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We introduce the heat method for computing the geodesic distance to a
specified subset (e.g., point or curve) of a given domain. The heat method is
robust, efficient, and simple to implement since it is based on solving a pair
of standard linear elliptic problems. The resulting systems can be prefactored
once and subsequently solved in near-linear time. In practice, distance is
updated an order of magnitude faster than with state-of-the-art methods,
while maintaining a comparable level of accuracy. The method requires only
standard differential operators and can hence be applied on a wide variety of
domains (grids, triangle meshes, point clouds, etc.). We provide numerical
evidence that the method converges to the exact distance in the limit of
refinement; we also explore smoothed approximations of distance suitable
for applications where greater regularity is required.
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1. INTRODUCTION
Imagine touching a scorching hot needle to a single point on a
surface. Over time heat spreads out over the rest of the domain and
can be described by a function k

t,x

(y) called the heat kernel, which
measures the heat transferred from a source x to a destination y
after time t. A well-known relationship between heat and distance
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Fig. 1. Geodesic distance from a single point on a surface. The heat method
allows distance to be rapidly updated for new source points or curves.
Bunny mesh courtesy Stanford Computer Graphics Laboratory.

is Varadhan’s formula [1967], which says that the geodesic distance
� between any pair of points x, y on a Riemannian manifold can be
recovered via a simple pointwise transformation of the heat kernel:

�(x, y) = lim

t!0

q
�4t log k

t,x

(y). (1)

The intuition behind this behavior stems from the fact that heat
diffusion can be modeled as a large collection of hot particles taking
random walks starting at x: any particle that reaches a distant point
y after a small time t has had little time to deviate from the short-
est possible path. To date, however, this relationship has not been
exploited by numerical algorithms that compute geodesic distance.

Why has Varadhan’s formula been overlooked in this context?
The main reason, perhaps, is that it requires a precise numerical
reconstruction of the heat kernel, which is difficult to obtain – ap-
plying the formula to a mere approximation of k

t,x

does not yield
the correct result, as illustrated in Figures 2 and 6. The heat method
circumvents this issue by working with a broader class of inputs,
namely any function whose gradient is parallel to geodesics. We can
then separate computation into two stages: first find the gradient of
the distance field, then recover the distance itself.

Relative to existing algorithms, the heat method offers two major
advantages. First, it can be applied to virtually any type of geometric
discretization, including regular grids, polygonal meshes, and even
unstructured point clouds. Second, it involves only sparse linear
systems, which can be prefactored once and rapidly re-solved many
times. This feature makes the heat method particularly valuable
for applications such as shape matching, path planning, and level
set-based simulation (e.g., free-surface fluid flows), which require
repeated distance queries on a fixed geometric domain. Moreover,
because linear elliptic equations are widespread in scientific com-
puting, the heat method can immediately take advantage of new
developments in numerical linear algebra and parallelization.
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Fig. 2. Given an exact reconstruction of the heat kernel (top left) Varadhan’s
formula can be used to recover geodesic distance (bottom left) but fails in
the presence of approximation or numerical error (middle, right), as shown
here for a point source in 1D. The robustness of the heat method stems from
the fact that it depends only on the direction of the gradient.

2. RELATED WORK
The prevailing approach to distance computation is to solve the
eikonal equation

|r�| = 1 (2)

subject to boundary conditions �|
�

= 0 over some subset � of
the domain. This formulation is nonlinear and hyperbolic, mak-
ing it difficult to solve directly. Typically one applies an iterative
relaxation scheme such as Gauss-Seidel – special update orders
are known as fast marching and fast sweeping, which are some
of the most popular algorithms for distance computation on reg-
ular grids [Sethian 1996] and triangulated surfaces [Kimmel and
Sethian 1998]. These algorithms can also be used on implicit sur-
faces [Memoli and Sapiro 2001], point clouds [Memoli and Sapiro
2005], and polygon soup [Campen and Kobbelt 2011], but only indi-
rectly: distance is computed on a simplicial mesh or regular grid that
approximates the original domain. Implementation of fast marching
on simplicial grids is challenging due to the need for nonobtuse
triangulations (which are notoriously difficult to obtain) or else a
complex unfolding procedure to preserve monotonicity of the so-
lution; moreover these issues are not well-studied in dimensions
greater than two. Fast marching and fast sweeping have asymptotic
complexity of O(n logn) and O(n), respectively, but sweeping is
often slower due to the large number of sweeps required to obtain
accurate results [Hysing and Turek 2005].

