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Today: 
•  Bayes Classifiers 
•  Conditional Independence 
•  Naïve Bayes 

Readings: 
Mitchell:  
   “Naïve Bayes and Logistic 

Regression” 
     (available on class website) 



Two Principles for Estimating Parameters 

•  Maximum Likelihood Estimate (MLE): choose θ that 
maximizes probability of observed data 

•  Maximum a Posteriori (MAP) estimate: choose θ that 
is most probable given prior probability and the data 



Maximum Likelihood Estimate 
X=1 X=0 

P(X=1) = θ 
P(X=0) = 1-θ 

(Bernoulli) 
 



Maximum A Posteriori (MAP) Estimate 
X=1 X=0 



Let’s learn classifiers by learning P(Y|X) 
Consider Y=Wealth,  X=<Gender, HoursWorked> 
 
 
 
 
 
 
 
 
 

Gender HrsWorked P(rich | G,HW) P(poor | G,HW) 

F <40.5 .09 .91 
F >40.5 .21 .79 
M <40.5 .23 .77 
M >40.5 .38 .62 



How many parameters must we estimate? 
Suppose X =<X1,… Xn>  
where Xi and Y are boolean RV’s 
 
To estimate P(Y| X1, X2, … Xn) 
 
 
 
 
If we have 30 boolean Xi’s:  P(Y | X1, X2, … X30) 
  
 
 
 
 
 
 
 
 
 
 



How many parameters must we estimate? 
Suppose X =<X1,… Xn>  
where Xi and Y are boolean RV’s 
 
To estimate P(Y| X1, X2, … Xn) 
 
 
 
If we have 30 Xi’s instead of 2? 
 
 
 
 
 
 
 
 
 
 



Bayes Rule 
 

Which is shorthand for: 

Equivalently: 



Can we reduce params using Bayes Rule? 
Suppose X =<X1,… Xn>  
where Xi and Y are boolean RV’s 
 
How many parameters to define P(X1,… Xn | Y)? 
 
 
 
 
How many parameters to define P(Y)? 



Can we reduce params using Bayes Rule? 
Suppose X =<X1,… Xn>  
where Xi and Y are boolean RV’s 



Naïve Bayes 

Naïve Bayes assumes 

   i.e., that Xi and Xj are conditionally 
independent given Y, for all i≠j 



Conditional Independence   
Definition: X is conditionally independent of Y  given Z, if 

the probability distribution governing X is independent 
of the value of Y, given the value of Z 

 
 
 
Which we often write  
 
 
E.g., 
 
 



Naïve Bayes uses assumption that the Xi are conditionally 
independent, given Y.   E.g., 

 
Given this assumption, then: 
 
 
 



Naïve Bayes uses assumption that the Xi are conditionally 
independent, given Y.   E.g., 

 
Given this assumption, then: 
 
 
 
 
in general: 
 
 



Naïve Bayes uses assumption that the Xi are conditionally 
independent, given Y.   E.g., 

 
Given this assumption, then: 
 
 
 
 
in general: 
 
How many parameters to describe P(X1…Xn|Y)?  P(Y)? 
•  Without conditional indep assumption? 
•  With conditional indep assumption? 



Naïve Bayes uses assumption that the Xi are conditionally 
independent, given Y 

 
Given this assumption, then: 
 
 
 
in general: 
 
How many parameters to describe P(X1…Xn|Y)?  P(Y)? 
•  Without conditional indep assumption? 
•  With conditional indep assumption? 



Bayes rule: 

Assuming conditional independence among Xi’s: 
 
 
So, to pick most probable Y for Xnew = < X1, …, Xn >  
 

Naïve Bayes in a Nutshell 



Naïve Bayes Algorithm – discrete Xi  

•  Train Naïve Bayes (examples)   
 for each* value yk

  estimate 
  for each* value xij of each attribute Xi

   estimate 
 
•  Classify (Xnew)   
 

 * probabilities must sum to 1, so need estimate only n-1 of these... 



