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Today: 
•  The Big Picture 
•  Overfitting 
•  Review: probability 

Readings: 
Decision trees, overfiting 
•  Mitchell, Chapter 3 

Probability review 
•  Bishop Ch. 1 thru 1.2.3 
•  Bishop, Ch. 2 thru 2.2 
•  Andrew Moore’s online 

tutorial 



Function Approximation:   

Problem Setting: 
•  Set of possible instances X  

•  Unknown target function f : XàY

•  Set of function hypotheses H={ h | h : XàY }

Input: 
•  Training examples {<x(i),y(i)>} of unknown target function f
Output: 
•  Hypothesis h ∈ H that best approximates target function f



Function Approximation: Decision Tree Learning 

Problem Setting: 
•  Set of possible instances X 

–  each instance x in X is a feature vector  
x = < x1, x2 … xn> 

•  Unknown target function f : XàY
–  Y is discrete valued 

•  Set of function hypotheses H={ h | h : XàY }
–  each hypothesis h is a decision tree 

Input: 
•  Training examples {<x(i),y(i)>} of unknown target function f
Output: 
•  Hypothesis h ∈ H that best approximates target function f



Function approximation as Search 
for the best hypothesis 

•  ID3 performs heuristic 
search through space of 
decision trees 



Function Approximation: The Big Picture 





Which Tree Should We Output? 
•  ID3 performs heuristic 

search through space of 
decision trees 

•  It stops at smallest 
acceptable tree. Why? 

Occam’s razor: prefer the 
simplest hypothesis that 
fits the data 



Why Prefer Short Hypotheses? (Occam’s Razor) 

Arguments in favor: 
 
 
 
 
 
Arguments opposed:  



Why Prefer Short Hypotheses? (Occam’s Razor) 

Argument in favor: 
•  Fewer short hypotheses than long ones 
à a short hypothesis that fits the data is less likely to be 

a statistical coincidence 
 
 
Argument opposed: 
•  Also fewer hypotheses containing a prime number of 

nodes and attributes beginning with “Z” 
•  What’s so special about “short” hypotheses, instead 

of “prime number of nodes and edges”? 





Overfitting 
Consider a hypothesis h and its 
•  Error rate over training data: 
•  True error rate over all data:  



Overfitting 
Consider a hypothesis h and its 
•  Error rate over training data: 
•  True error rate over all data:  
 
We say h overfits the training data if 
 
 
Amount of overfitting =  







Split data into training and validation set

Create tree that classifies training set correctly





Decision Tree Learning, Formal Guarantees 



   Labeled Examples   

Supervised Learning or Function Approximation  

Learning 
Algorithm 

Expert / Oracle 

Data 
Source 

Alg.outputs 

Distribution D on X 

c* : X ! Y 

(x1,c*(x1)),…, (xm,c*(xm)) 

h : X ! Y 
x1 > 5 

x6 > 2 

+1 -1 

+1 



   Labeled Examples   

Learning 
Algorithm Expert/Oracle 

Data 
Source 

Alg.outputs c* : X ! Y 
h : X ! Y 

(x1,c*(x1)),…, (xm,c*(xm)) 

•  Algo sees training sample S: (x1,c*(x1)),…, (xm,c*(xm)), xi i.i.d. from D 

Distribution D on X 

  err(h)=Prx 2 D(h(x) ≠ c*(x)) 

•    Does optimization over S, finds hypothesis h (e.g., a decision tree). 

•    Goal:  h has small error over D. 

Supervised Learning or Function Approximation  



Two Core Aspects of Machine Learning 

Algorithm Design. How to optimize? 

Automatically generate rules that do well on observed data. 

Confidence Bounds, Generalization 

Confidence for rule effectiveness on future data. 

Computation 

•  Very well understood: Occam’s bound, VC theory, etc. 

(Labeled) Data 

•  Decision trees: if we were able to find a small decision tree that 
explains data well, then good generalization guarantees.  

•  NP-hard [Hyafil-Rivest’76]   



Top Down Decision Trees Algorithms 

•  Decision trees: if we were able to find a small decision tree 
consistent with the data, then good generalization guarantees.  