The main drawback of these methods is that they do not reuse
information: the distance to different subsets � must be computed
entirely from scratch each time. Also note that both sweeping and
marching present challenges for parallelization: priority queues are
inherently serial, and irregular meshes lack a natural sweeping order.
Weber et al. [2008] address this issue by decomposing surfaces
into regular grids, but this decomposition resamples the surface and
requires a low-distortion parameterization over a small number of
quadrilateral patches, which is difficult to obtain.

In a different development, Mitchell et al. [1987] give an
O(n2

logn) algorithm for computing the exact polyhedral distance
from a single source to all other vertices of a triangulated surface.
Surazhsky et al. [2005] demonstrate that this algorithm tends to
run in sub-quadratic time in practice, and present an approximate
O(n logn) version of the algorithm with guaranteed error bounds;
Bommes and Kobbelt [2007] extend the algorithm to polygonal
sources. Similar to fast marching, these algorithms propagate dis-
tance information in wavefront order using a priority queue, again
making them difficult to parallelize. More importantly, the amortized
cost of these algorithms (over many different source subsets �) is

Fig. 3. The heat method computes the shortest distance to a subset � of a
given domain. Gray curves indicate isolines of the distance function.

substantially greater than for the heat method since they do not reuse
information from one subset to the next. Finally, although [Surazh-
sky et al. 2005] greatly simplifies the original formulation, these
algorithms remain challenging to implement and do not immediately
generalize to domains other than triangle meshes.

Closest to our approach is the recent method of Rangarajan
and Gurumoorthy [2011], who do not appear to be aware of
Varadahn’s formula – they instead derive an analogous relation-
ship � = �

p
~ log between the distance function and solutions

 to the time-independent Schrödinger equation. We emphasize,
however, that this derivation applies only in Rn where  takes a
special form – in this case it may be just as easy to analytically invert
the Euclidean heat kernel u

t,x

= (4⇡t)�n/2e��(x,y)2/4t. Moreover,
they compute solutions using the fast Fourier transform, which lim-
its computation to regular grids. To obtain accurate results their
method requires either the use of arbitrary-precision arithmetic or a
combination of multiple solutions for various values of ~; no general
guidance is provided for determining appropriate values of ~.

Finally, there is a large literature on smoothed distances [Coifman
and Lafon 2006; Fouss et al. 2007; Rustamov et al. 2009; Lipman
et al. 2010], which are valuable in contexts where differentiability is
required. However, existing smooth distances may not be appropriate
in contexts where the geometry of the original domain is important,
since they do not attempt to approximate the original metric and
therefore substantially violate the unit-speed nature of geodesics
(Figure 10). These distances also have an interpretation in terms
of simple discretizations of heat flow – see Section 3.3 for further
discussion.

Fig. 4. Distance to the boundary on a region in the plane (left) or a surface
in R3 is achieved by simply placing heat along the boundary curve. Note
good recovery of the cut locus, i.e., points with more than one closest point
on the boundary.

Car mesh courtesy AIM@Shape.
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Fig. 5. Outline of the heat method. (I) Heat u is allowed to diffuse for a
brief period of time (left). (II) The temperature gradient ru (center left) is
normalized and negated to get a unit vector field X (center right) pointing
along geodesics. (III) A function � whose gradient follows X recovers the
final distance (right).

3. THE HEAT METHOD
Our method can be described purely in terms of operations on
smooth manifolds; we explore spatial and temporal discretiza-
tion in Sections 3.1 and 3.2, respectively. Let � be the negative-
semidefinite Laplace–Beltrami operator acting on (weakly) differ-
entiable real-valued functions over a Riemannian manifold (M,g).
The heat method consists of three basic steps:

Algorithm 1 The Heat Method
I. Integrate the heat flow u̇ = �u for some fixed time t.

