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Recap from last time: Boosting

» General method for improving the accuracy of any given
learning algorithm.

Works by creating a series of challenge datasets s.t. even
modest performance on these can be used to produce an
overall high-accuracy predictor.

Adaboost one of the top 10 ML algorithms.
Works amazingly well in practice.

Backed up by solid foundations.



Adaboost (Adaptive Boosting)

I_”M: S:{(X1’ yl)l --w(Xm: ym)}; X € X, Yi € Y = {—1,1}
weak lear'ning C(|90 A (e.g., Naive Bayes, decision stumps)
For t=12, ..., T + +

Construct D, on {Xq, ..., X}
Run A on D producing h¢: X — {—1,1}
M Hfinal(x) — Sign(Zt: atht(x))
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el—acyi he(x))}

- Dy (D) =

D41 puts half of weight on examples
x; where h; is incorrect & half on
examples where h; is correct




Nice Features of Adaboost

 Very general: a meta-procedure, it can use any weak
|ear'nin9 algom‘fhmlll (e.g., Ndive Bayes, decision stumps)

 Very fast (single pass through data each round) & simple
to code, no parameters to tune.

« Grounded in rich theory.



Analyzing Training Error
Theorem ¢; = 1/2 —y; (error of h; over D,)

errS(Hfmal) < exp [ -2 z ytz]
{

So, if Vt,y; =y > 0, then errS(Hfmal) < exp| =2 y°T]

The training error drops exponentially in Tl

To get errs(Hrina) < €, need only T = 0 (y—lzlog (é)) rounds

Adaboost is adaptive

Does not need to know y or T a priori
Can exploit Yt > V



Generalization Guarantees

where e, = 1/2 — vy,
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A
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How about generalization guarantees?

Original analysis [Freund&Schapire'97]

H space of weak hypotheses; d=VCdim(H)
Hfinai 1S a weighted vote, so the hypothesis class is:

G={all fns of the form sign(XI_; a;h (x)) }

Theorem [Freund&Schapire'97]
VgeGerr(g) <errs(g) +0 (\/T;d ) T= # of rounds

Key reason: VCdim(G) = 0(dT) plus typical VC bounds.



Generalization Guarantees

Theorem [Freund&Schapire'97]

VgeGaerr(g) <errs(g) + 5( rd ) where d=VCdim(H)

error

m

generalization
error
train error

complexity

T= # of rounds



Generalization Guarantees

« Experiments showed that the test error of the generated
classifier usually does not increase as its size becomes
very large.

« Experiments showed that continuing to add new weak
learners after correct classification of the training set had
been achieved could further improve test set performancel!

20:

-

error

10 100 1000

# rounds



Generalization Guarantees

« Experiments showed that the test error of the generated
classifier; t@ually does not increase as its size becomes

very large. ~
9 ¢
« Experime howed that continuing to ad zak
learners after correct classification of the ing set had

been achieved could further improve test set performancelll

« These rgsults seem to contradict FS'97 bound and Occam's
razor @n//s  hieve good test errorf? nP/\ Sier should be as
simple as

\vg £ G err(g) < em(g)\fﬁ\/‘



How can we explain the experiments?

R. Schapire, Y. Freund, P. Bartlett, W. S. Lee. present in
“Boosting the margin: A new explanation for the effectiveness
of voting methods" a nice theoretical explanation.

Key Idea:
Training error does not tell the whole story.

We need also to consider the classification confidencell



Boosting didn’ t seem ..because it turned out to be

to overfit..(!) increasing the margin of the
classifier
20:
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Error Curve, Margin Distr. Graph - Plots from [SFBL98]



Classification Margin

H space of weak hypotheses. The convex hull of H:
co(H) ={f = Xi=1 athe,a; 2 0,% (-1 a; = 1, h; € H}
Let f € co(H),f =Xl ath,ar 2 0, Yioq ap = 1.

The majority vote rule H; given by f (given by Hy = sign(f(x)))
predicts wrongly on example (x,y) iff yf(x) < 0.

Definition: margin of H; (or of f) on example (x,y) to be yf(x).
T

T
) =y ) lache(O] = ) pashl = ) a—- Y a
t=1

t=1 t:y=h¢(x) t:y+he(x)

The margin is positive iff y = He(x).

See |yf(x)| = |f(x)| as the strength or the confidence of the vote.

-1 Low confidence 1

. . High confidence,
High confidence, correct

incorrect



Boosting and Margins

Theorem:VCdim(H) = d, then with prob. > 1 -8, Vf € co(H), V6 > 0,

%r[yf(x) <0] < %T[Yf(x) <6]+0 (\/1% \/dl;zg + 1“%)

Note: bound does not depend on T (the # of rounds of boosting),
depends only on the complex. of the weak hyp space and the margin!
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Boosting and Margins

Theorem:VCdim(H) = d, then with prob. > 1 -8, Vf € co(H), V6 > 0,

Priyf(x) = 0] = Prlyf(x) < 6] + 0 (\/1% \/dl;zg T ln%)

If all training examples have large margins, then we can
approximate the final classifier by a much smaller classifier.

Can use this to prove that better margin = smaller test error,
regardless of the number of weak classifiers.

Can also prove that boosting tends to increase the margin of
training examples by concentrating on those of smallest margin.

