26 Discrete-Time Markov
Chains: Infinite-State

So far we have only talked about finite-state discrete-time Markov chains
(DTMCs) with M states. Now we move on to infinite-state DTMCs. For a
Markov chain with an infinite number of states, one can still imagine a transition
probability matrix, P, but the matrix has infinite dimension.

For an infinite-state DTMC, we denote the limiting probability distribution on
the states by

7t = (mo,m1,72,...) where ;= lim (P");; and an=1.

n—0oo

We say that distribution 7 is stationary if

[ee)

ﬂj:;ﬂ-kpkj and Zﬂj:l'

J=0

Infinite-state Markov chains are common in modeling systems where the num-
ber of customers or number of jobs is unbounded, and thus the state space is
unbounded. The typical example is a queue of jobs or packets, where the queue
can grow arbitrarily long.

This chapter will introduce infinite-state DTMCs. We will see that many of the
definitions, solution techniques, and theorems from finite-state DTMCs carry
over to infinite-state DTMCs. However, there is one crucial difference, which
comes up in the definition of ergodicity and the existence of a limiting distribu-
tion. This difference will be discussed starting in Section 26.4.

26.1 Stationary = Limiting

We have seen that for a finite-state DTMC, if the limiting distribution exists,
then the limiting distribution and stationary distribution are equivalent (Theo-
rem 24.9). The same result holds for infinite-state DTMCs.
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480 26 Discrete-Time Markov Chains: Infinite-State

Theorem 26.1 (Stationary distribution = limiting distribution) Given an
infinite-state DTMC, let

n—0oo

be the limiting probability of being in state j and let
ﬁ:(n()’ﬂ-l’ﬂz,---), where Zﬂi:l’
i=0

be the limiting distribution. Assuming that the limiting distribution exists, then
7t is also a stationary distribution and no other stationary distribution exists.

Proof: The proof follows along the lines of the proof of Theorem 24.9; however,
it is a little more technical because we can’t simply interchange the limit and the
summation as we did in that proof, because we have an infinite sum over states.
Fortunately, one can get around this difficulty by lower-bounding the infinite sum
by a finite sum, which allows us to exchange the limit and the summation. After
the exchange, we then consider the limit as the number of items in the finite sum
approaches infinity. The details of this trickery are given in [35, section 8.9]. m

26.2 Solving Stationary Equations in Infinite-State DTMCs

So we can obtain the limiting distribution, 7, by solving the stationary equations.
Yet there are an infinite number of stationary equations! How do we solve them?

Consider an example of a router that has infinite capacity for packets, called an
unbounded queue (Figure 26.1). Packets arrive at the router and queue up there.
We think of the router as a “server” since it serves packets. The server processes
the packet at the head of the queue, and when it finishes processing that packet,
it moves on to the next packet.

Figure 26.1 Illustration of a server with unbounded buffer.

Suppose at every time step, with probability p = % one packet arrives, and
independently, with probability g = % one packet departs. Note that during a
time step we might have both an arrival and a transmission, or neither. That is, a
packet can “arrive” and “depart” within the same time step, leaving the system
in the same state.
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26.2 Solving Stationary Equations in Infinite-State DTMCs 481

We will be interested in answering questions like: What is the average number
of packets in the system?

To answer this question, we model the problem as a DTMC with an infinite
number of states: 0, 1, 2, ..., representing the number of packets at the router.
Letr=p(l-¢q)= % ands=¢q(1—-p) = ;11, where r < 5. Figure 26.2 shows the
Markov chain for our problem.

1-r-s 1-r-s 1-r-s

Figure 26.2 DTMC for a server with unbounded queue.

Here the transition probability matrix is infinite!

1-r r 0 0
S l—-r—s r 0
- 0 s 1—-r—s r
0 0 s l-r—s

The stationary equations look like this:

mo=nmo(l —r) +mys

mo=nor +m(l —r—s)+ms
m =mr+m(l —r—s)+mnr3s
my=mr +m3(l —r — )+ mys

Il
—

mo+my+my+mw3 -

Question: How are we going to solve this infinite number of equations?