II. Evaluate the vector field X = �ru/|ru|.
III. Solve the Poisson equation �� = r ·X .

The function � approximates geodesic distance, approaching the
true distance as t goes to zero (Eq. (1)). Note that the solution to step
III is unique only up to an additive constant – final values simply
need to be shifted such that the smallest distance is zero. Initial
conditions u0 = �(x) (i.e., a Dirac delta) recover the distance to
a single source point x 2 M as in Figure 1, but in general we can
compute the distance to any piecewise submanifold � by setting u0

to a generalized Dirac [Villa 2006] over � (see Figures 3 and 4).
The heat method can be motivated as follows. Consider an

approximation u
t

of heat flow for a fixed time t. Unless u
t

ex-
hibits precisely the right rate of decay, Varadhan’s transformation
u
t

7!
p
�4t log u

t

will yield a poor approximation of the true
geodesic distance � because it is highly sensitive to errors in mag-
nitude (see Figures 2 and 6). The heat method asks for something
different: it asks only that the gradient ru

t

points in the right direc-
tion, i.e., parallel to r�. Magnitude can safely be ignored since we
know (from the eikonal equation) that the gradient of the true dis-
tance function has unit length. We therefore compute the normalized
gradient field X = �ru/|ru| and find the closest scalar potential
� by minimizing

R
M

|r� � X|2, or equivalently, by solving the
corresponding Euler-Lagrange equations �� = r · X [Schwarz
1995]. The overall procedure is depicted in Figure 5.

3.1 Time Discretization
We discretize the heat equation from step I of Algorithm 1 in time
using a single backward Euler step for some fixed time t. In practice,
this means we simply solve the linear equation

(id� t�)u
t

= u0 (3)

over the entire domain M , where id is the identity (here we still
consider a smooth manifold; spatial discretization is discussed in

Fig. 6. Left: Varadhan’s formula. Right: the heat method. Even for very
small values of t, simply applying Varadhan’s formula does not provide an
accurate approximation of geodesic distance (top left); for large values of t
spacing becomes even more uneven (bottom left). Normalizing the gradient
results in a more accurate solution, as indicated by evenly spaced isolines
(top right), and is also valuable when constructing a smoothed distance
function (bottom right).

Section 3.2). We can get a better understanding of solutions to
Eq. (3) by considering the elliptic boundary value problem

(id� t�)v
t

= 0 on M\�
v
t

= 1 on � .
(4)

which for a point source yields a solution v
t

equal to u
t

up to a
multiplicative constant. As established by Varadhan in his proof of
Eq. (1), v

t

also has a close relationship with distance, namely

lim

t!0
�

p
t

2 log v
t

= � (5)

away from the cut locus. This relationship ensures the validity of
steps II and III since the transformation applied to v

t

preserves the
direction of the gradient.

3.2 Spatial Discretization
In principle the heat method can be applied to any domain with a
discrete gradient (r), divergence (r·) and Laplace operator (�).
Note that these operators are highly local and hence do not exhibit
significant cancellation error despite large global variation in u

t

.

3.2.1 Simplicial Meshes. Let u 2 R|V | specify a piecewise
linear function on a triangulated surface. A standard discretization
of the Laplacian at a vertex i is given by

(Lu)
i

=

1

2A
i

X

j

(cot↵
ij

+ cot�
ij

)(u
j

� u
i

),

where A
i

is one third the area of all trian-
gles incident on vertex i, the sum is taken over
all neighboring vertices j, and ↵

ij

,�
ij

are the
angles opposing the corresponding edge [Mac-
Neal 1949]. We can express this operation via
a matrix L = A�1L

C

, where A 2 R|V |⇥|V | is
a diagonal matrix containing the vertex areas and L

C

2 R|V |⇥|V | is
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Fig. 7. Since the heat method is based on well-established discrete opera-
tors like the Laplacian, it is easy to adapt to a variety of geometric domains.
Above: distance on a hippo composed of high-degree nonplanar (and some-
times nonconvex) polygonal faces.

Hippo mesh courtesy Luxology LLC.

the cotan operator representing the remaining sum. Heat flow can
then be computed by solving the symmetric positive-definite system

(A� tL
C

)u = �
�

where �
�

is a Kronecker delta over � (the mass ma-
trix A need not appear on the right-hand side – a Kro-
necker delta already gives the integrated value of a
Dirac delta). The gradient in a given triangle can be
expressed succinctly as

ru =

1

2A
f

X

i

u
i

(N ⇥ e
i

)

where A
f

is the area of the face, N is its unit
normal, e

i

is the ith edge vector (oriented counter-
clockwise), and u

i

is the value of u at the opposing
vertex. The integrated divergence associated with ver-
tex i can be written as

r ·X =

1

2

X

j

cot ✓1(e1 ·Xj

) + cot ✓2(e2 ·Xj

)

where the sum is taken over incident triangles j each with a vec-
tor X

j

, e1 and e2 are the two edge vectors of triangle j containing i,
and ✓1, ✓2 are the opposing angles. If we let b 2 R|V | be the vector
of (integrated) divergences of the normalized vector field X , then
the final distance function is computed by solving the symmetric
Poisson problem

L
C

� = b.

