(ρ)wt−1(ρ)dρ

]
dρ

= (1− α)

∫
C
eλ(ut(ρ)+ut−1(ρ))wt−1(ρ)dρ+

α

VOL(C)
Wt

∫
C
eλut(ρ)dρ

Continue substituting wj(ρ) = (1 − α)eλuj(ρ)wj−1(ρ) + α
VOL(C)

∫
C e

λuj(ρ)wj−1(ρ)dρ in the first summand until
w1 = 1 to get the desired expression.

Definition 26. For α ≥ 0 we say Â is an (α, ζ)-approximation of A if

Pr
(
e−αA ≤ Â ≤ eαA

)
≥ 1− ζ

Lemma 27. If Â is an (α, ζ)-approximation of A and B̂ is a (β, ζ ′)-approximation of B, such that A,B, Â, B̂ are all
positive reals

1. ÂB̂ is an (α+ β, ζ + ζ ′)-approximation of AB

2. pÂ+ qB̂ is a (max{α, β}, ζ + ζ ′)-approximation of pA+ qB for p, q ≥ 0

Proof. The results follow from union bound on failure probabilities.

Corollary 28. For one-dimensional case, we can exactly compute W̃ (i, j), 1 ≤ i < j ≤ t, hence Wt at each
iteration can be computed in O(t) time using Lemma 15. More generally, if we have a (β, ζ) approximation for each
W̃ (i, j), 1 ≤ i < j ≤ t, then by Lemma 15 we can compute a (tβ, t2ζ)-approximation for Wt+1.

Proof. Union bound on failure probabilities of all W̃ (i, j), 1 ≤ i < j ≤ t gives we have a β approximation for each
with probability at least 1− t2ζ. This covers failure for all terms in Wi, 2 ≤ i ≤ t. Further, by induction, the error for
estimates for Wi is at most (i− 1)β. By Lemma 27, the error for Wt+1 estimates is at most tβ.
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Lemma 16. In Algorithm 2, for t ≥ 1, pt(ρ) =
∑t
i=1 Ct,i

w̃(ρ;i,t)

W̃ (i,t)
. The coefficients Ct,i are given by

Ct,i =


1 i = t = 1

α i = t > 1

(1− α)Wt−1

Wt

W̃ (i,t)

W̃ (i,t−1)Ct−1,i i < t

and (Ct,1, . . . , Ct,t) lies on the probability simplex ∆t−1.

Proof of Lemma 16. At each iteration, pt is obtained by mixing eutpt−1 with the uniform distribution, i.e. we rescale
distributions that pt−1 was a mixture of and add one more. Another way to view it is to consider a distribution over the
sequences of exponentially updated or randomly chosen points. The final probability distribution is the mixture of a
combinatorial number of distributions but a large number of them have a proportional density. Ct,i are simply sums of
mixture coefficients. This establishes the intuition for the expression for pt and that the mixing coefficients should sum
to 1, but we still need to convince ourselves that the coefficients can be computed efficiently.
We proceed by induction on t. For t = 1 (using definitions for w2(ρ) and w2(ρ))

p1(ρ) =
w1(ρ)

W1
=

1

VOL(C)
= C1,1

w̃(ρ; 1, 1)

W̃ (1, 1)

(recall w̃(ρ; 1, 1) := 1 and W̃ (1, 1) =
∫
C w̃(ρ; 1, 1)dρ). For the inductive step, we first express pt+1 in terms of pt

pt+1(ρ) =
wt+1(ρ)

Wt+1

= (1− α)
eλut(ρ)wt(ρ)

Wt+1
+

α

VOL(C)

= (1− α)
Wt

Wt+1

eλut(ρ)wt(ρ)

Wt
+

α

VOL(C)

= (1− α)
Wt

Wt+1
eλut(ρ)pt(ρ) +

α

VOL(C)
The lemma is now straightforward to see with induction hypothesis.

pt+1(ρ) = (1− α)
Wt

Wt+1
eλut(ρ)