Answer: It might be easier to write the time-reversibility equations (Theo-
rem 25.29):

Ty =7 S

M r=my-S

My F=m3-8
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482 26 Discrete-Time Markov Chains: Infinite-State

which yield

Question: How do we verify that this guess is correct?

Answer: To verify your guess, you need to show that it satisfies the stationary
equations:

mi=mir+mi (1 —r—s)+ TS
r i r i—1 r i r i+l
(—) T = (—) 7r0r+(—) 7r0(1—r—s)+(—) mos.
s s s s
Question: Okay, but we still do not know . How can we determine my?

Answer: To determine 7, we make use of the fact that ) ; m; = 1.

This says that

So,

Question: What is the average number of packets in the system?

Answer: Let N denote the number of packets in the system. Then

E[N]:7T0'O+7T1'1+7T2-2+7T3-3+...
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26.3 A Harder Example of Solving Stationary Equations in Infinite-State DTMCs

Question: Can we get a closed-form expression for E [N]?
Answer: Yes! It will help to define

’

p=-

s

for shorthand. Then,
mi=p'(1-p).
So,
E[N]=1p(1-p)+20°(1-p) +3p°(1 = p) +---
:(l—p)-p-(1+2p+3p2+4p3+---)

1
=(l-p)-p- 57— by(d4d
(1-p)?
N (26.1)
l-p
1
Wow! Equation (26.1) is a really simple formula. For our example, p = ? = %

2

and E [N] = =5 = 2. So on average there are two packets in the system.
3

—

26.3 A Harder Example of Solving Stationary Equations in
Infinite-State DTMCs

Of course not all infinite-state DTMCs are as easy to solve as the one in the
previous section. Consider the DTMC shown in Figure 26.3.

Figure 26.3 DTMC for processor with failures.

This kind of chain is often used to model a processor with failures. The chain
tracks the number of jobs in the system. At any time step, either the number of
jobs increases by 1 (with probability p), or decreases by 1 (with probability g),
or a processor failure occurs (with probability 7), where p + g + r = 1. In the
case of a processor failure, all jobs in the system are lost.
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484 26 Discrete-Time Markov Chains: Infinite-State

To derive the limiting distribution for this chain, simply writing stationary equa-
tions will not lead us to the solution. In this case, the z-transform approach
(generating functions) from Chapter 6 is very useful. Exercise 26.24 walks you
through the steps.

26.4 Ergodicity Questions

We now turn to ergodicity questions.

Recall that in Chapter 25 we asked the following questions for finite-state
DTMCs:

1. Under what conditions does the limiting distribution exist?

2. How does 7, the limiting probability of being in state j, compare with p;,
the long-run time-average fraction of time spent in state j?

3. What can we say about m ;, the mean time between visits to state j, and how
is this related to 7;?

Recall that in the case of an ergodic (aperiodic and irreducible) finite-state
DTMC with M states, everything behaves as we would like. Specifically, by
Theorem 25.19,

1 limiting — stationary

O0<—=m T =pj, wp.l.
mjj !

When the finite-state chain is periodic but irreducible, then the limiting distri-
bution doesn’t exist but there’s a unique stationary distribution. Specifically, by
Theorem 25.20,

1 stationar
0<F:ﬂj y:pj, Wpl
JJ

For the case of an infinite-state DTMC, we will see that the story is the same when
the chain is ergodic. However, the definition of ergodic needs to be strengthened.
The remainder of this chapter is devoted to understanding how to strengthen the
definition of ergodic. We will figure this out together!

Infinite-state chains are infinitely more complex than finite-state chains. For
example, for infinite-state chains, unlike their finite-state counterparts, we will
see that when the DTMC is not ergodic, even the stationary distribution might
not exist. Because of the added complexity inherent in infinite-state chains, we
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26.4 Ergodicity Questions 485

will have to omit some of the proofs in this text. We refer the interested reader
to [35] for the omitted proofs.

Consider the three infinite-state DTMCs shown in Figure 26.4.

04 0.4 04 04

0.6 0.6 0.6 0.6

(a) Positive recurrent chain

0.6 0.6 0.6 0.6

04 04 04 04

(b) Transient chain

0.5 0.5 0.5 05

0.5 0.5 0.5 0.5

(c) Null recurrent chain

Figure 26.4 Examples of three chains.