Conveniently, this discretization easily generalizes to higher di-
mensions (e.g., tetrahedral meshes) using well-established discrete
operators; see for instance [Desbrun et al. 2008].

3.2.2 Polygonal Surfaces. For a mesh with (not necessarily
planar) polygonal faces, we use the polygonal Laplacian defined by
Alexa and Wardetzky [2011]. The only difference in this setting is
that the gradient of the heat kernel is expressed as a discrete 1-form
associated with half edges, hence we cannot directly evaluate the
magnitude of the gradient |ru| needed for the normalization step
(Algorithm 1, step II). To resolve this issue we assume that ru is
constant over each face, implying that

uT

f

L
f

u
f

=

Z

M

|ru|2dA = |ru|2A
f

,

where u
f

is the vector of heat values in face f , A
f

is the magnitude
of the area vector, and L

f

is the local (weak) Laplacian. We can

Fig. 8. The heat method can be applied directly to point clouds that lack
connectivity information. Left: face scan with holes and noise. Right: kitten
surface with connectivity removed. Yellow points are close to the source;
disconnected clusters (in the sense of Liu et al.) receive a constant red value.

Kitten mesh courtesy AIM@Shape.

therefore approximate the magnitude of the gradient as

|ru|
f

=

s
uT

f

L
f

u
f

A
f

.

This quantity is used to normalize the 1-form values associated with
half edges in the corresponding face. The integrated divergence is
then given by d

TM↵ where ↵ is the normalized gradient, d is the
coboundary operator and M is the mass matrix for 1-forms (see
[Alexa and Wardetzky 2011] for details). These operators are applied
in steps I-III as usual. Figure 7 demonstrates distance computed on
an irregular polygonal mesh.

3.2.3 Point Clouds. For a discrete point sample P ⇢ Rn of M
with no connectivity information, we solve the heat equation (step
I) using the point cloud Laplacian recently introduced by Liu et
al. [2012], which extends previous work of Belkin et al. [2009a]. In
this formulation, the Laplacian is represented by A�1

V L
PC

, where
AV is a diagonal matrix of Voronoi areas and L

PC

is symmetric
positive semidefinite (see [Liu et al. 2012], Section 3.4, for details).

To compute the vector field X = �ru/|ru| (step II), we repre-
sent the function u : P ! R as a height function over approximate
tangent planes T

p

at each point p 2 P and evaluate the gradient
of a weighted least squares (WLS) approximation of u [Nealen
2004]. This approximation provides a discrete gradient operator
D 2 R|P |⇥|P |. To compute tangent planes, we use a moving least
squares (MLS) approximation for simplicity, although other choices
are possible (see Liu et al.). To find the best-fit scalar potential �
(step III), we solve the linear, positive-semidefinite Poisson equation
L

PC

� = DTAVX . Figure 8 shows two examples.
Other discretizations are certainly possible (see for instance [Luo

et al. 2009]); we picked one that was simple to implement in any
dimension. Note that the computational cost of the heat method
depends primarily on the intrinsic dimension n of M , whereas
methods based on fast marching require a grid of the same dimension
m as the ambient space [Memoli and Sapiro 2001] – this distinction
is especially important in contexts like machine learning where m
may be significantly larger than n.
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3.2.4 Choice of Time Step. Accuracy of the heat method relies
in part on the time step t. In the smooth setting, Eq. (5) suggests
that smaller values of t yield better approximations of geodesic
distance. In the discrete setting we instead discover that the limit
solution to Eq. (3) is purely a function of the combinatorial distance,
independent of how we discretize the Laplacian (see Appendix A).
Therefore, on a fixed mesh decreasing the value of t does not nec-
essarily improve accuracy, even in exact arithmetic. (Of course, we
can always improve accuracy by refining the mesh and decreasing
t accordingly.) Moreover, large values of t produce a smoothed
approximation of geodesic distance (Section 3.3). We therefore seek
an optimal time step t⇤ that is neither too large nor too small.

