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Today: Readings:
« The Big Picture Decision trees, overfiting
* Qverfitting * Mitchell, Chapter 3

* Review: probability
Probability review
« Bishop Ch. 1 thru 1.2.3
« Bishop, Ch. 2 thru 2.2

* Andrew Moore’ s online
tutorial



Function Approximation:

Problem Setting:

« Set of possible instances X

« Unknown target function f: XY

« Set of function hypotheses H={h | h: X2>Y }

Input:

* Training examples {<x(" y¥>} of unknown target function f
Output:

* Hypothesis h € H that best approximates target function f



Function Approximation: Decision Tree Learning

Problem Setting:
« Set of possible instances X
— each instance x in X is a feature vector
X=<X;,Xy..X>
* Unknown target function f: XY
— Yis discrete valued
« Set of function hypotheses H={h | h: X>Y }

— each hypothesis / is a decision tree

Input:

* Training examples {<x(",y¥>} of unknown target function f
Output:

« Hypothesis h € H that best approximates target function f



Function approximation as Search
for the best hypothesis

* |D3 performs heuristic
E‘(D\ search through space of

S \ decision trees



Function Approximation: The Big Picture






Which Tree Should We Output?

* |D3 performs heuristic
search through space of

/ " .
}{'{ decision trees
/ . ‘ \ |t stops at smallest
E\F\% l\g acceptable tree. Why?
- a Occam'’ s razor: prefer the
NN N simplest hypothesis that
: - fits the data



Why Prefer Short Hypotheses? (Occam’ s Razor)

Arguments in favor:

Arguments opposed:



Why Prefer Short Hypotheses? (Occam’ s Razor)

Argument in favor:
 Fewer short hypotheses than long ones

—> a short hypothesis that fits the data is less likely to be
a statistical coincidence

Argument opposed:

« Also fewer hypotheses containing a prime number of
nodes and attributes beginning with “Z”

« What' s so special about “short” hypotheses, instead
of “prime number of nodes and edges™?



Overfitting in Decision Trees

Consider adding noisy training example #15:

Sunny, Hot, Normal, Strong, PlayTennis = No

What effect on earlier tree?

Outlook
Sunny Overcast Rain
Humidity Yes Wind
High Normal Strong Weak

/ \ / \

No Yes No Yes



Overfitting

Consider a hypothesis / and its
« Error rate over training data: erroriyqin(h)
» True error rate over all data: errory.y.(h)



Overfitting

Consider a hypothesis / and its
« Error rate over training data: erroriyqin(h)
» True error rate over all data: errory.y.(h)

We say / overfits the training data if

errorimye(h) > erroryrqin(h)

Amount of overfitting =
errorire(h) — erroriqin(h)



Overfitting in Decision Tree Learning
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Avoiding Overfitting

How can we avoid overfitting?

e stop growing when data split not statistically
significant

e grow full tree, then post-prune



Reduced-Error Pruning

Split data into training and validation set

Create tree that classifies fraining set correctly
Do until further pruning is harmful:

1. Evaluate impact on validation set of pruning
each possible node (plus those below it)

2. Greedily remove the one that most improves
validation set accuracy

e produces smallest version of most accurate
subtree

e What if data is limited?



Effect of Reduced-Error Pruning
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Decision Tree Learning, Formal Guarantees



Supervised Learning or Function Approximation
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Supervised Learning or Function Approximation

o
S[?ﬂie% Distribution D on X

Learning =lds
Algorithr

e ExperT/ Oracle
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 Algo sees training sample S: (x;,c*(x)),..., (X,,.c*(X,.)), x; i.i.d. from D

Does optimization over S, finds hypothesis h (e.g., a decision tree).

Goal: h has small error over D.
err(h)=Pr, , y(h(x) = c*(x))



Two Core Aspects of Machine Learning

[ Algorithm Design. How to optimize? ] Computation

Automatically generate rules that do well on observed data.

[Confidence Bounds, Generalization ] (Labeled) Data

Confidence for rule effectiveness on future data.

Very well understood: Occam'’s bound, VC theory, etc.

Decision trees: if we were able to find a small decision tree that
explains data well, then good generalization guarantees.
NP-hard [Hyafil-Rivest'76] é&
¢



Top Down Decision Trees Algorithms

Decision trees: if we were able to find a small decision tree
consistent with the data, then good generalization guarantees.

NP-hard [Hyafil-Rivest76] @&7
—¢

Very nice practical heuristics; top down algorithms, e.g, ID3

Natural greedy approaches where we grow the tree from the root to the
leaves by repeatedly replacing an existing leaf with an internal node.

