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Recap from last time: Boosting 

• Works by creating a series of challenge datasets s.t. even 
modest performance on these can be used to produce an 
overall high-accuracy predictor. 

• Works amazingly well in practice. 

• Adaboost one of the top 10 ML algorithms. 

• General method for improving the accuracy of any given 
learning algorithm. 

• Backed up by solid foundations.  



Adaboost (Adaptive Boosting) 

• For t=1,2, … ,T 

 • Construct Dt on {x1, …, xm} 

• Run A on Dt producing ht: 𝑋 → {−1,1} 

xi ∈ 𝑋, 𝑦𝑖 ∈ 𝑌 = {−1,1} 
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Output Hfinal 𝑥 = sign  𝛼𝑡ℎ𝑡 𝑥𝑡=1  

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};  

weak learning algo A (e.g., Naïve Bayes, decision stumps) 

Dt+1 puts half of weight on examples 
xi  where ht  is incorrect & half on 
examples where ht is correct  

𝐷𝑡+1 𝑖 =
𝐷𝑡 𝑖

𝑍𝑡
 e −𝛼𝑡    if 𝑦𝑖 = ℎ𝑡 𝑥𝑖   

 𝐷𝑡+1 𝑖 =
𝐷𝑡 𝑖

𝑍𝑡
 e 𝛼𝑡    if 𝑦𝑖 ≠ ℎ𝑡 𝑥𝑖   

 

[i.e., D1 𝑖 =
1

𝑚
] 

• Given Dt and ht set 

𝛼𝑡 =
1

2
ln

1 − 𝜖𝑡

𝜖𝑡
> 0 

•  D1 uniform on {x1, …, xm} 

𝐷𝑡+1 𝑖 =
𝐷𝑡 𝑖

𝑍𝑡
 e −𝛼𝑡𝑦𝑖 ℎ𝑡 𝑥𝑖    



Nice Features of Adaboost 

• Very general: a meta-procedure, it can use any weak 
learning algorithm!!!  

• Very fast (single pass through data each round) & simple 
to code, no parameters to tune. 

• Grounded in rich theory. 

(e.g., Naïve Bayes, decision stumps) 



Analyzing Training Error 

Theorem 𝜖𝑡 = 1/2 − 𝛾𝑡 (error of ℎ𝑡 over 𝐷𝑡) 

𝑒𝑟𝑟𝑆 𝐻𝑓𝑖𝑛𝑎𝑙 ≤ exp  −2  𝛾𝑡
2

𝑡

 

So, if  ∀𝑡, 𝛾𝑡 ≥ 𝛾 > 0, then 𝑒𝑟𝑟𝑆 𝐻𝑓𝑖𝑛𝑎𝑙 ≤ exp  −2 𝛾2𝑇  

Adaboost is adaptive 

• Does not need to know 𝛾 or T a priori 

• Can exploit  𝛾𝑡 ≫  𝛾 

The training error drops exponentially in T!!! 

To get 𝑒𝑟𝑟𝑆 𝐻𝑓𝑖𝑛𝑎𝑙 ≤ 𝜖, need only 𝑇 = 𝑂
1

𝛾2 log
1

𝜖
 rounds  



Generalization Guarantees 

G={all fns of the form sign( 𝛼𝑡ℎ𝑡(𝑥)) 
𝑇
𝑡=1 } 

 𝐻𝑓𝑖𝑛𝑎𝑙 is a weighted vote, so the hypothesis class is:  

Theorem [Freund&Schapire’97]  

∀ 𝑔 ∈ 𝐺, 𝑒𝑟𝑟 𝑔 ≤ 𝑒𝑟𝑟𝑆 𝑔 + 𝑂 
𝑇𝑑

𝑚
   T= # of rounds 

Key reason: VCd𝑖𝑚 𝐺 = 𝑂 𝑑𝑇  plus typical VC bounds. 

• H space of weak hypotheses; d=VCdim(H) 

Theorem where 𝜖𝑡 = 1/2 − 𝛾𝑡 𝑒𝑟𝑟𝑆 𝐻𝑓𝑖𝑛𝑎𝑙 ≤ exp  −2  𝛾𝑡
2

𝑡

 

How about generalization guarantees? 
  Original analysis [Freund&Schapire’97]  



Generalization Guarantees 
Theorem [Freund&Schapire’97]  

∀ 𝑔 ∈ 𝐺, 𝑒𝑟𝑟 𝑔 ≤ 𝑒𝑟𝑟𝑆 𝑔 + 𝑂 
𝑇𝑑

𝑚
   where d=VCdim(H) 

error 

complexity 

train error 

generalization 
error 

T= # of rounds 



Generalization Guarantees 

• Experiments showed that the test error of the generated 
classifier usually does not increase as its size becomes 
very large. 

