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Abstract

A new algorithm, SSAPRE, for performing partial redun-
dancy elimination based entirely on SSA form is presented.
It achieves optimal code motion similar to lazy code mo-
tion [KRS94a, DS93], but is formulated independently and
does not involve iterative data flow analysis and bit vec-
tors in its solution. It not only exhibits the characteristics
common to other sparse approaches, but also inherits the
advantages shared by other SSA-based optimization tech-
niques. SSAPRE also maintains its output in the same SSA
form as its input. In describing the algorithm, we state theo-
rems with proofs giving our claims about SSAPRE. We also
give additional description about our practical implementa-
tion of SSAPRE, and analyze and compare its performance
with a bit-vector-based implementation of PRE. We con-
clude with some discussion of the implications of this work.

1 Introduction

The Static Single Assignment Form (SSA) has become a
popular program representation in optimizing compilers,
because it provides accurate use-def relationships among
the program variables in a concise form [CFR191, Wol96,
CCL196]. Many efficient global optimization algorithms
have been developed based on SSA. Among these optimiza-
tions are dead store elimination [CFR191], constant propa-
gation [WZ91], value numbering [AWZ88, RWZ88, CS95a],
induction variable analysis [GSW95, LLC96], live range
computation [GWS94] and global code motion [Cli95]. All
these uses of SSA have been restricted to solving problems
based on program variables, since the concept of use-def does
not readily apply to expressions. Noticeably missing among
SSA-based optimizations is partial redundancy elimination.

Partial redundancy elimination (PRE) is a powerful op-
timization algorithm first developed by Morel and Renvoise
[MR79]. By targeting partially redundant computations in
the program, it automatically removes global common sub-
expressions and moves invariant computations out of loops.
It has since become the most important component in many
global optimizers [Cho83, CHKW86, SKL.88, BC94, CS95b].
In [KRS92, KRS94a], Knoop et al. formulated an alternative

placement strategy called lazy code motion that improves on
Morel and Renvoise’s results by avoiding unnecessary code
movements, and by removing the bidirectional nature of the
original PRE data flow equations. The result of lazy code
motion is optimal: the number of computations cannot be
further reduced by safe code motion, and the lifetimes of the
temporaries introduced are minimized. In [DS93], Drechsler
and Stadel gave a simpler version of the lazy code motion
algorithm that inserts computations on edges rather than in
nodes.

Optimizations based on SSA all share the common char-
acteristic that they do not require traditional iterative data
flow analysis in their solutions. They all take advantage of
the sparse representation of SSA. In a sparse form, informa-
tion associated with an object is represented only at places
where it changes, or when the object actually occurs in the
program. Because it does not replicate information over the
entire program, a sparse representation conserves memory
space. Information can be propagated through the sparse
representation in a smaller number of steps, speeding up
most algorithms. To get the full benefit of sparseness, one
must typically give up operating on all elements in the pro-
gram in parallel, as in traditional bit-vector-based data flow
analysis. But operating on each element separately allows
optimization decisions to be customized for each object.

There is another advantage of using SSA to perform
global optimization. Traditional optimization techniques of-
ten implement two separate versions of the same optimiza-
tion: a global version that uses bit vectors in each basic
block, and a simpler and faster local version that performs
the same optimization within a basic block. SSA-based op-
timization algorithms do not need to distinguish between
global and local optimizations. The same algorithm can
handle both global and local versions of an optimization si-
multaneously. The amount of effort required to implement
each optimization can be correspondingly reduced.

As was hinted at by Dhamdhere et al. in the conclusion
of [DRZ92], developing a PRE algorithm based on SSA is
difficult because an expression E can be redundant as the
result of many different computations at different places of
the same expression E’, E”, ... whose operands have differ-
ent SSA versions from the operands of E. This is illustrated
in Fig. 1(a). In such a situation, the use-def chain of SSA
does little to help in recognizing that E is partially redun-
dant. It also does not help in effecting the movement of
computations. Lacking an SSA-based PRE algorithm, opti-
mizers that use SSA have to switch to bit-vector algorithms
in performing PRE. To apply subsequent SSA-based opti-
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Figure 1: PRE in SSA form

mizations, it is necessary to convert the results of PRE back
into SSA form, and such incremental updates based on ar-
bitrary modifications to the program are expensive [CSS96].

‘We have developed an algorithm that performs PRE di-
rectly on an SSA representation of the program (SSAPRE).
Our algorithm is sparse because it does not require collecting
traditional local data flow attributes over the program and
it does not require any form of iterative data flow analysis to
arrive at its solution. Our algorithm works by constructing
the SSA form of the hypothetical temporary A that could be
used to store the result of each computation in the program.
In the resulting SSA form of h, a def corresponds to a com-
putation whose result may need to be saved, and a use cor-
responds to a redundant computation that may be replaced
by a load of h. Based on this SSA form of h, we can then ap-
ply the analyses corresponding to PRE. The analyses allow
us to identify additional defs of h, with accompanying com-
putations, that need to be inserted to achieve optimal code
motion. The final output is generated according to the up-
dated SSA graph of h: temporaries are introduced into the
program to save and reuse the values of computations. Since
the algorithm works by modeling the SSA forms of the hy-
pothetical temporaries, the real temporaries introduced are
maintained with SSA properties, as in Fig. 1(b).

The rest of this paper is organized as follows. Section 2
surveys related work aimed at improving the efficiency of
data flow analysis and PRE. Section 3 briefly introduces
SSA form and gives an overview of the SSAPRE approach.
Section 4 describes the SSAPRE algorithm in detail, while
stating related lemmas with proofs. Section 5 discusses
the theoretical foundations of the SSAPRE algorithm, and
verifies its correctness and optimality. Section 6 discusses
some practical issues related to an efficient implementation
of SSAPRE. Section 7 compares and contrasts the steps in
SSAPRE with bit-vector-based PRE, and analyzes the com-
plexity of the SSAPRE algorithm. Section 8 provides mea-
surements that compare the time spent in performing PRE
between a bit-vector-based implementation and an imple-
mentation of SSAPRE. Section 9 concludes by discussing
the implications of this work, and points out some promis-
ing areas where similar techniques can be applied using
SSAPRE as a model.

2 Related Work

In recent years, we have seen development of different tech-
niques aimed at improving the solution of data flow problems
that are related to SSA or PRE.

In [CCF91], by generalizing SSA form, Choi et al. de-

rived Sparse Evaluation Graphs as reduced forms of the orig-
inal flow graph for monotone data flow problems related to
variables. The technique must construct a separate sparse
graph per variable for each data flow problem, before solving
the data flow problem for the variable based on the sparse
graph. Thus, it cannot practically be applied to PRE, which
requires the solution of several different data flow problems.

In [DRZ92], Dhamdhere et al. observed that in solving
for a monotone data flow problem, it suffices to examine only
the places in the problem where the answer might be differ-
ent from the trivial default answer L. There are only three
possible transfer functions for a node: raise to T, lower to
1, or identity (propagate unchanged). They proposed slot-
wise analysis. For nodes with the identity transfer function,
those that are reached by any node whose answer is L will
have L as their answer. By performing the propagation slot-
wise, the method can arrive at the solution for each variable
in one pass over the control flow graph. Slotwise analysis
is not sparse, because it still performs the propagation with
respect to the control flow graph of the program. The ap-
proach can be used in place of the iterative solution of any
monotone data flow problem as formulated. It can be used
to speed up the data flow analyses in PRE.