Question: Which of these chains are aperiodic and irreducible?
Answer: All of them.

Question: For finite-state DTMCs that are aperiodic and irreducible, does a
limiting distribution always exist?

Answer: Yes, by Theorem 25.6.
Question: Does a limiting distribution exist for all the chains in Figure 26.4?

Answer: We will see that a limiting distribution exists only for chain (a). For
chain (a), we saw in Section 26.2 that there is a well-defined stationary probability
of being in each state, and these stationary probabilities sum to 1. For the other
two chains, we will show that the limiting probability of being in each state is
0, and the limiting probabilities do not sum to 1; hence there does not exist a
limiting distribution. Chain (a) has a property called “positive recurrent.” Chain
(b) is what we call “transient,” and chain (c) is “null recurrent.” We explain
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486 26 Discrete-Time Markov Chains: Infinite-State

all these terms in this chapter and how they relate to the existence of limiting
distributions.

Question: Intuitively, what is the problem with chains (b) and (c¢) in Figure 26.4?

Will I return
to shore?

Figure 26.5 Will the fish return to shore?

Answer: To get some intuition, it helps to think about 7, the limiting probability
of being in state 0.

Chain (b) can be viewed as an ocean, where the shore is at state 0. Imagine you're
a little fish swimming in the ocean. There is a drift away from shore. Think of
this as a strong tide, pulling you deeper and deeper into the ocean. Given this
drift, it is not obvious that you will keep returning to shore. In fact, we will show
that after some point you never return to the shore. Thus, 7y = 0. But this same
argument holds for any state k that we call the “shore,” so m; = O for all k.

Chain (c) is the most confusing. It’s not obvious whether the fish keeps returning
to shore. We will show that the fish does in fact always return to shore. However,
we will see that the time it takes for the fish to return is infinite. This ends up
again resulting in g = O for all states k.

To formalize all of this, it helps to first understand the difference between a
“recurrent” chain and a “transient” one.
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26.5 Recurrent versus Transient: Will the Fish Return to
Shore?

Definition 26.2 We define f; = probability that a chain starting in state j ever
returns to state j.

Definition 26.3 A state j is either recurrent or transient:

e If f; =1, then j is a recurrent state.
o If f; < 1, then j is a transient state.

Question: What is the distribution of the number of visits to a transient state j?

Answer: Every time we visit state j we have probability 1 — f; of never visiting
it again. Hence the number of visits is a Geometric random variable (r.v.) with

mean 1/(1 - f;).

Theorem 26.4 With probability 1, the number of visits to a recurrent state is
infinite. With probability 1, the number of visits to a transient state is finite.

Proof: If a state j is recurrent, then starting in state j, with probability 1 (w.p.1)
we will visit j again. Thus, repeating this argument, we see that w.p.1 state j
will be visited an infinite number of times. In contrast, if state j is transient, then
every time we visit state j, there is some probability (1 — f;) that we will never
again visit j. With probability 1, that 1 — f; probability event will eventually
happen. That is, w.p.1, after some point we will never again revisit state j. =

Theorem 26.5 Let P?j = (P");; denote the probability that the chain will be
in state j after n steps, given that the chain is in state i now.

e If state i is recurrent, then 3", (P");; = co.
e If state i is transient, then Y, o (P");; < oo.

Proof: Observe that 3> ; (P");; = E [Number visits to state i].

To see this, note that if N is the number of visits to state i, then we can write
N211+12+]3+'-' ,

where [, is an indicator r.v. which equals 1 if we’re in state i at the nth time step.
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488 26 Discrete-Time Markov Chains: Infinite-State

Thus:
E[N]=E[L]|+E[L]+E[:]+--- (Linearity of Expectation)

= (P1), (), + (%), -
= i (P")ii -
n=0

Finally, by Theorem 26.4, for a recurrent state E [ N] = co, while for a transient
one, E [N] < oo. [ |

Theorem 26.6 (Recurrence class property) If state i is recurrent and i com-
municates with j, (written i «— j), then j is recurrent.