Key point: splitting criterion.
ID3: split the leaf that decreases the entropy the most.

7YAN Why not split according to error rate --- this is what we care
¢ about after all?

\g +  There are examples where we can get stuck in local minimal!l



Entropy as a better splitting measure

f(x)=xI1 Axl2

g=1/4

p=0 7‘=1/2

Initial error rate is 1/4 (25% positive, 75% negative)

Error rate after split is 0.5x0+0.5x0.5=1/4 (left leaf is
100% negative; right leaf is 50/50)

Overall error doesn't decrease!



Entropy as a better splitting measure

S(x)=xl1 Axl2

g=1/4

=0 r=1/2

Initial entropy is 1/4 (logd2 4)+3/4 (logd2 4,3 )=0.81

Entropy after split is 1,/2 *0+1,/2 *1=0.5

Entropy decreases!



Top Down Decision Trees Algorithms

Natural greedy approaches where we grow the tree from the root to the
leaves by repeatedly replacing an existing leaf with an internal node.

Key point: splitting criterion.
ID3: split the leaf that decreases the entropy the most.

% . Why not split according to error rate --- this is what we care
9
about after all?

\v *  There are examples where you can get stuckl!!!

[Kearns-Mansour'96]: if measure of progress is entropy, we can
always guarantees success under some formal relationships
between the class of splits and the target (the class of splits can

weakly approximate the target function).

Provides a way to think about the effectiveness of
various top down algos.



Top Down Decision Trees Algorithms

Key: strong concavity of the splitting crieterion
Prlc*=1]=q

Pric*=1| h=0]=p Pric*=1| h=1]=r

I
g=up + (1-u) r. Want to lower bound: 6(q) - [uG(p) + (1-u)6(r)]

If: 6(q) =min(q,1-q) (error rate), then G(q) = uG(p) + (1-u)6(r)

If: 6(q) =H(q) (entropy), then 6(q) - [uG(p) + (1-u)6(r)] >0 if r-p>
O and u =1, u =0 (this happens under the weak learning
assumption)



Two Core Aspects of Machine Learning

[ Algorithm Design. How to optimize? ] Computation

Automatically generate rules that do well on observed data.

[Confidence Bounds, Generalization J (Labeled) Data

Confidence for rule effectiveness on future data.



What you should know:

« Well posed function approximation problems:
— Instance space, X
— Sample of labeled training data { <x, y(>}
— Hypothesis space, H={f: XY}

« Learning is a search/optimization problem over H

— Various objective functions

* minimize training error (0-1 loss)

« among hypotheses that minimize training error, select smallest (?)
— But inductive learning without some bias is futile !

« Decision tree learning
— Greedy top-down learning of decision trees (ID3, C4.5, ...)
— QOverfitting and tree post-pruning
— Extensions...



Extra slides

extensions to decision tree learning



Continuous Valued Attributes

Create a discrete attribute to test continuous
e I'emperature = 82.5

o (Temperature > 72.3) =t, f

Temperature: 40 48 60 72 80 90
PlayTennis: No No Yes Yes Yes No




Rule Post-Pruning

1. Convert tree to equivalent set of rules
2. Prune each rule independently of others

3. Sort final rules into desired sequence for use

frequently used method (e.g., C4.5)



Converting A Tree to Rules

Outlook
Sunny Overcast Rain
Humidity Yes Wind
High Normal Strong Weak

/ \ / \

No Yes No Yes



Attributes with Many Values

Problem:
e If attribute has many values, Gain will select it

e Imagine using Date = Jun_3 1996 as attribute

One approach: use GainRatio instead
Gain(S, A)
SplitInformation(S, A)

GainRatio(S, A) =

SplitIn formation(S, A) =

where S; is subset of S for which A has value v,



Unknown Attribute Values

What if some examples missing values of A7
Use training example anyway, sort through tree

e If node n tests A, assign most common value of
A among other examples sorted to node n

e assign most common value of A among other
examples with same target value

e assign probability p; to each possible value v; of
A

— assign fraction p; of example to each
descendant in tree

Classify new examples in same fashion



Questions to think about (1)

* |D3 and C4.5 are heuristic algorithms that
search through the space of decision trees.
Why not just do an exhaustive search?



Questions to think about (2)

« Consider target function f: <x1,x2> -2 v,
where x1 and x2 are real-valued, vy is
boolean. What is the set of decision surfaces
describable with decision trees that use each
attribute at most once?



Questions to think about (3)

 Why use Information Gain to select attributes
In decision trees? What other criteria seem

reasonable, and what are the tradeoffs in
making this choice?