In [Joh94], Johnson proposed the use of Dependence
Flow Graphs (DFG) as a sparse approach to speed up data
flow analysis. The DFG of a variable can be viewed as
its SSA graph with additional “merge” operators imposed
to identify single-entry single-exit (SESE) regions for the
variable. By identifying SESE regions with the identity
transfer function, the technique can short-circuit propaga-
tion through them. Johnson showed how to apply his tech-
niques to the data flow systems in Drechsler and Stadel’s
variation of Knoop et al.’s lazy code motion.

Researchers at Rice University have done work aimed
at improving the effectiveness of PRE [BC94, CS95b]. The
work involves the application of some SSA-based transfor-
mation techniques to prepare the program for optimization
by PRE. Their techniques enhance the results of PRE.
Their implementation of PRE was based on Drechsler and
Stadel’s variation of Knoop et al.’s lazy code motion, and
was unrelated to SSA.

All prior work related to PRE has modeled the problem
as systems of data flow equations. Regardless of how effi-
ciently the systems of data flow equations can be solved, a
substantial amount of time needs to be spent in scanning
the contents of each basic block in the program to initial-
ize the local data flow attributes that serve as input to the
data flow equations. Experience has shown that this often
takes more time than the solution of the data flow equa-
tions, so a fundamentally new approach to PRE that does
not require the dense initialization of data flow information
is highly desirable. SSAPRE satisfies this property as it
exploits sparseness.

3 Overview of Approach

The input to SSAPRE is an SSA representation of the pro-
gram. In SSA| each definition of a variable is given a unique
version, and different versions of the same variable can be
regarded as different program variables. Each use of a vari-
able version can only refer to a single reaching definition.
By virtue of the versioning, use-def information is built into
the representation. Where several definitions of a variable,
a1,a2,...,0n, reach a confluence point in the control flow



graph of the program, a ¢ function assignment statement,
an  ¢(a1,a2,...,am), is inserted to merge them into the
definition of a new variable version a,. Thus the semantics
of single reaching definitions is maintained. This introduc-
tion of a new variable version as the result of ¢ factors the
set of use-def edges over confluence nodes, reducing the num-
ber of use-def edges required to represent the program. In
SSA, the use-def chain for each variable can be provided by
making each version point to its single definition. One im-
portant property of SSA form is that each definition must
dominate all its uses in the control flow graph of the pro-
gram if the uses at ¢ operands are regarded as occurring at
the predecessor nodes of their corresponding edges.

‘We assume all expressions are represented as trees with
leaves that are either constants or SSA-renamed variables.
SSAPRE can be applied to program expressions indepen-
dently, regardless of subexpression relationships. In Sec-
tion 6, we describe a strategy that exploits the nesting re-
lationship in expression trees to obtain greater optimization
efficiency under SSAPRE. Indirect loads are also candidates
for SSAPRE, but since they reference memory and can have
aliases, the indirect variables have to be in SSA form in or-
der for SSAPRE to handle them. Using the HSSA form
presented in [CCL*96] allows SSAPRE to uniformly handle
indirect loads together with other expressions in the pro-
gram.

SSAPRE consists of six separate steps: (1) ®-Insertion,
(2) Rename, (3) DownSafety, (4) WillBeAvail, (5) Finalize
and (6) CodeMotion. SSAPRE works by conducting a round
of SSA construction on the lexically identical expressions in
the program whose variables are already in SSA form.' Since
the term SSA cannot be meaningfully applied to expressions,
we define it to refer to the hypothetical temporary h that
could be used to store the result of the expression. In the
rest of this paper, we use ® to refer to a ¢ in the SSA form
of the hypothetical temporary to contrast it with a ¢ for a
variable in the original program.

®-Insertion and Rename are the initial SSA construc-
tion steps for expressions. This round of SSA construction
can use an approach similar to that described in [CFR191],
working on all expressions in the program simultaneously.
Alternatively, an implementation may choose to work on
each lexically identical expression in sequence. We describe
such a sparse implementation in Section 6.

Assuming we are working on the expression a + b, whose
hypothetical temporary is h. After the Rename step, oc-
currences of a + b corresponding to the same version of h
must compute the same value. At this stage, the points of
defs and uses of h have not yet been identified. Many ®’s
inserted for h are also unnecessary. Later steps in SSAPRE
will fix them up. Some ® operands can be determined to
be undefined (L) after Rename because there is no avail-
able computation of a + b. These L-valued ® operands will
play a key role in the later steps of SSAPRE, because inser-
tions are performed only because of them. We call the SSA
graph? for h after Rename the dense SSA graph because it
contains more ®’s than in the minimal SSA form (as defined
in [CFR191)).

LExpressions are lezically identical if they apply exactly the same
operator to exactly the same operands; the SSA versions of the vari-
ables are ignored in matching expressions. For example, a1 + b1 and
a2 + by are lexically identical expressions.

2Qur SSA graph is similar to that described in [GSW95], which
is formed from the use-def edges of nodes assigned the same SSA
version.

The sparse computation of global data flow attributes
for a + b can be performed on the dense SSA graph for h.
Two separate phases are involved. The first phase, Down-
Safety, performs backward propagation to determine the ®’s
whose results are not fully anticipated with respect to a +b.
The second phase is WillBeAvail, which performs forward
propagation to determine the ®’s where the computation of
a + b will be available assuming PRE insertions have been
performed at the appropriate incoming edges of the ®’s.

Using the results of WillBeAvail, we are ready to finalize
the effects of PRE. The Finalize step inserts computation of
a + b at the incoming edges of ® to ensure that the compu-
tation is available at the merge point. For each occurrence
of a + b in the program, it determines if it is a def or use
of h. It also links the uses of h to their defs to form its
precise SSA graph. Extraneous ®’s (see [CFR191], p.359)
are removed so that h is in minimal SSA form.

The last step is to update the program to effect the code
motion for a + b as determined by SSAPRE. The CodeMo-
tion step introduces the real temporary ¢ to eliminate the
redundant computations of a + b. It walks over the pre-
cise SSA graph of h and generates saves of the computation
a+binto t, giving each ¢ its unique SSA version. Redundant
computations of a + b are replaced by t. The ®’s for h are
translated into ¢’s for ¢ in the native program representa-
tion.

4 SSAPRE Algorithm

In this section, we describe the complete SSAPRE algo-
rithm. As in [KRS92] and [DS93], we assume all critical
edges in the control flow graph have been removed by in-
serting empty basic blocks at such edges. This allows us to
model insertions as edge placements, even though we only
insert at the ends of the predecessor blocks.

We assume prior computation of the dominator tree (DT)
and dominance frontiers (DF’s) with respect to the control
flow graph of the program. These data must have already
been computed and used when the program was first put
into SSA form [CFR*91]. Again, we base our discussion on
the expression a + b whose hypothetical temporary is h. We
use the example program shown in Fig. 2 to illustrate the
various steps. Based on the algorithms we describe, we also
state and prove various lemmas, which we use in establishing
the theorems about SSAPRE in Section 5.

4.1 The ®-Insertion Step

A & for an expression is needed whenever different values
of the same expression reach a common point in the pro-
gram. There are two different situations that cause ®’s for
expressions to be placed:

First, when an expression appears, we insert a ® at its
iterated dominance frontiers (DF 1), because the occurrence
may correspond to a def of h. In Fig. 3, a ® is inserted at
block 3 due to a + b in block 1.

The second situation that causes insertion of ®’s is when
there is a ¢ for a variable contained in the expression, be-
cause that indicates an alteration of the expression reaches
the merge point. We only need to insert a ® at a merge
point when it reaches a later occurrence of the expression,
because otherwise the ® will not contribute to any optimiza-
tion in PRE. In Fig. 3, the ® for h at block 8 is caused by
the ¢ for a in the same block. We do not need to insert any
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Figure 2: Example Program (in SSA form)

@ at block 10 even though it is a merge point, because there
is no later occurrence of a + b after block 10.