Determining a provably optimal expression for t⇤ is difficult
due to the complexity of analysis involving the cut locus [Neel
and Stroock 2004]. We instead use a simple estimate that works
remarkably well in practice, namely t = mh2 where h is the mean
spacing between adjacent nodes and m > 0 is a constant. This
estimate is motivated by the fact that h2

� is invariant with respect
to scale and refinement; experiments on a regular grid (Figure 18)
suggest that m = 1 is the smallest parameter value that recovers the
`2 distance, and indeed this value yields near-optimal accuracy for a
wide variety of irregularly triangulated surfaces, as demonstrated in
Figure 20. In this paper the time step

t = h2

is therefore used uniformly throughout all tests and examples, except
where we explicitly seek a smoothed approximation of distance,
as in Section 3.3. For highly nonuniform meshes one could set h
to the maximum spacing, providing a more conservative estimate.
Numerical underflow could theoretically occur for extremely small
t, though we do not encounter this issue in practice.

3.3 Smoothed Distance
Geodesic distance fails to be smooth at points in the cut locus, i.e.,
points at which there is no unique shortest path to the source – these
points appear as sharp cusps in the level lines of the distance function.
Non-smoothness can result in numerical difficulty for applications
which need to take derivatives of the distance function � (e.g., level
set methods), or may simply be undesirable aesthetically.

Several distances have been designed with smoothness in mind,
including diffusion distance [Coifman and Lafon 2006], commute-
time distance [Fouss et al. 2007], and biharmonic distance [Lipman
et al. 2010] (see the last reference for a more detailed discussion).
These distances satisfy a number of important properties (smooth-
ness, isometry-invariance, etc.), but are poor approximations of true
geodesic distance, as indicated by uneven spacing of isolines (see
Figure 10, middle). They can also be expensive to evaluate, requir-
ing either a large number of Laplacian eigenvectors (⇠150� 200

in practice) or the solution to a linear system at each vertex.

Fig. 9. A source on the front of the Stanford Bunny results in nonsmooth
cusps on the opposite side. By running heat flow for progressively longer
durations t, we obtain smoothed approximations of geodesic distance (right).
Bunny mesh courtesy Stanford Computer Graphics Laboratory.

Fig. 10. Top row: our smoothed approximation of geodesic distance (left)
and biharmonic distance (center) both mitigate sharp “cusps” found in the
exact distance (right), yet isoline spacing of the biharmonic distance can
vary dramatically. Bottom row: biharmonic distance (center) tends to exhibit
elliptical level lines near the source, while our smoothed distance (left)
maintains isotropic circular profiles as seen in the exact distance (right).
Camel mesh courtesy AIM@Shape.

In contrast, one can rapidly construct smoothed approximations
of geodesic distance by simply applying the heat method for large
values of t (Figure 9). The computational cost remains the same, and
isolines are evenly spaced for any value of t due to normalization
(step II); the solution is isometrically invariant since it depends
only on intrinsic differential operators. For a time step t = mh2,
meaningful values of m are found in the range 1� 10

6 – past this
point the term t� dominates, resulting in little visible change.

Existing smooth distance functions can also be understood in
terms of time-discrete heat flow. In particular, the commute-time
distance d

C

and biharmonic distance d
B

can be expressed in terms
of the harmonic and biharmonic Green’s functions g

C

and g
B

:

d
C

(x, y)2 = g
C

(x, x)� 2g
C

(x, y) + g
C

(y, y),
d
B

(x, y)2 = g
B

(x, x)� 2g
B

(x, y) + g
B

(y, y).

On a manifold of constant sectional curvature the sum g(x, x) +
g(y, y) is constant. Locally, then, commute-time and biharmonic
distance look like the harmonic and biharmonic Green’s functions
(respectively), which can be expressed via one- and two-step back-
ward Euler approximations of heat flow:

g
C

= lim

t!1(id� t�)

†�,
g
B

= lim

t!1(id� 2t�+ t2�2
)

†�.

(Here † denotes the pseudoinverse.)

3.4 Boundary Conditions
When computing the exact distance, either vanishing Neumann or
Dirichlet conditions suffice since this choice does not affect the
behavior of the smooth limit solution (see [von Renesse 2004],
Corollary 2 and [Norris 1997], Theorem 1.1, respectively). Bound-
ary conditions do however alter the behavior of our smoothed dis-
tance. Although there is no well-defined “correct” behavior for this
smoothed function, we advocate the use of averaged boundary con-
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Fig. 11. Effect of Neumann (top-left), Dirichlet (top-right) and averaged
(bottom-left) boundary conditions on smoothed distance. Averaged boundary
conditions mimic the behavior of the same surface without boundary.