Questions to think about (4)

 What is the relationship between learning
decision trees, and learning IF-THEN rules

One of 18 learned rules:

If No previous vaginal delivery, and
Abnormal 2nd Trimester Ultrasound, and
Malpresentation at admission

Then Probability of Emergency C-Section is 0.6

Over training data: 26/41 = .63,
Over test data: 12/20 = .60
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Today: Readings:
* Review: probability
Probability review
« Bishop Ch. 1 thru 1.2.3

many of these slides are . Ri
derived from William Cohen, Bishop, Ch. 2 t,hru 2'_2
Andrew Moore, Aarti Singh,  Andrew Moore’ s online

Eric Xing. Thanks! tutorial
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Probability Overview

 Events

— discrete random variables, continuous random variables,
compound events

« Axioms of probability
— What defines a reasonable theory of uncertainty

* Independent events

« Conditional probabilities

« Bayes rule and beliefs

« Joint probability distribution

« EXxpectations

* Independence, Conditional independence



Random Variables

Informally, A is a random variable if

— A denotes something about which we are uncertain
— perhaps the outcome of a randomized experiment

Examples
A = True if a randomly drawn person from our class is female
A = The hometown of a randomly drawn person from our class
A = True if two randomly drawn persons from our class have same birthday

Define P(A) as “the fraction of possible worlds in which A is true” or

“the fraction of times A holds, in repeated runs of the random experiment”
— the set of possible worlds is called the sample space, S
— A random variable A is a function defined over S

A: S > {0,1)



A little formalism

More formally, we have

a sample space S (e.qg., set of students in our class)
— aka the set of possible worlds

a random variable is a function defined over the sample
space

— Gender: S > {m, f}

— Height: S > Reals

an event is a subset of S

— e.g., the subset of S for which Gender=f

— e.g., the subset of S for which (Gender=m) AND (eyeColor=blue)
we’ re often interested in probabilities of specific events

and of specific events conditioned on other specific events




Visualizing A

Sample space
of all possible

worlds  —_

/
Its area is 1

Worlds in which

Ais true

Worlds in which A is False

P(A) = Area of
reddish oval



The Axioms of Probability

0<=PA) <=1

P(True) = 1

P(False) =0
P(AorB)=P(A)+P(B)-P(AandB)

[di Finetti 1931]:

when gambling based on “uncertainty formalism A” you can
be exploited by an opponent

Iff

your uncertainty formalism A violates these axioms



Elementary Probability in

Pictures
e P(~A) + P(A) = 1

O -




A useful theorem

. 0<=P(A) <=1, P(True) = 1, P(False) = 0,
P(A or B) = P(A) + P(B) - P(A and B)

> P(A) = P(A A B) + P(A A ~B)

A= [Aand (B or ~B)] = [(Aand B) or (Aand ~B)]
P(A) = P(Aand B) + P(Aand ~B) — P((A and B) and (A and ~B))

P(A) = P(Aand B) + P(Aand ~B) — P(A and B and-Aand=B)




Elementary Probabillity in Pictures
+ P(A) =P(A~B)+P(A*~B)




Definition of Conditional Probability




Definition of Conditional
Probability

Corollary: The Chain Rule
P(A* B) = P(A|B) P(B)



Bayes Rule

* let's write 2 expressions for P(A * B)

A
A\B

D




P(BIA) * P(A) ,
P(AIB) = 5 (E) Bayes rule

we call P(A) the “prior”
Bayes, Thomas (1763) An essay
towards solving a problem in the doctrine

and P(AlB) the “posterior” of chances. Philosophical Transactions of
the Royal Society of London, 53:370-418

...by no means merely a curious speculation in the doctrine of chances,
but necessary to be solved in order to a sure foundation for all our
reasonings concerning past facts, and what is likely to be hereafter....
necessary to be considered by any that would give a clear account of the
strength of analogical or inductive reasoning...



Other Forms of Bayes Rule

P(B| A)P(A)

AAB)- P(B| A\P(A)+ P(B|~ A)P(~ A)

P(B|ANX)P(AAKX)
P(BAKX)

P(ABBAX)=



Applying Bayes Rule

P(B1 A)P(A)
P(B1 A)P(A)+P(B I~ A)P(~ A)

P(AIB)=

A = you have the flu, B = you just coughed

Assume:

P(A) =0.05
P(B|A) = 0.80
P(B| ~A) = 0.2

what is P(flu | cough) = P(A|B)?



what does all this have to do with
function approximation?



