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The dynamics of a two-layered rotating liquid at low angular velocity in a cylindrical container
is explored, both experimentally and theoretically, using an oil-water system. In the two-layered
liquid, a transient concave down paraboloid interface, containing undulations, is observed
before the final, stable concave up paraboloid interface develops. A simple yet effective model
is developed to explain the observed profile dynamics, in which the predicted maximal height of
the paraboloid agrees well with experimental measurements over a fairly large range of rotation

speeds. © 2017 American Association of Physics Teachers.
[http://dx.doi.org/10.1119/1.4975125]

I. INTRODUCTION

Rotating liquids have been studied for more than four hun-
dred years since the discussion of Newton’s rotating bucket
in the 1600s, when the observed stable paraboloid profile
was well characterized scientifically. Since then, research
interest has been focused on the static and dynamic processes
that could appear in rotating liquids. In the investigation of
static states, refined models for single-component rotatin%
liquids and their profiles were developed by Goodman,
Sabatka and Dvorak,3 Turkington and Osborne,4 Lubarda,5
and Bergmann er al.® Interesting surface profiles of single-
component liquids are measured experimentally and dis-
cussed in college-level courses on physics.'""'?] One of the
applications of the surface shape is to large astronomical
telescopes, where rotating liq7uid can be used as focal-length
adjustable parabolic mirror. 16 On the more fundamental
side, there have also been studies of the rotating liquid’s
dynamic behavior, such as the spin-up ]l)henomenon of rotat-
ing liquids in a cylindrical container,"'”'® as well as the
motion of a rotating layer at the boundary® and at the bottom
of the container.” Recent results of Wan et al.'® showed that
the attenuation of the angular velocity of single-component
liquids in a cylindrical container is due to the boundary fric-
tion, while turbulence energy loss can actually be ignored.
This result will be effectively invoked in our work.

The phenomena are more complicated for two-layered
liquids since the two liquids usually have different densities
or viscosities; this may lead to differences in response time
and thus interesting transient behavior could arise. Much
work has been done to study the dynamics of the interface
between the two liquids. Yoshikawa and Wesfreid confirmed
the existence of the Kelvin-Helmholtz waves in a system
undergoing torsional oscillations.'® Baker demonstrated a
greatly magnified concave up paraboloid at the interface
between a rotating lower fluid and a stationary upper fluid.'
In his study of the dynamics of spin-up and spin-down,
Baker' noted that if the proper conditions are satisfied, the
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interface of the two-layered liquid could form a concave
down paraboloid (a dome) in the spin-up process, a remark-
ably different outcome from the concave up paraboloid rou-
tinely appearing in a rotating liquid. Whether this really
happens, or whether any other unexpected fluid behavior can
be observed, awaits an experimental demonstration and a
detailed theoretical explanation.

Our study here is concentrated on the profile of the oil-
water interface in the spin-up process. With both experimen-
tal observation and theoretical computation, we find that the
evolution of the interfacial profile is regulated by the gradu-
ally changing angular velocity of the water during the spin-up
process. The theoretical model makes a prediction of the
maximal height of the concave down paraboloid, a prediction
that agrees well with the experimental measurements over
quite a broad range of rotation speeds.

The rest of this paper is organized as follows. In Sec. II,
the experimental details are described. Theoretical develop-
ment of the model and experimental comparison are
presented in Sec. III. Finally, in Sec. IV, we provide a brief
summary.

II. DESCRIPTION OF THE EXPERIMENT
A. Experimental set-up

Figure 1 displays the experimental apparatus (FB805,
made by Jingke, Hangzhou, China) for the rotating liquid
used in the current experiment and in studies of a single-
component rotating liquid. The apparatus consists of an elec-
tric rotor that controls the angular velocity w, of a vessel and
can be continuously adjusted from 24 to 146 revolutions per
minute; a ruler; a pedestal holding a glass beaker of radius
R =0.0522 £ 0.0004 m containing oil and water; and a pho-
togate measuring the period of the beaker’s rotation. The
maximal height of the concave down paraboloid interface is
measured using the ruler, while the angular velocity of the
beaker is read from the photogate. At rest, the heights of oil
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Fig. 1. Experimental setup (1: electric rotor; 2: pedestal; 3: velocity control
knob; 4: photogate; 5: glass beaker with oil and water; 6: ruler).

and water are H, = 0.0470 m and H,, = 0.0255 m. The oil used
in the experiment is castor oil produced by Cool Chemical
Science and Technology (Beijing) Co. LTD, having a density
po=0.94 x 10°kg/m> and viscosity u,=0.62Pa s, as speci-
fied in the manual for the product. The oil is freshly extracted
from the bottom of its original sealed container for each exper-
iment in order to minimize angf aging effects. The density of
water is p,,=1.00 x 10°kg/m’ and its viscosity is p, = 8.9
x 10~*Pa s. It will be shown below that uncertainty in these
parameter values has only a minor influence on the experimen-
tal results.

