Never-Ending Language Learning

Tom Mitchell, William Cohen, and Many Collaborators Carnegie Mellon University

We will never really understand learning until we build machines that

- learn many different things,
- from years of diverse experience,
- in a staged, curricular fashion,
- and become better <u>learners</u> over time.

Tenet 2:

Natural language <u>understanding</u> requires a <u>belief system</u>

A natural language <u>understanding</u> system should react to text by saying either:

- I understand, and already knew that
- I understand, and didn't know, but accept it
- I understand, and disagree because ...

NELL: Never-Ending Language Learner

Inputs:

- initial ontology (categories and relations)
- dozen examples of each ontology predicate
- the web
- occasional interaction with human trainers

The task:

- run 24x7, forever
- each day:
 - 1. extract more facts from the web to populate the ontology
 - 2. learn to read (perform #1) better than yesterday

NELL today

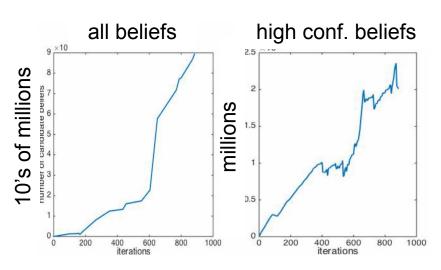
Running 24x7, since January, 12, 2010

Result:

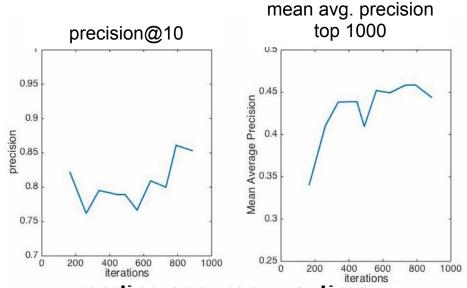
- knowledge base with 90 million candidate beliefs
- learning to read
- learning to reason
- extending ontology

NELL knowledge fragment football uses * including only correct beliefs equipment climbing helmet skates Canada Sunnybrook Miller uses equipment citv country hospital Wilson company hockey **Detroit** GM politician **CFRB** radio **Pearson Toronto** hometown play hired competes airport home town with **Stanley** citv **Maple Leafs** Red company city Wings Toyota stadium team stadium league league Connaught city acquired paper city Air Canada NHL member created stadium Hino Centre plays in economic sector **Globe and Mail** Sundin **Prius** writer automobile Toskala **Skydome** Corrola Milson

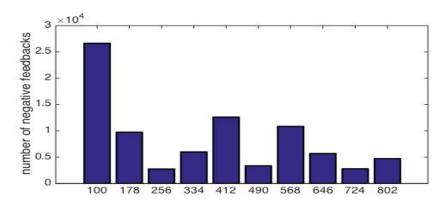
NELL Is Improving Over Time (Jan 2010 to Nov 2014)



number of NELL beliefs vs. time



reading accuracy vs. time (average over 31 predicates)



human feedback vs. time (average 2.4 feedbacks per predicate per month)

NELL Today

• eg. "diabetes", "Avandia", "tea", "IBM", "love" "baseball" "San Juan" "BacteriaCausesCondition" "kitchenItem" "ClothingGoesWithClothing"

Recently-Learned Facts | twitter

instance	iteration date learned
jerry patton is a chef	881 24-oct-2014
flavones is a video game	883 02-nov-2014
smith_s_rose_bellied_lizard is a reptile	883 02-nov-2014
gray flycatcher is a bird	883 02-nov-2014
basalt_plains can be a part of a landscape	883 02-nov-2014
<u>louisiana</u> is a state or province <u>located in</u> the geopolitical location <u>u_s_</u>	886 21-nov-2014
kansas_city_chiefs is a sports team that won the super_bowl	886 21-nov-2014
miller has been charged with contempt	886 21-nov-2014
the companies <u>new_york</u> and <u>london_sunday_times</u> <u>compete with</u> eachother	884 08-nov-2014
aberdeen is a city located in the geopolitical location the united kingdom	886 21-nov-2014

Portuguese NELL

- mes
- ano
- dataliteral
- evento
 - eventoesportista
 - olimpiadas
 - grandepremio
 - corrida
 - jogoesportivo
 - convencao
 - fenomenometeo
 - tipodeeventomil
 - conflitomilitar
 - conferencia
 - conferenciade
 - eleicao
 - festivaldemusica
 - festivaldefilmes
 - resultadodeeven
 - crimeouacusaca
- contapolitica
- coordernadas
- metricadeam
- <u>Dyota_III</u> emocao

conflitomilitar

(category)

See learned instances of conflitomilitar as a list or on a map

Metadata

allLearnedPatterns

Recent

instance

<u>adriane_g</u>

<u>basf_e_fa</u>

manaus_

jacutinga

fim_da_g

bamerind

<u>nissan</u> is

<u>susana_v</u>

campeon

toyota m

How does NELL work?

Semi-Supervised Bootstrap Learning

Learn which noun phrases are cities:

it's underconstrained!!

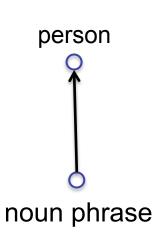
Paris
Pittsburgh
Seattle
Montpelier

San Francisco Berlin denial anxiety selfishness London

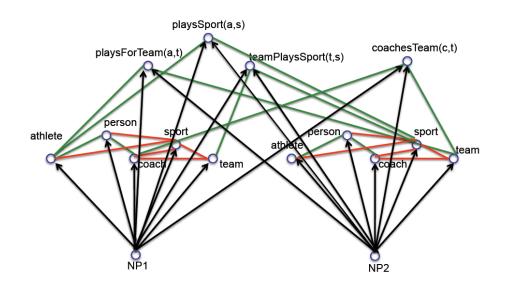
mayor of arg1 live in arg1

arg1 is home of traits such as arg1

Key Idea 1: Coupled semi-supervised training of many functions

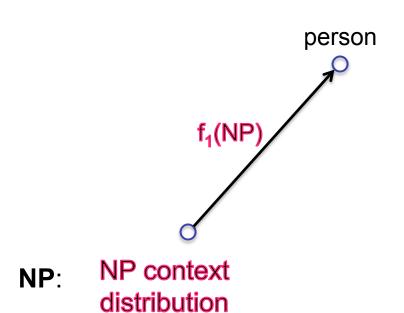


hard
(underconstrained)
semi-supervised
learning problem



much easier (more constrained)
semi-supervised learning problem

Supervised training of 1 function:

