
Relative Keyboard Input System∗

Daniel R. Rashid
Language Technologies Institute

Carnegie Mellon University
drashid@cs.cmu.edu

Noah A. Smith
Language Technologies Institute

Carnegie Mellon University
nasmith@cs.cmu.edu

ABSTRACT
This paper describes a “relative keyboard,” where keystrokes
are treated as inputs in a continuous space relative to each
other, instead of a discrete, unambiguous sequence. A user
with the ability to touch-type may type anywhere on the
sensing surface without the need for a visual keyboard. An
implementation of such a system is explored and evaluated
on simulated data and real user data.

Author Keywords
relative keyboard, soft keyboard, predictive keyboard

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User Inter-
faces.

INTRODUCTION
There have been many solutions to keyboard input proposed
for a wide range of hardware devices. With the exception
of more exotic systems such as the Non-Keyboard [1], these
usually take the form of a physical or digitally displayed key-
board that shows the user the location of all the keys. These
systems are not ideal for mobile situations because they in-
crease the mass of the hardware that must be carried, or they
require screen real estate for visualizing the keys.

An alternative to these systems (for users who can touch-
type) would be a software system that allows the user to type
on a surface with no visible keyboard, relying solely on their
ability to touch-type. Such a system would take up very lit-
tle screen space on a tablet PC, or could be paired with a
sensor to allow the user to type on any flat surface [4]. To
accomplish this goal we treat the user’s input as “relative,”
meaning the information gathered from the inputs consists
of the relative distances between keystroke locations, rather
than their absolute positions. An easy way to visualize this
representation is as a directed graph that can be overlaid on
a keyboard at various positions; depending on the overlay

∗Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial ad-
vantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. IUI’08, Jan-
uary 13-16, 2008, Maspalomas, Gran Canaria, Spain. Copyright
2008 ACM 978-1-59593-987-6/ 08/ 0001 $5.00

position, different strings will be generated. This paper ex-
plores the feasibility of such a “relative” input system, de-
scribing our implementation and evaluation of one design.

RELATED WORK
Several prior designs are related to ours. The Non-Keyboard
seeks to eliminate the keyboard and replaces it with gloves
which can sense only pressure and not location [1]. Missing
location information creates ambiguity in the input stream;
the system must resolve which key each keystroke was in-
tended to press, given the finger that did the pressing. Our
system is presented with a complementary problem: the lo-
cation of a keystroke is known, but we have no information
regarding which finger was used to generate the input or the
pressure used.

Another related system is the Canesta Projection Keyboard
[4], which projects a keyboard onto a surface and uses a sen-
sor module to record user input. This design is portable,
and was shown in user studies to result in the lowest fatigue
ratings when compared to a mechanical keyboard, a thumb
keyboard, and the graffiti input system. There has also been
a lot of work in improving accuracy using techniques such
as pattern matching [3] and language models [1, 2]. Here
we address a general form of the same problem, avoiding
the projection aspect (therefore introducing more ambguity
in the input).

SYSTEM OVERVIEW
We describe an implemented system that carries out word
prediction, and seeks to tackle the central challenges of re-
solving ambiguity in the positioning of the hypothetical key-
board and mis-strokes by the user. We formulate the problem
as follows. The input is a sequence {(xi, yi)}ni=1 of n abso-
lute keystroke positions on a two-dimensional surface. The
output is a word w, or more generally a ranked list of words
{wj}kj=1 from which the user may choose. We are assuming
for now there is another form of interaction which allows the
user to notify the program that a word has ended, or select
a word from a list. Future versions of this system will at-
tempt to tackle higher-level issues such as segmentation of
an ongoing coordinate stream into a sequence of words.

Given {(xi, yi)}i, the system uses an internal representation
of the keyboard to compute the most likely number of keys
separating two positions in the horizontal and vertical direc-
tions. We call this the sequence of offsets from the starting
point, denoted {(hi, vi)}i, where h1 = v1 = 0. Once all the

1

points are converted to offsets relative to the first keystroke,
a set of strings can be generated corresponding to words the
user may have intended to type. For example, if the offset se-
quence generated was {(0, 0), (1, 0)} (i.e., the second point
is 1 key to the right and in the same row) a few of the pos-
sible strings generated are qw, we, er, rt, ty, yu. These are
derived by treating the keyboard as a grid and placing the
starting key at all possible keys on that keyboard. For single
letters there will be as many possible strings as keys on the
keyboard, but for more complex offset patterns the number
will be reduced under the assumption that the widest span
in a sequence must fit on the keyboard. Many of the possi-
ble combinations are not real words, so filtering the results
though a dictionary will significantly decrease the number of
likely words. The logical steps of the prediction system are:

2D Point Generation: Given an input specific to the hard-
ware of the sensing surface, translate that input into a se-
quence of two-dimensional points in a coordinate space,
{(xi, yi)}ni=1.

