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1 Angle Representation

In this section we describe an optional numerical strategy that can be used to improve the run time performance
of the signpost data structure. We stress that this strategy is not essential to achieving numerical robustness—nor
for getting decent speed. It does however provide a moderate boost in performance, and was used for the timings
presented in the main paper.

Two frequently used operations are particularly expensive when working with
angles represented by floating point values: computing interior angles 0{ ¥ from (x2y2) .
edge lengths ¢;;, and converting vectors expressed in polar coordinates (r, ¢) to " (1)
Cartesian coordinates r(cos ¢, sin ¢). The cost of these operations stems from /! 2
evaluation of transcendental functions (either arccos, or cos and sin, resp.). As h
an alternative, one can represent an angle 8 € R via the Cartesian coordinates \J_/m=0 !
(x,y) := (cos 0, sin 0) of the corresponding unit vector, plus an integer n € Z rep- "
resenting a whole number of rotations, i.e., @ = atan2(y, x)+2nsx. We call this tuple |
(x, y, n) the wrapped angle representation of 6. Arithmetic operations on wrapped
angles can then be defined in a natural way—for our algorithm, we require only
the operations described below, operating on positive angles, though this scheme
can easily be extended to handle negative angles.

no = 01

(Comparison.) Suppose we have two angles 6, 0, encoded as wrapped angle tuples, and wish to evaluate the
boolean expression 6, < 6,. First, we simply check if n; = ny; if not, we simply need to evaluate n; < np. If
ny = ny, then we check whether the quadrant containing 6, precedes the quadrant of 8, using the signs of their (x, y)
coordinates. Finally, if these quadrants are equal, we compute the 2D cross product s = (x1,y1) X (x2, y2), and return
s < 0. In principle this final test could be performed via robust predicates (a la [3] to guarantee a total ordering on
wrapped angles (even in floating point), though we did not use this strategy in our implementation.

Arithmetic operations can be derived by expressing them as operations on unit complex numbers, and carefully
managing the integer component. The resulting operations in real coordinates are then:

(Addition.) Suppose we want to compute the angle 6; + 6,. The Cartesian coordinates of the sum are given by
(3, y) = (3132 — y1y2, x1Y2 + x211). If (x,y,0) < (x1,y1,0) (i-e., if the new angle is smaller than either of the old angles,
ignoring the integer part), then it must be the case that the angle “wrapped around,” and our new integer part is
n = ny + ny + 1; otherwise it is simply n; + n,. In practice, it is also helpful to normalize the Cartesian component to
prevent numerical drift away from unit norm.

(Unsigned Difference.) Given two angles 6y, 6,, we can compute the angle |6, — 01| via a nearly identical strategy.
Without loss of generality, suppose 6; < 0,. We first evaluate the Cartesian part (x,y) = (x1x2 + Y192, X142 — X2Y1),
normalize, and let n = n, — n; — a, where a = 1 if (x3,y3,0) < (x1,41,0), and a = 0 otherwise.

(Modulus.) Often we need to compute the modulus ¢ of an angle 8 with respect to another angle © (e.g., when
dealing with angles expressing tangent vectors at vertices). This can be achieved by simply starting with an angle
& =0, and adding copies of ® while £ + © < 0. The modulus is then given by ¢ = |0 — £].



2 Adaptive Error Estimator

In this section we describe the local error estimators used for the adaptive mesh refinement, as described by [1, 2].
Consider the second order elliptic PDE

(cl+Au=f
where c is a non-negative smooth function, and A is the positive semi-definite Laplace-Beltrami operator on the
polyhedral surface described by the input triangulation. Note that this simultaneously includes discretizations of
both PDEs considered in Section 5.2.1 (i.e., the harmonic Green’s function and short time heat kernel).

Consider an intrinsic triangulation My, let u;, denote the finite element solution in some basis V} obtained on
My,. At a high level, the local error estimator measures two things: (1) how well adapted is the mesh to represent the
current FEM solution, and (2) how much information is lost by representing the right hand side in the FEM basis.
Let Ry := f — Aup, — cuy, denote the element residual. The a posteriori error estimators are computed as follows:

« For each edge ij in the mesh, we compute the jump residual of Vuj, along :
this edge. More precisely, consider the neighboring triangles ijk and jil, k
let v;; denote the unit normal vector, and compute Vuy, - v;; in each of the
neighboring faces; the jump discontinuity, J;;(uy) associated to ij is defined )
to be the difference of these values (i.e, J;j(uy) is the flux of uj through
the edge ij). This jump discontinuity describes exactly how well does the
“shape” of uy, align with the elements in M. Jij(un) = Vg - vij — Vuge - vij

« Using this we can compute the local error indicator for a face ijk as
Mijie (un)? = AL IRA I, 0 + | CellJe(un) 2,
e

where the sum is over all of the edges in the face ijk. The integrals above are computed by means of numerical
quadrature. Note that when working with piecewise linear finite elements the jump residual is constant along
an edge and so £, ||, (uh)”?} = fg]e(uh)z-

« The last important computation we need is the oscillation of the data in each face. For a face ijk € F we first
compute by means of numerical quadrature the mean value of the element residual in ijk
Eh,ijk = — Rh dx.
Ajjk Jijk
We can use this to define the oscillation of the residual in the face ijk as
OSCijk(Rh) = Aijk”Rh — Ry, ijk”LZ(ijk)-
Again, this term is computed via numerical quadrature. It is exactly this oscillation term that indicates how

much error is obtained by “averaging” the data f and the current solution u;, onto the finite element basis V},.

With these computations, it is extremely easy to implement an adaptive refinement strategy by using these error
estimators as a criterion for refinement in intrinsic Delaunay refinement (see Section 4.2). In addition to the minimum
angle bounds we continue inserting vertices until the set of refined triangles, denoted by F C F, satisfies

1 1
Z~ Nijk (up) > 2 Z nijk(up) and Z osc;jk (Rp) > 2 Z oscijk (Rp).
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