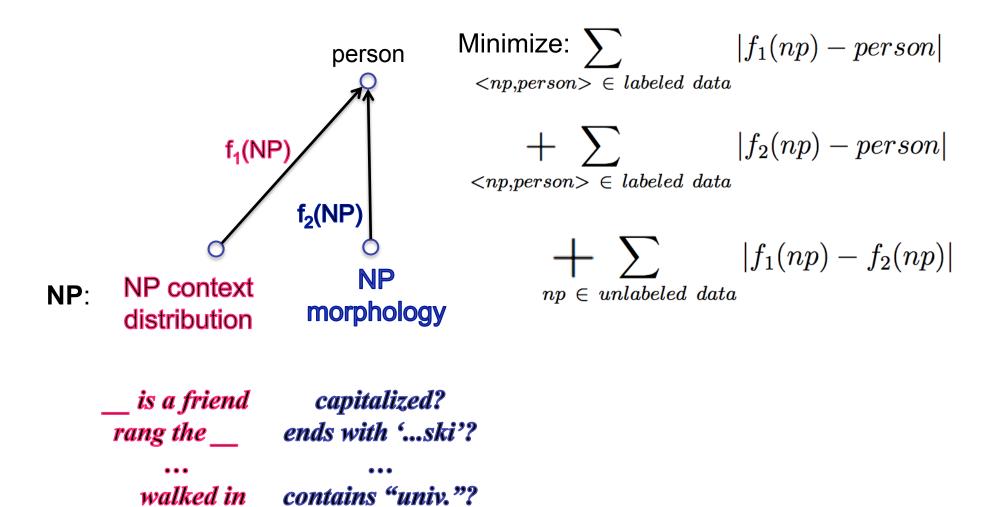


Minimize: $\sum_{\langle np, person \rangle \in labeled \ data} |f_1(np) - person|$

__ is a friend rang the __

___ walked in

Coupled training of 2 functions:



[Blum & Mitchell; 98]

[Dasgupta et al; 01]

[Ganchev et al., 08]

[Sridharan & Kakade, 08]

[Wang & Zhou, ICML10] person $f_1(NP)$ f₃(NP) f₂(NP) NP NP HTML NP context NP: morphology contexts distribution www.celebrities.com: is a friend capitalized? </i>__ ends with '...ski'? rang the walked in contains "univ."?

NELL: Learned reading strategies

n /	\sim		~+ <i>~</i>	ain:
11/	I()		112	4111
IV	\mathbf{v}	u	111	4 I I I 1

"volcanic crater of _" "volcanic erupt region of _" "volcano , called _" "vo "volcano known as " "volcano Mt including _" "volcanoes , like _" "vo _" "volcanoes including _" "volcano "weather atop _" "weather station at through " "West face of " "West r ledge in _" "white summit of _" "who surrounding _" "wilderness areas ar "winter ascents in " "winter ascents foothills of " "world famous view of popping by _" "you 've just climbed] "_ ' crater" "_ ' eruption" "_ ' foothills Camp" "_ 's drug guide" "_ 's east r Face" "_'s North Peak" "_'s North southeast ridge" "_ 's summit calder 's west ridge" "_ (D,DDD ft" " "_ clin consult el diablo" "_ cooking planks'

Predicate	Feature	Weight
mountain	LAST=peak	1.791
mountain	LAST=mountain	1.093
mountain	FIRST=mountain	-0.875
musicArtist	LAST=band	1.853
musicArtist	POS=DT_NNS	1.412
musicArtist	POS=DT_JJ_NN	-0.807
newspaper	LAST=sun	1.330
newspaper	LAST=university	-0.318
newspaper	POS=NN_NNS	-0.798
university	LAST=college	2.076
university	PREFIX=uc	1.999
university	LAST=state	1.992
university	LAST=university	1.745
university	FIRST=college	-1.381
visualArtMovement	SUFFIX=ism	1.282
vicual Art Movement	DRFFIY-iourn	_∩ 234

Predicate	Web URL	Extraction Template
academicField	http://scholendow.ais.msu.edu/student/ScholSearch.Asp	Enbsp; $[X]$ -
athlete	http://www.quotes-search.com/d_occupation.aspx?o=+athlete	<a href="d_author.aspx?a=<math>[X]">-
bird	http://www.michaelforsberg.com/stock.html	<option $>[X]option>$
bookAuthor	http://lifebehindthecurve.com/	[X] by [Y] –

[Blum & Mitchell; 98]

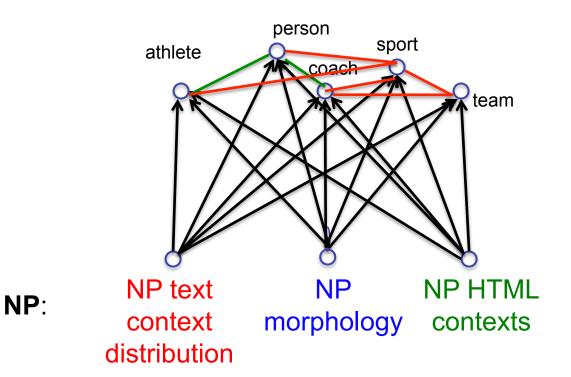
[Dasgupta et al; 01]

[Ganchev et al., 08]

[Sridharan & Kakade, 08]

[Wang & Zhou, ICML10] person $f_1(NP)$ f₃(NP) f₂(NP) NP NP HTML NP context NP: morphology contexts distribution www.celebrities.com: is a friend capitalized? </i>__ ends with '...ski'? rang the walked in contains "univ."?

Multi-view, Multi-Task Coupling

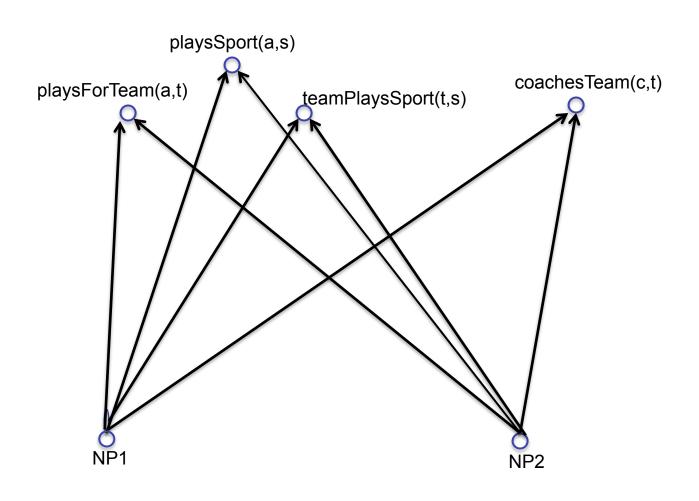


[Blum & Mitchell; 98]
[Dasgupta et al; 01]
[Ganchev et al., 08]
[Sridharan & Kakade, 08]
[Wang & Zhou, ICML10]
[Taskar et al., 2009]
[Carlson et al., 2009]

— athlete(NP) → person(NP)