[ t∑
i=1

Ct,i
w̃(ρ; i, t)

W̃ (i, t)

]
+

α

VOL(C)

=

t∑
i=1

[
(1− α)

Wt

Wt+1
Ct,i

w̃(ρ; i, t+ 1)

W̃ (i, t)

]
+

α

VOL(C)

=

t∑
i=1

[(
(1− α)

Wt

Wt+1

W̃ (i, t+ 1)

W̃ (i, t)
Ct,i

)
w̃(ρ; i, t+ 1)

W̃ (i, t+ 1)

]
+
Ct+1,t+1

VOL(C)

=

t∑
i=1

Ct+1,i
w̃(ρ; i, t+ 1)

W̃ (i, t+ 1)
+
Ct+1,t+1

VOL(C)

Finally noting

Ct+1,t+1
w̃(ρ; t+ 1, t+ 1)

W̃ (t+ 1, t+ 1)
= Ct+1,t+1

1∫
C(1)dρ

=
Ct+1,t+1

VOL(C)
completes the proof.

Thus Wt (by Lemma 15) and Ct,i can be computed recursively for logconcave utility functions using inte-
gration algorithm from [30]. We can compute them efficiently using Dynamic Programming.
Finally it’s straightforward to establish that the coefficients for pt must lie on the probability simplex ∆t−1. All
coefficients are positive, which is easily seen from the recursive relation and noting all weights are positive. Also we
know

pt(ρ) =

t∑
i=1

Ct,i
w̃(ρ; i, t)

W̃ (i, t)
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Since pt(ρ) is a probability distribution by definition, integrating both sides over C gives∫
C
pt(ρ)dρ =

t∑
i=1

Ct,i

∫
C w̃(ρ; i, t)dρ

W̃ (i, t)
or,

1 =

t∑
i=1

Ct,i

Corollary 29. If we have a (β, ζ) approximation for each W̃ (i, j), 1 ≤ i < j ≤ t, then by Corollary 28 and Lemma
16 we can compute Ĉt+1,i which are (2tβ, t2ζ)-approximation for each Ct+1,i.

Proof. For i = t, we know Ct,i exactly by Lemma 16. For i < t,

Ct,i = (1− α)t−i
Wi

Wt

W̃ (i, t)

VOL(C)
Ci,i (10)

In Corollary 28, we show how to compute ((i − 1)β, (i − 1)2ζ)-approximation for Wi and ((t − 1)β, (t − 1)2ζ)-
approximation for Wt given (β, ζ) approximations for each W̃ (i, j), 1 ≤ i < j ≤ t. A similar argument using Lemma
27 shows with failure probability at most t2ζ, plugging in the approximations in equation 10 has at most (t + i)β
error.

Theorem 17. If utility functions are piecewise concave and L-Lipschitz, we can approximately sample a point
ρ with probability pt+1(ρ) in time Õ(Kd4T 4) for approximation parameters η = ζ = 1/

√
T and λ =√

s(d ln(RT β) + ln(T/s))/T/H and enjoy the same regret bound as the exact algorithm. (K is the number of
discontinuities in ut’s).

Proof of Theorem 17. Based on Lemma 16, we can sample a uniformly random number r in [0, 1] and then sample a ρ
from one of t distributions (selected based on r) that pt(ρ) is a mixture of with probability proportional to Ct,i. The
sampling from the exponentials can be done in polynomial time for concave utility functions using sampling algorithm
of [8]. At each round we sample from exactly one of t distributions in the sum for pt in Lemma 16. We compute
(η/6T, ζ/2T 2) approximations for W̃ (i, j), 1 ≤ i < j ≤ T in time O(T 2K.T∫ ) where T∫ is the time to integrate a
logconcave distribution (at most Õ(d4/ε2) from [30]). These give (η/3, ζ/2)-approximation for Ct,i’s by corollary 29.
Finally we run Algorithm 2 from [5] with approximation-confidence parameters (η/3, ζ/2).
With probability at least 1− ζ, Ct,i estimation and ρ sampling according to w̃(ρ; i, t) succeeds. If µ̂ denotes output
distribution of ρwith approximate sampling, and µ denotes the exact distribution per pt(ρ), then we showD∞(µ̂, µ) ≤ η.
Indeed, for any set of outcomes E ⊂ C

