The Boosting Approach to
Machine Learning

Maria-Florina Balcan
03/16/2015

Boosting

General method for improving the accuracy of any given
learning algorithm.

Works by creating a series of challenge datasets s.t. even
modest performance on these can be used to produce an
overall high-accuracy predictor.

Works amazingly well in practice --- Adaboost and its
variations one of the top 10 algorithms.

Backed up by solid foundations.

Readings:

« The Boosting Approach to Machine Learning: An
g' Overview. Rob Schapire, 2001

« Theory and Applications of Boosting. NIPS tutorial.
http://www.cs.princeton.edu/~schapire/talks/nips-tutorial.pdf

Plan for today:

* Motivation.
« A bit of history.
« Adaboost: algo, guarantees, discussion.

« Focus on supervised classification.

An Example: Spam Detection

« E.g., classify which emails are spam and which are important.

@ thesis - Mazilla Thunderbird " & SPAM for dbalcan@cs.cmu.edu - Thunderbird
Bl Ek Yew Go Memae Jeok Hee ! le Edit View Go Message Tools Help

Key observation/motivation:

+ Easy to find rules of thumb that are often correct.

E.g., "If buy now in the message, then predict spam.”

E.g., "If say good-bye to debt in the message, then predict spam.”

 Harder to find single rule that is very highly accurate.

An Example: Spam Detection

Boosting: meta-procedure that takes in an algo for finding rules
of thumb (weak learner). Produces a highly accurate rule, by calling
the weak learner repeatedly on cleverly chosen datasets.

Emails

apply weak learner to a subset of emails, obtain rule of thumb

apply to 2nd subset of emails, obtain 2nd rule of thumb

apply to 3rd subset of emails, obtain 3rd rule of thumb

repeat T times; combine weak rules into a single highly accurate rule.

Boosting: Important Aspects

How to choose examples on each round?

Typically, concentrate on “hardest” examples (those most
often misclassified by previous rules of thumb)

How to combine rules of thumb into single
prediction rule?

take (weighted) majority vote of rules of thumb

Historically....

Weak Learning vs Strong/PAC Learning

[Kearns & Valiant '88]: defined weak learning:
being able to predict better than random guessing
(error < % —v), consistently.

Posed an open pb: "Does there exist a boosting algo that
turns a weak learner into a strong PAC learner (that can
produce arbitrarily accurate hypo‘rheses)?"

Informally, given "weak" learning algo that can consistently
find classifiers of error < % — v, a boosting algo would
provably construct a single classifier with error < e.

Weak Learning vs Strong/PAC Learning

Strong (PAC) Learning Weak Learning
e Jalgo A » algo A
e VCEH ¢ I¥>0

VceH

vD
0@\ .VD
e V6> 0 \>.

» A produces h s.t.: Vé>0

Prlerr(h) = €] <6 A produces h s.t.
Prlerr(h) = €] < §

- [Kearns & Valiant '88]: defined weak learning &
posed an open pb of finding a boosting algo.

Surprisingly....
Weak Learning =Strong (PAC) Learning

Original Construction [Schapire '89]:

 poly-time boosting algo, exploits that we can
learn a little on every distribution.

« A modest booster obtained via calling the weak learning
algorithm on 3 distributions.

Error =B < % —y - error 3% — 23

« Then amplifies the modest boost of accuracy by
running this somehow recursively.

 Cool conceptually and technically, not very practical.

An explosion of subsequent work

B roun n

® [Freund & Schapire *95]:

. introduced “AdaBoost” algorithm
strong practical advantages over previous boosting algorithms

e experiments and applications using AdaBoost:

[Drucker & Cortes "96] [Schapire, Singer & Singhal "98] [Iyer, Lewis. Schapire, Singer & Singhal "00]
[Jackson & Craven "96] [Abney, Schapire & Singer 99| [Onoda, Ritsch & Miiller “00]
[Freund & Schapire 96] [Haruno, Shirai & Ooyama "99] | Tieu & Viola "00]
[Quinlan 96] [Cohen & Singer” 99| [Walker, Rambow & Rogati "01]
[Breiman 96] [Dietterich "00] [Rochery, Schapire, Rahim & Gupta "01]
[Maclin & Opitz "97] [Schapire & Singer 00] [Merler, Furlanello, Larcher & Sboner "01]
[Bauer & Kohavi "97] [Collins "00] :
[Schwenk & Bengio "98] [Escudero, Marquez & Rigau "00]

e continuing development of theory and algorithms:
[Breiman 98, 99| [Mason, Baxter, Bartlett & Frean "99, *00] [Allwein, Schapire & Singer "00]
[Schapire, Freund, Bartlett & Lee 98] [Duffy & Helmbold *99, "02] [Friedman *01]
[Grove & Schuurmans "98] [Freund & Mason "99] [Koltchinskii, Panchenko & Lozano "01]
[Mason, Bartlett & Baxter 98] [Ridgeway, Madigan & Richardson "99] [Collins, Schapire & Singer "02]
[Schapire & Singer "99] |Kivinen & Warmuth "99] [Demiriz, Bennett & Shawe-Taylor "02]
[Cohen & Singer "99] [Friedman, Hastie & Tibshirani *00] [Lebanon & Lafferty *02]
[Freund & Mason "99] [Ritsch, Onoda & Miiller *00] 3
[Domingo & Watanabe "99] [Ritsch, Warmuth, Mika, Onoda, Lemm & '