Estimating Parameters: Y, Xi discrete-valued  

Maximum likelihood estimates (MLE’s): 

Number of items in 
dataset D for which Y=yk 



Example: Live in Sq Hill?  P(S|G,D,M) 
•  S=1 iff live in Squirrel Hill 
•  G=1 iff shop at SH Giant Eagle 

•  D=1 iff Drive to CMU 
•  M=1 iff Rachel Maddow fan 
 

What probability parameters must we estimate? 



Example: Live in Sq Hill?  P(S|G,D,M) 
•  S=1 iff live in Squirrel Hill 
•  G=1 iff shop at SH Giant Eagle 

•  D=1 iff Drive to CMU 
•  M=1 iff Rachel Maddow fan 
 

 
P(S=1) : 
P(D=1 | S=1) : 
P(D=1 | S=0) : 
P(G=1 | S=1) : 
P(G=1 | S=0) : 
P(M=1 | S=1) : 
P(M=1 | S=0) : 

P(S=0) : 
P(D=0 | S=1) : 
P(D=0 | S=0) : 
P(G=0 | S=1) : 
P(G=0 | S=0) : 
P(M=0 | S=1) : 
P(M=0 | S=0) : 



Example: Live in Sq Hill?  P(S|G,D,B) 
•  S=1 iff live in Squirrel Hill 
•  G=1 iff shop at SH Giant Eagle 

•  D=1 iff Drive or carpool to CMU 
•  B=1 iff Birthday is before July 1 
 

What probability parameters must we estimate? 



Example: Live in Sq Hill?  P(S|G,D,E) 
•  S=1 iff live in Squirrel Hill 
•  G=1 iff shop at SH Giant Eagle 

•  D=1 iff Drive or Carpool to CMU 
•  B=1 iff Birthday is before July 1 
 

 
P(S=1) : 
P(D=1 | S=1) : 
P(D=1 | S=0) : 
P(G=1 | S=1) : 
P(G=1 | S=0) : 
P(B=1 | S=1) : 
P(B=1 | S=0) : 

P(S=0) : 
P(D=0 | S=1) : 
P(D=0 | S=0) : 
P(G=0 | S=1) : 
P(G=0 | S=0) : 
P(B=0 | S=1) : 
P(B=0 | S=0) : 



Naïve Bayes: Subtlety #1 

Often the Xi are not really conditionally independent 
 
•  We use Naïve Bayes in many cases anyway, and 

it often works pretty well 
–  often the right classification, even when not the right 

probability (see [Domingos&Pazzani, 1996]) 
 

•  What is effect on estimated P(Y|X)? 
–  Extreme case: what if we add two copies: Xi  = Xk   



Extreme case: what if we add two copies: Xi  = Xk  



Extreme case: what if we add two copies: Xi  = Xk  



Naïve Bayes: Subtlety #2 

If unlucky, our MLE estimate for P(Xi | Y) might be zero.  
(for example, Xi = birthdate.  Xi = Jan_25_1992) 

 
•  Why worry about just one parameter out of many? 

•  What can be done to address this? 



Naïve Bayes: Subtlety #2 

If unlucky, our MLE estimate for P(Xi | Y) might be 
zero.  (e.g., Xi = Birthday_Is_January_30_1992) 

 
•  Why worry about just one parameter out of many? 

•  What can be done to address this? 



Estimating Parameters 
•  Maximum Likelihood Estimate (MLE): choose θ that 

maximizes probability of observed data 

•  Maximum a Posteriori (MAP) estimate: choose θ that 
is most probable given prior probability and the data 



Maximum likelihood estimates: 

Estimating Parameters: Y, Xi discrete-valued  

MAP estimates (Beta, Dirichlet priors): 
 Only difference: 

“imaginary” examples 



Learning to classify text documents 
•  Classify which emails are spam? 
•  Classify which emails promise an attachment? 
•  Classify which web pages are student home pages? 

How shall we represent text documents for Naïve Bayes? 