We start with the intuition for Theorem 26.6. Consider Figure 26.6. We know that
we come back to i infinitely many times. By the definition of “communicates,”
every time we are in i, we have some probability of taking the road to j, and
once we are in j, we have some probability of taking the road to i. So, for every
visit to i, there’s some non-zero probability that we’ll also visit j. Therefore the
number of visits to j is proportional to the number of visits to i. Because the
number of visits to 7 is infinite, so is the number of visits to j.

Road to j

Always come back

Road to i

Figure 26.6 Proof of Theorem 26.6.
Now for the formal proof.

Proof: We know that i communicates with j. Thus, there exists an m such
that (P™);; > 0 and there exists n such that (P");; > 0. We also know that
Yiero (P%);; = oo, because state i is recurrent.

What we want to show is that 37> (P’)jj = 0.

Now

[ee]

(P);; > D (P (26.2)
=0 s=0

t s
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26.5 Recurrent versus Transient: Will the Fish Return to Shore? 489

since the left-hand side of (26.2) considers all j-to-j paths, while the right-hand
side considers only those of length at least m + n.

We can now further constrain our j-to-j paths by insisting that we must use the
first m steps of our path to go from j to i and the last n steps to go from i to j.
Specifically:

[Se]

4 (Pt)jj

\%

D 1D

(Pm+s+n)jj
t

2 (P™)j; (P*);; (P"),;

1l
(=]

S

(P™);; (P");; Z (P*);; (pulling out positive constants)
s=0

00 (because state i is recurrent).

We have thus proven that state j is recurrent. |

Theorem 26.7 (Transience class property) If state i is transient and i com-
municates with j, (i < j), then j is transient.

Proof: This follows directly from the previous Theorem 26.6. Suppose by contra-
diction that state j is recurrent. Then because j and i communicate, i is recurrent
as well, which is a contradiction to the assumption. ]

We have thus seen that in an irreducible Markov chain, either all states are
transient, or all are recurrent!

Theorem 26.8 For a transient Markov chain,

n—o00

Hence, the limiting distribution does not exist.

Proof: As we have seen, in a transient Markov chain there is some point after
which we never visit state j again. So the probability of being in state j after n
steps is zero as n — oo, that is,

n—oo

and this holds for every state j.
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Now
Z 7rj =0
j=0

because the sum of a countable number of 0’s is still 0. Thus the limiting
distribution does not exist. [

Theorem 26.9 For Markov chains where the limiting probabilities are all zero,
no stationary distribution exists.

Proof: The fact that no stationary distribution exists follows from an argument
similar to that in the proof of Theorem 26.1. For details, see [35]. [ |

26.6 Infinite Random Walk Example

It’s not so obvious how to argue whether a chain is transient or recurrent. The
following example illustrates how this is done.

Consider the random walk shown in Figure 26.7, where at each step a gambler
either gains a dollar (with probability p) or loses a dollar (with probability
q =1 - p). We’d like to determine whether the chain is transient or recurrent.

p p p p p p
q q q q q q

Figure 26.7 Gambler’s walk.

Because all states communicate, it follows from Theorems 26.6 and 26.7 that
either all states are transient or all are recurrent. Hence to determine whether the
chain is recurrent or transient, it suffices to look at state 0.

To determine whether state O is transient or recurrent, we invoke Theorem 26.5.
Let

(]
V= Z (P")oo
n=1
denote the expected number of visits to state 0. If V is finite, then state O is

transient. Otherwise it is recurrent.
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Since one cannot get from 0 to 0 in an odd number of steps, it follows that

V= i (P")go = i (Pzn)oo - i (znn)pnqn' (26.3)
n=1 n=1

n=1

We now simplify this equation using Lavrov’s lemma.

Lemma 26.10 (Due to Misha Lavrov) Forn > 1,
4n 2n
<
2n+1

) < 4", (26.4)
n

Proof: By simple binomial expansion,

2n m
Z(k)=(1+1)2"=22"=4".
k=0

Since (2;) is the largest term in the sum, it follows that it is bigger than the
average term, 4" /(2n + 1). However, it is also smaller than the total sum, 4. m

Substituting (26.4) into (26.3), we get that

- 4" n_n - n_n_n
;2n+1pq <V<n2=;4pq. (26.5)

If we substitute p = g = % into the left-hand side of (26.5), we get that

[ee)

4n 1 1
V>Zzn+1'4_n_;2n+1_°°' (26.6)

If instead we assume p # g and consider the right-hand side of (26.5), we get
that

V< Z(4pq)" <o (sincedpg <1). (26.7)

n=1

Thus by (26.6) and (26.7) we see that V = 3, | (P") is infinite if and only if
p= % So the chain is recurrent if and only if p = %

We have thus proven Theorem 26.11.