Both types of ® insertions are performed together in one
pass over the program, with the second type of ® inser-
tion performed in a demand-driven way. We use the set
DF _phis[i] to keep track of the ®’s inserted due to DF of the
occurrences of expression E;. We use the set Var_phisfi][j]
to keep track of the ®’s inserted due to the occurrence of ¢’s
for the j%variable in expression E;. When we come across
an occurrence of expression E;, we update DF_phis[i]. For
each variable v; in the occurrence, we check if it is defined
by a ¢. If it is, we update Var_phis[i][j, because a ® at
the block that contains the ¢ for v; may contribute to op-
timization of the current occurrence of E;. The same may
apply to earlier points in the program as well, so it is nec-
essary to recursively check for updates to Var_phisfi][j] for
each operand in the ¢ for v;. After all occurrences in the
program have been processed, the places to insert ®’s for F;
are given by the union of DF_phis[i] with the Var_phis[i][j]’s.
The full algorithm for the ®-Insertion step is given in Fig. 4.
By using this demand-driven technique, we take advantage
of the SSA representation in the input program.

Other algorithms for SSA ¢ placement with linear time
complexity can also be used to place ®’s [JPP94, SG95]. We
adapt the algorithm from [CFR'91] because it is easier to
understand and implement.

LEMMA 1 (Sufficiency of ® insertion) If B is a basic block
where no expression ® is inserted and the erpression is par-
tially anticipated at the entry to B, exactly one evaluation
of the expression (counting L as an evaluation) can reach
the entry to B.

Proof: Suppose at least two different evaluations of the
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Figure 3: Program after ®-Insertion

expression, 11 and 2, reach the entry to B. It cannot be
the case that 1)1 and 12 both dominate B; suppose without
loss of generality that 11 does not dominate B. Now there
exists a block By that dominates B, is reached by 1 and
42, and lies in DF*(¢p1) (n.b., Bo may be B). If ¢ is a
computation of the expression, the ®-Insertion step must
have placed a ® in By, contradicting the proposition that
11 reaches B. If on the other hand 1, is an assignment to
an operand v of the expression (so L is among the values
reaching B), there must be a ¢ for v in By by the correctness
of the input SSA form. Hence when ®-Insertion processed
By, it must have placed a ® there, once again contradicting
the proposition that 1; reaches B. O

4.2 The Rename Step

The Rename step assigns SSA versions to h in its SSA form.
The version numbering we produce for h differs from the
eventual SSA form for the temporary ¢, but has the follow-
ing two important properties. First, occurrences that have
identical h-versions have identical values. Second, any con-
trol flow path that includes two different h-versions must
cross an assignment to an operand of the expression or a ®
for h.

We apply the SSA Renaming algorithm as given in
[CFR*91], in which we conduct a preorder traversal of the
dominator tree, but with the following modification. In
addition to a renaming stack for each variable in the pro-
gram, we maintain a renaming stack for every expression;
entries on these expression stacks are popped as we back
up the blocks that define them. Maintaining the variable
and expression stacks together allows us to decide efficiently
whether two occurrences of an expression should be given
the same h-version.



procedure ®-Insertion
for each expression F; do {
DF _phis[i] < empty-set
for each variable j in E; do
Var_phisf[i][j] < {}

for each occurrence X of E; in program do {
DF _phis[i] + DF_phis[i] U DF+(X)
for each variable occurrence V in X do
if (V is defined by ¢) {
j < index of V in X
Set_var_phis(Phi(V), i, j)

}

for each expression F; do {
for each variable j in E; do
DF _phis[i] < DF_phis[i] U Var_phis[i][j]
insert ®’s for E; according to DF_phis[i]

end ®-Insertion

procedure Set_var_phis(phi, i, j)
if (phi ¢ Var phisfil[j) {
Var_phis(i][j] + Var_phisfi][j] U {phi}
for each operand V in phi do
if (V is defined by ¢)
Set_var_phis(Phi(V), i, j)

end Set_var_phis

Figure 4: Algorithm for ®-Insertion

There are three kinds of occurrences of expressions in
the program: (1) the expressions in the original program,
which we call real occurrences; (2) the ®’s inserted in the
®-Insertion step; and (3) ® operands, which are regarded
as occurring at the exits of the predecessor nodes of the
corresponding edges. The Rename algorithm performs the
following steps upon encountering an occurrence g of the
expression E;. If g is a ®, we assign ¢ a new version. Oth-
erwise, we check the current version of every variable in E;
(é.e., the version on the top of each variable’s rename stack)
against the version of the corresponding variable in the oc-
currence on the top of E;’s rename stack. If all the variable
versions match, we assign ¢ the same version as the top of
E;’s stack. If any of the variable versions does not match,
we have two cases: (a) if ¢ is a real occurrence, we assign
q a new version; (b) if ¢ is a ® operand, we assign the spe-
cial version L to that ® operand to denote that the value
of E; is unavailable at that point. Finally, we push ¢ on
E;’s stack and proceed. Fig. 5 shows the dense SSA graph
that forms after h in our example has been renamed. This
expression renaming technique also takes advantage of the
SSA representation of the program variables.

The remaining steps of the SSAPRE algorithm rely on
the fact that ®’s are placed only where E; is partially an-
ticipated, (i.e., there is no dead @ in the SSA graph of h).
Dead @’s can efficiently be identified by applying the stan-
dard SSA-based dead store elimination algorithm [CFR*91]
on the SSA graph formed after renaming. From here on, we
assume that only live ®’s are represented in the SSA form
of h.

LEMMA 2 (Correctness of version renaming) If two occur-
rences are assigned the same version by Rename, the expres-
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Figure 5: The dense SSA graph for a + b

siton has the same value at those two occurrences.

Proof: This lemma follows directly from the fact that the
Rename step assigns the same version to two occurrences of
an expression E; only if all the SSA versions of their expres-
sion operands match. We appeal to the single-assignment
property and the correctness of the SSA renaming algorithm
for variables [CFR*91] to complete the proof. a

LEMMA 3 (Versions capture all the redundancy) If two oc-
currences Pz, 1, are assigned versions x, y by Rename,
ezactly one of the following holds:

e no control flow path can reach from . to 1, without
passing through a real (i.e., non-¢) assignment to an
operand of the expression (meaning that there is no
redundancy between the occurrences); or

o there is a path (possibly empty, in which case x = y)
in the SSA graph of use-def arcs from y to x (implying
that any redundancy between 1, and 1y is exposed to
the algorithm,).

Proof: Suppose there is a control flow path P from 1, to
1y that does not pass through any assignment to an operand
of the expression. Our proof will proceed by induction on
the number of @’s for the expression traversed by P.

If P encounters no ®, x = y establishing the basis for our
induction. If P hits at least one @, the last ® on P defines
1y. Now we apply the induction hypothesis to that part of
P up to the corresponding operand of that ®. O

4.3 The DownSafety Step

One criterion required for PRE to insert a computation is
that the computation is down-safe (or anticipated) at the



point of insertion [KRS94a]. In the dense SSA graph con-
structed by Rename, each node either represents a real oc-
currence of the expression or is a ®. It can be shown that
SSAPRE insertions are only necessary at ®’s, so down-safety
only needs to be computed for them. Using the SSA graph,
down-safety can be sparsely computed by backward propa-
gation along the use-def edges.