Miiller *00]

Adaboost (Adaptive Boosting)

"A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting"

[Freund-Schapire, JCSS'97]

Godel Prize winner 2003

Informal Description Adaboost

Boosting: tfurns a weak algo into a strong (PAC) learner.

_LIn ut: S:{(XlJ 3’1), ---:(th ym)}; xi €X,y; €Y ={-11}
weak lear'ning GIgO A (e.g., Ndive Bayes, decision stumps) + +
+
For t=1,2, .. T h; +

Construct D, on {Xq, ..., Xm}

Run A on D; producing hy: X — {—1,1} (weak classifier)
€ = Py, ~p,(h¢(x;) # yi) error of h; over D

Output Heina1(x) = sign(Te—; ache (x))

Roughly speaking D, increases weight on x; if h; incorrect on x; ;
decreases it on x; if h, correct.

Adaboost (Adaptive Boosting)

Weak learning algorithm A.

For t=12, .. T
Construct D; on {x{, .., X}
Run A on D, producing h;

Constructing D,
D; uniformon {xq, .., xm} [i.e., D;(i) = %]

Given D, and h; set

D () '
D1 (D) = == el7@ if y; = hy(x)) De() el—aryi he(x))}

Zy

- Dey1 (D) =

D (D) = 2% 8 el@) if y; # h,(x;)

@, = =In (1 — &t D41 puts half. of. weight on examples
2 €t x; where h; is incorrect & half on

. examples where h, is correct
Final hyp: Heng (%) = sign(X; ache(x))

Adaboost: A toy example

Weak classifiers: vertical or horizontal half-planes (ak.a. decision stumps)

Adaboost: A toy example

; +
+ 4+ = —I— _I__ +
— . - _
— + —
+
N
® ¢~ + +
— N @@ 5 —
— + - @
_ S —

Adaboost: A toy example

Adaboost (Adaptive Boosting)

Weak learning algorithm A.

For t=12, .. T
Construct D; on {x{, .., X}
Run A on D, producing h;

Constructing D,
D; uniformon {xq, .., xm} [i.e., D;(i) = %]

Given D, and h; set

D () '
Dey1 (D) = == el7@ if y; = hy(x)) De() el—aryi he(x))}

Zy

- Dey1 (D) =

D (D) = 2% 8 el@d) if y; # by (x;)

@, = =In (1 — &t D41 puts half. of. weight on examples
2 €t x; where h; is incorrect & half on

. examples where h, is correct
Final hyp: Heng (%) = sign(X; ache(x))

Nice Features of Adaboost

 Very general: a meta-procedure, it can use any weak learning
algorithmlll(e.g., Naive Bayes, decision stumps)

 Very fast (single pass through data each round) & simple to
code, no parameters to tune.

 Shift in mindset: goal is now just to find classifiers a
bit better than random guessing.

« Grounded in rich theory.

 Relevant for big data age: quickly focuses on "core
difficulties”, well-suited to distributed settings, where data
must be communicated efficiently (salcan-Blum-Fine-Mansour cOLT12].

Analyzing Training Error
Theorem ¢; = 1/2 —y; (error of h; over D,)

errS(Hfmal) < exp [-2 z ytz]
{

So, if Vt,y; =y > 0, then errS(Hfmal) < exp| =2 y°T]

The training error drops exponentially in Tl

To get errs(Hrina) < €, need only T = 0 (y—lzlog (é)) rounds

Adaboost is adaptive

Does not need to know y or T a priori
Can exploit Yt > V

Understanding the Updates & Normalization

Claim: D, puts half of the weight on x; where h; was incorrect and
half of the weight on x; where h, was correct.

N — D@ (—apyi he(x)) oa
Recall Dy (1) = == et Probabilities are equall

iy;i=he(x;)

Ze=), Demed Y D@e+) D(De

Lyi=he(xq) i:y;=he(x;) iy#he(x;)

= (1 —¢€)e % + ¢,e% = 2\/et(1 — €¢)

Analyzing Training Error: Proof Intuition

Theorem ¢; = 1/2 —y; (error of h; over D,)

erTS(Hfinal) < exp [—2 Z Vtz]
t

« Onround t, we increase weight of x; for which h; is wrong.
* If Hfing incorrectly classifies x;,

- Then x; incorrectly classified by (wtd) majority of h;'s.
- Which implies final prob. weight of x; is large.

