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9 Normal Distribution

An important and ubiquitous continuous distribution is the Normal distribution
(also called the Gaussian). Normal distributions occur frequently in statistics,
economics, natural sciences, and social sciences. For example, IQs approximately
follow a Normal distribution. Men’s heights and weights are approximately
Normally distributed, as are women’s heights and weights. Part of what makes the
Normal distribution so relevant is the Central Limit Theorem (CLT; Section 9.4),
which says that the average of a large number of independent and identically
distributed (i.i.d.) quantities converges to a Normal. This explains, for example,
why the Binomial random variable (r.v.) has a Normal shape when the number
of coin flips is high. It also explains why noise (which is the mixture of many
independent factors) is typically Normally distributed.

9.1 Definition

Definition 9.1 A continuous r.v. 𝑋 follows a Normal or Gaussian distribution,
written 𝑋 ∼ Normal(𝜇,𝜎2), if 𝑋 has probability density function (p.d.f.) 𝑓𝑋 (𝑥)
of the form

𝑓𝑋 (𝑥) =
1
√

2𝜋𝜎
𝑒−

1
2 ( 𝑥−𝜇𝜎 )2 , −∞ < 𝑥 < ∞,

where 𝜎 > 0. The parameter 𝜇 is called the mean, and the parameter 𝜎 is
called the standard deviation.

Definition 9.2 𝑋 follows a standard Normal distribution if 𝑋 ∼ Normal(0, 1),
that is,

𝑓𝑋 (𝑥) =
1
√

2𝜋
𝑒−

1
2 𝑥

2
, −∞ < 𝑥 < ∞.

The Normal(𝜇,𝜎2) p.d.f. has a “bell” shape and is symmetric around 𝜇, as shown
in Figure 9.1. The fact that 𝑓𝑋 (𝑥) in Definition 9.1 is actually a density function
can be seen by proving that it integrates to 1. This integration involves a change
into polar coordinates (trust me, you do not want to see the gory details [71]).
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Figure 9.1 Normal(1, 1) p.d.f.

Theorem 9.3 shows that the parameters of the Normal distribution in fact repre-
sent its mean and variance.

Theorem 9.3 Let 𝑋 ∼ Normal(𝜇,𝜎2), then E [𝑋] = 𝜇 and Var(𝑋) = 𝜎2.

Proof: Because 𝑓𝑋 (𝑥) is symmetric around 𝜇, it is obvious that E [𝑋] = 𝜇.

Var(𝑋) =
∫ ∞

−∞
(𝑥 − 𝜇)2 𝑓𝑋 (𝑥)𝑑𝑥

=
1
√

2𝜋𝜎

∫ ∞

−∞
(𝑥 − 𝜇)2𝑒− 1

2 ( (𝑥−𝜇)/𝜎)
2
𝑑𝑥

=
𝜎2
√

2𝜋

∫ ∞

−∞
𝑦2𝑒−𝑦

2/2𝑑𝑦 (let 𝑦 = (𝑥 − 𝜇)/𝜎 and 𝑑𝑥 = 𝜎𝑑𝑦)

=
𝜎2
√

2𝜋

∫ ∞

−∞
𝑦 ·

(
𝑦𝑒−𝑦

2/2
)
𝑑𝑦

=
𝜎2
√

2𝜋

(
−𝑦𝑒−𝑦2/2

)���∞
−∞
+ 𝜎2
√

2𝜋

∫ ∞

−∞
𝑒−𝑦

2/2𝑑𝑦 (integration by parts)

=
𝜎2
√

2𝜋

∫ ∞

−∞
𝑒−𝑦

2/2𝑑𝑦

= 𝜎2.

The last line was obtained by using the fact that
1
√

2𝜋

∫ ∞

−∞
𝑒−𝑦

2/2𝑑𝑦 = 1,

because the integrand is the density function of the standard Normal. ■

One of the things that makes the Normal distribution challenging is that its
cumulative distribution function (c.d.f.) is not known in closed form. For the
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standard Normal, it is common to use the function Φ(·) to represent the c.d.f.,
but the value of Φ(𝑥) must be computed numerically. We will return to this point
in Section 9.3.