Fig. 12. For path planning, the behavior of geodesics can be controlled via
boundary conditions and the time step t. Top-left: Neumann conditions en-
courage boundary adhesion. Top-right: Dirichlet conditions encourage avoid-
ance. Bottom-left: small values of t yield standard straight-line geodesics.
Bottom-right: large values of t yield more natural trajectories.

ditions obtained by taking the mean of the Neumann solution u
N

and the Dirichlet solution u
D

, i.e., u =

1
2 (uN

+ u
D

). These condi-
tions tend to produce isolines that are not substantially influenced by
the shape of the boundary (Figures 11 and 19). The intuition behind
this behavior again stems from a random walker interpretation: zero
Dirichlet conditions absorb heat, causing walkers to “fall off” the
edge of the domain. Neumann conditions prevent heat from flowing
out of the domain, effectively “reflecting” random walkers. Aver-
aged conditions mimic the behavior of a domain without boundary:
the number of walkers leaving equals the number of walkers return-
ing. Figure 12 shows how boundary conditions affect the behavior
of geodesics in a path-planning scenario.

4. EVALUATION
4.1 Performance

A key advantage of the heat
method is that the linear systems in
steps (I) and (III) can be prefactored.
Our implementation uses sparse
Cholesky factorization [Chen et al.
2008], which for Poisson-type
problems has guaranteed sub-
quadratic complexity but in practice
scales even better [Botsch et al.
2005]; moreover there is strong evidence to suggest that sparse
systems arising from elliptic PDEs can be solved in very close to
linear time [Schmitz and Ying 2012; Spielman and Teng 2004].
Independent of these issues, the amortized cost for problems with
a large number of right-hand sides is roughly linear, since back
substitution can be applied in essentially linear time. See inset for a
breakdown of relative costs in our implementation.
In terms of absolute performance, a number of factors affect the
run time of the heat method including the spatial discretization,
choice of discrete Laplacian, geometric data structures, and so forth.
As a typical example, we compared our simplicial implementation
(Section 3.2.1) to the first-order fast marching method of Kimmel &
Sethian [1998] and the exact algorithm of Mitchell et al. [1987] as
described by Surazhsky et al. [2005]. In particular we used the state-
of-the-art fast marching implementation of Peyré and Cohen [2005]
and the exact implementation of Kirsanov [Surazhsky et al. 2005].
The heat method was implemented in ANSI C in double precision
using a simple vertex-face adjacency list. Performance was mea-
sured using a single core of a 2.4 GHz Intel Core 2 Duo (Table I).
Note that even for a single distance computation the heat method
outperforms fast marching; more importantly, updating distance for
new subsets � is consistently an order of magnitude faster (or more)
than both fast marching and the exact algorithm.

4.2 Accuracy
We examined errors in the heat method, fast marching [Kimmel and
Sethian 1998], and the polyhedral distance [Mitchell et al. 1987],
relative to mean edge length h on triangulated surfaces. Figures 21
and 22 illustrate convergence on simple geometries where the exact
distance can be easily obtained. Both fast marching and the heat
method appear to exhibit linear convergence; it is interesting to
note that even the exact polyhedral distance provides only quadratic
convergence. Keeping this fact in mind, Table I uses the polyhedral
distance as a baseline for comparison on more complicated geome-
tries – MAX is the maximum error as a percentage of mesh diameter
and MIN is the mean relative error at each vertex (a convention
introduced in [Surazhsky et al. 2005]). Note that fast marching tends
to achieve a smaller maximum error, whereas the heat method does
better on average. Figure 14 gives a visual comparison of accuracy;
the only notable discrepancy is a slight smoothing at sharp cusps,
which may explain the slightly larger maximum error exhibited by
the heat method. Figure 15 indicates that this phenomenon does
not interfere with the extraction of the cut locus – here we simply
visualize values of |��| above a fixed threshold. Figure 23 plots
the maximum violation of metric properties – both the heat method
and fast marching exhibit small approximation errors that vanish
under refinement. Even for smoothed distance (m >> 1) the triangle
inequality is violated only for highly degenerate geodesic triangles,
i.e., all three points on a common geodesic. In contrast, smoothed
distances discussed in Section 2 satisfy metric properties exactly,
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Fig. 13. Meshes used in Table I. Left to right: BUNNY, ISIS, HORSE, BIMBA, APHRODITE, LION, RAMSES1.