A ® is not down-safe if there is a control flow path from
that @ along which the expression is not evaluated before
program exit or before being altered by redefinition of one of
its variables. Except for loops with no exit, this can happen
only due to one of the following cases: (a) there is a path to
exit along which the ® result version is not used; or (b) there
is a path to exit along which the only use of the ® result ver-
sion is as an operand of a @ that is not down-safe. Case (a)
represents the initialization for our backward propagation
of down-safety; all other ®’s are initially marked down_safe.
DownSafety propagation is based on case (b). Since a real
occurrence of the expression blocks the case (b) propagation,
the algorithm marks each ® operand with a flag has_real_use
when the path to the ® operand crosses a real occurrence of
the same version of the expression.

It is convenient to perform initialization of the case (a)
down_safe and computation of the has_real_use flags during
a dominator-tree preorder pass over the SSA graph. Since
Rename conducts such a pass, we can include these calcu-
lations in the Rename step with minimal overhead. Ini-
tially, all down_safe flags are true and all has_real use flags
are false. When Rename assigns a new version to a real
occurrence of expression E; or encounters a program exit,
it examines the occurrence on the top of E;’s stack before
pushing the current occurrence. If the top of stack is a @
occurrence, Rename clears that ®’s down_safe flag because
the version it defines is not used along the path to the cur-
rent occurrence (or exit). When Rename assigns a version
to a ® operand, it sets that operand’s has_real_use flag if
and only if a real occurrence for the same version appears
at the top of the rename stack.

Fig. 6 gives the DownSafety propagation algorithm.

LEMMA 4 (Correctness of downsafe) A @ is marked
down_safe after DownSafety if and only if the expression
is fully anticipated at that ®.

Proof: We first note that each & marked not down_safe
during Rename is indeed not down-safe. The SSA renaming
algorithm has the property that every definition dominates
all its uses. Suppose that a ® appears on the top of the
stack when Rename creates a new version or encounters a
program exit. In the case where a program exit is encoun-
tered, the ® is obviously not down-safe because there is a
path in the dominator tree from the ® to exit containing no
use of the ®. Similarly, if Rename assigns a new version to a
real occurrence, it does so because some expression operand
v has a different version in the current occurrence from its
version at the ®. Therefore there exists a path in the domi-
nator tree from the ® to the current occurrence along which
there is an assignment to v. Minimality of the input HSSA
program implies, then, that any path from the ® to the
current occurrence and continuing to a program exit must
encounter an assignment to v before encountering an evalu-
ation of the expression. Therefore the expression is not fully
anticipated at the ®.

Next we make the observation that any ® whose
down_safe flag gets cleared during the DownSafety step is
not down-safe, since there is a path in the SSA use-def graph

procedure DownSafety
for each expr-® F' in program do
if (not down_safe(F))
for each operand opnd of F do
Reset_downsafe(opnd)
end DownSafety

procedure Reset_downsafe(X)
if (has_real_use(X) or X not defined by @)
return
F <+ ® that defines X
if (not down_safe(F))
return
down_safe(F) <« false
for each operand opnd of F' do
Reset_downsafe(opnd)
end Reset_downsafe

Figure 6: Algorithm for DownSafety

from an unused version to that & where no arc in the path
crosses any real use of the expression value. Indeed one such
path appears on the recursion stack of the Reset_downsafe
procedure at the time the down_safe flag is cleared.
Finally, we need to show that all the ®’s that are not
down-safe are so marked at the end of DownSafety. This
fact is a straightforward property of the depth-first search
propagation performed by Reset_downsafe. O

4.4 The WillBeAvail Step

The WillBeAvail step has the task of predicting whether
the expression will be available at each ® result following
insertions for PRE. In the Finalize step, insertions will be
performed at incoming edges corresponding to ® operands
at which the expression will not be available (without that
insertion), but the ®’s will_be_avail predicate is true.

The WillBeAvail step consists of two forward propaga-
tion passes performed sequentially, in which we conduct sim-
ple reachability search in the SSA graph for each expression.
The first pass computes the can_be_avail predicate for each
® by first initializing it to true for all ®’s. It then begins
with the “boundary” set of ®’s at which the expression can-
not be made available by any down-safe set of insertions.
These are ®’s that do not satisfy the down_safe predicate
and have at least one |-valued operand. The can_be_avail
predicate is set to false and the false value is propagated
from such nodes to others that are not down-safe and that
are reachable along def-use arcs in the SSA graph, excluding
arcs at which has_real_use is true. ® operands defined by
®’s that are not can_be_avail are set to L along the way. Af-
ter this propagation step, can_be_avail is false for a ® if and
only if no down-safe placement of computations can make
the expression available.

The ®’s where can_be_avail is true together designate
the range of down-safe program areas for insertion of the
expression, plus areas that are not down-safe but where the
expression is fully available in the original program.?

The second pass works within the region computed by
the first pass to determine the ®’s where the expression will
be available following the insertions we will actually make,
which implicitly determines the latest (and final) insertion

3The entry points to this region (the L-valued ® operands) can
be thought of as SSAPRE’s earliest insertion points. These may be
later than the earliest insertion points in [KRS92] and [DS93] because
their bit-vector schemes allow earliest insertion at non-merge blocks.



points. The second pass is analogous to the computation of
the predicate LATERIN in [DS93]. It works by propagat-
ing the later predicate, which it initializes to true wherever
can_be_avail is true. It then begins with the real occur-
rences of the expression in the program, and propagates the
false value of later forward to those points beyond which
insertions cannot be postponed (moved downward) without
introducing unnecessary new redundancy.

At the end of the second pass, will_be_avail for a ® is
given by:

will_be_avail = can_be_avail A\ —later.

Fig. 5 shows the values of down_safe (ds), can_be_avail (cba),
later and will_be_avail (wba) for the program example at
each ® for h. For convenience, we define a predicate to indi-
cate those ® operands where we will perform insertions: We
say insert holds for a ® operand if and only if the following
hold:

e the ® satisfies will_be_avail; and

e the operand is |, or has_real use is false for the
operand and the operand is defined by a ® that does
not satisfy will_be_avail.

Fig. 7 gives the WillBeAvail propagation algorithms.

As in [KRS92], we use the term placement to refer to the
set of points in the program where a particular expression’s
value is computed.

LEMMA 5 (Correctness of can_be_avail) A ® satisfies
can_be_avail if and only if some safe placement of insertions
makes the erpression available immediately after the ®.

Proof: Let F be a ® satisfying can_be_avail. If F satisfies
down_safe, the result is immediate because it is safe to in-
sert computations of the expression at each of F’s operands.
If F is not down-safe and satisfies can_be_avail, note that
the expression is available in the unoptimized program at
F' because there is no path to F' from a & with a 1-valued
operand along def-use arcs in the SSA graph.

Now let F' be a & that does not satisfy can_be_avail.
When the algorithm reset this can_be_avail flag, the recur-
sion stack of Reset_can_be_avail gives a path bearing witness
to the fact that no safe set of insertions can make the ex-
pression available at F'. O

LEMMA 6 (Correctness of later) A can_be_avail ® satisfies
later after WillBeAvail if and only if there exists a compu-
tationally optimal placement under which that ®’s result is
not available immediately after the ®.

Proof: The set of ®’s not satisfying later after WillBeAvail
is exactly the set of can_be_avail ®’s reachable along def-
use arcs in the SSA graph from has_real use operands of
can_be_avail ®’s. Let P be a path in the def-use SSA graph
from such a ® operand to a given expr-® F with later(F) =
false. We will prove by induction on the length of P that
F must be made available by any computationally optimal
placement.