Definition 9.4 If 𝑋 ∼ Normal(0, 1), then the c.d.f. of 𝑋 is denoted by

Φ(𝑥) = 𝐹𝑋 (𝑥) = P {𝑋 ≤ 𝑥} = 1
√

2𝜋

∫ 𝑥

−∞
𝑒−𝑡

2/2𝑑𝑡.

9.2 Linear Transformation Property

The Normal distribution has a very particular property known as the “Linear
Transformation Property,” which says that if 𝑋 is a Normal r.v., and you take a
linear function of 𝑋 , then that new r.v. will also be distributed as a Normal. Note
that this property is not true for other distributions that we have seen, such as the
Exponential.

Theorem 9.5 (Linear Transformation Property) Let 𝑋 ∼ Normal(𝜇,𝜎2).
Let

𝑌 = 𝑎𝑋 + 𝑏,

where 𝑎 > 0 and 𝑏 ∈ R. Then, 𝑌 ∼ Normal(𝑎𝜇 + 𝑏, 𝑎2𝜎2).

Proof: Clearly E [𝑌 ] = 𝑎E [𝑋] + 𝑏 = 𝑎𝜇 + 𝑏 and Var(𝑌 ) = 𝑎2Var(𝑋) = 𝑎2𝜎2.
All that remains is to show that 𝑓𝑌 (𝑦) is Normally distributed.

Question: What do we want 𝑓𝑌 (𝑦) to look like?

Answer: We want to show that

𝑓𝑌 (𝑦) =
1

√
2𝜋(𝑎𝜎)

𝑒
− 1

2

(
𝑦−(𝑎𝜇+𝑏)

𝑎𝜎

)2

.

Question: Can we relate the p.d.f. of 𝑌 to the p.d.f. of 𝑋 as follows:

𝑓𝑌 (𝑦) = P {𝑌 = 𝑦} = P {𝑎𝑋 + 𝑏 = 𝑦} = P
{
𝑋 =

𝑦 − 𝑏
𝑎

}
= 𝑓𝑋

(
𝑦 − 𝑏
𝑎

)
?

Answer: The above is WRONG, because we can’t say that 𝑓𝑌 (𝑦) = P {𝑌 = 𝑦}. To
make this argument correctly, we need to go through the c.d.f., which represents
a valid probability.



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

9.3 The Cumulative Distribution Function 173

We relate the c.d.f. of 𝑌 to the c.d.f. of 𝑋 as follows:

𝐹𝑌 (𝑦) = P {𝑌 ≤ 𝑦} = P {𝑎𝑋 + 𝑏 ≤ 𝑦} = P
{
𝑋 ≤ 𝑦 − 𝑏

𝑎

}
= 𝐹𝑋

(
𝑦 − 𝑏
𝑎

)
.

We now differentiate both sides with respect to 𝑦:
𝑑

𝑑𝑦
𝐹𝑌 (𝑦) =

𝑑

𝑑𝑦

∫ 𝑦

−∞
𝑓𝑌 (𝑡)𝑑𝑡

FTC
= 𝑓𝑌 (𝑦)

𝑑

𝑑𝑦
𝐹𝑋

(
𝑦 − 𝑏
𝑎

)
=
𝑑

𝑑𝑦

∫ 𝑦−𝑏
𝑎

−∞
𝑓𝑋 (𝑡)𝑑𝑡

FTC
= 𝑓𝑋

(
𝑦 − 𝑏
𝑎

)
· 𝑑
𝑑𝑦

(
𝑦 − 𝑏
𝑎

)
=

1
𝑎
𝑓𝑋

(
𝑦 − 𝑏
𝑎

)
,

where FTC denotes the Fundamental Theorem of Calculus (Section 1.3).

Thus we have shown that

𝑓𝑌 (𝑦) =
1
𝑎
𝑓𝑋

(
𝑦 − 𝑏
𝑎

)
.