•  NP-hard [Hyafil-Rivest’76]   

•  Very nice practical heuristics;  top down algorithms, e.g, ID3 

•  Natural greedy approaches where we grow the tree from the root to the 
leaves by repeatedly replacing an existing leaf with an internal node. 

•  Key point: splitting criterion. 

•  ID3: split the leaf that decreases the entropy the most. 

•  Why not split according to error rate --- this is what we care 
about after all? 

•  There are examples where we can get stuck in local minima!!! 



𝑓(𝑥)= ​𝑥↓1 ∧​𝑥↓2  

0 0 0 −
0 0 1 −
0 1 0 −
0 1 1 −
1 0 0 −
1 0 1 −
1 1 0 +
1 1 1 +

​
𝑥
↓
1  

𝑞=1/4 

𝑝=0 𝑟=1/2 

Initial error rate is 1/4  (25% positive, 75% negative) 

Error rate after split is 0.5∗0+0.5∗0.5=1/4  (left leaf is 
100% negative; right leaf is 50/50) 

Overall error doesn’t decrease! 

Entropy as a better splitting measure 



𝑓(𝑥)= ​𝑥↓1 ∧​𝑥↓2  

0 0 0 −
0 0 1 −
0 1 0 −
0 1 1 −
1 0 0 −
1 0 1 −
1 1 0 +
1 1 1 +

​
𝑥
↓
1  

𝑞=1/4 

𝑝=0 𝑟=1/2 

Initial entropy is ​1/4 ( ​​log↓2  ⁠4)+ ​3/4 ( ​​log↓2  ⁠​4/3 )=0.81   

Entropy after split is ​1/2 ∗0+​1/2 ∗1=0.5 

Entropy decreases! 

Entropy as a better splitting measure 



•  Natural greedy approaches where we grow the tree from the root to the 
leaves by repeatedly replacing an existing leaf with an internal node. 

•  Key point: splitting criterion. 
•  ID3: split the leaf that decreases the entropy the most. 

•  Why not split according to error rate --- this is what we care 
about after all? 

•  There are examples where you can get stuck!!! 

Top Down Decision Trees Algorithms 

•  [Kearns-Mansour’96]: if measure of progress is entropy, we can 
always guarantees success under some formal relationships 
between the class of splits and the target (the class of splits can 
weakly approximate the target function).   

•  Provides a way to think about the effectiveness of 
various top down algos. 



Top Down Decision Trees Algorithms 
•  Key: strong concavity of the splitting crieterion 

h 

Pr[c*=1]=q 

Pr[c*=1| h=0]=p Pr[c*=1| h=1]=r 

0 1 
Pr[h=0]=u Pr[h=1]=1-u 

v 

v1 v2 

•  q=up + (1-u) r. 

p q r 

Want to lower bound: G(q) – [uG(p) + (1-u)G(r)] 

•  If: G(q) =min(q,1-q) (error rate), then G(q) = uG(p) + (1-u)G(r)  

•  If: G(q) =H(q) (entropy), then G(q) – [uG(p) + (1-u)G(r)] >0 if r-p> 
0 and u ≠1, u ≠0 (this happens under the weak learning 
assumption)



Two Core Aspects of Machine Learning 

Algorithm Design. How to optimize? 

Automatically generate rules that do well on observed data. 

Confidence Bounds, Generalization 

Confidence for rule effectiveness on future data. 

Computation 

(Labeled) Data 



What you should know: 
•  Well posed function approximation problems: 

–  Instance space, X 
–  Sample of labeled training data { <x(i), y(i)>} 
–  Hypothesis space, H = { f: XàY } 

•  Learning is a search/optimization problem over H 
–  Various objective functions 

•  minimize training error (0-1 loss)  
•  among hypotheses that minimize training error, select smallest (?) 

–  But inductive learning without some bias is futile ! 

•  Decision tree learning 
–  Greedy top-down learning of decision trees (ID3, C4.5, ...) 
–  Overfitting and tree post-pruning 
–  Extensions… 



Extra slides 

extensions to decision tree learning 





 
 









Questions to think about (1) 
•  ID3 and C4.5 are heuristic algorithms that 

search through the space of decision trees.  
Why not just do an exhaustive search? 