µ̂(E) = Pr(ρ̂ ∈ E) =

t∑
i=1

Pr(ρ̂ ∈ E | Ei,t)Pr(Ei,t) =

t∑
i=1

µ̂i(E)
Ĉt,i∑
j Ĉt,j

where Ei,t denotes the event that w̃(ρ; i, t) was used for sampling pt(ρ), and µ̂i corresponds to the distribution for
approximate sampling of w̃(ρ; i, t). Noting that we used η/3 approximation for µ̂i and each Ĉt,i, we have

µ̂(E) ≤
t∑
i=1

eη/3µi(E)e2η/3
Ct,i∑
j Ct,j

= eηµ(E)

Similarly, µ̂(E) ≥ e−ηµ(E) and hence D∞(µ̂, µ) ≤ η.
Finally we can show (cf. Theorem 12 of [5]) that with probability at least 1 − ζ the expected utility per round of
the approximate sampler is at most a (1− η) factor smaller than the expected utility per round of the exact sampler.
Together with failure probability of ζ, this implies at most (η + ζ)HT additional regret which results in same
asymptotic regret as the exact algorithm for η = ζ = 1/

√
T .

To compute the time complexity, we note from [30] that logconcave functions can be integrated in Õ(d4/ε2) and
sampled from in Õ(d3) time. The time to integrate dominates the complexity, and the overall complexity can be upper
bounded by O(T 2K · d4/(η/T )2) = O(KT 4d4). Note: The approximate integration and sampling are only needed for
multi-dimensional case, for the one-dimensional case we can compute the weights and sample exactly in polynomial
time.
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F Lower bounds

We start with a simple lower bound argument for s-shifted regret for prediction with two experts based on a well-known
Ω(
√
T ) lower bound argument for static regret. We will then extend it to the continuous setting and use it for the

Ω(
√
sT ) part of the lower bound in Theorem 18 in Section 6.

Lemma 30. For prediction with two experts, there exists a stochastic sequence of losses for which the s-shifted regret
of any online learning algorithm satisfies

E[RT ] ≥
√
sT/8

Proof. Let the two experts predict 0 and 1 respectively at each time t ∈ [T ]. The utility at each time t is computed by
flipping a coin - with probability 1/2 we have u(0) = 1, u(1) = 0 and with probability 1/2 it’s u(0) = 0, u(1) = 1.
Expected payoff for any algorithm A is

P (A, T ) = E
[ T∑
t=1

ut(ρt)
]

=

T∑
t=1

E[ut(ρt)] =
T

2

since expected payoff is 1/2 at each t no matter which expert is picked.
To compute shifted regret we need to compare this payoff with the best sequence of experts with s− 1 switches. We
compare with a weaker adversary A′ which is only allowed to switch up to s− 1 times, and switches at only a subset of
fixed times ti = iT/s to lower bound the regret.

E[RT ] = OPT − P (A, T )

≥ P (A′, T )− P (A, T )

=

T∑
t=1

E[ut(ρ
′
t)]−

T∑
t=1

E[ut(ρt)]

=

s−1∑
i=0

ti+1∑
t=ti+1

E[ut(ρ
′
t)]− E[ut(ρt)]