Evaluating this, we have

𝑓𝑌 (𝑦) =
1
𝑎
𝑓𝑋

(
𝑦 − 𝑏
𝑎

)
=

1
𝑎
√

2𝜋𝜎
𝑒−(

𝑦−𝑏
𝑎
−𝜇)2/2𝜎2

=
1

√
2𝜋(𝑎𝜎)

𝑒−(𝑦−𝑏−𝑎𝜇)
2/2𝑎2𝜎2

=
1

√
2𝜋(𝑎𝜎)

𝑒−(𝑦−(𝑏+𝑎𝜇) )
2/2𝑎2𝜎2

.

So 𝑓𝑌 (𝑦) is a Normal p.d.f. with mean 𝑎𝜇 + 𝑏 and variance 𝑎2𝜎2. ■

9.3 The Cumulative Distribution Function

As stated earlier, unfortunately we do not know how to compute the c.d.f. of
a Normal distribution. We must therefore use a table of numerically integrated
results for Φ(𝑦), such as that given in [82].1

Here is a snippet of the numerical table for Φ(𝑦):

1 In practice no one ever goes to the table anymore, because there are online calculators that will
compute this for you, e.g. see the “standard normal cdf calculator” from WolframAlpha.
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𝑦 0.5 1.0 1.5 2.0 2.5 3.0

Φ(𝑦) 0.6915 0.8413 0.9332 0.9772 0.9938 0.9987

Question: Looking at the table you see, for example, that Φ(1) = 0.8413. What
does this tell us about the probability that the standard Normal is within one
standard deviation of its mean?

Answer: Let 𝑌 ∼ Normal(0, 1). Since Φ(1) � 0.84, we know that P {𝑌 < 1} =
0.84. We want to know P {−1 < 𝑌 < 1}.

P {−1 < 𝑌 < 1} = P {𝑌 < 1} − P {𝑌 < −1}
= P {𝑌 < 1} − P {𝑌 > 1} (by symmetry)
= P {𝑌 < 1} − (1 − P {𝑌 < 1})
= 2P {𝑌 < 1} − 1
= 2Φ(1) − 1
� 2 · 0.84 − 1
= 0.68.

So with probability approximately 68%, we are within one standard deviation of
the mean.

Question: If𝑌 ∼ Normal(0, 1), what’s the probability that𝑌 is within 𝑘 standard
deviations of its mean?

Answer:

P {−𝑘 < 𝑌 < 𝑘} = 2Φ(𝑘) − 1. (9.1)

Equation (9.1) tells us the following useful facts:

• With probability≈ 68%, the Normal is within 1 standard deviation of its mean.
• With probability ≈ 95%, the Normal is within 2 standard deviations of its

mean.
• With probability ≈ 99.7%, the Normal is within 3 standard deviations of its

mean.

Question: The “useful facts” were expressed for a standard Normal. What if we
do not have a standard Normal?

Answer: We can convert a non-standard Normal into a standard Normal using



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

9.3 The Cumulative Distribution Function 175

the Linear Transformation Property. That is:

𝑋 ∼ Normal(𝜇,𝜎2) ⇐⇒ 𝑌 =
𝑋 − 𝜇
𝜎
∼ Normal(0, 1).

Thus, if 𝑌 ∼ Normal(0, 1), and 𝑋 ∼ Normal(𝜇,𝜎2), then the probability that 𝑋
deviates from its mean by less than 𝑘 standard deviations is:

P {−𝑘𝜎 < 𝑋 − 𝜇 < 𝑘𝜎} = P
{
−𝑘 < 𝑋 − 𝜇

𝜎
< 𝑘

}
= P {−𝑘 < 𝑌 < 𝑘} .

This point is summarized in Theorem 9.6.

Theorem 9.6 If 𝑋 ∼ Normal(𝜇,𝜎2), then the probability that 𝑋 deviates from
its mean by less than 𝑘 standard deviations is the same as the probability that
the standard Normal deviates from its mean by less than 𝑘 .

Theorem 9.6 illustrates why it is often easier to think in terms of standard
deviations than absolute values.

Question: Proponents of IQ testing will tell you that human intelligence (IQ) has
been shown to be Normally distributed with mean 100 and standard deviation
15. What fraction of people have an IQ greater than 130 (“the gifted cutoff”)?