If F is not down-safe, the fact that F' is can_be_avail
means all of F’s operands must be fully available in the
unoptimized program. They are therefore trivially available
under any computationally optimal placement, making the
result of F' available as well.

In the case where F' is down-safe, if P contains no arcs
there is a has_real_use operand of F'. Such an operand must

procedure Compute_can_be_avail
for each expr-® F' in program do
if (not down_safe(F) and
can_be_avail(F) and
3 an operand of F' that is L)
Reset_can_be_avail(F)
end Compute_can_be_avail

procedure Reset_can_be_avail(G)
can_be_avail(G) + false
for each expr-® F with operand opnd defined by G do
if (not has_real_use(opnd)) {
set that ® operand to L
if (not down_safe(F) and can_be_avail(F))
Reset_can_be_avail(F)

end Reset_can_be_avail

procedure Compute_later
for each expr-® F' in program do
later(F') « can_be_avail(F)
for each expr-® F' in program do
if (later(F)) and
3J an operand opnd of F' such that
(opnd # L and has_real_use(opnd)))
Reset_later(F)
end Compute_later

procedure Reset_later(G)
later(G) « false
for each expr-® F with operand opnd defined by G do
if (later(F'))
Reset_later(F)
end Reset_later

procedure WillBeAvail
Compute_can_be_avail
Compute_later

end WillBeAvail

Figure 7: Algorithm for WillBeAvail

be fully available in the optimized program, so any inser-
tion below F' would be redundant with that operand, con-
tradicting computational optimality. Since F' is down-safe,
that operand is already redundant with real occurrence(s)
in the unoptimized program and any computationally opti-
mal placement must eliminate that redundancy. The way
to accomplish this is to perform insertions that make the
expression fully available at F.

If F is down-safe and P contains at least one arc, we ap-
ply the induction hypothesis to the ® defining the operand
of F corresponding to the final arc on P to conclude that
that operand must be made available by any computation-
ally optimal placement. As a consequence, any computa-
tionally optimal placement must make F' available by the
same argument as in the basis step (previous paragraph).
O

The following lemma shows that the will_be_avail pred-
icate computed by WillBeAvail faithfully corresponds to
availability in the program after insertions are performed
for ® operands satisfying insert.

LEMMA 7 (Correctness of will_be_avail) The set of inser-
tions chosen by SSAPRE together with the set of real occur-
rences makes the erpression available immediately after a ®
if and only if that ® satisfies will_be_avail.



Proof: We establish the “if” direction with a simple induc-
tion proof showing that if there is some path leading to a
particular @ in the optimized program along which the ex-
pression is unavailable, that ® does not satisfy will_be_avail.
Let Q(k) be the following proposition:

For any expr-® F, if there is a path P(F)
of length k in the SSA def-use graph begin-
ning with 1, passing only through ®’s that are
not will_be_avail along arcs that do not satisfy
has_real_use V insert, and ending at F', F' is not
will_be_avail.

Q(0) follows directly from the fact that no insertion is
performed for any operand of F', since it is not marked
will_be_avail. The fact that F has a |-valued operand im-
plies that such an insertion would be required to make F
available.

Now to see Q(k) for k£ > 0, notice that Q(k — 1) implies
that the operand of F' corresponding to the final arc of P(F)
is defined by a ® that is not will_be_avail, and there is no real
occurrence of the expression on the path from that defining
® to the operand of F. Since we do not perform an insertion
for that operand, F' cannot satisfy will_be_avail.

To establish the “only if” direction, suppose expr-® F
does not satisfy will_be_avail. Either F' does not satisfy
can_be_avail or F satisfies later. In the former case, F is not
available in the optimized program because the insertions
performed by SSAPRE are down-safe. In the latter case,
F was not processed by Reset_Later, meaning that it is not
reachable along def-use arcs from a ® satisfying will_be_avail.
Therefore, insertion above F' would be required to make F'’s
result available, but F' is not will_be_avail so the algorithm
performs no such insertion. O

4.5 The Finalize Step

The Finalize step plays the role of transforming the SSA
graph for the hypothetical temporary h to the valid SSA
form that reflects insertions and in which no ® operand is
1. The Finalize step performs the following tasks:

e It decides for each real occurrence of the expression
whether it should be computed on the spot or reloaded
from the temporary. For each one that is computed,
it also decides whether the result should be saved to
the temporary. It sets two flags, reload and save, to
represent these two pieces of information.

e For ®’s where will_be_avail is true, insertions are per-
formed at the incoming edges that correspond to @
operands at which the expression is not available.

e Expression ®’s whose will_be_avail predicate is true
may become ¢’s for . ®’s that are not will_be_avail
will not be part of the SSA form for ¢, and links from
will_be_avail ®’s that reference them are fixed up to
refer to other (real or inserted) occurrences.

o Extraneous ®’s are removed.

Finalize creates a table Avail def; (for available definitions)
for each expression E; to perform the first three of the above
tasks. The indices into this table are the SSA versions for
E;’s hypothetical temporary h. Avail def;[z] will point to
the defining occurrence of E; for h;, which must be either:
(a) a real occurrence, or (b) a ® for which will_be_avail is
true. Finalize performs a preorder traversal of the domina-
tor tree of the program control flow graph. In the course
of this traversal it will visit each defining occurrence whose

value will be saved to a version of the temporary, t,, before
it visits the occurrences that will reference t,; such a ref-
erence is either: (a) a redundant computation that will be
replaced by a reload of ¢, or (b) a use of h; as a ® operand
that will become a use of ¢, as a ¢ operand. Although the
processing order of Finalize is modeled after the standard
SSA rename step [CFR191], Finalize does not require any
renaming stack because SSA versions have already been as-
signed.

In the course of its traversal, Finalize will process occur-
rences as follows:

1. & — If its will_be_avail is false, nothing needs to be
done. (An example of this is the ® in block 3 of our
running example. See Fig. 5.) Otherwise, we must be
visiting h, for the first time. Set Avail_def;[z] to this
.

2. Real occurrence of E; — If Avail defj[z] is L, we are
visiting hg the first time. If Avail defi[z] is set, but
that occurrence does not dominate the current occur-
rence, the current occurrence is also a definition of h;.
(An example of this latter case is the first h2 in block 9
of our example.) In both of these cases, we update
Avail_def;[z] to the current occurrence. Otherwise, the
current occurrence is a use of h,, and we set the save
flag in the occurrence pointed to by Avail_def;[z] and
the reload flag of the current occurrence.

3. Operand of ® in a successor block? — If will_be_avail
of the ® is false, nothing needs to be done. Otherwise
if the operand satisfies insert, (e.g., operand hs in the
® at block 6 of our example), insert a computation
of E; at the exit of the current block. If will_be_avail
holds but the operand does not satisfy insert, set the
save flag in the occurrence pointed to by Avail_def;[z]
(which cannot be L), and update that ® operand to re-
fer to Avail_def;[z] (e.g. operand hg in the ® at block 8
of our example).

The full algorithm to perform the above tasks is given in
Fig. 8.