• Experiments showed that continuing to add new weak 
learners after correct classification of the training set had 
been achieved could further improve test set performance!!! 



Generalization Guarantees 

• Experiments showed that continuing to add new weak 
learners after correct classification of the training set had 
been achieved could further improve test set performance!!! 

• These results seem to contradict FS’97 bound and Occam’s 
razor (in order achieve good test error the classifier should be as 

simple as possible)! 

• Experiments showed that the test error of the generated 
classifier usually does not increase as its size becomes 
very large. 

∀ 𝑔 ∈ 𝐺, 𝑒𝑟𝑟 𝑔 ≤ 𝑒𝑟𝑟𝑆 𝑔 + 𝑂 
𝑇𝑑

𝑚
   



How can we explain the experiments? 

Key Idea: 

R. Schapire, Y. Freund, P. Bartlett, W. S. Lee. present in 
“Boosting the margin: A new explanation for the effectiveness 
of voting methods” a nice theoretical explanation. 

Training error does not tell the whole story.  

We need also to consider the classification confidence!! 



Boosting didn’t seem 
to overfit…(!) 

test 

error train 

error 

test error of base classifier 

(weak learner) 

Error Curve, Margin Distr. Graph - Plots from [SFBL98] 

…because it turned out to be 
increasing the margin of the 

classifier 



Classification Margin 

• H space of weak hypotheses. The convex hull of H: 

• Let 𝑓 ∈ 𝑐𝑜 𝐻 , 𝑓 =  𝛼𝑡ℎ𝑡,
𝑇
𝑡=1 𝛼𝑡 ≥ 0,   𝛼𝑡 = 1𝑇

𝑡=1 .  

The majority vote rule 𝐻𝑓 given by 𝑓 (given by 𝐻𝑓 = 𝑠𝑖𝑔𝑛(𝑓 𝑥 ))  
predicts wrongly on example (𝑥, 𝑦) iff 𝑦𝑓 𝑥 ≤ 0. 

 𝑐𝑜 𝐻 = 𝑓 =  𝛼𝑡ℎ𝑡
𝑇
𝑡=1 , 𝛼𝑡 ≥ 0, 𝛼𝑡 = 1, ℎ𝑡 ∈ 𝐻𝑇

𝑡=1  

Definition: margin of 𝐻𝑓 (or of 𝑓) on example (𝑥, 𝑦) to be 𝑦𝑓(𝑥).  

𝑦𝑓 𝑥 = 𝑦 𝛼𝑡ℎ𝑡 𝑥 =  𝑦𝛼𝑡ℎ𝑡 𝑥 =  𝛼𝑡 −  𝛼𝑡

𝑡:𝑦≠ℎ𝑡 𝑥𝑡:𝑦=ℎ𝑡 𝑥

𝑇

𝑡=1

𝑇

𝑡=1

 

The margin is positive iff 𝑦 = 𝐻𝑓 𝑥 .  
See  𝑦𝑓 𝑥 = |𝑓 𝑥 | as the strength or the confidence of the vote. 

1 

High confidence, 
correct 

-1 

High confidence, 
incorrect 

Low confidence 



Boosting and Margins 

Theorem:VCdim(𝐻) = 𝑑, then with prob. ≥ 1 − 𝛿, ∀𝑓 ∈ 𝑐𝑜(𝐻), ∀𝜃 > 0, 

Pr
𝐷

𝑦𝑓 𝑥 ≤ 0 ≤ Pr
𝑆

𝑦𝑓 𝑥 ≤ 𝜃 + 𝑂
1

𝑚
 

d ln2𝑚

𝑑

𝜃2 + ln
1

𝛿
  

Note:  bound does not depend on  T (the # of rounds of boosting), 
depends only on the complex. of the weak hyp space and the margin! 



Boosting and Margins 

• If all training examples have large margins, then we can 
approximate the final classifier by a much smaller classifier. 

• Can use this to prove that better margin  smaller test error, 
regardless of the number of weak classifiers. 

• Can also prove that boosting tends to increase the margin of 
training examples by concentrating on those of smallest margin. 

• Although final classifier is getting larger, 
margins are likely to be increasing, so the 
final classifier is actually getting closer to a 
simpler classifier, driving down test error. 