Offset Generation: Given a sequence of 2D points in the in-
put coordinate space, find the most likely offset sequence,
{(hi, vi)}ni=1.

Dictionary Matching: Given an offset sequence, find the
dictionary words that approximately match. Here we per-
form a simple kind of error correction since words may be
chosen which don’t exactly match the offset sequence.

List Ranking: Order the list of words by plausibility.

OFFSET PATTERN UNIQUENESS
Since offset sequences are relative to the first keystroke and
not based on absolute positions, we are forced to accept that
collisions of words mapping to the same pattern will occur.
However, generating the patterns of 109,000 word types in
English (taken from a dictionary) on the standard QWERTY
layout, over 99.5% of patterns generated by English words
were found to be unique (see Table 1).

Collisions 0 1 2 3 4 5 6 7
Words 109133 310 75 20 10 0 14 0

Table 1. Number of collisions in a list of 109,000 English words taken
from an electronic dictionary.

This high percentage show that the ambiguity introduced as
a result of treating the inputs as relative has the potential to
be overcome. However, we will see that overcoming the user
error coupled with this ambiguity is more difficult.

INPUT REQUIREMENTS AND 2D POINT GENERATION
Our system could be paired with any of a wide variety of
hardware input devices, including cameras, sensor systems,
or touch screens. Touch screens are the simplest (the sys-
tem provides absolute screen coordinates of “touches” to the
software), but for other hardware systems, a coordinate se-
quence {(xi, yi)}i must be provided. In the current system,
it is assumed that there is no rotation of the input coordi-
nates; the user must always position her hands at the same

angle relative to the input surface. However, in the future
lifting this constraint could be useful in some settings.

KEYBOARD MODEL
To understand the offset generation stage we must first dis-
cuss the keyboard model. The keyboard model is the internal
representation used to simulate the keyboard. The user never
interacts directly with this model since we do not know how
the input space maps to the keyboard’s internal space, given
the location of the keyboard in the input space is unknown.
It is used primarily in computing the offsets, where we will
see it is not required to know the alignment of the spaces in
order to compute the offsets, which are relative values.

First, we define the virtual keyboard. LetK = {q, w, e, r, ...}
be the set of keys on the keyboard. The first component
models the noise in the typing process using a probabilistic
model over R2, for the internal keyboard space. This model
views keystroke positions as random events generated by a
different stochastic process for each key. Associated with
each key k ∈ K is an elliptical Gaussian distribution over
positions:

p(x, y | k) = N
([

x
y

]
;
[

µk,x

µk,y

]
,

[
σ2

k,x 0
0 σ2

k,y

])
(1)

=
1

2πσk,xσk,y
exp−

[
(x− µk,x)2

2σ2
k,x

+
(y − µk,y)2

2σ2
k,y

]
In this research, we define (µk,x, µk,y) to be the center of the
rectangular region associated with the key k, and we define
σk,x and σk,y to be a constant value based on the desired key
size for all k.

The second component encodes a representation of a key-
board on a grid. It is a mapping of the form

F : K × Z× Z→ K ∪ {∗} (2)

whereK is the set of keyboard keys and Z the set of integers.
F maps keys k and two-dimensional offsets (h, v) to other
keys, or to ∗ in cases where there is no key at the resulting
position (i.e., the move is “out of bounds”). For example,
F (n,−1,−1) = g and F (c, 1, 11) = ∗.

OFFSET GENERATION
The goal of offset generation is to take the input coordinates
{(xi, yi)}ni=1 and map them to offsets using the keyboard
model. This breaks down into a decision about the values of
(hi, vi) given (x1, y1) and (xi, yi).12 The offsets are chosen
according to:

(hi, vi)← argmax
(h,v)∈Z2

p(h, v | x1, y1, xi, yi) (3)

1We note that in the current system each offset for i ∈ {2, ..., n} is
generated independently of the others, but it would be possible to
define a system that jointly infers the offset values without making
this independence assumption. This would incur a runtime cost.
2We simplify the notation here by ignoring scaling transformations
on {(xi, yi)}n

i=1 to account for differences between the physical
plane where the user types and the keyboard space, assuming that
they are on the same scale.