Theorem 26.11 The Gambler’s walk shown in Figure 26.7 is recurrent only
when p = % and is transient otherwise.
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26.7 Back to the Three Chains and the Ergodicity Question

Let’s return to the three infinite-state chains in Figure 26.4, repeated in Fig-
ure 26.8:

04 04 04 04

0.6 0.6 0.6 0.6

(a) Positive recurrent chain

0.6 0.6 0.6 0.6

04 04 04 04

(b) Transient chain

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

(c) Null-recurrent chain

Figure 26.8 Three chains of Figure 26.4.

26.7.1 Figure 26.8(a) is Recurrent

From what we’ve learned, chain (a) is recurrent, simply by virtue of the fact that
we know that it has a stationary distribution (recall from Theorem 26.9 that, for
a transient chain, no stationary distribution exists).

26.7.2 Figure 26.8(b) is Transient

Chain (b) is transient. Intuitively, imagine that j is very high. If you’re in state j,
the world looks very much like a 2D-infinite Gambler’s walk where the drift goes
to the right. However, this is not a formal proof of transience. Theorem 26.12
provides a proof by precisely relating chain (b) to the two-way Gambler’s walk.

Theorem 26.12 Chain (b) in Figure 26.8 is transient.
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Proof: [This cute proof is due to Misha Ivkov.] The proof relies on looking at
two other chains which we have already analyzed, shown in Figure 26.9.

04 0.4 04 04

(b”) Two-way transient chain

04 04 04

(b””) Recurrent chain

Figure 26.9 Some helper chains for proving Theorem 26.12.

We define a few quantities:
fo = P {return to 0 in chain (b)}
fy =P {return to 0 in chain (b")}
fy/ =P {return to 0 in chain (b"’)}
fij = P {eventually visit j, given currently in i in chain (b)}
fl’j = P {eventually visit j, given currently in i in chain (b")}

f{} =P {eventually visit j, given currently in i in chain (b")} .
To show that chain (b) is transient, it suffices to show that fy < 1. By conditioning

we have:

fo=(04)-1+(0.6) - fio. (26.8)

Now observe that

fio = fo- (26.9)

This is due to the fact that chain (b") looks identical to chain (b) except for
the states to the left of state 0; however, those states left of O don’t matter in
computing fio or f],. Substituting (26.9) into (26.8) we have:

fo=(04)-1+(0.6) - f,. (26.10)

Now observe that

flo < 1. (26.11)
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Equation (26.11) follows from this series of equations:

1> fo’ because chain (b") is transient
=(04) - f1,,+(0.6) - f{, by conditioning
=(0.4) - 7, +(0.6) - f, whats right of state 0 doesn’t matter
=(04)-1+(0.6)- f{, because (b”) is recurrent

Thus 0.6 > (0.6) - f/,, and hence f], < 1.

Combining (26.11) and (26.10), we have:
fo=(04)-1+(0.6) - f{, < (0.4)-1+(0.6)1 =1. [ |

26.7.3 Figure 26.8(c) is Recurrent

Chain (c) is recurrent. This follows from the fact that f;, the probability of
returning to state 0, is at least as high in chain (c¢) as in the Gambler’s walk of
Figure 26.7 with p = 0.5, and we’ve shown that fy = 1 for the Gambler’s walk
with p = 0.5.

Question: Given that chain (c) is recurrent, does this mean that the limiting
distribution exists for this third chain? If so, what is it?

Answer: Although this chain (c) is recurrent, and irreducible and aperiodic, it
turns out that these are not enough to guarantee the existence of the limiting
distribution. To see why, we turn to Theorem 26.13, known as the Ergodic
Theorem of Markov Chains.