Theorem:VCdim(𝐻) = 𝑑, then with prob. ≥ 1 − 𝛿, ∀𝑓 ∈ 𝑐𝑜(𝐻), ∀𝜃 > 0, 

Pr
𝐷

𝑦𝑓 𝑥 ≤ 0 ≤ Pr
𝑆

𝑦𝑓 𝑥 ≤ 𝜃 + 𝑂
1

𝑚
 

d ln2𝑚

𝑑

𝜃2 + ln
1

𝛿
  



Boosting and Margins 

Theorem:VCdim(𝐻) = 𝑑, then with prob. ≥ 1 − 𝛿, ∀𝑓 ∈ 𝑐𝑜(𝐻), ∀𝜃 > 0, 

Pr
𝐷

𝑦𝑓 𝑥 ≤ 0 ≤ Pr
𝑆

𝑦𝑓 𝑥 ≤ 𝜃 + 𝑂
1

𝑚
 

d ln2𝑚

𝑑

𝜃2 + ln
1

𝛿
  

Note:  bound does not depend on  T (the # of rounds of boosting), 
depends only on the complex. of the weak hyp space and the margin! 



• Shift in mindset: goal is now just to find classifiers a 
bit better than random guessing. 

• Relevant for big data age: quickly focuses on “core difficulties”, so 
well-suited to distributed settings, where data must be 
communicated efficiently [Balcan-Blum-Fine-Mansour COLT’12]. 

• Backed up by solid foundations. 

• Adaboost work and its variations well in practice with 
many kinds of data (one of the top 10 ML algos). 

• More about classic applications in Recitation. 

Boosting, Adaboost Summary 



Interestingly, the usefulness of margin 
recognized in Machine Learning since late 50’s. 

Perceptron [Rosenblatt’57] analyzed via geometric  
(aka 𝐿2, 𝐿2) margin. 

Original guarantee in the online learning scenario. 



The Perceptron Algorithm 

• Online Learning Model 

• Margin Analysis 

• Kernels 



Mistake bound model 

• Example arrive sequentially. 

The Online Learning Model 

• We need to make a prediction. 

Afterwards observe the outcome. 

• Analysis wise, make no distributional assumptions. 

• Goal: Minimize the number of mistakes. 

Online Algorithm 

Example 𝑥𝑖 

Prediction ℎ(𝑥𝑖) Phase i: 

Observe c∗(𝑥𝑖) 

For i=1, 2, …, : 



The Online Learning Model. Motivation 

- Email classification (distribution of both spam and regular 
mail changes over time, but the target function stays fixed - 
last year's spam still looks like spam). 

- Add placement in a new market. 

- Recommendation systems. Recommending movies, etc. 

- Predicting whether a user will be interested in a new news 
article or not. 



Linear Separators 

X 
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• Instance space X = Rd 

• Hypothesis class of linear decision 
surfaces in Rd. 

•  h x = w ⋅  x + w0, if ℎ 𝑥 ≥  0, then 
label x as +, otherwise label it as - 

Claim: WLOG w0 = 0. 

Proof: Can simulate a non-zero threshold with a dummy input 
feature 𝑥0 that is always set up to 1. 

• 𝑥 = 𝑥1, … , 𝑥𝑑 → 𝑥 = 𝑥1, … , 𝑥𝑑 , 1  

• w ⋅  x + w0 ≥ 0 iff 𝑤1, … , 𝑤𝑑 , w0 ⋅ 𝑥 ≥ 0 

where w = 𝑤1, … , 𝑤𝑑  



• Set t=1, start with the all zero vector 𝑤1. 

Linear Separators: Perceptron Algorithm 

• Given example 𝑥, predict positive iff 𝑤𝑡 ⋅ 𝑥 ≥ 0 

• On a mistake, update as follows: 

• Mistake on positive, then update 𝑤𝑡+1 ← 𝑤𝑡 + 𝑥 

• Mistake on negative, then update 𝑤𝑡+1 ← 𝑤𝑡 − 𝑥 

Note:  𝑤𝑡 is weighted sum of incorrectly classified examples 

𝑤𝑡 = 𝑎𝑖1𝑥𝑖1 + ⋯+ 𝑎𝑖𝑘𝑥𝑖𝑘 

𝑤𝑡 ⋅ 𝑥 = 𝑎𝑖1𝑥𝑖1 ⋅ 𝑥 + ⋯+ 𝑎𝑖𝑘𝑥𝑖𝑘 ⋅ 𝑥 

Important when we talk about kernels. 



Perceptron Algorithm: Example 

Example: −1,2 − 

- 
+ 
+ 

𝑤1 = (0,0) 

𝑤2 = 𝑤1 − −1,2 = (1,−2) 

𝑤3 = 𝑤2 + 1,1 = (2,−1) 

𝑤4 = 𝑤3 − −1,−2 = (3,1) 

+ 
- 

- 
Algorithm: 

 Set t=1, start with all-zeroes weight vector 𝑤1. 