B. Phenomena during the spin-up process

In comparison to single-component liquids, several new
interesting phenomena, displayed in Fig. 2, are observed in
the spin-up process of two-layered rotating liquids. In the
following, we will pay special attention to the evolution of
the upper surface and the lower interface of the bulk oil.

When the cylindrical container spins up from a stationary
state, the upper surface of oil becomes concave up immedi-
ately (in less than a second). However, the oil-water interface
curves oppositely, as shown in Fig. 2(a); this can be attrib-
uted to the difference in the transient angular velocities of
the water and the oil. This parabolic interface soon attains a
maximal height and continues to maintain its shape for 1-2
s, as displayed in Fig. 2(b). After this time, undulations on
the surface start to appear, as shown in Fig. 2(c), indicating
an impending qualitative change of the interface. The inter-
face then changes to its stable shape of a concave up parabo-
loid, as shown in Fig. 2(d). [We use a larger angular velocity
in Fig. 2(d) in order to show the interface more clearly.]

We note that during the spin-up process, it is easy to see
the build-up of the concave down paraboloid. As mentioned,
its maximal height is maintained for about 1-2 s [Fig. 2(b)]
before decaying and hence is easy to measure, thus providing
an excellent feature to verify our theoretical model.

Timescale separation in the buildup of the rotation of the oil
and the water underlies the previous observations. The rotation
of the oil is mainly caused by the sidewall of the vessel, with a
timescale 1, ~ (p,,/,uo)R2~ 4.1 s, whereas the water is spun up
by both the sidewall and the bottom of the vessel, and has a
characteristic time T, ~ (pw/,uw)R2: 3061 s. Hence, 7, is
nearly three orders of magnitude larger than 7, and we expect
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an inviscid spin-up process for the water and a viscous spin-up
process for the oil at small time scales.

As displayed in Fig. 2, the concave down paraboloid
emerges several seconds after the start, a time much smaller
than t,,, the necessary time to build up the boundary layer
for the water. Henceforth, the water can be viewed as an
inviscid fluid with a negligible boundary layer in the first
few seconds; this will be used to simplify our theoretical
analysis.

As a result of the above considerations, the entire process
can be divided into two steps: the spin-up process of the oil
and that of the water. The first one is a fast process because
oil has a large viscosity. Hence, oil quickly acquires the
angular velocity of the container and its upper surface
reaches a stationary shape within a short time, in a process
that is well described by the theory of a single-component
rotating liquid.? In the second step, the rotation of the water
is slowly built up, due to water’s small viscosity. With the
speed-up of the rotation, the oil-water surface becomes
unstable and keeps changing its profile until a stable concave
up paraboloid finally forms.

III. THEORETICAL ANALYSES
A. A modified model adapted to the two-layered liquid

We start from the model of a single-component liquid
(suppose it is the oil), which is described as an incompress-
ible rotating potential flow.'* We take as characteristic scales
[L] =R, [p] = p,sR, [p] = p,. and [w] = (3/R)""*, where g
is the gravitational field strength. Unless stated otherwise we
use these characteristic scales to write variables in dimen-
sionless form. In a frame corotating with the container, the
pressure inside the liquid can be obtained from the force bal-
ance condition

1
pzpo+Z,,—h~|—§a)2r2, (1)

Fig. 2. Temporal progression of the interface in the two-layered liquid dur-
ing the spin-up process (side view): m, = 6.28 rad/s at times (a) t=0.8 s, (b)
t=2.0s,and (c) r=3.2 s; (d) w, = 12.04rad/s at time t =80.0 s.
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where p is the atmospheric pressure, 7 is the horizontal dis-
tance from the rotation axis, /4 is the vertical distance from
the bottom of the container, and Z, represents the height of
the lowest point of the liquid surface. Rigorously speaking,
Eq. (1) only applies to fluid in a steady state with constant
angular velocity w. As can be seen from Eq. (1), the shape of
the free surface of the rotating liquid is a paraboloid.