Answer: We are looking for the fraction of people whose IQ is more than two
standard deviations above the mean. This is the same as the probability that the
standard Normal exceeds its mean by more than two standard deviations, which
is 1 −Φ(2) = 0.023. Thus only about 2.3% of people have an IQ above 130.

Other properties of the Normal distribution will be proven later in the book. A
particularly useful property is that the sum of two independent Normal distribu-
tions is Normally distributed.

Theorem 9.7 (Sum of two independent Normals) Let 𝑋 ∼ Normal(𝜇𝑥 ,𝜎2
𝑥).

Let 𝑌 ∼ Normal(𝜇𝑦 ,𝜎2
𝑦). Assume 𝑋 ⊥ 𝑌 . Let𝑊 = 𝑋 + 𝑌 . Then

𝑊 ∼ Normal(𝜇𝑥 + 𝜇𝑦 ,𝜎2
𝑥 + 𝜎2

𝑦).

Proof: This will be proven in Exercise 11.10 via Laplace transforms. ■
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9.4 Central Limit Theorem

Consider sampling the heights of 1000 individuals within the country and taking
that average. The CLT, which we define soon, says that this average will tend to
be Normally distributed. This would be true even if the distribution of individual
heights were not Normal. Likewise, the CLT would apply if we took the average
of a large number of Uniform random variables. It is this property that makes
the Normal distribution so important! We now state this more formally.

Let 𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑛 be independent and identically distributed random vari-
ables with some mean 𝜇 and variance 𝜎2. Note: We are not assuming that these
are Normally distributed random variables. In fact we are not even assuming that
they are necessarily continuous random variables – they may be discrete.

Let

𝑆𝑛 = 𝑋1 + 𝑋2 + · · · + 𝑋𝑛. (9.2)

Question: What are the mean and standard deviation of 𝑆𝑛?

Answer: E [𝑆𝑛] = 𝑛𝜇 and Var(𝑆𝑛) = 𝑛𝜎2. Thus std(𝑆𝑛) = 𝜎
√
𝑛.

Let

𝑍𝑛 =
𝑆𝑛 − 𝑛𝜇
𝜎
√
𝑛

.

Question: What are the mean and standard deviation of 𝑍𝑛?

Answer: 𝑍𝑛 has mean 0 and standard deviation 1.

Theorem 9.8 (Central Limit Theorem (CLT)) Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a se-
quence of i.i.d. random variables with common mean 𝜇 and finite variance 𝜎2,
and define

𝑆𝑛 =

𝑛∑︁
𝑖=1

𝑋𝑖 and 𝑍𝑛 =
𝑆𝑛 − 𝑛𝜇
𝜎
√
𝑛

.

Then the distribution of 𝑍𝑛 converges to the standard normal, Normal(0, 1), as
𝑛→∞. That is,

lim
𝑛→∞

P {𝑍𝑛 ≤ 𝑧} = Φ(𝑧) = 1
√

2𝜋

∫ 𝑧

−∞
𝑒−𝑥

2/2𝑑𝑥

for every 𝑧.
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Proof: Our proof uses Laplace transforms, so we defer it to Exercise 11.12. ■

It should seem counter-intuitive to you that 𝑍𝑛 converges to a Normal in distri-
bution, especially when the 𝑋𝑖’s might be very skewed and not-at-all Normal
themselves.

Question: Does the sum 𝑆𝑛 also converge to a Normal?

Answer: This is a little trickier, but, for practical purposes, yes. Since 𝑆𝑛 is a
linear transformation of 𝑍𝑛, then by the Linear Transformation Property, 𝑆𝑛 gets
closer and closer to a Normal distribution too. However, 𝑆𝑛 is not well defined as
𝑛→ ∞, because 𝑆𝑛 is getting closer and closer to Normal(𝑛𝜇, 𝑛𝜎2), which has
infinite mean and variance as 𝑛 → ∞. There’s another problem with looking at
𝑆𝑛. Suppose all the 𝑋𝑖’s are integer-valued. Then 𝑆𝑛 will also be integer-valued
and hence not exactly Normal (although it will behave close to Normal for high
𝑛 – see Exercise 9.6). For all these reasons, CLT involves 𝑍𝑛 rather than 𝑆𝑛.