26.8 Why Recurrence Is Not Enough

Theorem 26.13 (Ergodic Theorem of Markov Chains) Given a recurrent,
aperiodic, irreducible DTMC, nj = lim,_,. (P"); | exists and
1
Tj=—"7, A4 _] .
i

The Ergodic Theorem of Markov Chains is saying the same thing that we saw in
Theorem 25.12, about 7; being the reciprocal of m ;. However, those theorems
were restricted to finite-state chains. The fact that we now allow for infinite-state
chains makes the proof much more technical than for the case of a finite number
of states, and we refer the reader to [35, section 9.10].
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Question: The Ergodic Theorem (Theorem 26.13) seems to suggest that recur-
rent + aperiodic + irreducible suffices for the limiting distribution to exist. What’s
wrong with this?

Answer: There’s an important distinction. While 7 exists, it is not necessarily
positive. We're told that

but m; can be infinite!

In the case of a finite irreducible chain, we were guaranteed that m; is finite, but
that’s not necessarily true for an infinite state chain. In particular for the chain
in Figure 26.8(c), Theorem 26.14 shows that m;; = co for all states j. Hence
the limiting probability of being in state j exists, but is zero. Consequently, the
limiting distribution does not exist (since a countable number of 0’s can’t sum to
1). Furthermore, by Theorem 26.9 no stationary distribution exists for this chain
either.

Theorem 26.14 For chain (c) in Figure 26.8, m;; = oo, for all states j.

Proof: We show that mgg = co. Suppose by contradiction that mqy is finite.

Observe that
1 1
=1+--0+—" .
moo + 5 + 7 mio

Thus, given that mgy is finite, it must also be the case that m g is finite. Now
observe that

1
'0+§'WI20

- (ma1 + myp)

But the only way that
mio = 1+m 10
is if m¢ = oo, which is a contradiction. Hence,

mop = ©0.
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The argument is very similar to show that m;; = co, where j > 1, and we leave
it as Exercise 26.12. |

We have seen that while chains (a) and (c) in Figure 26.4 are both recurrent, they
differ in the mean time to return to a state.

Definition 26.15 Recurrent Markov chains fall into two types: positive recur-
rent and null recurrent. In a positive-recurrent MC, the mean time between
recurrences (returning to the same state) is finite. In a null-recurrent MC, the
mean time between recurrences is infinite.

Both positive recurrence and null recurrence are class properties.

Theorem 26.16 (More class properties) If state i is positive recurrent and
i <« J, then j is positive recurrent. If state i is null recurrent and i «—— j,
then j is null recurrent.

Proof: See Exercise 26.23. [ ]

26.9 Ergodicity for Infinite-State Chains

Definition 26.17 An ergodic DTMC is one that has all three desirable prop-
erties: aperiodicity, irreducibility, and positive recurrence.

Theorem 26.18 For an ergodic DTMC, the limiting distribution exists.

Proof: By Theorem 26.13, the limiting probabilities (the r;’s) exist. By positive
recurrence, they are all positive. All that remains is to show that >, ; 7; = 1. To
see this, recall p ;, the time-average fraction of time that the chain spends in state
J. We proved in Section 25.6 that, for finite-state irreducible, aperiodic chains,

1
pj=— wp.l

mjj
This was proven via invoking the Strong Law of Large Numbers (SLLN).
Question: What was the one thing needed for SLLN to hold?

Answer: We needed the mean time between renewals, m ;, to be finite.
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For the case of infinite-state DTMCs, the same argument as in Section 25.6 goes
through, provided that m; is finite, which it is for a positive recurrent chain.

Now, observe that

ZPJ: 1,

Jj=0

since a random walk must be in some state at all time steps, so the fraction of
time it spends in each state must total to 1. Hence, since

1

it also follows that

Z”J’ZI- ]

Jj=0

Remark: For a finite-state DTMC, positive recurrence is a consequence of
irreducibility. This fact was proven in Exercise 25.19. Hence, for finite-state
chains, aperiodicity and irreducibility suffice for ergodicity.

To summarize, infinite-state DTMCs are much more complicated than finite-state
DTMCs because positive recurrence is required for the limiting distribution (and
stationary distribution) to exist and we don’t always have positive recurrence.
Fortunately, as explained in the Theorem 26.19 and the associated Remark, we
never need to check for positive recurrence.