Now let Pi,j =
∑ti+1

t=ti+1 E[ut(j)] for i+ 1 ∈ [s] and j ∈ {0, 1}
ti+1∑

t=ti+1

E[ut(ρ
′
t)] = max

ρ∈{0,1}

ti+1∑
t=ti+1

E[ut(ρ)] =
1

2

[
Pi,0 + Pi,1 + |Pi,0 − Pi,1|

]
=
T

2s
+ |Pi,0 − T/2s|

using Pi,0 + Pi,1 = T/s. Thus,

E[RT ] ≥
s−1∑
i=0

[( T
2s

+ |Pi,0 − T/2s|
)
− T

2s

]
=

s−1∑
i=0

|Pi,0 − T/2s|

Noting Pi,0 =
∑ti+1

t=ti+1 E[ut(0)] =
∑ti+1

t=ti+1

(
1+σt

2

)
where σt are Rademacher variables over {−1, 1} and applying

Khintchine’s inequality (see for example [9]) we get

E[RT ] ≥
s−1∑
i=0

∣∣∣∣ ti+1∑
t=ti+1

σt/2

∣∣∣∣ ≥ s−1∑
i=0

√
T/8s =

√
sT/8

Corollary 31. We can embed the two-expert setting to get a lower bound for the continuous case.

Proof. Indeed in Lemma 30 let C = [0, 1], expert 0 correspond to ρ1 = 1/4, expert 1 corresponds to ρ2 = 3/4 and
replace the loss functions by

u(0)(ρ) =

{
1 if ρ < 1

2

0 if ρ ≥ 1
2

and u(1)(ρ) =

{
0 if ρ < 1

2

1 if ρ ≥ 1
2

We can further generalize this while dispersing the discontinuities somewhat. Instead of having all the discontinuties at
ρ = 1

2 , we can have discontinuities dispersed say within an interval [ 13 ,
2
3 ] and still have Ω(

√
sT ) regret.
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Theorem 18. For each β > log 3s
log T , there exist utility functions u1, . . . , uT : [0, 1]→ [0, 1] which are β-dispersed, and

the s-shifted regret of any online algorithm is Ω(
√
sT + sT 1−β).

Proof of Theorem 18. I1 = [0, 1]. In the first phase, for the first T−3sT
1−β

s functions we have a single discontinuity
in the interval

(
1
2

(
1− 1

3s

)
, 12
(
1 + 1

3s

))
⊆ ( 1

3 ,
2
3 ). The functions have payoff 1 before or after (with probability 1/2

each) their discontinuity point, and zero elsewhere. We introduce 3T 1−β functions each for the same discontinuity
point, and set the discontinuity points T−β apart for β-dispersion. This gives us 1/3s

T−β
− 1 potential points inside [ 13 ,

2
3 ],

so we can support 3T 1−β
(

1/3s
T−β
− 1
)

= T
s − 3T 1−β such functions (Ts − 3T 1−β > 0 since β > log 3s

log T ). By Lemma

30 we accumulate Ω(
√

T−3sT 1−β

s ) = Ω(
√
T/s) regret for this part of the phase in expectation. Let I ′1 be the interval

from among [0, 12
(
1− 1

3s

)
] and [ 12

(
1 + 1

3s

)
, 1] with more payoff in the phase so far. The next function has payoff 1

only at first or second half of I ′1 (with probability 1/2) and zero everywhere else. Any algorithm accumulates expected
regret 1/2 on this round. We repeat this in successively halved intervals. β-dispersion is satisfied since we use only
Θ(T 1−β) functions in the interval I ′ of size greater than 1/3, and we accumulate an additional Ω(T 1−β) regret. Notice
there is a fixed point used by the optimal adversary for this phase.
Finally we repeat the construction inside the largest interval with no discontinuities at the end of the last phase for the
next phase. Note that at the i-th phase the interval size will be Θ( 1

i ). Indeed at the end of the first round we have unused
intervals of size 1

2

(
1− 1

3s

)
, 14
(
1− 1

3s

)
, 18
(
1− 1

3s

)
, . . . At the i = 2j-th phase, we’ll be repeating inside an interval

of size 1
2j+1

(
1− 1

3s

)
= Θ( 1

i ). This allows us to run Θ(s) phases and get the desired lower bound (the intervals must
be of size at least 1

s to support the construction).

G Experiments

We supplement our results in Section 7 by looking at different changing environments and comparing with performance
in the static environment setting. We also look at differences between Generalized and Fixed Share EFs.