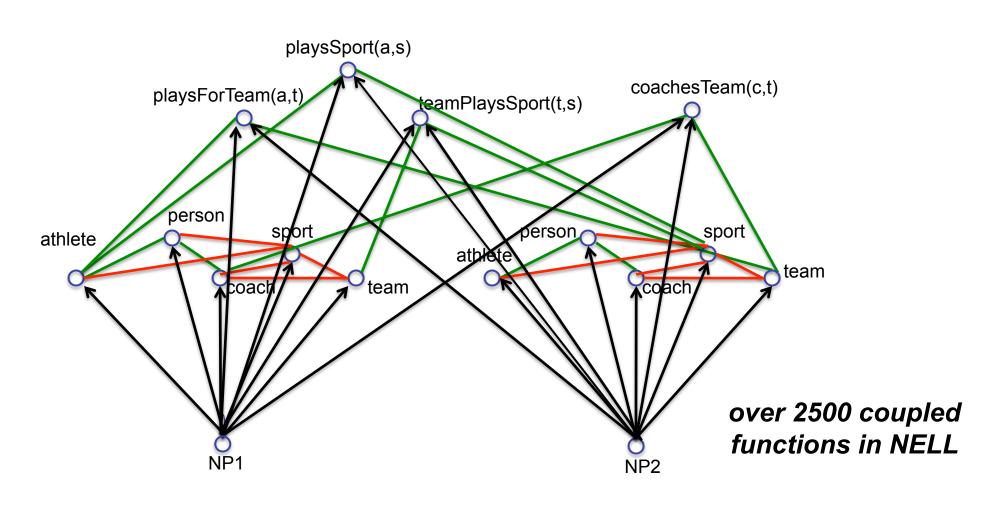
athlete(NP) → NOT sport(NP)
NOT athlete(NP) ← sport(NP)

Type 3 Coupling: Relation Argument Types

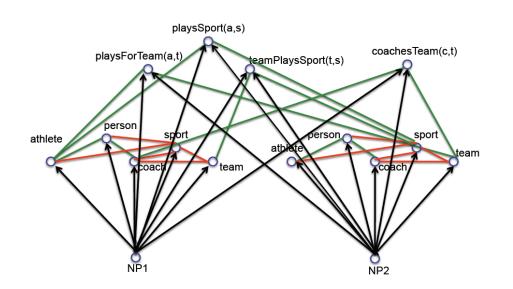


Type 3 Coupling: Relation Argument Types

playsSport(NP1,NP2) → athlete(NP1), sport(NP2)



Pure EM Approach to Coupled Training



E: estimate labels for each function of each unlabeled example

M: retrain all functions, using these probabilistic labels

Scaling problem:

- E step: 25M NP's, 10¹⁴ NP pairs to label
- M step: 50M text contexts to consider for each function → 10¹⁰ parameters to retrain
- even more URL-HTML contexts...

NELL's Approximation to EM

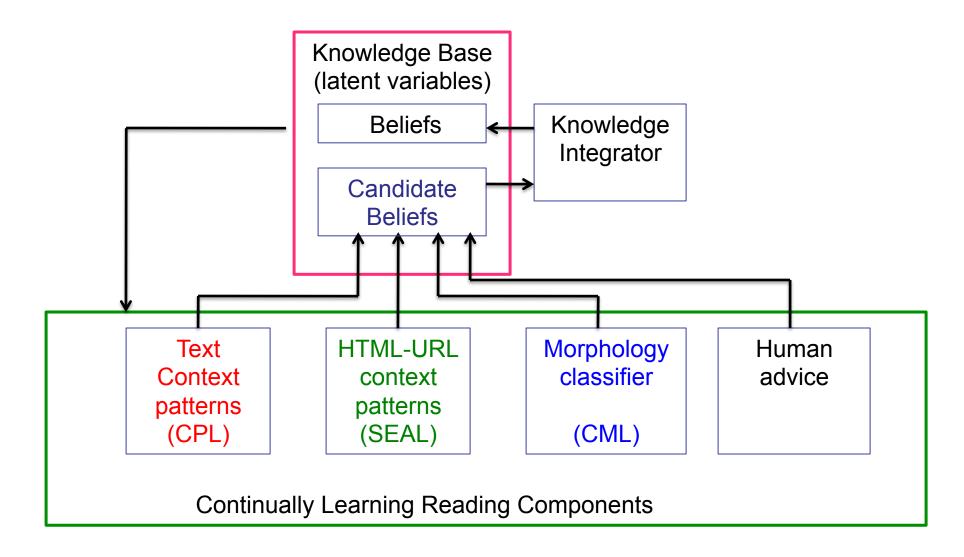
E' step:

- Re-estimate the knowledge base:
 - but consider only a growing subset of the latent variable assignments
 - category variables: up to 250 new NP's per category per iteration
 - relation variables: add only if confident and args of correct type
 - this set of explicit latent assignments *IS* the knowledge base

M' step:

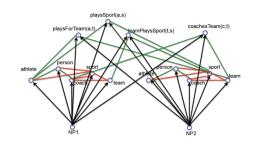
- Each view-based learner retrains itself from the updated KB
- "context" methods create growing subsets of contexts

Initial NELL Architecture



If coupled learning is the key, how can we get new coupling constraints?

Key Idea 2:



Discover New Coupling Constraints

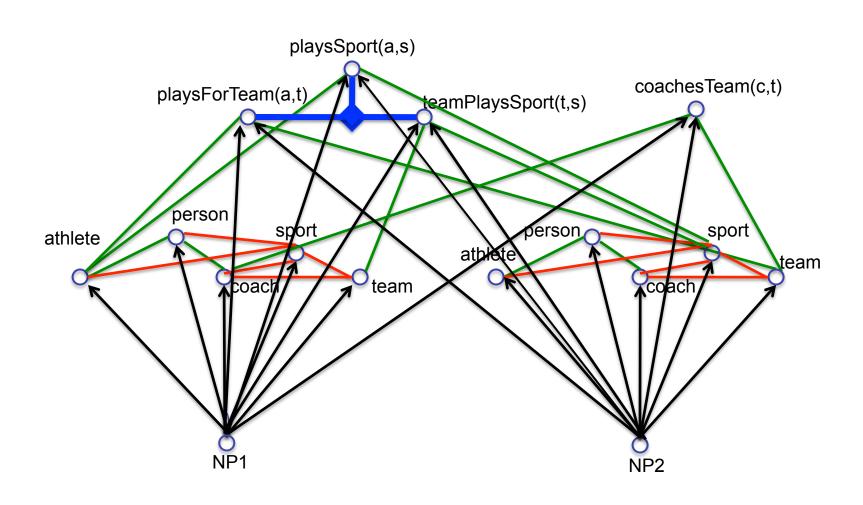
learn horn clause rules/constraints:

0.93 athletePlaysSport(?x,?y) ← athletePlaysForTeam(?x,?z) teamPlaysSport(?z,?y)