2

To calculate this quantity for a given (h, v), we need to con-
sider all possible values of the first key and ith key.

argmax
(h,v)∈Z2

argmax
k1,ki∈K

F (k1,h,v)=ki

p(h, v, k1, ki | x1, y1, xi, yi)

= argmax
(h,v)∈Z2

argmax
k1,ki∈K

F (k1,h,v)=ki

p(k1, ki | x1, y1, xi, yi)

= argmax
(h,v)∈Z2

argmax
k1,ki∈K

F (k1,h,v)=ki

(
p(x1, y1, xi, yi | k1, ki)
·p(k1, ki)

)

= argmax
(h,v)∈Z2

argmax
k1,ki∈K

F (k1,h,v)=ki

(
p(x1, y1 | k1)
·p(xi, yi | ki)
·p(k1, ki)

)

The first equality holds because h and v are fully known if
k1 and ki are known. The second equality uses Bayes’ rule
(modulo a marginal in the denominator, which is constant
with respect to h and v). The third equality assumes the
coordinates for each key are generated independently, given
the keys. We next assume that (x1, y1) are the center of k1’s
region so that p(x1, y1 | k1) is a constant, and that the key
pairs are uniformly distributed, so that p(k1, ki) is a con-
stant.3 This gives:

(hi, vi)← argmax
(h,v)∈Z2

argmax
k1,ki∈K

F (k1,h,v)=ki

p(xi, yi | ki) (4)

We wish to use the Gaussian model (Equation 1) associated
with ki to compute p(xi, yi | ki), but we cannot use xi and yi

directly since the keyboard and input spaces are not aligned.
However, given our assumption that (x1, y1) is at the center
of k1’s region, we know this point in the keyboard space
is equal to (µk1,x, µk1,y). We then use this value and the
distance between the points (x1, y1) and (xi, yi) to compute
the new point in the keyboard space:

x′i = µk1,x + (xi − x1)
y′i = µk1,y + (yi − y1)

We can then compute p(x′i, y
′
i | ki) directly from Equation 1.

DICTIONARY MATCHING
Here we group the logical steps of string generation, dictio-
nary filtering, and error correction together which permits us
to accomplish all the tasks at once fairly easily. To do this,
we cache all dictionary entries with their equivalent offset
sequences. After that we can define a distance between two
arbitrary offset sequences. Here we consider two distances.

The first, ∆sub is strict but fast to compute. We assume
that the length of the intended word (in characters) exactly
matches the number of registered keystrokes. We align the
hypothesized offset sequence, H = {(hi, vi)}ni=1, with the
candidate word’s offset sequence, W = {(h̄i, v̄i)}ni=1, and

3These assumptions make our system simple; in future versions we
will explore how a model estimated from data can improve perfor-
mance.

calculate the total Manhattan distance:

∆sub(H,W) =
n∑

i=1

∣∣hi − h̄i

∣∣+ |vi − v̄i| (5)

For candidates whose length does not match the hypothe-
sized sequence, we let ∆sub = +∞.

A second distance, ∆sub/ins/del, permits insertions and dele-
tions of keystrokes with respective costs; it is the minimum
Manhattan distance between the two offset sequences. Com-
puting it requires O(|H| · |W |) runtime, which in our current
implementation is too slow for real time. However, because
it is likely that errors will include insertions and deletions,
we believe it is appropriate to consider this distance in our
experiments.

Given a hypothesized offset sequence, we compute ∆• for
each dictionary entry. Since we are not explicitly generating
strings from H , and only comparing it to dictionary entries,
dictionary filtering is done by default.

RANKING CRITERIA
The final step is to choose an ordered list of the most plausi-
ble words to present to the user. To do this, we use a linear
combination of three scores:

Frequency: The relative frequency of a word (also called its
“unigram probability”) estimated from a large corpus of
English, models the tendency of users to type more com-
mon words.

Location Data: Here we assume that the user is typing in
a consistent location, and maintain an estimate of where
we believe the location of the keyboard currently is for the
user. This can be computed based on the word/input pairs
we have observed in the past. For a candidate word we
can then compute how closely it matches our estimate of
the keyboard’s current position.

Error-Distance: The distance between the hypothesized off-
set sequence and the word’s offset sequence (∆sub or
∆sub/ins/del) gives penalties to words whose offset se-
quences differ too sharply from the given word.

PERFORMANCE EVALUATION
We carried out two experiments. In the first, a simulated user
was used to generate noisy 2D point sequences {(x̃i, ỹi)}i.
For each of 100 random words chosen uniformly from the
dictionary we added random Gaussian noise to the keystroke
centers, with a standard deviation up to a key height (or
width). Different standard deviation values were tested. The
relative keyboard’s output on the simulated data is shown in
Figure 1. We note that even with fairly high levels of noise
(σ = 0.5), the system correctly predicts the intended word
over 70% of the time. Considering the top three candidates
(which could be presented in a small menu to the user for
quick selection) improves accuracy by at least ten points at
all noise levels σ > 0.2.