Questions to think about (2) 
•  Consider target function f: <x1,x2> à y, 

where x1 and x2 are real-valued, y is 
boolean.  What is the set of decision surfaces 
describable with decision trees that use each 
attribute at most once? 



Questions to think about (3) 
•  Why use Information Gain to select attributes 

in decision trees?  What other criteria seem 
reasonable, and what are the tradeoffs in 
making this choice?   



Questions to think about (4) 
•  What is the relationship between learning 

decision trees, and learning IF-THEN rules 
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Today: 
•  Review: probability 

Readings: 
 
Probability review 
•  Bishop Ch. 1 thru 1.2.3 
•  Bishop, Ch. 2 thru 2.2 
•  Andrew Moore’s online 

tutorial 

many of these slides are 
derived from William Cohen, 
Andrew Moore, Aarti Singh, 
Eric Xing. Thanks! 



Probability Overview 
•  Events  

–  discrete random variables, continuous random variables, 
compound events 

•  Axioms of probability 
–  What defines a reasonable theory of uncertainty 

•  Independent events 
•  Conditional probabilities 
•  Bayes rule and beliefs 
•  Joint probability distribution 
•  Expectations 
•  Independence, Conditional independence 



Random Variables 

•  Informally, A is a random variable if 
–  A denotes something about which we are uncertain 
–  perhaps the outcome of a randomized experiment  

•  Examples 
A = True if a randomly drawn person from our class is female 
A = The hometown of a randomly drawn person from our class 
A = True if two randomly drawn persons from our class have same birthday 
 

•  Define P(A) as “the fraction of possible worlds in which A is true” or       
“the fraction of times A holds, in repeated runs of the random experiment” 
–  the set of possible worlds is called the sample space, S 
–  A random variable A is a function defined over S 

                        A: S à {0,1} 
 



A little formalism 

More formally, we have 
•  a sample space S (e.g., set of students in our class) 

–  aka the set of possible worlds 

•  a random variable is a function defined over the sample 
space 
–  Gender: S à { m, f } 
–  Height: S à Reals 

•  an event is a subset of S 
–  e.g., the subset of S for which Gender=f 
–  e.g., the subset of S for which (Gender=m) AND (eyeColor=blue) 

•  we’re often interested in probabilities of specific events 
•  and of specific events conditioned on other specific events  



Visualizing A 

Sample space 
of all possible 
worlds 

Its area is 1 

 
 
 
 
 
 
 
 

 
 
 
 

Worlds in which A is False 

Worlds in which 
A is true 

P(A) = Area of 
reddish oval 



The Axioms of Probability 

•  0 <= P(A) <= 1 
•  P(True) = 1 
•  P(False) = 0 
•  P(A or B) = P(A) + P(B) - P(A and B) 

 

[di Finetti 1931]: 
 
when gambling based on “uncertainty formalism A” you can 
be exploited by an opponent 
 
iff 
 
your uncertainty formalism A violates these axioms 



Elementary Probability in 
Pictures 
•  P(~A) + P(A) = 1 

 
A 
 

~A 



A useful theorem 

•  0 <= P(A) <= 1, P(True) = 1, P(False) = 0, 
    P(A or B) = P(A) + P(B) - P(A and B) 
 

è P(A) = P(A ^ B) + P(A ^ ~B) 
 

A =  [A and (B or ~B)]  =  [(A and B) or (A and ~B)] 

P(A) = P(A and B) + P(A and ~B) – P((A and B) and (A and ~B)) 

P(A) = P(A and B) + P(A and ~B) – P(A and B and A and ~B) 

 



Elementary Probability in Pictures 
•  P(A) = P(A ^ B) + P(A ^ ~B) 

 
B 
 

A ^ ~B 

A ^ B 



Definition of Conditional Probability 

                     P(A ^ B)  
P(A|B)  =  ----------- 
                    P(B)  

A  
B 
 



Definition of Conditional 
Probability 

                     P(A ^ B)  
P(A|B)  =  ----------- 
                    P(B)  

Corollary: The Chain Rule 
P(A ^ B) = P(A|B) P(B)  



Bayes Rule 

•  let’s write 2 expressions for P(A ^ B)  

 
B 
 

A 

A ^ B 



P(B|A) * P(A) 