Baseline: Bag of Words Approach 

aardvark  0 

about  2 

all  2 

Africa  1 

apple  0 

anxious  0 

... 

gas  1 

... 

oil  1 

… 

Zaire  0 



Learning to classify document: P(Y|X) 
the “Bag of Words” model 

•  Y discrete valued.  e.g., Spam or not 
•  X = <X1, X2, … Xn> = document 
 
•  Xi is a random variable describing the word at position i in 

the document 
•  possible values for Xi : any word wk in English 
 
•  Document = bag of words: the vector of counts for all 

wk’s 
–  like #heads, #tails, but we have many more than 2 values 
–  assume word probabilities are position independent  

(i.i.d. rolls of a 50,000-sided die) 



Naïve Bayes Algorithm – discrete Xi  
•  Train Naïve Bayes (examples)   

 for each value yk

  estimate 
  for each value xj of each attribute Xi

   estimate 
 
 
•  Classify (Xnew)   
 

prob that word xj appears 
in position i, given Y=yk 

 * Additional assumption:  word probabilities are position independent 



MAP estimates for bag of words 
 
Map estimate for multinomial 
 
 
 
 
What β’s should we choose?  





For code and data, see 
www.cs.cmu.edu/~tom/mlbook.html  
click on “Software and Data” 



What you should know: 

•  Training and using classifiers based on Bayes rule 

•  Conditional independence 
–  What it is 
–  Why it’s important 

•  Naïve Bayes 
–  What it is 
–  Why we use it so much 
–  Training using MLE, MAP estimates 
–  Discrete variables and continuous (Gaussian) 



Questions: 
 
•  How can we extend Naïve Bayes if just 2 of the Xi‘s 

are dependent? 

•  What does the decision surface of a Naïve Bayes 
classifier look like? 

•  What error will the classifier achieve if Naïve Bayes 
assumption is satisfied and we have infinite training 
data? 

•  Can you use Naïve Bayes for a combination of 
discrete and real-valued Xi?  



What if we have continuous Xi ? 
Eg., image classification: Xi is ith pixel 
 



What if we have continuous Xi ? 
image classification: Xi is ith pixel, Y = mental state 
 

Still have: 
 
 
Just need to decide how to represent P(Xi | Y) 
 



What if we have continuous Xi ? 
Eg., image classification: Xi is ith pixel 
 
Gaussian Naïve Bayes (GNB): assume 
 
 
 
 
Sometimes assume σik 
•  is independent of Y (i.e., σi),  
•  or independent of Xi (i.e., σk) 
•  or both (i.e., σ) 



Gaussian Naïve Bayes Algorithm – continuous Xi   
(but still discrete Y) 

•  Train Naïve Bayes (examples)   
 for each value yk

  estimate* 
  for each attribute Xi estimate  
  class conditional mean        , variance        

 
•  Classify (Xnew)   
 

 * probabilities must sum to 1, so need estimate only n-1 parameters... 



Estimating Parameters: Y discrete, Xi continuous  

Maximum likelihood estimates: jth training 
example 

δ(z)=1 if z true, 
else 0 

ith feature kth class 



GNB Example: Classify a person’s 
cognitive activity, based on brain image 

•  are they reading a sentence or viewing a picture? 

•  reading the word “Hammer” or “Apartment” 

•  viewing a vertical or horizontal line? 

•  answering the question, or getting confused? 



Stimuli for our study: 

ant 

or 60 distinct exemplars, presented 6 times each 



fMRI voxel means for “bottle”: means defining P(Xi | Y=“bottle) 

Mean fMRI activation over all stimuli: 

“bottle” minus mean activation: 

fMRI 
activation  

high 

below 
average 

average 



Rank Accuracy Distinguishing among 60 words  



Tools vs Buildings: where does brain encode 
their word meanings? 

Accuracies of  
cubical 
27-voxel  

Naïve Bayes 
classifiers 

centered at 
each voxel  
[0.7-0.8] 



Expected values 
Given discrete random variable X, the expected value of 

X, written E[X] is 
 
 
 
 
We also can talk about the expected value of functions 

of X 



Covariance 
Given two random vars X and Y, we define the 

covariance of X and Y as 
 
 
e.g., X=gender, Y=playsFootball 
or     X=gender, Y=leftHanded 
 
 
Remember: 