Theorem 26.19 (Summary theorem) An irreducible, aperiodic DTMC be-
longs to one of the following two classes:

Either:

(i) All the states are transient, or all are null recurrent. In this case nj =
limy, 0 (P™); = 0, Vj, and there does not exist a limiting distribution or
a stationary distribution.

Or:

(ii) All states are positive recurrent. Then the limiting distribution © =
(7o, 1, M2, . . ) exists, and there is a positive probability of being in each
state. Here,

n—oo

is the limiting probability of being in state j. In this case 7t is a stationary
distribution, and no other stationary distribution exists. Also, n; = mL
JJ

where m; is the mean number of steps between visits to state j.
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Proof: We know by Theorems 26.16 and 26.7 that transience, null recurrence, and
positive recurrence are class properties, meaning that in an irreducible Markov
chain all the states are of the same one type.

If all states are transient, then by Theorem 26.8, the limiting probabilities are all
zero and no limiting distribution exists. Further, by Theorem 26.9, no stationary
distribution exists.

If all states are null recurrent, then by Theorem 26.13, all the limiting probabilities
are zero, so they can’t add up to 1, hence no limiting distribution exists. Also,
again by Theorem 26.9, no stationary distribution exists.

If all states are positive recurrent, then by Theorem 26.18, the limiting distribution
exists. Finally, by Theorem 26.1, when the limiting distribution exists, it is equal
to the unique stationary distribution. |

Important Remark: What is nice about Theorem 26.19 is that it tells us that
we never have to actually determine whether our DTMC is positive recurrent.
It suffices to simply check for irreducibility and aperiodicity and then solve the
stationary equations. If these stationary equations yield a distribution, then that
distribution is also the limiting probability distribution.

26.10 Exercises

26.1 Irreducibility, aperiodicity, and positive recurrence
For each of the following transition matrices: (i) Is the DTMC irreducible?
(i1) Is it aperiodic? (iii) Is it positive recurrent? [Note: If the period is not
defined, then the chain is not aperiodic.]
) 0
(d) ( 0
1

010
(a) (b)( 0 0 1 ) (c)
1 00

26.2 Time to empty
Consider a router where, at each time step, the number of packets increases
by 1 with probability 0.4 and decreases by 1 with probability 0.6. How
long does it take for the router to empty? The Markov chain depicting the
number of packets is shown in Figure 26.10. Let 77 o denote the time to
get from state 1 to state 0. (a) Compute E [T} o]. (b) Compute Var(T} o).

—_ Oh|—
S Ok~
O ==
OR——
ORIl O©
— O WI
[ B
SO O
~—~—
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[Hint: The variance computation is a little tricky. Be careful not to lump
together distinct random variables.]

04 04 04 04 04

0.6 0.6 0.6 0.6 0.6

Figure 26.10 Number of packets at router.

26.3 Time to empty — extra strength
Consider the same setup as in Exercise 26.2. Let T, o denote the time to get
from state 7 to state 0. (a) Compute E [T}, ]. (b) Compute Var(T,, ).

26.4 Gambling game
Dafna starts out with zero dollars. Every day she gains a dollar with
probability p, stays put with probability s, or loses all her money (goes
broke) with probability b, where p + s + b = 1. Dafna plays the game
forever. Use a DTMC to determine the stationary probability that Dafna
has i dollars. What happens to your stationary probability when s = 0?
What is Dafna’s long-run expected money (for any general s)?

26.5 Reviewing the definitions

For the DTMC shown in Figure 26.11, circle all the statements that are
true. Provide a one-line explanation for every item that you circled.

0.5 . . 0.5

0.5

Figure 26.11 Chain for Exercise 26.5.

(a) The chain is null recurrent.
(b) The chain is positive recurrent.
(c) The chain is time-reversible.
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(d) 2oy (P™)g is finite.

(e) The chain is irreducible.

(f) The chain is aperiodic.

(g) There are an infinite number of stationary distributions .

(i) Tim,_e 222 =,

(j) The chain is ergodic.

(k) moo = 0.

(1) The limiting distribution exists.
(m) fo < 1.