In the corotating frame displayed in Fig. 3(a), where Z,
and Z. denote, respectively, the heights of the lowest point
and an arbitrarily point on the surface, force balance leads to

1
Z.— 27, = 3 »*r?, (2)

which gives the shape of a paraboloid. The height of the low-
est point Z, can be further expressed as a function of the
height H of the liquid at rest by the conservation of volume,

1 1 1
J HQnr)dr =2n J (— o’r? + ZU) rdr, 3)
0 0\2
giving
Z, = H -1 “4)
0 — 4 .

During the acceleration, the angular velocity w is not the
same at every point in the liquid. However, as shown by
Baker,' the radial and axial velocity components of the flow
at low angular velocity are far smaller than the azimuthal
velocity, and the variation of @ along r is also small; Eq. (1)
is thus still a good approximation.

Figure 3(b) depicts the concave down paraboloid at the
oil-water interface, where Z, denotes the height of the parab-
oloid apex, and Z, the height of an arbitrary point on the
interface. The shape of the upper surface of the oil can still
be represented by Eq. (2) so that one can write

1
Z.—27Z,= 3 w, 1. (5)

Since the fluid is nearly hydrostatic and all the forces
are horizontal except gravity, the pressure in the oil can be
written as

(a) — @

\ZQ\Z&/

Water

0 R T

1
p=po=—(h=2,)+ 50, (6)

Therefore, along path 1 in Fig. 3(b) we have

1
Py = po = =2y = Zo) + 50,717, ™

whereas on path 2 it is
1 2.2
Pb —Po = Z,—Zq+ pw<Za - Zb) + Epwww re. (®)

Combining Egs. (7) and (8) and introducing the (dimension-
less) Atwood number A, defined in terms of dimensional var-
iables as A = (p,, — p,)/(p,» + p,), the difference between
Z, and Z;, becomes

(1=, ~ (14 Ao,

Ah =27, —Z) = i

€))

In terms of the original (dimensional) variables, Eq. (9) reads
Ah = (p, 0, — p,3)1? [[2(p,, — p,)g]. According to the
analysis in Sec. III B, the inverted dome will appear only
when A > 0, otherwise the interface will be flat (when A =0)
or the normal paraboloid (when A <0). In Baker’s work,'
the equation describing the paraboloid is our Eq. (9) at
w,=0. (Note that in his work Ah =27, - Z,).

As in Baker’s work, we study a situation in which one of
the fluids is essentially at rest, while the other is rotating
with the vessel. However, unlike Baker, we also consider
the spin-up process and the evolution of the profile of the
oil-water interface.

B. The angular velocity of water and its influence

Because oil reaches its stationary state in a very short
time, the upper layer assumes the steady concave up parabo-
loid long before the oil-water interface gets stabilized.
Therefore, the angular velocity (@,) of the oil soon becomes
approximately equal to that of the vessel (w,).

For our purpose, the water can be treated as an inviscid
fluid,'* i.e., the angular velocity (w,,) is regarded as constant
in the bulk but has a jump at the boundary. In general, this

(b) @y

//w
%’

01l

Path 1

4 Path 2

D Water

E 7] R T

Fig. 3. Schematic drawing of the rotating liquid experiment: (a) a single liquid; (b) the two-liquid situation.
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approximation is good, but subtle deviations can still be
observed. For example, transient drapes caused by Kelvin-
Helmholtz instabilities at the interface, as displayed in Fig.
2(c), are observed in the spin-up process. The analysis of
such instabilities is beyond the scope of this work.

It takes about 2 s for the oil-water interface to reach its
maximal height if w,, < 6 rad/s, which is the maximum speed
of the electric rotor. Compared with the overall relaxation
time (about 40-60 s), we conclude that @, is much smaller
than @, during the first few seconds, and that as a first
approximation one can assume ,, = 0. The height of the oil-
water interface can then be obtained by setting =R in Eq.
(9), written here in terms of the original, dimensional
variables

(powg - waa’)Rz ~ (powg)Rz

Ay, = .
¢ 2(pw = P0)8 2(pw — P0)8

(10)

Figure 4 shows a comparison between the theoretical
results (solid curve) given in Eq. (10) and experimental
measurements for w, between 2.3rad/s and 5.3rad/s. The
discrepancies increase from 4% at w,=2.3rad/s to 20% at
w,=15.3rad/s. Results below 2.3rad/s are not displayed in
the figure as the errors are generally less than 4%. The large
deviation at high angular velocity may be accounted for by
the nonzero w,, at the maximal height.

C. Derivation of w,, as a function of time

The shear force on the oil-water interface is neglected in
our analysis because the interaction between two insoluble
liquids is small in a container of size R =0.0522 = 0.0004 m.
Thus, the dragging force from the wall and the bottom of
container becomes the main driver in the spin-up process.