 Given example 𝑥, predict positive iff 𝑤𝑡 ⋅ 𝑥 ≥ 0. 

 On a mistake, update as follows:  

• Mistake on positive, update 𝑤𝑡+1 ← 𝑤𝑡 + 𝑥 

• Mistake on negative, update 𝑤𝑡+1 ← 𝑤𝑡 − 𝑥 

1,0 + 

1,1 + 

−1,0 − 

−1,−2 − 

1, −1 + 

X 

 
X 

 
X 

 



Geometric Margin 
Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is 
the distance from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0  (or the negative if on wrong side) 

𝑥1 

w 

Margin of positive example 𝑥1 

𝑥2 

Margin of negative example 𝑥2 



Geometric Margin 

Definition: The margin 𝛾𝑤 of a set of examples 𝑆 wrt a 

linear separator 𝑤 is the smallest margin over points 𝑥 ∈ 𝑆. 
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𝛾𝑤 
𝛾𝑤 
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Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is 
the distance from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0  (or the negative if on wrong side) 
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+ 
+ - 

- 
- 

- 
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𝛾 
𝛾 

+ 

- - 

- 
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Definition: The margin 𝛾 of a set of examples 𝑆 is the 
maximum 𝛾𝑤 over all linear separators 𝑤. 

Geometric Margin 

Definition: The margin 𝛾𝑤 of a set of examples 𝑆 wrt a 

linear separator 𝑤 is the smallest margin over points 𝑥 ∈ 𝑆. 

Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is 
the distance from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0 (or the negative if on wrong side) 



Perceptron: Mistake Bound 
Theorem: If data has margin 𝛾 and all points inside a ball of 
radius 𝑅, then Perceptron makes ≤ 𝑅/𝛾 2 mistakes. 

(Normalized margin: multiplying all points by 100, or dividing all points by 100, 
doesn’t change the number of mistakes; algo is invariant to scaling.) 
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+ 
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Perceptron Algorithm: Analysis 
Theorem: If data has margin 𝛾 and all 
points inside a ball of radius 𝑅, then 
Perceptron makes ≤ 𝑅/𝛾 2 mistakes. 

Update rule:  

• Mistake on positive: 𝑤𝑡+1 ← 𝑤𝑡 + 𝑥 

• Mistake on negative: 𝑤𝑡+1 ← 𝑤𝑡 − 𝑥 

Proof: 

Idea: analyze 𝑤𝑡 ⋅ 𝑤∗ and ‖𝑤𝑡‖, where 𝑤∗ is the max-margin sep, ‖𝑤∗‖ = 1.  

Claim 1: 𝑤𝑡+1 ⋅ 𝑤∗ ≥ 𝑤𝑡 ⋅ 𝑤∗ + 𝛾. 

Claim 2: 𝑤𝑡+1
2 ≤ 𝑤𝑡

2 + 𝑅2. 

(because 𝑙 𝑥 𝑥 ⋅ 𝑤∗ ≥ 𝛾) 

(by Pythagorean Theorem) 

𝑤𝑡 

𝑤𝑡+1 
𝑥 

After 𝑀 mistakes: 

𝑤𝑀+1 ⋅ 𝑤∗ ≥ 𝛾𝑀 (by Claim 1) 

𝑤𝑀+1 ≤ 𝑅 𝑀 (by Claim 2) 

𝑤𝑀+1 ⋅ 𝑤∗ ≤ ‖𝑤𝑀+1‖  (since 𝑤∗ is unit length) 

So, 𝛾𝑀 ≤ 𝑅 𝑀, so 𝑀 ≤
𝑅

𝛾

2
. 



Perceptron Extensions 

• Can use it to find a consistent separator (by cycling 
through the data). 

• One can convert the mistake bound guarantee into a 
distributional guarantee too (for the case where the 𝑥𝑖s 
come from a fixed distribution). 

• Can be adapted to the case where there is no perfect 
separator as long as the so called hinge loss (i.e., the total 
distance needed to move the points to classify them correctly large 

margin) is small.  

• Can be kernelized to handle non-linear decision boundaries! 



Perceptron Discussion 

• Simple online algorithm for learning linear separators with 
a nice guarantee that depends only on the geometric 
(aka 𝐿2, 𝐿2) margin. 

• Simple, but very useful in applications like Branch 
prediction; it also has interesting extensions to 
structured prediction. 

• It can be kernelized to handle non-linear decision 
boundaries --- see next class! 