The removal of extraneous ®’s, or SSA minimization,
for h is not a necessary task as far as PRE is concerned.
However, the extraneous ®’s take up storage in the program
representation, and may affect the efficiency of other SSA-
based optimizations to be applied after PRE. Removing
extraneous ®’s also requires changing their uses to refer to
their replacing versions. SSA minimization can be imple-
mented as a variant of the ¢ insertion step in SSA construc-
tion [CFR191, JPP94, SG95]. We initially mark all the ®’s
as being extraneous. Applying the ¢ insertion algorithm, we
can find and mark the ®’s that are not extraneous based on
the iterated dominance frontier of the set of real assignments
to h in the program (i.e., real occurrences with the save bit
set plus the inserted computations). We then pass over all
the extraneous ®’s to determine a replacing version for each
one. Whenever an extraneous ® defines version h, and has
an operand using hy that is not defined by an extraneous @,
y is the replacing version for . From such a ® we propagate
the replacing version through all its uses: once the replacing
version for a ® is known, the replacing version for every use
of that ® becomes known (the replacing version of each use
is the same as the replacing version of the ®) and we prop-
agate recursively to all uses of that ®. It straightforward

4Recall that ® operands are considered as occurring at their cor-
responding predecessor blocks.



procedure Finalize_visit(block)
for each occurrence X of E; in block do {

save(X) « false

reload(X) < false

x  version(X)

if (Xis®) {

if (will_be_avail(X))
Avail_def[i][z] + X

else if (Avail_def[i][z] is L or
Avail_def[i][z] does not dominate X)
Avail_def[i][z] + X
else if (Avail_def[i][x] is real) {
save(Avail_def[i][x]) < true
reload(X) <« true

}
for each S in Succ(block) do {
j < WhichPred(S, block)
for each expr-® F in S do
if (will_be_avail(F)) {
1 < WhichExpr(F)
if (j®Poperand of F satisfies insert) {
insert E; at the exit of block

set jthoperand of F' to inserted occurrence

else {
T version(jthoperand of F)
if (Avail_def[i][z] is real) {
save(Avail_def[i][z]) + true
set j™Poperand of F to Avail_def[i][z]

}
}

for each K in Children(DT, block) do
Finalize_visit(K)
end Finalize_visit

procedure Finalize
for each version z of F; in program do
Avail_def[i][z] + L
Finalize_visit(Root(DT))
end Finalize

Figure 8: Algorithm for Finalize

to see that this method replaces all references to extraneous
®’s by references to non-extraneous occurrences.

Fig. 9 shows our example program at the end of the Fi-
nalize step.

LEMMA 8 (Correctness of save/reload) At the point of any
reload, the temporary contains the value of the expression.

Proof: This lemma follows directly from the Finalize algo-
rithm and from the fact that Rename assigns versions while
traversing the SSA graph in dominator-tree preorder. In
particular, Finalize ensures directly that each reload is dom-
inated by its available definition. Because the live ranges of
different versions of A do not overlap, each reloaded occur-
rence must refer to its available definition. a

LEMMA 9 (Optimality of reload) The optimized program
does not compute the exrpression at any point where it s
fully available.
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Figure 9: Program after Finalize

Proof: It is straightforward to check that the optimized
program reloads the expression value for any occurrence de-
fined by a ® satisfying will_be_avail, and it reloads the ex-
pression value for any occurrence dominated by another real
occurrence of the same version. Therefore we need only note
that will_be_avail accurately reflects availability in the opti-
mized program (by Lemma 7) and that by the definition of
insert we only insert for ® operands where the insertion is
required to achieve availability. ]

4.6 The CodeMotion Step

Once the hypothetical temporary h has been put into valid
SSA form, the only remaining task is to update the SSA
program representation to reflect the results of PRE. This
involves introducing the real temporary ¢ for the purpose of
eliminating redundant computations. This task is straight-
forward due to the fact that h is already in valid SSA form.
The SSA form of ¢ is a subgraph of the SSA form of h, since
defs of h (including ®’s) with no use are omitted.

The CodeMotion step walks over the SSA graph of h.
At a real occurrence, if save is true, it generates a save of
the result of the computation into a new version of ¢. If
reload is true, it replaces the computation by a use of t.
At an inserted occurrence, it saves the value of the inserted
computation into a new version of . At a ® of h, it generates
a corresponding ¢ for ¢. Fig. 10 shows our example program
at the end of the CodeMotion step.
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Figure 10: Program after CodeMotion
5 Theoretical Results

In this section we derive our main results about SSAPRE
from the lemmas already given.

THEOREM 1 SSAPRE chooses a safe placement of compu-
tations; i.e., along any path from entry to exit exactly the
same values are computed in the optimized program as in
the original program.

Proof: Since insertions take place only at points satisfy-
ing down_safe, this theorem follows directly from Lemma 4.
O

THEOREM 2 SSAPRE generates a reload of the correct ez-
pression value from temporary at a real occurrence point if
and only if the expression value is available at that point in
the optimized program.

Proof: This theorem follows from the fact that reloads are
generated only when the reloaded occurrence is dominated
by a will_be_avail ® of the same version (in which case we
appeal to Lemma, 7 for the availability of the expression at
the reload point), or by a real occurrence of the same version
that is marked save by Finalize. O

THEOREM 3 SSAPRE generates a save to temporary at a
real occurrence or insertion point if and only if the following
hold:

o the expression value is unavailable (in the optimized
program,) just before that point, and

o the expression value is partially anticipated just after
that point (i.e., there will be a use of the saved value).

Proof: This theorem follows directly from Lemma 9 and
from the fact that the Finalize algorithm sets the save flag

for a real occurrence only when that occurrence dominates
a use of the same version by another real occurrence or by
a ® operand. In the former case the result is immediate,
and in the latter case we need only appeal to the fact that
the expression is partially anticipated at every ® remaining
after the Rename step. m|

THEOREM 4 SSAPRE chooses a computationally optimal
placement; i.e., no safe placement can result in fewer com-
putations along any path from entry to exit in the control
flow graph.

Proof: We need only show that any redundancy remain-
ing in the optimized program cannot be eliminated by any
safe placement of computations. Suppose P is a control flow
path in the optimized program leading from one computa-
tion, 91, of the expression to another computation, 12, of
the same expression with no assignment to any operand of
the expression along P. By Theorem 2, the expression value
cannot be available just before 12, so 12 is not dominated
by a real occurrence of the same version (by Lemma 9) nor
is it defined by a will_be_avail ® (by Lemma 7). Because
11 and 12 do not have the same version and there is no as-
signment to any expression operand along P, the definition
of 12’s version must lie on P, and since it cannot be a real
occurrence nor a will_be_avail ®, it must be a ® that is not
will_be_avail. Such a ® cannot satisfy later because one of
its operands is reached by %1, so it must not be down-safe.
So no safe set of insertions could make > available while
eliminating a computation from P. a

THEOREM 5 SSAPRE chooses alifetime-optimal placement;
specifically, if p is the point just after an insertion made by
SSAPRE and C denotes any computationally optimal place-
ment, C makes the expression fully available at p.

Proof: This theorem is a direct consequence of Lemma 6
and Theorem 4. O

THEOREM 6 SSAPRE produces minimal SSA form for the
generated temporary.

Proof: This minimality result follows directly from the
correctness of the dominance-frontier ¢-insertion algorithm.
Each ® remaining after Finalize is justified by being on the
iterated dominance frontier of some real or inserted occur-
rence that will be saved to the temporary. a

6 Practical Implementation

Since SSAPRE is a sparse algorithm, an implementation
can reduce the maximum storage needed to optimize all the
expressions in the program by finishing the work on each
expression before moving on to the next one. Under this
scheme, the different lexically identical expressions that need
to be worked on by SSAPRE are maintained as a worklist. If
the expressions in the program are represented in tree form,
we can also exploit the nesting relationship in expression
trees to reduce the overhead in the optimization of large
expressions. There is also a more efficient algorithm for
performing the Rename step of SSAPRE. In this section, we
give a brief description of these implementation techniques.