G.1 Frequently changing environments

In Section 7 we presented a comparison of our algorithms Fixed Share EF (Algorithm 2) and Generalized Share
EF (Algorithm 3) with the Exponential Forecaster algorithm of [5] for online clustering using well-known datasets.
We evaluated the 2-shifted regret for problems where the clustering instance distribution changed exactly once and
completely at T/2. Here we consider experiments with environments that change more gradually but more frequently.

We consider a sequence of clustering instances drawn from the four datasets. At each time t ≤ T ≤ 50 we sample
a subset of the dataset of size 100. For each T , we take uniformly random points from all but one classes. The
omitted class is changed every T/k rounds, where k is the total number of classes for the dataset. We use parameters
α = k−1

T , γ = 1
T in our algorithms. We compute the average regret against the best offline algorithm with k shifts. In

Figure 3 we plot the average of 20 runs for each dataset. The average regret is higher for all algorithms here since the
k-shifted baseline is stronger.

(a) MNIST (b) Omniglot_small_1 (c) Omniglot (full)

Figure 3: Average k-shifted regret vs game duration T for online clustering against k-shifted distributions. Color
scheme: Exponential Forecaster, Fixed Share EF, Generalized Share EF
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G.2 Generalized vs Fixed Share EFs

(a) MNIST (b) Omniglot_small_1 (c) Omniglot (full)

Figure 4: Number of recurrences of various values of α in the top decile across all rounds

We note that Generalized Share EF performs better on most problem instances. This is because it is better able to use
recurring patterns in good values for the parameter that occur non-contiguously, which depends upon the dataset and
the problem instance. We verify this hypothesis by a simple experiment.

We compute the set of intervals containing the top 10% of the measure of α ∈ [0, 10] for each t and sum up occurrences
of such intervals across all rounds. We observe most recurrences in Omniglot_small_1 dataset, which explains the large
gap between Generalized vs Fixed Share EFs.

G.3 Comparison with static environments

We compare the performance of Fixed Share EF with Exponential Forecaster in static vs dynamic environments on
the MNIST dataset. For the changing environment we consider the setting of Section 7, where we present clustering
instances for even digits for t = 1 through t = T/2 and odd digits thereafter. For the static environment we continue to
present clustering instances from even labeled digits even after t = T/2. We plot the 2-shifted regret in both cases for
easier comparison (Figure 5). Note that even though static regret is the more meaningful metric in a static environment,
this only changes the baseline and the relative performance of algorithms is unaffected by this choice.

Notice that Fixed Share EF is slightly better in the static environment but significantly better in the dynamic environment.
It’s also worthwhile to note that while the performance of Exponential Forecaster degrades with changing environment,
Fixed Share EF actually improves in the dynamic environment since the exploratory updates are more useful.

(a) static environment (b) dynamic environment

Figure 5: Average 2-shifted regret vs game duration T for online clustering against static/dynamic distributions for the
MNIST dataset. Color scheme: Exponential Forecaster, Fixed Share EF

G.4 Different environments from the same dataset

We look at 2-shifted regret of MNIST clustering instances with the same setting as in Section 7 but with different
partitions of clustering classes (i.e. classes used before and after T/2). The results are summarized in Figure 6. For
each instance we note the set of 5 digits used for drawing uniformly random clustering instances from MNIST till T/2,
the complement set is used for the remaining rounds. We observe that performance gap between Fixed Share EF and
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Exponential Forecaster depends not only on the dataset, but also on the clustering instance from the dataset. Across
several partitions, Fixed Share EF performs significantly better on average (Figure 6 (f)).

(a) {0, 2, 4, 6, 8} (b) {0, 1, 2, 3, 4} (c) {2, 3, 5, 6, 9}

(d) {1, 3, 4, 8, 9} (e) {0, 4, 5, 7, 8} (f) Average

Figure 6: Average 2-shifted regret vs game duration T for online clustering against various dynamic instances for the
MNIST dataset. Color scheme: Exponential Forecaster, Fixed Share EF
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