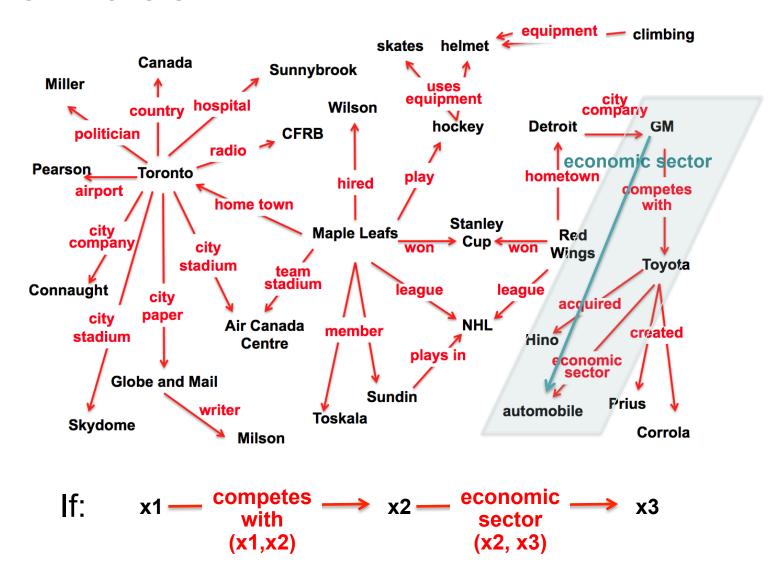
- learned by data mining the knowledge base
- connect previously uncoupled relation predicates
- infer new unread beliefs
- modified version of FOIL [Quinlan]

Learned Probabilistic Horn Clause Rules

0.93 playsSport(?x,?y) ← playsForTeam(?x,?z), teamPlaysSport(?z,?y)



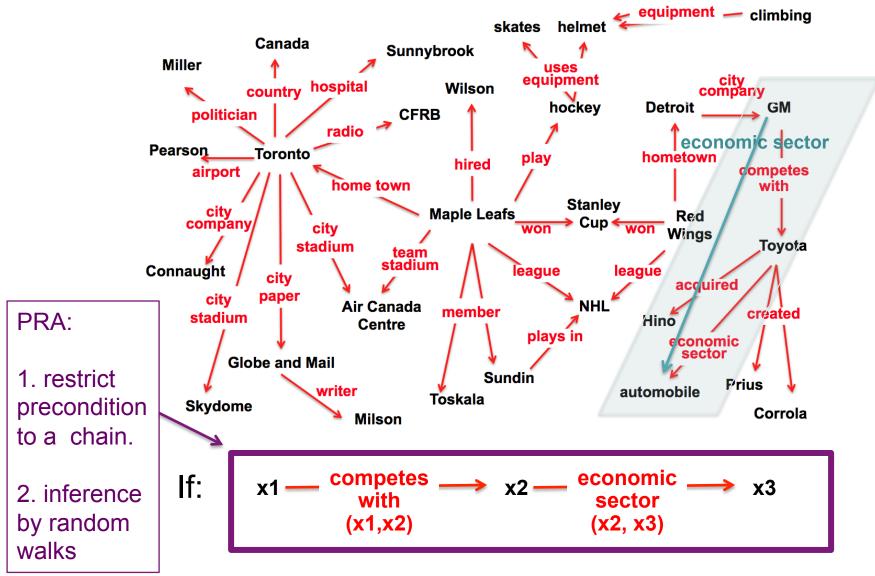
Infer New Beliefs



Then: economic sector (x1, x3)

Inference by Random Walks

PRA: [Lao, Mitchell, Cohen, EMNLP 2011]



Then: economic sector (x1, x3)

Inference by KB Random Walks

[Lao, Mitchell, Cohen, EMNLP 2011]

equipment — climbing skates helmet Canada Sunnybrook Miller equipment Wilson hockey politician Pearson Toronto hometown hired competes airport home town Stanley Maple Leafs company Toyota stadium Connaught acquired Air Canada member stadium Centre plays in economic **Globe and Mail** Sundin **Prius** automobile Toskala Skydome Corrola Milson sector

Random walk path type:

KB:

Pr(R(x,y)): logistic function for R(x,y)

where ith feature = probability of arriving at node y starting at node x, and taking a random walk along path of type i

[Lao, Mitchell, Cohen, EMNLP 2011]

Pittsburgh

Feature = Typed Path

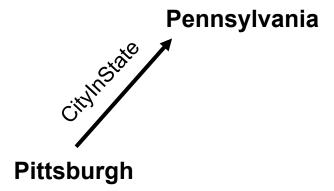
CityInState, CityInstate⁻¹, CityLocatedInCountry

Feature Value

Logistic Regresssion Weight

0.32

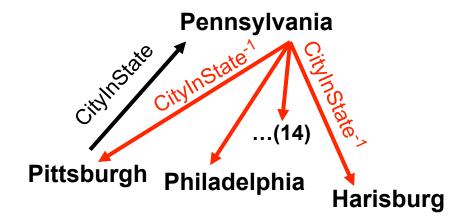
[Lao, Mitchell, Cohen, EMNLP 2011]



<u>Feature = Typed Path</u> CityInState, <u>CityInstate-1</u>, CityLocatedInCountry Feature Value

Logistic
Regresssion
Weight
0.32

[Lao, Mitchell, Cohen, EMNLP 2011]



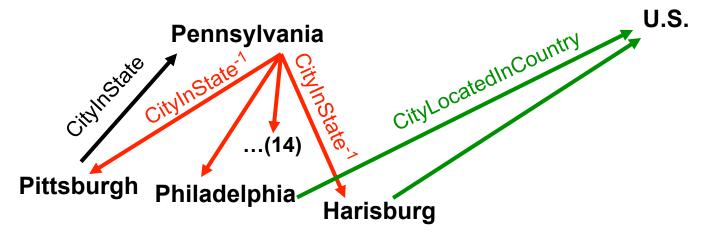
<u>Feature = Typed Path</u> CityInState, CityInstate⁻¹, CityLocatedInCountry

Feature Value

Logistic
Regresssion
Weight
0.32

[Lao, Mitchell, Cohen, EMNLP 2011]

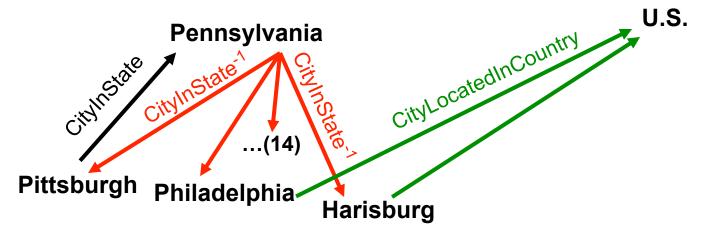
Logistic



Feature = Typed Path
CityInState, CityInstate-1, CityLocatedInCountry

Regresssion
Weight
0.32

[Lao, Mitchell, Cohen, EMNLP 2011]



Pr(U.S. | Pittsburgh, TypedPath)