Table I. Comparison with fast marching and exact polyhedral distance. Best speed/accuracy in bold; speedup in orange.
MODEL TRIANGLES HEAT METHOD FAST MARCHING EXACT

PRECOMPUTE SOLVE MAX ERROR MEAN ERROR TIME MAX ERROR MEAN ERROR TIME

BUNNY 28k 0.21s 0.01s (28x) 3.22% 1.12% 0.28s 1.06% 1.15% 0.95s
ISIS 93k 0.73s 0.05s (21x) 1.19% 0.55% 1.06s 0.60% 0.76% 5.61s

HORSE 96k 0.74s 0.05s (20x) 1.18% 0.42% 1.00s 0.74% 0.66% 6.42s
KITTEN 106k 1.13s 0.06s (22x) 0.78% 0.43% 1.29s 0.47% 0.55% 11.18s
BIMBA 149k 1.79s 0.09s (29x) 1.92% 0.73% 2.62s 0.63% 0.69% 13.55s

APHRODITE 205k 2.66s 0.12s (47x) 1.20% 0.46% 5.58s 0.58% 0.59% 25.74s
LION 353k 5.25s 0.24s (24x) 1.92% 0.84% 10.92s 0.68% 0.67% 22.33s

RAMSES 1.6M 63.4s 1.45s (68x) 0.49% 0.24% 98.11s 0.29% 0.35% 268.87s

Fig. 14. Visual comparison of accuracy. Left: exact geodesic distance.
Using default parameters, the heat method (middle) and fast marching (right)
both produce results of comparable accuracy, here within less than 1% of
the exact distance – see Table I for a more detailed comparison.
Kitten mesh courtesy AIM@Shape.

but cannot be used to obtain the true geometric distance. Overall,
the heat method exhibits errors of the same order and magnitude as
fast marching (at lower computational cost) and is therefore suitable
in applications where fast marching is presently used.

The accuracy of the heat method depends on the particular choice
of spatial discretization, and might be further improved by con-
sidering an alternative discrete Laplacian (see for instance [Belkin
et al. 2009b; Hildebrandt and Polthier 2011]). In the case of fast
marching, accuracy is determined by the choice of update rule. A
number of highly accurate update rules have been developed for
regular grids (e.g., HJ WENO [Jiang and Peng 1997]), but fewer
options are available on irregular domains such as triangle meshes,
the predominant choice being the first-order update rule of Kimmel
and Sethian [1998]. Finally, the approximate algorithm of Surazhsky
et al. provides an interesting comparison since it tends to produce
results more accurate than fast marching at a similar computational
cost. However, one should be careful to note that accuracy is mea-
sured relative to the polyhedral distance rather than the smooth
geodesic distance of the approximated surface (see [Surazhsky et al.
2005], Table 1). Similar to fast marching, Surazhsky’s method does
not take advantage of precomputation and therefore exhibits a signif-
icantly higher amortized cost than the heat method; it is also limited
to triangle meshes.

1Bunny mesh courtesy Stanford Computer Graphics Laboratory. Isis, Horse, Bibma, Lion, and Ramses meshes courtesy
AIM@Shape. Aphrodite mesh courtesy Jotero GbR.
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Fig. 15. Medial axis of the hiragana letter “a” extracted by thresholding
second derivatives of the distance to the boundary. Left: fast marching. Right:
heat method.

4.3 Robustness
Two factors contribute to the robustness of the heat method, namely
(1) the use of an unconditionally stable implicit time-integration
scheme and (2) formulation in terms of elliptic PDEs. Figure 16
verifies that the heat method continues to work well even on meshes
that are poorly discretized or corrupted by a large amount of noise
(here modeled as uniform Gaussian noise applied to the vertex
coordinates). In this case we use a moderately large value of t to
investigate the behavior of our smoothed distance; similar behavior
is observed for small t values. Figure 17 illustrates the robustness
of the method on a surface with many small holes as well as long
sliver triangles.

Fig. 16. Tests of robustness. Left: our smoothed distance (m = 10

4)
appears similar on meshes of different resolution. Right: even for meshes
with severe noise (top) we recover a good approximation of the distance
function on the original surface (bottom, visualized on noise-free mesh).
Amphora mesh courtesy AIM@Shape.

Fig. 17. Smoothed geodesic distance on an extremely poor triangulation
with significant noise – note that small holes are essentially ignored. Also
note good approximation of distance even along thin slivers in the nose.