Although final classifier is getting larger,
margins are likely to be increasing, so the o
final classifier is actually getting closer toa ¢
simpler classifier, driving down test error. A




Boosting and Margins

Theorem:VCdim(H) = d, then with prob. > 1 -8, Vf € co(H), V6 > 0,

%r[yf(x) <0] < %T[Yf(x) <6]+0 (\/1% \/dl;zg + 1“%)

Note: bound does not depend on T (the # of rounds of boosting),
depends only on the complex. of the weak hyp space and the margin!
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Boosting, Adaboost Summary

« Shift in mindset: goal is now just to find classifiers a
bit better than random guessing.

Backed up by solid foundations.

Adaboost work and its variations well in practice with
many kinds of data (one of the top 10 ML algos).

More about classic applications in Recitation.

 Relevant for big data age: quickly focuses on "core difficulties”, so
well-suited to distributed settings, where data must be
communicated efficien’rly [Balcan-Blum-Fine-Mansour COLT'12].



Interestingly, the usefulness of margin
recognized in Machine Learning since late 50's.

Perceptron [rosentlarts71analyzed via geometric
(aka L,, L,) margin.

Original guarantee in the online learning scenario.




The Perceptron Algorithm

* Online Learning Model
* Margin Analysis

- Kernels



The Online Learning Model

Example arrive sequentially.
We need to make a prediction.

Afterwards observe the outcome.

Fori=1 2, .. :

$ommmmmm  Example x;

Phase i: Online Algorithm ) Prediction h(x;)

_ Observe c*(x,)

Mistake bound model
Analysis wise, make no distributional assumptions.

« Goal: Minimize the number of mistakes.



The Online Learning Model. Motivation

- Email classification (distribution of both spam and regular
mail changes over time, but the target function stays fixed -
last year's spam still looks like spam).

- Recommendation systems. Recommending movies, etc.

- Predicting whether a user will be interested in a new news
article or not.

- Add placement in a new market.



Linear Separators

Instance space X = R¢ Xy

« Hypothesis class of linear decision w X

. X
surfaces in RY,

X
X X

* h(x) =w- x +wy, if h(x) = 0, then X
label x as +, otherwise label it as - X

Claim: WLOG w, = 0.

Proof: Can simulate a non-zero threshold with a dummy input
feature x, that is always set up to 1.

o x=(Xq,.,xq) > X = (X1, ., xq,1)
c w-Xx +wy=0iff (Wy,..,wq,wg) -X=>0

where w = (wyq, ..., wy)



Linear Separators: Perceptron Algorithm

+ Set t=1, start with the all zero vector w;.
+ Given example x, predict positive iff w; - x >0
* On a mistake, update as follows:

* Mistake on positive, then update w;,; < w; + x

* Mistake on negative, then update w;,; « w; — x

Note: w; is weighted sum of incorrectly classified examples
W = ailxil + -+ aikxl-k
We X = Qi Xj, X+ -+ a;, Xjy - X

Important when we talk about kernels.



Perceptron Algorithm: Example

Example: (-12) - x

(1,0) + 3
(1,1) + X |
(—1,0) —
(-1,-2)—- X
(1,-1) +
Algorithm: " =\(o,0)

= Set 1=1, start with all-zeroes weight vector w;.
= Given example x, predict positive iff w; - x > 0.
= On a mistake, update as follows:
Mistake on positive, update w;,; <« w; + x
Mistake on negative, update w;,; « wy — x

wy, =wy — (=1,2) = (1,-2)
ws =w, +(1,1) =(2,-1)

wy =wz —(=1,-2) = (3,1)




Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is
the distance from x to the plane w-x =0 (or the negative if on wrong side)

Margin of positive example x;

Margin of negative example x,



Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is
the distance from x to the plane w-x =0 (or the negative if on wrong side)

Definition: The margin y,, of a set of examples S wrt a
linear separator w is the smallest margin over points x € S.




Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is
the distance from x to the plane w - x = 0 (or the negative if on wrong side)

Definition: The margin y,, of a set of examples S wrt a
linear separator w is the smallest margin over points x € S.

Definition: The margin y of a set of examples S is the
maximum v, over all linear separators w.




Perceptron: Mistake Bound

Theorem: If data has margin y and all points inside a ball of
radius R, then Perceptron makes < (R/y)* mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn't change the number of mistakes; algo is invariant to scaling.)




Perceptron Algorithm: Analysis

Theorem: If data has marginy and all ~ Update rule:

points inside a ball of radius R, then *  Mistake on positive: we.q < we + x
Perceptron makes < (R/y)* mistakes. * Mistake on negative: we,; < w; — x
Proof:

Idea: analyze w; - w* and ||w;||, where w* is the max-margin sep, ||[w*|| = 1.

Claml: wi - w* > w,-w*+vy. (because I[(x)x - w* =)

Claim 2: |lweyq[I* < llwell* + R, (by Pythagorean Theorem)

%
X
After M mistakes:

N
7

Wt

w1l < RVM (by Claim 2)

. . . WM+l
Wys1 - W < |lwy1ll (since w* is unit length) <
1
I

S0, YM < RVM,so M < .



Perceptron Extensions

Can use it to find a consistent separator (by cycling
through the data).

One can convert the mistake bound guarantee into a
distributional guarantee too (for the case where the x;s
come from a fixed distribution).

Can be adapted to the case where there is no perfect

separator as long as the so called hinge loss (i.e., the total
distance needed to move the points to classify them correctly large

margin) is small.

Can be kernelized to handle non-linear decision boundaries!



Perceptron Discussion

Simple online algorithm for learning linear separators with
a hice guarantee that depends only on the geometric
(aka L,,L,) margin.

It can be kernelized to handle non-linear decision
boundaries --- see hext class!

Simple, but very useful in applications like Branch
prediction; it also has interesting extensions to
structured prediction.



