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1 Angle Representation

In this section we describe an optional numerical strategy that can be used to improve the run time performance
of the signpost data structure. We stress that this strategy is not essential to achieving numerical robustness—nor
for ge�ing decent speed. It does however provide a moderate boost in performance, and was used for the timings
presented in the main paper.

Two frequently used operations are particularly expensive whenworking with
angles represented by �oating point values: computing interior angles θ jki from
edge lengths `i j , and converting vectors expressed in polar coordinates (r ,φ) to
Cartesian coordinates r (cosφ, sinφ). �e cost of these operations stems from
evaluation of transcendental functions (either arccos, or cos and sin, resp.). As
an alternative, one can represent an angle θ ∈ R via the Cartesian coordinates
(x ,y) := (cosθ , sinθ ) of the corresponding unit vector, plus an integer n ∈ Z rep-
resenting a whole number of rotations, i.e., θ = atan2(y,x )+2nπ . We call this tuple
(x ,y,n) the wrapped angle representation of θ . Arithmetic operations on wrapped
angles can then be de�ned in a natural way—for our algorithm, we require only
the operations described below, operating on positive angles, though this scheme
can easily be extended to handle negative angles.

(Comparison.) Suppose we have two angles θ1, θ2 encoded as wrapped angle tuples, and wish to evaluate the
boolean expression θ1 < θ2. First, we simply check if n1 = n2; if not, we simply need to evaluate n1 < n2. If
n1 = n2, then we check whether the quadrant containing θ1 precedes the quadrant of θ2 using the signs of their (x ,y)
coordinates. Finally, if these quadrants are equal, we compute the 2D cross product s = (x1,y1) × (x2,y2), and return
s < 0. In principle this �nal test could be performed via robust predicates (à la [3] to guarantee a total ordering on
wrapped angles (even in �oating point), though we did not use this strategy in our implementation.

Arithmetic operations can be derived by expressing them as operations on unit complex numbers, and carefully
managing the integer component. �e resulting operations in real coordinates are then:

(Addition.) Suppose we want to compute the angle θ1 + θ2. �e Cartesian coordinates of the sum are given by
(x ,y) = (x1x2−y1y2,x1y2+x2y1). If (x ,y, 0) < (x1,y1, 0) (i.e., if the new angle is smaller than either of the old angles,
ignoring the integer part), then it must be the case that the angle “wrapped around,” and our new integer part is
n = n1 +n2 + 1; otherwise it is simply n1 +n2. In practice, it is also helpful to normalize the Cartesian component to
prevent numerical dri� away from unit norm.

(Unsigned Di�erence.) Given two angles θ1,θ2, we can compute the angle |θ2 − θ1 | via a nearly identical strategy.
Without loss of generality, suppose θ1 < θ2. We �rst evaluate the Cartesian part (x ,y) = (x1x2 + y1y2,x1y2 − x2y1),
normalize, and let n = n2 − n1 − a, where a = 1 if (x2,y2, 0) < (x1,y1, 0), and a = 0 otherwise.

(Modulus.) O�en we need to compute the modulus φ of an angle θ with respect to another angle Θ (e.g., when
dealing with angles expressing tangent vectors at vertices). �is can be achieved by simply starting with an angle
ξ = 0, and adding copies of Θ while ξ + Θ < θ . �e modulus is then given by φ = |θ − ξ |.
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2 Adaptive Error Estimator

In this section we describe the local error estimators used for the adaptive mesh re�nement, as described by [1, 2].
Consider the second order elliptic PDE

(c1 + ∆)u = f

where c is a non-negative smooth function, and ∆ is the positive semi-de�nite Laplace-Beltrami operator on the
polyhedral surface described by the input triangulation. Note that this simultaneously includes discretizations of
both PDEs considered in Section 5.2.1 (i.e., the harmonic Green’s function and short time heat kernel).

Consider an intrinsic triangulation Mh let uh denote the �nite element solution in some basis Vh obtained on
Mh . At a high level, the local error estimator measures two things: (1) how well adapted is the mesh to represent the
current FEM solution, and (2) how much information is lost by representing the right hand side in the FEM basis.
Let Rh := f − ∆uh − cuh denote the element residual. �e a posteriori error estimators are computed as follows:

• For each edge ij in the mesh, we compute the jump residual of ∇uh along
this edge. More precisely, consider the neighboring triangles ijk and jil ,
let νi j denote the unit normal vector, and compute ∇uh · νi j in each of the
neighboring faces; the jump discontinuity, Ji j (uh ) associated to ij is de�ned
to be the di�erence of these values (i.e., Ji j (uh ) is the �ux of uh through
the edge ij). �is jump discontinuity describes exactly how well does the
“shape” of uh align with the elements in Mh . Ji j (uh ) := ∇ujil · νi j − ∇ui jk · νi j

• Using this we can compute the local error indicator for a face ijk as

ηi jk (uh )
2 := A2

i jk ‖Rh ‖
2
L2 (i jk ) +

∑
e

`e ‖ Je (uh )‖
2
L2 ,

where the sum is over all of the edges in the face ijk . �e integrals above are computed by means of numerical
quadrature. Note that when working with piecewise linear �nite elements the jump residual is constant along
an edge and so `e ‖ Je (uh )‖2L2 = `

2
e Je (uh )

2.

• �e last important computation we need is the oscillation of the data in each face. For a face ijk ∈ F we �rst
compute by means of numerical quadrature the mean value of the element residual in ijk

Rh,i jk := 1
Ai jk

∫
i jk

Rh dx .

We can use this to de�ne the oscillation of the residual in the face ijk as

osci jk (Rh ) := Ai jk ‖Rh − Rh,i jk ‖L2 (i jk ) .

Again, this term is computed via numerical quadrature. It is exactly this oscillation term that indicates how
much error is obtained by “averaging” the data f and the current solution uh onto the �nite element basisVh .

With these computations, it is extremely easy to implement an adaptive re�nement strategy by using these error
estimators as a criterion for re�nement in intrinsic Delaunay re�nement (see Section 4.2). In addition to the minimum
angle bounds we continue inserting vertices until the set of re�ned triangles, denoted by F̃ ⊂ F, satis�es∑

i jk ∈F̃

ηi jk (uh ) >
1
2
∑
i jk ∈F

ηi jk (uh ) and
∑
i jk ∈F̃

osci jk (Rh ) >
1
2
∑
i jk ∈F

osci jk (Rh ).
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