5. CONCLUSION
The heat method is a simple, general method that can be easily
incorporated into a broad class of algorithms. However, a great deal
remains to be explored, including an investigation of alternative
spatial discretizations. Further optimization of the parameter t also
provides an avenue for future work (especially in the case of variable
spacing), though one should note that the existing estimate already
outperforms fast marching in terms of mean error (Table I). Another
obvious question is whether a similar transformation can be applied
to a larger class of Hamilton-Jacobi equations – for instance, a vari-
able speed function might be incorporated by locally rescaling the
metric. Finally, weighted distance computation might be achieved
by simply rescaling the source data.
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APPENDIX

A. A VARADHAN FORMULA FOR GRAPHS
LEMMA 1. Let G = (V,E) be the graph induced by nonzeros

in any real symmetric matrix A, and consider the linear system

(I � tA)u
t

= �

where I is the identity, � is a Kronecker delta at a source vertex
u 2 V , and t > 0 is a real parameter. Then generically

� = lim

t!0

log u
t

log t

where � 2 N|V |
0 is the graph distance (i.e., number of edges) be-

tween each vertex v 2 V and the source vertex u.
PROOF. Let � be the operator norm of A. Then for t < 1/� the

matrix B := I � tA has an inverse and the solution u
t

is given
by the convergent Neumann series

P1
k=0 t

kAk�. Let v 2 V be a
vertex n edges away from u, and consider the ratio r

t

:= |s|/|s0|
where s0 := (tnAn�)

v

is the first nonzero term in the sum and
s = (

P1
k=n+1 t

kAk�)
v

is the sum of all remaining terms. Noting
that |s| 

P1
k=n+1 t

k||Ak�|| 
P1

k=n+1 t
k�k, we get

r
t

 tn+1�n+1
P1

k=0 t
k�k

tn(An�)
v

= c
t

1� t�
,

where the constant c := �n+1/(An�)
v

does not depend on t. We
therefore have lim

t!0 rt = 0, i.e., only the first term s0 is significant
as t goes to zero. But log s0 = n log t+ log(An�)

v

is dominated
by the first term as t goes to zero, hence log(u

t

)

v

/ log t approaches
the number of edges n.

Numerical experiments such as those depicted in Figure 18 agree
with this analysis. See also [Chebotarev 2011].

Fig. 18. Isolines of logu
t

/ log t computed in exact arithmetic on a regular
grid with unit spacing (h = 1). As predicted by Lemma 1, the solution
approaches the combinatorial distance as t goes to zero.
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Fig. 19. Smoothed geodesic distance (m = 1000) using “averaged” bound-
ary conditions. Notice that increasing geodesic curvature along the boundary
does not strongly influence the behavior of the solution.

Fig. 20. Mean percent error as a function of m, where t = mh

2. Each
curve corresponds to a data set from Table I. Notice that in most examples
m = 1 (dashed line) is close to the optimal parameter value (blue dots) and
yields mean error below 1%.

Fig. 21. L

1 convergence of distance functions on the unit sphere with
respect to mean edge length. As a baseline for comparison, we use the exact
distance function �(x, y) = cos

�1
(x ·y). Linear and quadratic convergence

are plotted as dashed lines for reference; note that even the exact polyhedral
distance converges only quadratically.
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Fig. 22. Convergence of geodesic distance on the torus at four different test
points. Error is the absolute value of the difference between the numerical
value and the exact (smooth) distance; linear and quadratic convergence are
plotted as dashed lines for reference. Right: test points visualized on the
torus; dark blue lines are geodesic circles computed via Clairaut’s relation.
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Fig. 23. Fast marching and the heat method both exhibit small violations
of metric properties such as symmetry (top left) and the triangle inequality
(top right) that vanish under refinement – we plot the worst violation among
all pairs or triples of vertices (respectively) as a percent of mesh diameter.
Dashed lines plot linear convergence. Bottom right: the triangle inequality is
violated only for vertices along a geodesic between two distinguished points
(in red), since the corresponding geodesic triangles are nearly degenerate.
Bottom left: percent of red vertices as a function of h – each curve represents
a different value of m sampled from the range [1, 100].
Bunny mesh courtesy Stanford Computer Graphics Laboratory.

ACM Transactions on Graphics, Vol. 32, No. 3, Article XXX, Publication date: Month 2013.