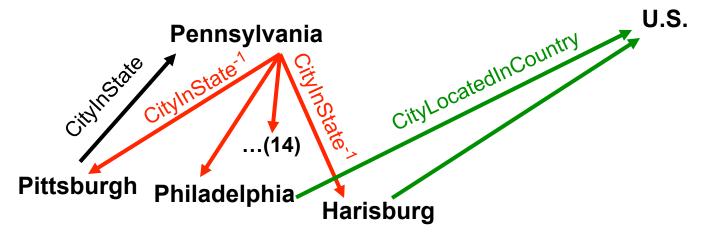
Feature = Typed Path

CityInState, CityInstate⁻¹, CityLocatedInCountry

Feature Value

Logistic
Regresssion
Weight
0.32

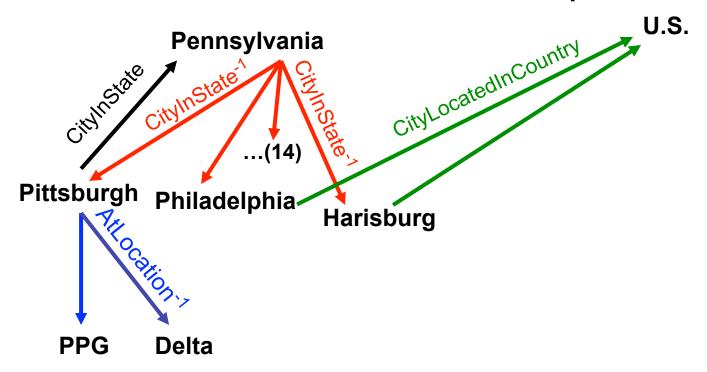
[Lao, Mitchell, Cohen, EMNLP 2011]



		<u>Logistic</u> Regresssion
Feature = Typed Path	Feature Value	<u>Weight</u>
CityInState, CityInstate-1, CityLocatedInCountry	0.8	0.32
AtLocation-1, AtLocation, CityLocatedInCountry		0.20

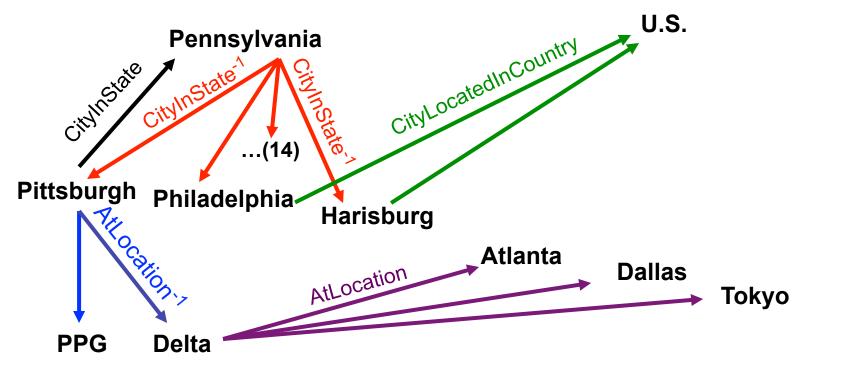
[Lao, Mitchell, Cohen, EMNLP 2011]

Logistic



		Regresssion
Feature = Typed Path	Feature Value	<u>Weight</u>
CityInState, CityInstate-1, CityLocatedInCountry	0.8	0.32
AtLocation-1, AtLocation, CityLocatedInCountry		0.20

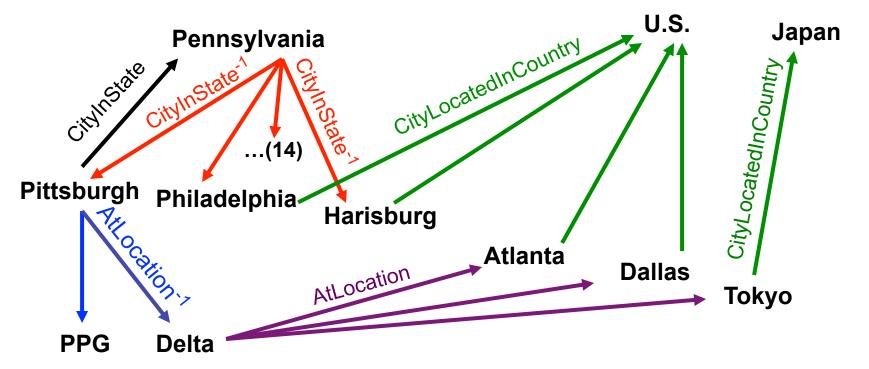
[Lao, Mitchell, Cohen, EMNLP 2011]



		<u>Logistic</u> <u>Regresssion</u>
Feature = Typed Path	Feature Value	<u>Weight</u>
CityInState, CityInstate-1, CityLocatedInCountry	0.8	0.32
AtLocation-1, AtLocation, CityLocatedInCountry		0.20

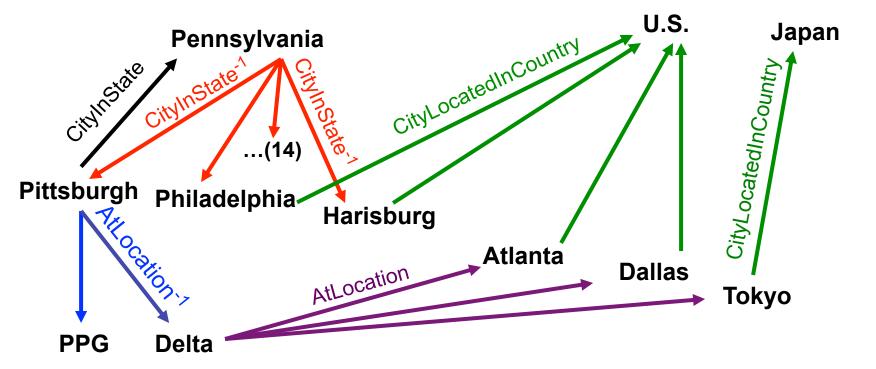
CityLocatedInCountry(Pittsburgh) = ?

[Lao, Mitchell, Cohen, EMNLP 2011]