P(B) 
P(A|B) = 

Bayes, Thomas (1763) An essay 
towards solving a problem in the doctrine 
of chances. Philosophical Transactions of 
the Royal Society of London, 53:370-418 

…by no means merely a curious speculation in the doctrine of chances, 
but necessary to be solved in order to a sure foundation for all our 
reasonings concerning past facts, and what is likely to be hereafter…. 
necessary to be considered by any that would give a clear account of the 
strength of analogical or inductive reasoning… 

Bayes’ rule 

we call P(A) the “prior” 
 
and P(A|B) the “posterior” 



Other Forms of Bayes Rule 
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Applying Bayes Rule 

P(A |B) = P(B | A)P(A)
P(B | A)P(A)+P(B |~ A)P(~ A)

A = you have the flu,   B = you just coughed 
 
Assume: 
P(A) = 0.05 
P(B|A) = 0.80 
P(B| ~A) = 0.2 
 
what is P(flu | cough) = P(A|B)? 



what does all this have to do with 
function approximation? 



The Joint Distribution 

Recipe for making a joint 
distribution of M variables: 

Example: Boolean 
variables A, B, C 



The Joint Distribution 

Recipe for making a joint 
distribution of M variables: 

 
1.  Make a truth table listing all 

combinations of values of 
your variables (if there are 
M Boolean variables then 
the table will have 2M rows). 

Example: Boolean 
variables A, B, C 

A B C 
0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 



The Joint Distribution 

Recipe for making a joint 
distribution of M variables: 

 
1.  Make a truth table listing all 

combinations of values of 
your variables (if there are 
M Boolean variables then 
the table will have 2M rows). 

2.  For each combination of 
values, say how probable it 
is. 

Example: Boolean 
variables A, B, C 

A B C Prob 
0 0 0 0.30 

0 0 1 0.05 

0 1 0 0.10 

0 1 1 0.05 

1 0 0 0.05 

1 0 1 0.10 

1 1 0 0.25 

1 1 1 0.10 



The Joint Distribution 

Recipe for making a joint 
distribution of M variables: 

 
1.  Make a truth table listing all 

combinations of values of 
your variables (if there are 
M Boolean variables then 
the table will have 2M rows). 

2.  For each combination of 
values, say how probable it 
is. 

3.  If you subscribe to the 
axioms of probability, those 
numbers must sum to 1. 

A B C Prob 
0 0 0 0.30 

0 0 1 0.05 

0 1 0 0.10 

0 1 1 0.05 

1 0 0 0.05 

1 0 1 0.10 

1 1 0 0.25 

1 1 1 0.10 

 
 
 

A 

B 

C 
0.05 

0.25 

0.10 0.05 0.05 

0.10 

0.10 
0.30 



Using the 
Joint 
Distribution 

One you have the JD 
you can ask for the 
probability of any logical 
expression involving 
your attribute 

∑=
E

PEP
 matching rows

)row()(



Using the 
Joint 

P(Poor Male) = 0.4654 ∑=
E

PEP
 matching rows

)row()(



Using the 
Joint 

P(Poor) = 0.7604 ∑=
E

PEP
 matching rows

)row()(



Inference 
with the 
Joint 

∑
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Inference 
with the 
Joint 

∑

∑
=

∧
=

2

 2 1

 matching rows

 and matching rows

2

21
21 )row(

)row(

)(
)()|(

E

EE

P

P

EP
EEPEEP

P(Male | Poor) = 0.4654 / 0.7604 = 0.612   



You should know 
•  Events  

–  discrete random variables, continuous random variables, 
compound events 

•  Axioms of probability 
–  What defines a reasonable theory of uncertainty 

•  Conditional probabilities 
•  Chain rule 
•  Bayes rule 
•  Joint distribution over multiple random variables 

–  how to calculate other quantities from the joint distribution 



Expected values 
Given discrete random variable X, the expected value of 

X, written E[X] is 
 
 
 
 
We also can talk about the expected value of functions 

of X 



Covariance 
Given two discrete r.v.’s X and Y, we define the 

covariance of X and Y as 
 
 
e.g., X=gender, Y=playsFootball 
or     X=gender, Y=leftHanded 
 
 
Remember: 