From volume conservation, one obtains

V.=7H,

! 1—A)w,2—(1+A)w,>
zznj r{Za—( Jog® (1t Ao, rz} dr, (11)
. 4A

1

1
V, =nH, = 2nJ r[iw(,zrz +Zo—Z4

0
(1 B A)woz B (] + A)wwz
2
+ el dr 12
o : (12)
0.06 - | o Experimental data
—— Preliminary theoretical data
005L £== Polynomial fit of Experimental data
g 0.04 -
I
g 0.03 -
0.02 -
0.01 |-

1 1
2.5 3.0 3.5 4.0 45 5.0 5.5
w,, (rad/s)

Fig. 4. The maximum height of the concave down paraboloid as a function
of angular velocity; experimental results and theoretical computation.
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where V,, and V, represent the volume of water and oil,
respectively. Combining Eqgs. (11) and (12) then gives the
values of Z,, and Z,.

(1-A)w,2 — (1 +A)w,> 2

Zy =2, —
b 4A
PN S (R %
8A
2 2
B (1 _A)(Uo - (1 +A)ww }”2, (13)
4A
and
1 2.2
Z. =2, +§wo r
1 2 1 2.2
:H() +HM —Z(L)O +§(})0 re. (14)

Meanwhile, the total kinetic energy of the rotating fluids is

1

E, = EJ 2nr(Ze — Zp)w, 1 dr
0

1+A [ -

— | 2w Zyo,*r* dr, 15

+2(17A)J0 Ty, r- dr (15)

and the total gravitational potential energy is

Zc +Zb

1
Eh = J 27EF(ZC — Zb) dr

0
1+A (! Zy

+ 1 —AJ() 2nrZy > dr. (16)
Since the shear force at the interface is neglected, any decrease
of the total energy is mainly caused by the drag from the wall
and the bottom of the container. When the angular velocity of
the oil is equal to that of the container, i.e., when w, = w,, the
energy dW, dissipated at the wall in a time dr is"*

dW, = —2nRzg7,v(R)dt

L 144
=i (o)’
[ 1-A)w,2 = (1 +A)w,>
o g, - mAol (Aol o

8A

and the energy dW, dissipated at the bottom is

1

dW, = — | 2mr drt,u(r)de
0
A 1+A 5 1
= 47r T—a (@ — @y) 5dt. (18)

In these equations, the velocity is v(r) = wr, the wall shear
is 7, = Apv(r)?/8, zg is the length of segment DE in Fig.
3(b), and 4 is a friction damping factor that will be given
momentarily. The power dissipation should be equal to the
rate of the change of the total energy, and thus,

d(W] + Wz) . 8(Ek + Eh) dw,,
dt  Ow,  dt
Inserting Eqgs. (15)—(18) into Eq. (19), one finally derives the

rate of change of w,,. In terms of the original dimensional
variables the result is

19)
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do, A (0 — )’

a2 W,

-1
R 2 , 2‘
x {142 |1, — PP = PuOup2 20)
5 4(pw - po)g

The drag of the container changes with w,,, and the spin-
up process can be approximately divided into three
regimes: the laminar regime, the hydraulically smooth
regime, and the hydraulically rough regime. The friction
loss comes from the drag of the wall and the bottom, simi-
lar to that for flow in pipes.'® Thus, the friction loss factor

2
1/[1g(3.7d/A)2} Re, < Re (thelaminarregime)

0.316/Re!/*
64/Re

2300 < Re < Re,
Re < 2300

where Re.=10d/A is the critical Reynolds number distin-
guishing the hydraulically smooth regime from the laminar
regime. In this expression, A=10um refers to the wall
roughness height while d is the pipe diameter. In this situa-
tion, the pipe diameter can be written as d =4R,,, where the
hydraulic radius R, can be calculated (using dimensional
variables) using Fukuchi’s formula'’

2 2
Ry = |k 4 2% = Pu®) o /
12(pw - pn)g
2 2
R 4 H,, — Po% = Pu®) po | 22)
4(pw - po)g

Note that the Reynolds number Re plays a very important
role in this two-layer situation. If it is too small, the observed
concave down paraboloid may not appear at all. However,
the exact value of the Reynolds number at which the parabo-
loid first appears is not determined in the current investiga-
tion. Here, for simplicity we assume that oil immediately
acquires the angular velocity of the vessel. The actual
detailed dynamical process and its dependence on various
parameters would require further research and is beyond the
scope of this work.