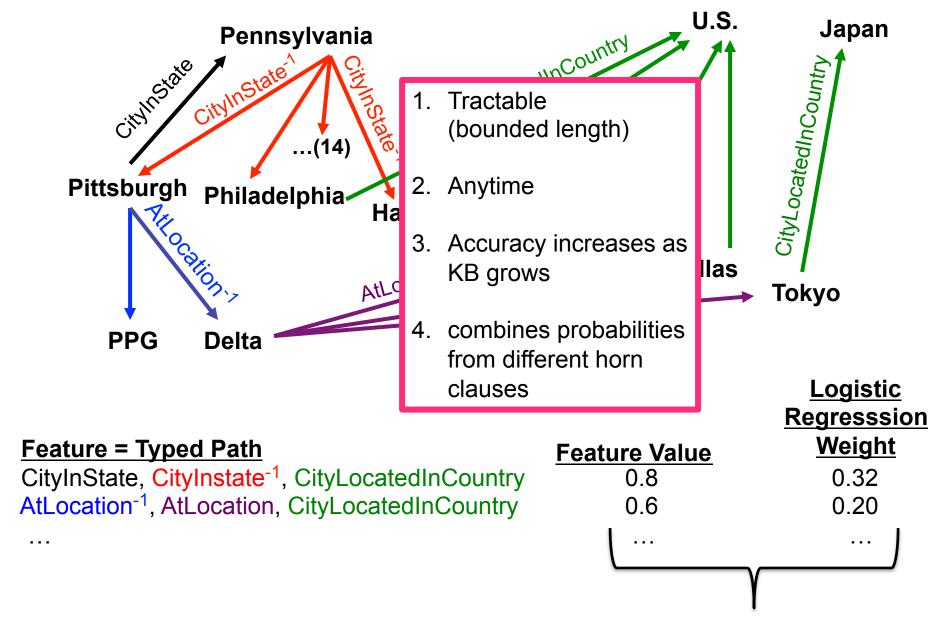


		<u>Logistic</u> <u>Regresssion</u>
Feature = Typed Path	Feature Value	<u>Weight</u>
CityInState, CityInstate-1, CityLocatedInCountry	0.8	0.32
AtLocation ⁻¹ , AtLocation, CityLocatedInCountry	0.6	0.20

[Lao, Mitchell, Cohen, EMNLP 2011]



CityLocatedInCountry(Pittsburgh) = U.S. p=0.58



CityLocatedInCountry(Pittsburgh) = U.S. p=0.58

Random walk inference: learned rules

CityLocatedInCountry(city, country):

```
8.04 cityliesonriver, cityliesonriver<sup>-1</sup>, citylocatedincountry
5.42 hasofficeincity<sup>-1</sup>, hasofficeincity, citylocatedincountry
4.98 cityalsoknownas, cityalsoknownas, citylocatedincountry
2.85 citycapitalofcountry, citylocatedincountry<sup>-1</sup>, citylocatedincountry
2.29 agentactsinlocation<sup>-1</sup>, agentactsinlocation, citylocatedincountry
1.22 statehascapital<sup>-1</sup>, statelocatedincountry
0.66 citycapitalofcountry
```

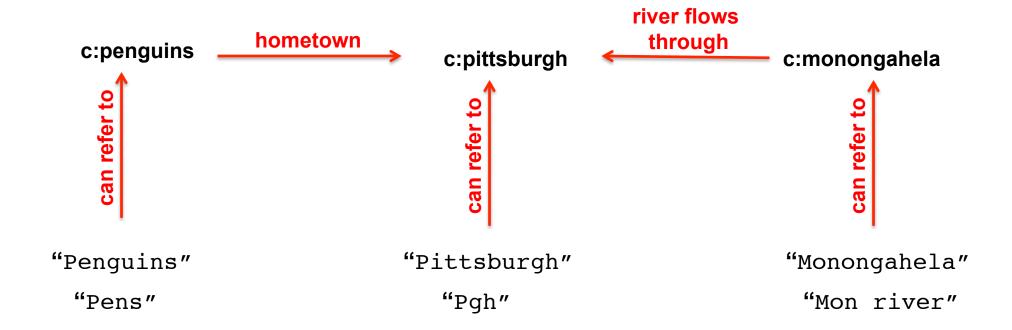
7 of the 2985 learned rules for CityLocatedInCountry

Opportunity:

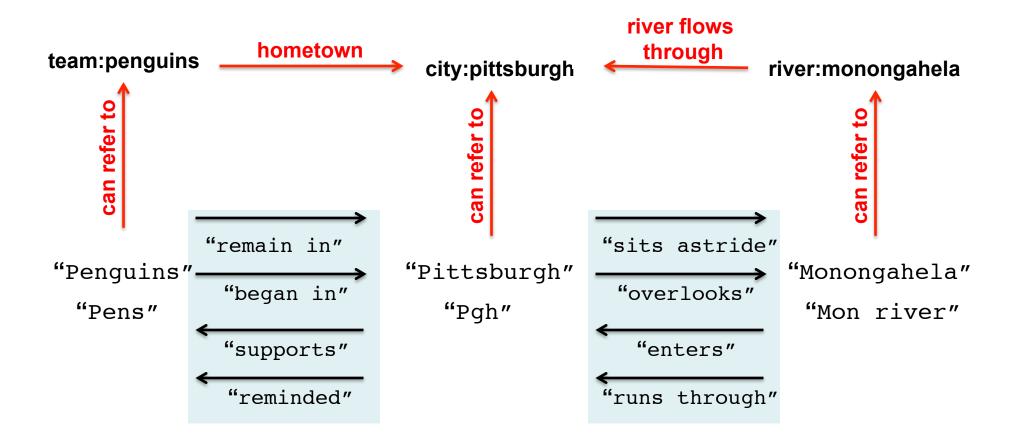
Can infer more if we start with more densely connected knowledge graph

- → as NELL learns, it will become more dense
- → augment knowledge graph with a second graph of corpus statistics:
 - <subject, verb, object> triples

NELL: concepts and "noun phrases"

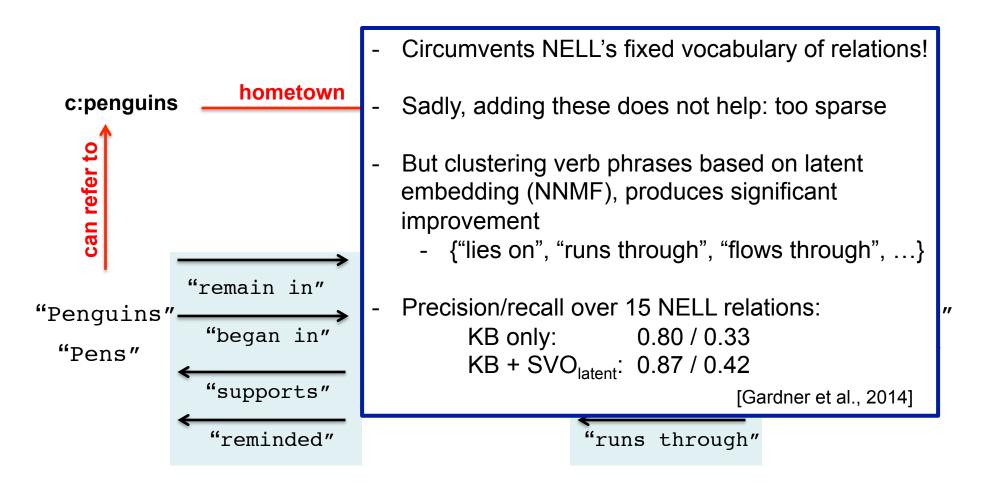


NELL: concepts and "noun phrases"



SVO triples from 500 M dependency parsed web pages (thank you Chris Re!)

NELL: concepts and "noun phrases"



SVO triples from 500 M dependency parsed web pages (thank you Chris Re!)