Can show probability > %(-)

[1¢ Z¢

« Since sum of prob. =1, can't have too many of high weight.

Can show # incorrectly classified < m ([]; Z,).

And ([1: Z;) - 0.

Analyzing Training Error: Proof Math

Step 1: unwrapping recurrence: Dy, (i) = % (eXp(l—]yg(xi)))
t <t

Where f(xi) — Zt atht (xi)- [Unthresholded weighted vote of h; on x;]

STCP 2: errS(Hfinal) = Ht L.

STep 3: HtZt — Ht 2\/61:(1 — Et) — Ht\/l — 4yt2 < e 2 Yt Vi

Analyzing Training Error: Proof Math

Step 1: unwrapping recurrence: Dy, (i) = % (EXP(;’? (xi)))
t<t

where f(x;) = X¢ ache(x;).

iarhe(x;))
Zt

Recall D, (i) = % and D, (i) = D, (i) exp(-y

: —yiarhr(x;) :
Drya (1) = “HEIE0 ¢ py (i)

_exp(=yjarhr(xy)) v exp(—yiar—1hr_1(xy) % D 0
T-1

ZT ZT-1

_ exp(-yiarhr(x)) S e X exp(-yia1hy(x) 1
ZT Zl m

1 exp(=yi(ashy(x)++arhr(xr) — L1 exp(—yif(x;))
m Z1Zr m Ht Zt

Analyzing Training Error: Proof Math

Step 1: unwrapping recurrence: Dy, (i) = % (EXP(;’? (xi)))
t<t

where f(x;) = X¢ ache(x;).

S'I‘ep 2: errS(Hfl-nal) < Ht Z;.

1 exp loss
€ITg (Hfinal) = %Z 13’i¢Hfinal(xi) yi=1 exp(—y;f(z:))
i 0/1 loss
1 S(H (2;) # i)
= gz Lyireepso
[0 flxi).

1
< EZ exp(—yif (x))

Analyzing Training Error: Proof Math

Step 1: unwrapping recurrence: Dy, (i) = % (eXp(ﬁJ’g (xi)))
t<t
where f(x;) = Y, ash:(x;).

STCD 2: errg (Hfinal) < Ht Zy;.

ST@D 3: HtZt — Ht 2\/Et(1 — Et) = Ht\/l — 4-')/t2 < 6_2 Ztytz

Note: recall Z, = (1 — €)e % + e,e% = 2./, (1 — €)

a, minimizer of a - (1 —€,)e % + ¢,e%

Analyzing Training Error: Proof Intuition

Theorem ¢; = 1/2 —y; (error of h; over D,)

erTS(Hfinal) < exp [—2 Z Vtz]
t

« Onround t, we increase weight of x; for which h; is wrong.
* If Hfing incorrectly classifies x;,

- Then x; incorrectly classified by (wtd) majority of h;'s.
- Which implies final prob. weight of x; is large.

Can show probability > %(-)

[1¢ Z¢

« Since sum of prob. =1, can't have too many of high weight.

Can show # incorrectly classified < m ([]; Z,).

And ([1: Z;) - 0.

Generalization Guarantees

where e, = 1/2 — vy,

t
A
9 ¢

¥

How about generalization guarantees?

Original analysis [Freund&Schapire'97]

H space of weak hypotheses; d=VCdim(H)
Hfinai 1S a weighted vote, so the hypothesis class is:

G={all fns of the form sign(XI_; a;h (x)) }

Theorem [Freund&Schapire'97]
VgeGerr(g) <errs(g) +0 (\/T;d) T= # of rounds

Key reason: VCdim(G) = 0(dT) plus typical VC bounds.

Generalization Guarantees

Theorem [Freund&Schapire'97]

m

Vg €co(H),err(g) <errs(g) + 0(rd) where d=VCdim(H)

error

generalization
error
train error

complexity

T= # of rounds

Generalization Guarantees

« Experiments with boosting showed that the test error of
the generated classifier usually does not increase as its
size becomes very large.

« Experiments showed that continuing to add new weak
learners after correct classification of the training set had

been achieved could further improve test set performancelll
20:

-

error

10 100 1000

rounds

Generalization Guarantees

 Experifigp/< th boosting showed that the test error of
the gene/ (¥) ¢) 1ssifier usually does notepec—< as its

size bect y large. ® 4
« Experime howed that continuing to ad zak
learners after correct classification of the ing set had

been achieved could further improve test set performancelll

« These rgsults seem to contradict FS'87 bound and Occam'’s
razor @n/s hieve good test errorfhe/~. “Sier should be as
simple as 9 9 ¢

¢ ¥

How can we explain the experiments?

R. Schapire, Y. Freund, P. Bartlett, W. S. Lee. present in
“Boosting the margin: A new explanation for the effectiveness
of voting methods" a nice theoretical explanation.

Key Idea:
Training error does not tell the whole story.

We need also to consider the classification confidencell