D. Comparison with experiments

Based on the Reynolds number Re of the water for differ-
ent angular velocities, we find that the water is in the hydrau-
lically smooth regime from the beginning to around 2s,
when the oil-water interface reaches its maximal height.
Thus, with w, replacing ,, numerical integration of Eq.
(20) gives the results displayed in Fig. 5 for various angular
velocities of the container w,, when the water is in the
hydraulically smooth regime. The squares in Fig. 5, magni-
fied in the inset, display the values of w,, at the moment that
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(the hydraulically smooth regime)

/ has a similar dependence on the Reynolds number Re. In
terms of the original (dimensional) variables, the Reynolds
number is defined as Re =v,d/v, where v, =2(w, — w,,)R/3
is the average local velocity and v =8.9 x 10~ m?/s is the
kinematic viscosity. Note that the average local velocity
defined here is the relative velocity between the water and
the container, which leads to a rather different definition of
the Reynolds number than is typical. For example, when
the water is moving very slowly there is a large relative
velocity between the water and the container, and hence a
large Reynolds number. Based on a fitting to experimental
data,10 the friction loss factor can be written as the piece-
wise function

21

(the hydraulically rough regime),

the interface reaches the maximal height (time is measured
by a stop watch in the experiment). Inserting w,, read from
Fig. 5 into Eq. (9), one can obtain a refined theoretical result
for Ahp,., (see Fig. 6). As shown in Fig. 6, the refined model
is an improvement compared to the result assuming ,, =0
(displayed in Fig. 4). The relative error is less than 10%
when the measured angular velocity of the container is less
than about 4.10rad/s, which shows the effectiveness of our
simplified model.

However, this model could still be improved in the regime
where the angular velocity of the container is greater than
about 4.10rad/s. As shown in Fig. 6, the discrepancy
between experiment and theory increases as the angular
velocity of the container increases, which implies that our
simplification, w,= w,, is no longer valid. The spin-up pro-
cess of the water would be faster than the model computation

50F 25 L

F 15
- 30 /
= L 10
= [ L . . — w,=3.10rad/s
2.0
S% [ —— w,=3.66rad/s
10 — w,=391rad/s
i w,=4.33rad/s
0.0F — o,=471rad/s

- Ll n | " Ll " Ll n Ll " Ll n PR
1073 102 107" 10° 10° 102 10° 10

time (s)

Fig. 5. The change of w,, with time in the hydraulically smooth regime.
From bottom to top, the curves have w,=3.10, 3.66, 3.91, 4.33, and
4.71rad/s, respectively. The squares display the values of w,, at the moment
that the interface reaches the maximal height.
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e Experimental data ° ¢
| - - Polynomial fit of Experimental data .
0.04 - o, ]
[ L 2
~ I ® ‘
g 3 » an
= 0.03f ¢ an" ]
g F oo =
~ F ,/- --
< 1»: .
0.02 - 01% .
L ,.1
<1
[ e .
oot " -
E P IR T R P U SR T B R S-

PR IR S S SR
3.5 4.0 4.5 5.0 5.5
o,, (rad/s)

2.0 2.5 3.0

Fig. 6. Comparison of experimental heights and refined theoretical heights.

as the angular velocity of the container becomes greater. The
simplification in our model is invalid when the spin-up time
of the water is comparable to that of the oil. If we continue
using w, =, at large values of w,, the spin-up process of
the water will be faster than expected according to Eq. (20),
and this would render the value of the predicted height from
Eq. (9) smaller than the real height, as shown in Fig. 6.

In addition, our assumption of essentially rigid behavior in
the fluids might also no longer be valid. The angular veloci-
ties may vary with both 4 and r in the real fluid and may
change in a spatially non-uniform way. The investigation of
this complication is beyond the scope of the current paper,
and is left for a future, more detailed study.

IV. SUMMARY

We have investigated the profile of the oil-water interface
in the spin-up process with experiments and theoretical mod-
els. The transient concave down paraboloid and its maximal
height are described using a simplified hydrodynamic model.
The change of the profile is mainly attributed to the variation
of angular velocity of water during the spin-up process. A
theoretical model is built on this observation, and that model
is shown to produce results in reasonably good agreement
with experimental measurements; the discrepancy between
experiment and theory is less than 10% for w, < 4.10rad/s.
Our investigation will be beneficial to similar computations
of the interface of two-layered liquids rotating in a
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cylindrical container, as well as to two-layered ocean cur-
rents with different chemical properties.
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