Question: Does the average 𝐴𝑛 = 1
𝑛
𝑆𝑛 converge to a Normal?

Answer: Yes! Applying the Linear Transformation Property to 𝑍𝑛, we see that
𝐴𝑛 gets closer and closer to a Normal with mean 𝜇 and variance 𝜎2

𝑛
.

The CLT is extremely general and explains many natural phenomena that result
in Normal distributions. The fact that CLT applies to any sum of i.i.d. random
variables allows us to prove that the Binomial(𝑛, 𝑝) distribution, which is a
sum of i.i.d. Bernoulli(𝑝) random variables, can be approximated by a Normal
distribution when 𝑛 is sufficiently high. In Exercise 9.7 you will use a similar
argument to explain why the Poisson(𝜆) distribution is well represented by a
Normal distribution when 𝜆 is high.

In the next example, we illustrate how the CLT is used in practice.

Example 9.9 (Signal with noise)

Imagine that we are trying to transmit a signal. During the transmission, there are
100 sources independently making low noise. Each source produces an amount
of noise that is Uniformly distributed between 𝑎 = −1 and 𝑏 = 1. If the total
amount of noise is greater than 10 or less than −10, then it corrupts the signal.
However, if the absolute value of the total amount of noise is under 10, then it is
not a problem.

Question: What is the approximate probability that the absolute value of the
total amount of noise from the 100 signals is less than 10?
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Answer: Let 𝑋𝑖 be the noise from source 𝑖. Observe that

𝜇𝑋𝑖
= 0

𝜎2
𝑋𝑖

=
(𝑏 − 𝑎)2

12
=

1
3

𝜎𝑋𝑖
=

1
√

3
.

Let 𝑆100 = 𝑋1 + 𝑋2 + · · · + 𝑋100.

P {−10 < 𝑆100 < 10} = P

{
−10√︁
100/3

<
𝑆100 − 0√︁

100/3
<

10√︁
100/3

}
≈ P

{
−
√

3 < Normal(0, 1) <
√

3
}

= 2Φ
(√

3
)
− 1

≈ 0.91.

Hence the approximate probability of the signal getting corrupted is < 10%. In
practice, this CLT approximation is excellent, as we’ll see in Chapter 18.

9.5 Exercises

9.1 Practice with the Φ(·) table
Let 𝑋 ∼ Normal(0, 1). Let 𝑌 ∼ Normal(10, 25). Using the table for Φ(·)
values given in the chapter, answer the following questions:
(a) What is P {𝑋 > 0}?
(b) What is P {−1 < 𝑋 < 1.5}?
(c) What is P {−2.5 < 𝑌 < 22.5}?

9.2 Total work processed by server
A server handles 300 jobs per day. Job sizes are i.i.d. and are Uniformly
distributed between 1 second and 3 seconds. Let 𝑆 denote the sum of
the sizes of jobs handled by the server in a day. Approximately, what is
P {590 < 𝑆 < 610}?

9.3 Bytes at a server
A server receives 100 messages a day. Message sizes (in bytes) are i.i.d.
from distribution Exp(𝜇). Let 𝑆 denote the total number of bytes received
by the server. Approximately, what is P

{
90
𝜇
< 𝑆 < 110

𝜇

}
?
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9.4 Estimating failure probability
Suppose that 10% of cars have engine light problems at some point in their
lifetime. If a dealer sells 200 cars, what is the (approximate) probability
that fewer than 5% of the cars she sells will eventually have engine light
problems? Use the appropriate Normal distribution table. Express your
answer as a decimal.

9.5 Linear Transformation of Exponential
Recall that the Normal distribution has a pretty Linear Transformation
property. Does the Exponential distribution have this as well? Let 𝑋 ∼
Exp(𝜇). Let 𝑌 = 𝑎𝑋 + 𝑏, where 𝑎 and 𝑏 are positive constants. Is 𝑌
Exponentially distributed? Prove your answer.