Our second experiment uses data gathered from real users.
We created a set of 160 words so that there were ten words

3

Figure 1. Synthetic data with added noise: Accuracy of top 1, 3, and 5
hypotheses, with varying levels of noise. An average over five trials is
shown.

randomly selected from each of 16 length/frequency classes.4
Users were presented with a single word at a time on a screen
and told to type the word; each user was tested in both a
baseline physical keyboard condition and a touch screen con-
dition. After typing the word, the user hit the spacebar or a
spacebar “button” on the touch screen to move to the next
word. No feedback was given, and the backspace key was
not available to correct mistakes. Half of users performed
the physical keyboard test first, and the other half used the
touch screen first.

Note that this experiment does not depend on our system at
all; the accuracy of competing word prediction models can
be computed offline and compared to the accuracy of the
physical keyboard. So while this experiment gives us little
information about the relative keyboard’s usability, it does
let us measure accuracy of variants of our prediction model
without repeated data-gathering.

Figure 2. Accuracy of typing, by word, for ten users: physical key-
board accuracy, accuracy of top three hypotheses for the relative key-
board prototype using ∆sub and using ∆sub/ins/del. Naturally, top t
accuracy rises and falls directly with t.

The average accuracy across ten users in the physical key-
board condition was 0.832 (range 0.688 to 0.963). Using
∆sub/ins/del for dictionary matching, our system achieves
0.485 on average (range 0.213 to 0.782); this average falls to
0.456 when we use the faster but stricter ∆sub (range 0.213
to 0.688). There is a wide variation in the accuracy achieved
4A length/frequency class is defined by a word-length (here, 4, 6,
8, or 10 letters) and a frequency decile in a very large corpus (we
used the first, third, fifth, and seventh deciles).

by different users, so we show the trend by user (Figure 2).
The top 3 accuracy of six out of ten users, using ∆sub/ins/del,
is within 10% of their physical keyboard accuracy, with two
of the ten showing a slight improvement over their physical
keyboard results.

We note that this is a preliminary study meant to assess the
accuracy of our prototype system and help target future de-
velopment. These results suggest that for many users, a more
robust distance measure will improve accuracy at the dictio-
nary matching step. We also suspect that many users could
improve accuracy with practice (none of the users tested
were given the opportunity to use the relative keyboard be-
fore the experiment). In the future, more thorough usability
studies will be required, but here we demonstrate a proof
of concept for software-driven prediction of keystrokes in
context and show that, at least for some users, the relative
keyboard is a viable text-input system.

FUTURE RESEARCH
This paper presented a prototype relative keyboard that pre-
dicts single words; in the future we intend to build a sys-
tem which will handle capitalization, auto-segmentation of
words, and intuitive interfaces for online typo correction and
selection of words. More sophisticated language models
might take advantage of a word’s context in prediction. We
believe generative probabilistic models will serve as a frame-
work for learning accurate predictors and also for user adap-
tation (e.g., adaptive scaling or distortion of the keyboard to
better fit a user’s internal model, reducing errors). We also
anticipate a more in-depth study of usability and design.

CONCLUSION
This paper presents a simple implementation of a new idea
for handling keyboard input. By treating the inputs as “rel-
ative” we have created a transparent keyboard layer for use
in many different types of systems. Possible applications
range from mobile phones that permit any nearby surface to
be used as a keyboard to touch screen computer interfaces
that do not require extra screen real estate. Pairing novel
hardware solutions with sophisticated prediction algorithms
has the potential to lead to high-accuracy, portable text input
systems driven by intelligent software.

REFERENCES
1. M. Goldstein, R. Book, G. Alsiö, and S. Tessa.

Non-keyboard QWERTY touch typing: a portable input
interface for the mobile user. In Human Factors in
Computing Systems, 1999.

2. J. Goodman, G. Venolia, K. Steury, and C. Parker.
Language modeling for soft keyboards. In AAAI, 2002.

3. P.-O. Kristensson and S. Zhai. Relaxing stylus typing
precision by geometric pattern matching. In IUI, 2005.

4. H. Roeber, J. Bacus, and C. Tomasi. Typing in thin air:
the Canesta projection keyboard—a new method of
interaction with electronic devices. In Human Factors in
Computing Systems, 2003.

4