Key Idea 3: Automatically extend ontology

Ontology Extension (1)

[Mohamed et al., EMNLP 2011]

Goal:

Add new relations to ontology

Approach:

- For each pair of categories C1, C2,
 - cluster pairs of known instances, in terms of text contexts that connect them

Example Discovered Relations

[Mohamed et al. EMNLP 2011]

Category Pair	Frequent Instance Pairs	Text Contexts	Suggested Name
MusicInstrument Musician	sitar, George Harrison tenor sax, Stan Getz trombone, Tommy Dorsey vibes, Lionel Hampton	ARG1 master ARG2 ARG1 virtuoso ARG2 ARG1 legend ARG2 ARG2 plays ARG1	Master
Disease Disease	pinched nerve, herniated disk tennis elbow, tendonitis blepharospasm, dystonia	ARG1 is due to ARG2 ARG1 is caused by ARG2	IsDueTo
CellType Chemical	epithelial cells, surfactant neurons, serotonin mast cells, histomine	ARG1 that release ARG2 ARG2 releasing ARG1	ThatRelease
Mammals Plant	koala bears, eucalyptus sheep, grasses goats, saplings	ARG1 eat ARG2 ARG2 eating ARG1	Eat
River City	Seine, Paris Nile, Cairo Tiber river, Rome	ARG1 in heart of ARG2 ARG1 which flows through ARG2	InHeartOf

NELL: sample of self-added relations

- athleteWonAward
- animalEatsFood
- languageTaughtInCity
- clothingMadeFromPlant
- beverageServedWithFood
- fishServedWithFood
- athleteBeatAthlete
- athleteInjuredBodyPart
- arthropodFeedsOnInsect
- animalEatsVegetable
- plantRepresentsEmotion
- foodDecreasesRiskOfDisease

- clothingGoesWithClothing
- bacteriaCausesPhysCondition
- buildingMadeOfMaterial
- emotionAssociatedWithDisease
- foodCanCauseDisease
- agriculturalProductAttractsInsect
- arteryArisesFromArtery
- countryHasSportsFans
- bakedGoodServedWithBeverage
- beverageContainsProtein
- animalCanDevelopDisease
- beverageMadeFromBeverage

Ontology Extension (2) [Burr Settles]

Goal:

Add new subcategories

Approach:

- For each category C,
 - train NELL to read the relation
 SubsetOf_C: C → C

*no new software here, just add this relation to ontology

NELL: subcategories discovered by reading

Animal:

- Pets
 - Hamsters, Ferrets, Birds, Dog, Cats,
 Rabbits, Snakes, Parrots, Kittens, ...
- Predators
 - Bears, Foxes, Wolves, Coyotes,
 Snakes, Racoons, Eagles, Lions,
 Leopards, Hawks, Humans, ...

Learned reading patterns for AnimalSubset(arg1,arg2)

"arg1 and other medium sized arg2"
"arg1 and other jungle arg2" "arg1 and other magnificent arg2" "arg1 and other pesky arg2" "arg1 and other mammals and arg2" "arg1 and other Ice Age arg2" "arg1 or other biting arg2" "arg1 and other migrant arg2" "arg1 and other migrant arg2" "arg1 and other monogastric arg2" "arg1 and other mythical arg2" "arg1 and other nesting

NELL: subcategories discovered by reading

Animal:

Pets

Hamsters, Ferrets, Birds, Dog, Cats,
 Rabbits, Snakes, Parrots, Kittens, ...

Predators

Bears, Foxes, Wolves, Coyotes,
 Snakes, Racoons, Eagles, Lions,
 Leopards, Hawks, Humans, ...

Learned reading patterns:

"arg1 and other medium sized arg2"
"arg1 and other jungle arg2" "arg1 and other magnificent arg2" "arg1 and other pesky arg2" "arg1 and other mammals and arg2" "arg1 and other Ice Age arg2" "arg1 or other biting arg2" "arg1 and other migrant arg2" "arg1 and other migrant arg2" "arg1 and other monogastric arg2" "arg1 and other mythical arg2" "arg1 and other nesting

Chemical:

Fossil fuels

Carbon, Natural gas, Coal, Diesel,
 Monoxide, Gases, ...

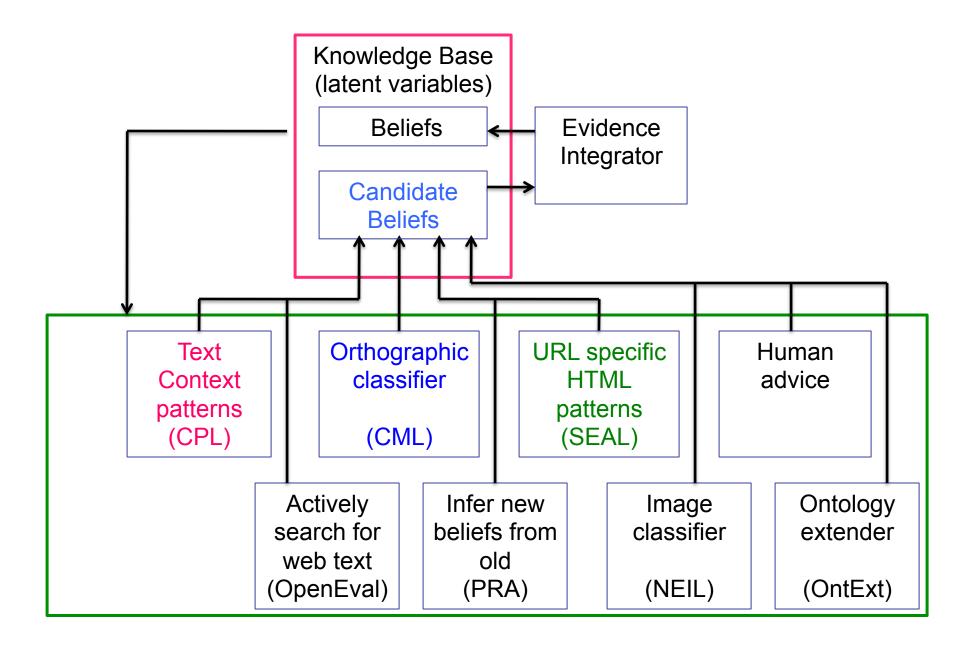
Gases

Helium, Carbon dioxide, Methane,
 Oxygen, Propane, Ozone, Radon...