6.1 Worklist-driven PRE

Under worklist-driven PRE, we add an initial pass, Collect-
Occurrences, that scans the entire program and creates a
worklist for all the expressions in the program that need to



be worked on by SSAPRE. For each element of the work-
list, we represent its occurrences in the program as a set
of occurrence nodes. Each occurrence node provides enough
information to pinpoint the location of the occurrence in the
program. Collect-Occurrences is the only pass that needs to
look at the entire program. The six steps of SSAPRE oper-
ate on each expression based only on its occurrence nodes.
The intermediate storage needed to work on each expression
can be reclaimed when working on the next one.

Collect-Occurrences enters only first order expressions
into the worklist. First order expressions contain only one
operator. For example, in the expression (a +b) —c, a + b
is the first order expression and is entered into the worklist,
but (a+b) —c is not initially entered into the worklist. After
SSAPRE has worked on a + b, any redundant occurrence of
a + b will be replaced by a temporary ¢. If PRE on a + b
changes (a + b) — ¢ to t — ¢, the CodeMotion step will en-
ter the new first order expression ¢t — ¢ as a new member
of the worklist. Redundant occurrences of ¢ — ¢, and hence
redundancies in (a+b) —¢, will be replaced when ¢t — ¢ is pro-
cessed. If the expression (a+b) —c does not yield ¢t — ¢ when
a + b is being worked on, a + b is not redundant, implying
that (a + b) — ¢ has no redundancy and can be skipped by
SSAPRE. This approach deals cleanly with the interaction
between the optimizations of nested expressions and gains
efficiency by ignoring the higher order expressions that ex-
hibit no redundancy.® This strategy is hard to implement
in bit-vector PRE, which typically works on all expressions
in the program simultaneously in order to take advantage of
the parallelism inherent in bit-vector operations.

In manipulating the sparse representation of each expres-
sion, some steps in the algorithm need to visit the occurrence
nodes in an order corresponding to a preorder traversal of
the dominator tree of the control flow graph. For this pur-
pose, we maintain the occurrence nodes for a given expres-
sion in the order of this preorder traversal of the dominator
tree. As we mentioned in Section 4.2, there are three kinds
of occurrences. Collect-Occurrences only creates the real oc-
currence nodes. The ®-Insertion step inserts new occurrence
nodes that represent ®’s and ® operands. Under worklist-
driven PRE, we need a fourth kind of occurrence nodes to
indicate when we reach the program exits in the Rename
step. These exzit occurrence nodes can be represented just
once and shared by all expressions. Fig. 11 is a flow chart
for our SSAPRE implementation.

6.2 Delayed Renaming

The Rename algorithm described in Section 4.2 maintains
version stacks for all the variables in the program in addition
to the version stacks for the expressions. Apart from taking
up additional storage, updating the variable stacks requires
keeping track of when the values of the variables change,
which may incur significant overhead. The algorithm is not
in line with sparseness, because in a sparse algorithm, the
time spent in optimizing an expression should not be affected
by the number of times its variables are redefined. Also, un-
der the worklist-driven implementation of SSAPRE, we can
no longer pass over the entire program in the Rename step,
because that would imply passing over the entire program
once for every expression in the program. The solution of

5For higher order expressions that have redundancies, this ap-
proach also has the secondary effect of converting the expression tree
essentially to triplet form.

input HSSA program

| Collect-Occurrences |

initial worklist

O-Insertion

Rename

Y
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DownSafety
WillBeAvail

Finalize

Y
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¥

CodeMotion
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add new exprs
to worklist.)

output HSSA program

Figure 11: SSAPRE implementation flow chart

both of these problems is to use a more efficient algorithm
for renaming called delayed renaming.

Recall the purpose of the variable stacks in the Rename
step is to enable us to determine when the value of an avail-
able expression is no longer current by checking if the ver-
sions of all the variables are the same as the current versions.
At a real occurrence of the expression, we do not have to rely
on the variable stacks, because the current versions of all its
variables are represented in the expression. We only need
the variable stacks when renaming ® operands.

To implement delayed renaming, the Rename step is re-
placed by two separate passes. The first pass, Rename-1, is
the same as Rename, except that it does not use any vari-
able stack. At a ® operand, it optimistically assumes that its
version is the version on top of the expression stack. Thus,
it can perform all its work based on the occurrence nodes
of the expression. Rename-1 computes an initial version of
the SSA graph for h that is optimistic and not entirely cor-
rect. The correct renaming of ® operands is delayed to the
second pass, Rename-2, which relies on seeing a later real
occurrence of the expression to determine the current ver-
sions of the variables. Seeing a later real occurrence implies
that at the earlier ®, the expression is partially anticipated.
Thus, the versions of the ® operands are fixed up only for
these ®’s.

Rename-2 works according to a worklist built for it by
Rename-1, which contains all the real occurrences that are
defined by ®’s. From the versions of the variables at the
merge block of a @, it determines the versions of the variables
at each predecessor block based on the presence or absence
of ¢’s for the variables at that merge block. If they are
different from the versions assumed at the ® operand in
the Rename-1 pass, Rename-2 invalidates the & operand by



def at current condition for
Rule | top of | occurrence identical
stack X h-version
1 real real all corresponding variables
2 real ® operand have same versions
3 P real defs of all variables in
4 P P operand X dominate the ®

Table 1: Assigning h-versions in Delayed Renaming

resetting it to L. Otherwise, the ® operand renamed by
Rename-1 is correct. If the ® operand is also defined by @,
it is added to the worklist so that the process can continue
up the SSA graph. For example, Rename-1 will initially set
the second operand of the ® for h in block 8 of Fig. 5 to hs.
Rename-2 resets it to L.

Table 1 gives the rules for deciding when two occurrences
should be assigned the same h-version in the absence of the
variable stacks. Rules 1 and 3 are applied in Rename-1,
while rules 2 and 4 are applied in Rename-2.

An additional advantage of delayed renaming is that it
allows us to determine the ®’s that are not live without per-
forming a separate dead store elimination phase. In delayed
renaming, only the operands at ®’s at which the expression
is partially anticipated are fixed up. The remaining ®’s cor-
respond to dead ®’s, and they can be marked for deletion.

7 Analysis

While the formulation of the optimal code motion algorithm
in SSAPRE is self-contained, we can gain additional insight
by comparing SSAPRE with a slotwise implementation of
lazy code motion. We can regard the ®-Insertion and Re-
name steps to construct the SSA graph for the hypothetical
temporary as corresponding to the initialization of data flow
information; these two steps are faster in SSAPRE because
we take full advantage of the SSA form of the input pro-
gram. While down-safety corresponds to the same attribute
in lazy code motion, the correlation in the part that involves
forward propagation of data flow information is less direct.
Since we have shown that our algorithm yields the same
results as lazy code motion, it is quite plausible that the
forward propagation parts in SSAPRE and a slotwise im-
plementation of lazy code motion can be proven essentially
equivalent. But because slotwise analysis propagates with
respect to the control flow graph and SSAPRE propagates
with respect to the sparse SSA graph, the propagation in
SSAPRE will take fewer steps. The SSA graph of the hypo-
thetical temporary also allows SSAPRE to easily maintain
the generated temporary in SSA form.

The complexities of the various steps in SSAPRE can be
easily established. Assuming the implementation described
in Section 6, the Rename, DownSafety, WillBeAvail, Final-
ize and CodeMotion steps are all linear with respect to the
sum of the number of nodes (v) and edges (e) in the SSA
graph. The ®-Insertion step is Q(v>) for insertion at domi-
nation frontiers, but as we explained in Section 4.1, there are
linear-time SSA ¢-placement algorithms that can be used
to lower it to O(e). The second kind of ® insertion due
to variable ¢’s is also linear using our demand-driven algo-
rithm. Thus, for a program of size n, SSAPRE’s total time
is O(n(E +V)), where E and V are the number of edges
and nodes in the control flow graph respectively. This is
pleasing given that SSAPRE replaces both the solution of

data flow equations and the initialization of the local data
flow attributes in bit-vector-based PRE.