The Joint Distribution

Recipe for making a joint
distribution of M variables:



The Joint Distribution

Recipe for making a joint
distribution of M variables:

1. Make a truth table listing all
combinations of values of
your variables (if there are
M Boolean variables then
the table will have 2Mrows).

|—n|—n|—~|—toooo>

HHOOHHOOw

|—~O|—~c>|—~o:—~on




The Joint Distribution

Recipe for making a joint
distribution of M variables:

Prob

1. Make a truth table listing all

0.30

combinations of values of 0.05

your variables (if there are 0.10

M Boolean variables then 0.05

0.05

the table will have 2Mrows). 10

2. For each combination of 0.25

|—n|—n|—~|—toooo>
HHOOHHOOw

|—~O|—~c>|—~o:—~on

0.10

values, say how probable it
IS.



The Joint Distribution

Prob

Recipe for making a joint 0.30

distribution of M variables: 0.05

0.10

0.05

1. Make a truth table listing all

. . 0.05
combinations of values of

0.10

your variables (if there are 0.25

|—n|—n|—~|—toooo>
HHOOHHOOw

|—~O|—~c>|—~o:—~on

M Boolean variables then 0.10

the table will have 2Mrows).
2. For each combination of m

values, say how probable it
IS. %

3. If you subscribe to the B
axioms of probability, those 0.30
numbers must sum to 1.




. gender hours_worked wealth
USl ng the Female v0:40.5- poor 0253122 NG
. rich  0.0245895 |}
‘J O I nt v1:40.5+ poor 0.0421768 |}
. . : rich  0.0116293 ||
DIStrI bUtlon Male  v0:40.5- poor 0.331313 |G
rich  0.0971295 N
v1:40.5+ poor 0.134106 |G
rich  0.105933 [
One you have the JD P(E) = E P(row)
you can ask for the rows matching E

probability of any logical

expression involving
your attribute




gender hours_worked wealth

. Female v0:40.5- poor 0.253122 NG
USlng the rich  0.0245895 |}

- v1:40.5+ poor 0.0421768 |}
Joint

rich  0.0116293 |

ale  v0:40.5- oor 0.331313 NG
rich  0.0971295 |

v1:40.5+ poor  0.134106 NN
rich  0.105933 |

P(Poor Male) = 0.4654 P(E)= ) P(row)

rows matching £



Using the
Joint

P(Poor) = 0.7604

gender hours_worked wealth

[Female v0:405-  poor 0253122 INEEGGGGEGEGE
rich  0.0245895 |}
w1405+  poor 0.0421765 Ml
rich  0.0116293 |
ale  v0:40.5- oor _ 0.331313 NG
rich  0.0971295 |
v1:40.5+ poor  0.134106 NN
rich  0.105933 [N
P(E) = E P(row)

rows matching £




gender hours_worked wealth

I n fe re n Ce Female v0:40.5- poor 0.253122 |GG
. th th rich  0.0245895 |}
Wi e v1:40.5+ poor 0.0421768 ||}
J n t rich  0.0116293 ||
OI n Male  v0:40.5- poor 0.331313 |IIIGININGEGEE
rich  0.0971295 N

v1:40.5+ poor 0.134106 |G
rich  0.105933 [

P(row)
P(El A Ez) _ rows matchng £, and E,

P(E)) E P(row)

rows matching £,

P(E, | Ey) =




gender hours_worked wealth

I A fe rence (Female v0:40.5-  poor 0.253122 NG

0.0245895 |}

. rich
Wlth the ¥ vi405+  poor  0.0421765 Ml
JOlnt rich  0.0116293 |

ale v0:40.5- oor 0.331313

rich  0.0971295 |

t v1:40.5+ poor  0.134106 —

rich  0.105933 |

P(row)
P(El A Ez) _ rows matchng £, and E,

P(E)) E P(row)

rows matching £,

P(E, | Ey) =

P(Male | Poor) = 0.4654 / 0.7604 = 0.612




You should know

Events

— discrete random variables, continuous random variables,
compound events

« Axioms of probability
— What defines a reasonable theory of uncertainty

« Conditional probabilities
* Chain rule
 Bayes rule

« Joint distribution over multiple random variables
— how to calculate other quantities from the joint distribution



Expected values

Given discrete random variable X, the expected value of
X, written E[X] is

EX]=) zP(X =z)
TEX

We also can talk about the expected value of functions
of X

E[f(X) =) f(z)P(X =z)

TeX



Covariance

Given two discrete r.v.”s X and Y, we define the
covariance of Xand Y as

Cov(X,Y)=E|(X — E(X))(Y — E(Y))]

e.g., X=gender, Y=playsFootball
or X=gender, Y=leftHanded

Remember: EX]=) zP(X =z)

TeEX