Learned reading patterns:

"arg1 and other hydrocarbon arg2" "arg1 and other aqueous arg2" "arg1 and other hazardous air arg2" "arg1 and oxygen are arg2" "arg1 and such synthetic arg2" "arg1 as a lifting arg2" "arg1 as a tracer arg2" "arg1 as the carrier arg2" "arg1 as the inert arg2" "arg1 as the primary cleaning arg2" "arg1 and other noxious arg2" "arg1 and other trace arg2" "arg1 as the reagent arg2" "arg1 as the tracer

NELL Architecture



Key Idea 4: Cumulative, Staged Learning

Learning X improves ability to learn Y

- 1. Classify noun phrases (NP's) by category
- 2. Classify NP pairs by relation
- 3. Discover rules to predict new relation instances
- 4. Learn which NP's (co)refer to which latent concepts
- 5. Discover new relations to extend ontology
- 6. Learn to infer relation instances via targeted random walks

NELL is here

- 7. Vision: connect NELL and NEIL
- 8. Learn to microread single sentences
- 9. Learn to assign temporal scope to beliefs
- 10. Goal-driven reading: predict, then read to corroborate/correct
- 11. Make NELL a conversational agent on Twitter
- 12. Add a robot body to NELL

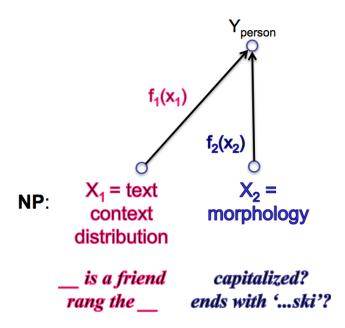
Consistency Correctness Self reflection

The core problem:

 Agents can measure internal consistency, but not correctness

Challenge:

• Under what conditions does *consistency* → *correctness*?



The core problem:

 Agents can measure internal consistency, but not correctness

Challenge:

- Under what conditions does consistency → correctness?
- Can an autonomous agent determine its accuracy from observed consistency?

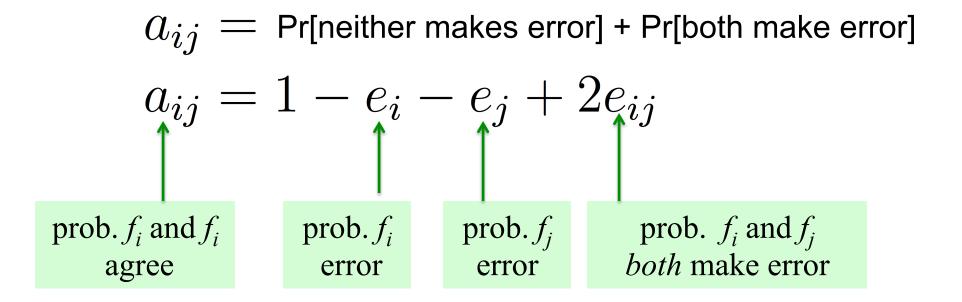
Problem setting:

- have N different estimates $f_1, \dots f_N$ of target function f^* $f_i: X \to Y; \ Y \in \{0, 1\}$
- agreement between $f_i, f_j: a_{ij} \equiv P_x(f_i(x) = f_j(x))$

Problem setting:

- have N different estimates $f_1, \dots f_N$ of target function f^* $f_i: X \to Y; Y \in \{0, 1\}$
- agreement between $f_i, f_j: a_{ij} \equiv P_x(f_i(x) = f_j(x))$

Key insight: errors and agreement rates are related



Estimating Error from Unlabeled Data

1. IF f_1 , f_2 , f_3 make indep. errors, and accuracies > 0.5

THEN
$$a_{ij} = 1 - e_i - e_j + 2e_{ij}$$
 $\Rightarrow a_{ij} = 1 - e_i - e_j + 2e_ie_j$

Measure errors from unlabeled data:

- use unlabeled data to estimate a_{12} , a_{13} , a_{23}
- solve three equations for three unknowns e_1 , e_2 , e_3

Estimating Error from Unlabeled Data

1. IF f_1 , f_2 , f_3 make indep. errors, accuracies > 0.5

THEN
$$a_{ij} = 1 - e_i - e_j + 2e_{ij}$$

$$\Rightarrow a_{ij} = 1 - e_i - e_j + 2e_i e_j$$

2. but if errors not independent

Estimating Error from Unlabeled Data

1. IF f_1 , f_2 , f_3 make indep. errors, accuracies > 0.5

THEN
$$a_{ij} = 1 - e_i - e_j + 2e_{ij}$$

 $\Rightarrow a_{ij} = 1 - e_i - e_j + 2e_ie_j$

2. but if errors not independent

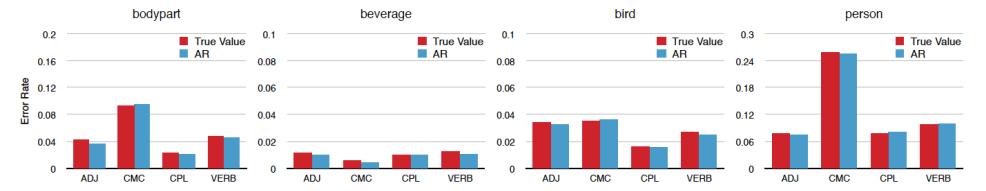
min
$$(e_{ij} - e_i e_j)^2$$

such that
$$(\forall i, j) \ a_{ij} = 1 - e_i - e_j + 2e_{ij}$$

True error (red), estimated error (blue)

[Platanios, Blum, Mitchell, UAI 2014]

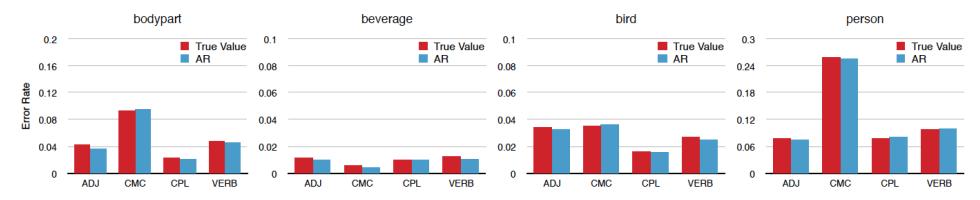
NELL classifiers:



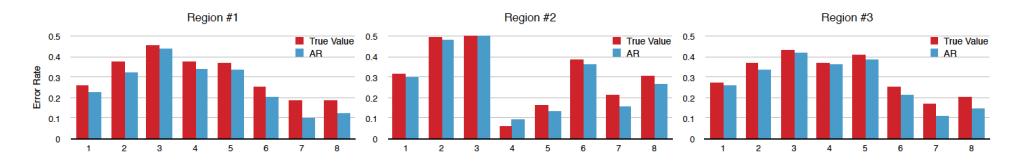
True error (red), estimated error (blue)

[Platanios, Blum, Mitchell, UAI 2014]

NELL classifiers:



Brain image fMRI classifiers:



Summary

- 1. Use coupled training for semi-supervised learning
- 2. Datamine the KB to learn probabilistic inference rules
- 3. Automatically extend ontology
- 4. Use staged learning curriculum

New directions:

- Self-reflection, self-estimates of accuracy (A. Platanios)
- Incorporate vision with NEIL (Abhinav Gupta)
- Microreading (Jayant Krishnamurthy, Ndapa Nakashole)
- Aggressive ontology expansion (Derry Wijaya)
- Portuguese NELL (Estevam Hrushka)
- never-ending learning phones? robots? traffic lights?

thank you

and thanks to:

Darpa, Google, NSF, Yahoo!, Microsoft, Fulbright, Intel

follow NELL on Twitter: @CMUNELL browse/download NELL's KB at http://rtw.ml.cmu.edu