8 Measurements

We have implemented SSAPRE in WOPT, the global
optimizer in the Silicon Graphics MIPSpro Compilers. The
optimizer uses a variant of SSA called HSSA as its internal
program representation [CCL196]. The optimizer had used
the bit-vector-based Morel and Renvoise algorithm [Cho83]
to perform PRE, while it uses known SSA-based algorithms
for its other optimizations. In Release 7.2 of the compiler,
we have re-implemented the PRE phase using SSAPRE, in-
corporating the techniques we described in Section 6. In this
section, we compare their performance differences using the
SPECint95 and SPECfp95 benchmark suites.

In terms of optimization results, measured by the run-
ning time of the benchmarks, the differences between the two
implementations of PRE are not noticeable. We are more in-
terested in comparing the optimization efficiencies between
the sparse approach and the bit-vector approach. Both im-
plementations of PRE start out with an SSA representation
of the program. The bit-vector-based PRE starts by deter-
mining the local attributes and setting up the bit vectors for
data flow analyses. Our bit vectors are represented as arrays
of 64-bit words, and their operations are very efficient. The
bit-vector-based PRE does not update the SSA representa-
tion of the program; instead it encodes the effects of PRE in
bit vector form until it is ready to emit the output program.
Our timing for the bit-vector-based PRE includes only the
local attributes phase and the solution time of the PRE data
flow equations. Correspondingly, we omit the CodeMotion
step from the SSAPRE timing and include only the Collect-
Occurrences pass and the first five SSAPRE steps. Table 2
gives our timing results as measured on a 195 MHz R10000
Silicon Graphics Power Challenge. The benchmarks were
compiled under the optimization level -O2, which does not
invoke procedure inlining.

The measurements in Table 2 show widely different re-
sults across the various benchmarks. In the SPECint95
benchmarks, SSAPRE ranges from 65% faster in perl to
29% slower in go. In the SPECfp95 benchmarks, SSAPRE
is usually slower, sometimes by up to 2.8 times, as in the
case of mgrid. Without examining the sizes and character-
istics of each benchmark’s procedures in detail, we cannot
characterize from these measurement results the situations
in which our SSAPRE implementation is superior to our bit-
vector implementation. Even so, we see that the efficiency
of sparse implementation stands out mainly in large proce-
dures. In small procedures, a sparse graph cannot be much
simpler than the control flow graph, so it is much harder to
beat the performance of bit vectors that process 64 expres-
sions at a time. The advantage of sparse implementations
increases with procedure size. In large procedures, many
expressions do not appear throughout the procedure, and
their sparse representations are much smaller compared to
the control flow graph.

Despite the strong bias towards bit-vector-based PRE
being faster in our set of measurements, we think SSAPRE
is very promising. The time complexity of collecting local
attributes is Q(n®). A number of techniques contribute to
speeding up bit-vector data flow analysis, but there is lit-
tle promise of overcoming the cubic complexity of local at-
tribute collection in the bit-vector approach. As data flow



[ SPECint95 Benchmarks | go | m88ksim | gcc | compress | li | ijpeg | perl [ vortex |
Bit-vector PRE (T1) 116900 4850 886360 100 12950 10340 98840 62950
SSAPRE (T2) 151260 4440 339160 60 5090 11200 34970 53000
Ratio T2/T1 1.293 0.915 0.382 0.600 0.393 1.083 0.353 0.841

SPECfp95 Benchmarks [| tomcatv] swim [ su2cor | hydro2d| mgrid | applu [ turb3d [ apsi [ fpppp | wave5 |

Bit-vector PRE (T1) 40 170 500 7080 500 5060 2420 | 37930 1450 | 94150
SSAPRE (T2) 60 400 700 8780 1400 9450 5000 | 93960 1980 | 85800
Ratio T2/T1 1.500 2.352 1.399 1.240 2.799 1.867 2.066 2.477 1.365 0.911

Table 2: Time (in msec.) spent in Partial Redundancy Elimination in compiling SPECint95 and SPECfp95

analysis have sped up, the time spent collecting local at-
tributes has come to dominate: our bit-vector-based PRE
spends 51% of its time in its local attributes collection phase
while optimizing our benchmarks. Because of the cubic com-
plexity, optimization efficiency is more of an issue in large
procedures. With the trend towards more inlining during
compilation, large procedures will be more commonplace,
and the efficiency advantages of sparse implementation will
become more obvious.

There is still work to be done in tuning the implementa-
tion of SSAPRE. Using a characterization of the common
sizes and forms of SSA graphs of the hypothetical temporary,
we expect to improve the implementation of many parts of
the algorithm to speed up SSAPRE’s processing. Investi-
gation into SSAPRE’s wide compile-time performance dif-
ferences relative to bit-vector-based PRE may offer insights
that lead to more efficient implementation.

9 Conclusion and Further Work

The SSAPRE algorithm presented in this paper performs
PRE while taking full advantage of the SSA form in the in-
put program and within its operation. It incorporates the
advantages shared by all the other SSA-based optimization
techniques: no separate phase to collect local attributes, no
data flow analysis involving bit vectors, sparse representa-
tion, sparse computation of global attributes, and unified
handling of each optimization’s global and local forms. In
actual implementation, by working on one expression at a
time, we can also lower the maximum storage requirement
needed to optimize all the expressions in the program, and
also exploit the nesting relationship in expression trees to
speed up the optimization of large expressions.

SSAPRE enables PRE to be seamlessly integrated into
a global optimizer that uses SSA as its internal represen-
tation. Because the SSA form is updated as optimization
progresses, optimizations can be re-invoked as needed with-
out incurring the cost of repeatedly rebuilding SSA. From
an engineering point of view, SSAPRE permits a cohesive
software implementation by making SSA and sparseness the
theme throughout the optimizer.

Previous uses of SSA were directed at problems related to
variables. SSAPRE represents the first use of SSA to solve
data flow problems related to expressions or operations in
the program. This work shows that data flow problems for
expressions can be modeled in SSA form by introducing hy-
pothetical temporaries that store the values of expressions.
Such an approach opens up new ways to solve many data
flow problems by first formulating their solution in terms of
the SSA graph of the hypothetical temporary. Candidates
for this new approach are code hoisting and the elimination
of load and store redundancies [Cho88, KRS94b]. We intend

to pursue such work in the near future.

The SSAPRE approach can also incorporate techniques
developed in the context of classical PRE, such as the in-
tegration of strength reduction into the PRE optimization
phase [Cho83, Dha89, KRS93]. We currently have a working
prototype of SSAPRE that includes strength reduction and
linear function test replacement.

Processing expressions one at a time also allows other
possibilities for SSAPRE by customizing the handling of dif-
ferent types of expressions. For example, one might suppress
PRE for expressions that are branch conditions because the
branch instructions can evaluate the conditions without ex-
tra cost. Omne might also move selected loop-invariant op-
erations out of loops to points that are not down-safe be-
cause they will not raise exceptions. Since SSAPRE works
bottom-up with respect to an expression tree, it can reasso-
ciate the expression tree when no optimization opportunity
was found with the original form. This last possibility rep-
resents a different approach for addressing the code shape
issue in PRE discussed in [BC94]. We intend to report on
any interesting results in future publications.
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