9.6 Accuracy of the Central Limit Theorem
Bill Gater invites 1,000 friends to a dinner. Each is asked to make a con-
tribution. The contributions are i.i.d. Poisson-distributed random variables
with mean $1,000 each. Bill hopes to raise $1,000,000. Your job is to
compute the probability that Bill raises < $999,000.
(a) Compute this using the Normal approximation from this chapter.
(b) Now write an exact expression for this probability, and then use your

calculator or small program to evaluate the expression.

9.7 Why a Poisson looks like a Normal
You may have noticed that the Poisson(𝜆) distribution looks very similar
in shape to a Normal with mean 𝜆 and variance 𝜆. This is particularly true
for high 𝜆. Use the CLT approximation to explain why this is, in the case
where 𝜆 is a high integer. [Hint: The exercises on the Poisson distribution
from Chapter 6 are useful here.]

9.8 Heuristic proof of Stirling’s approximation
[Contributed by Ishani Santurkar] Stirling’s approximation, Theorem 1.14,
says that 𝑛! grows in accordance with (9.3) for large 𝑛:

𝑛! ∼
√

2𝜋𝑛
(𝑛
𝑒

)𝑛
. (9.3)

In this problem you will come up with a heuristic proof for this fact.
(a) Let 𝑋 ∼ Poisson(𝑛). What is 𝑝𝑋 (𝑛)?
(b) Now assume that 𝑛 is large, and use the Normal approximation from

Exercise 9.7 to write an alternative approximate expression for 𝑝𝑋 (𝑛).
Note that for a continuous r.v. 𝑌 we can’t talk about P {𝑌 = 𝑖}, but we
can write: P {𝑖 < 𝑌 < 𝑖 + 1} ≈ 𝑓𝑌 (𝑖) · 1.

(c) Equate (a) and (b) to get (9.3).

9.9 Fractional moments
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Given the ugliness of the Normal distribution, I am happy to say that it
never comes up in my research . . . until a few days ago! Here is the story:
I had a r.v. 𝑋 ∼ Exp(1) and I needed to compute E

[
𝑋

1
2

]
. Figure out why

I needed a Normal distribution to do this and what answer I finally got.
[Hint: Start by applying integration by parts. Then make the right change of
variables. If you do it right, the standard Normal should pop out. Remember
that the Exponential ranges from 0 to∞, whereas the Normal ranges from
−∞ to∞.]

9.10 Sampling from an unknown distribution
We want to understand some statistics (e.g., mean and variance) of the
webpage load time distribution, 𝑋 . To do that, we randomly choose 𝑛
websites and measure their load times, 𝑋1, 𝑋2, . . . , 𝑋𝑛. We assume that the
𝑋𝑖’s are i.i.d. samples of 𝑋 , where 𝑋𝑖 ∼ 𝑋 . Our goal is to use these samples
to estimate 𝑋’s mean, 𝜇 = E [𝑋], and 𝑋’s variance, 𝜎2 = Var(𝑋).
Our sample mean 𝑋 is defined as

𝑋 ≡ 1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 .

Our sample variance is defined as

𝑆2 ≡ 1
(𝑛 − 1)

𝑛∑︁
𝑖=1
(𝑋𝑖 − 𝑋)2.

(a) If the expectation of the sample mean is the same as the actual mean,
that is if E

[
𝑋

]
= 𝜇, then 𝑋 is called an unbiased estimator of the mean

of the sampling distribution. Prove that 𝑋 is an unbiased estimator of
the mean.

(b) If the expectation of the sample variance is the same as the actual
variance, that is, if E

[
𝑆2] = 𝜎2, then 𝑆2 is called an unbiased estimator

of the variance of the sampling distribution. Prove that 𝑆2 is an unbiased
estimator of the variance.
It will help to follow these steps:

(i) Start by expressing (𝑛 − 1)𝑆2 =
𝑛∑
𝑖=1

(
(𝑋𝑖 − 𝜇) + (𝜇 − 𝑋)

)2
.

(ii) From (i), show that: (𝑛 − 1)𝑆2 =
𝑛∑
𝑖=1
(𝑋𝑖 − 𝜇)2 − 𝑛(𝜇 − 𝑋)2.

(iii) Take expectations of both sides of (ii).