() (P?)gy =27,

Glossary:

P is the transition probability matrix

fj = probability that we ever return to state j given that we start in state j.
N (t) = number of visits to state j by time 7.

m ; = mean number of time steps to return to j given we're in state j.

26.6 Equivalent definitions
Given an ergodic DTMC with transition matrix P, make as few equiva-
lence classes as you can out of the expressions below. For example, your
answer might be:

a=b=d=i=j; c=g="h e; f=j.

(@) limy— e (Pn)jj

() -

© 7

(d) 7,

(e) 2:;0 (Pn)jj

(B) T+ 2gej Pjkc - mi;
(&) 2k 7k Prj

(h) lim, o, 2

(1) lirnn—mo (Pn)kj

@ fi

Glossary:

P;; = (i, j)th entry of transition matrix P.

m; = mean number of time steps to return to j given we’re in state j.
n; = limiting probability of being in state ;.

pj = time-average fraction of time that chain spends in state j.

fj = probability that a chain starting in state j ever returns to state j.
N (t) = number of visits to state j by time 7.
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26.7 A positive recurrent chain
Recall the chain in Figure 26.12 that we’ve seen many times before.

04 04 04 04

0.6 0.6 0.6 0.6

Figure 26.12 Chain for Exercise 26.7.

(a) Use Theorem 26.19 to explain how we know that the chain is positive
recurrent.

(b) Derive mgg via conditioning on the next step. Then use a theorem to
explain why your answer makes sense.

26.8 Stationary but not limiting
We’ve seen several examples of finite-state DTMCs for which the station-
ary distribution exists, but the limiting distribution does not. Provide an
example of an infinite-state, irreducible DTMC for which there is a unique
stationary distribution, but no limiting distribution exists. Solve for the
stationary distribution.

26.9 Expected time until k failures

This is a repeat of Exercise 4.18, where we want to derive the expected
number of minutes until there are k consecutive failures in a row, assum-
ing that a failure occurs independently every minute with probability p.
However, this time, solve the problem by finding the limiting probability
of some Markov chain. Include a picture of your Markov chain. [Hint: You
will have to think a bit to see how to convert from the limiting probabilities
of the Markov chain to what you really want.]

26.10 Threshold queue
Figure 26.13 depicts a “threshold queue” with integer parameter ¢.

0.2

0.6 0.6 0.6 04 04 04
04 XX
A g

04 04 04 0.6 0.6 0.6

Figure 26.13 For Exercise 26.10. Markov chain for threshold queue with t = 3.

When the number of jobs is < t, then the number of jobs decreases by 1
with probability 0.4 and increases by 1 with probability 0.6 at each time
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step. However, when the number of jobs increases to > t, then the reverse

is true and the number of jobs increases by 1 with probability 0.4 and

decreases by 1 with probability 0.6 at each time step.

(a) Derive the stationary probability distribution as a function of ¢, for
arbitrary threshold 7.

(b) Given that you have a stationary distribution, explain why it follows
that this distribution is the limiting distribution.

(¢c) Compute the mean number of jobs, E [ V], as a function of ¢.

(d) What happens to E [N] when ¢ = 0? Does this answer make sense?

26.11 I am one with the chain
[Proposed by Misha Ivkov] For the two chains in Figure 26.14, determine if
each is positive recurrent, transient, or null recurrent. (Do not do anything
complicated — just look and make a simple argument.)

04 0.6 04 0.6

(b)
Figure 26.14 Markov chains for Exercise 26.11.
26.12 Finish proof of Theorem 26.14
Complete the proof of Theorem 26.14 in the chapter.
26.13 Deriving the mean time between visits

Consider the two DTMCs in Figure 26.15. For each chain, derive my,
the mean number of time steps between visits to state 0. If you claim that
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moo = oo, you need to prove it. If you claim that mgy < oo, you need to
specify what myy is.

Figure 26.15 Two chains for Exercise 26.13.

26.14 Walking in a winter wonderland
[Proposed by Misha Ivkov] Figure 26.16 shows an infinite binary tree
representing a DTMC, where p + g +r = 1. Label the layers where node
1 is layer 0, nodes 2 and 3 are layer 1, and nodes 2X through 2%+! — 1
comprise layer k.

Figure 26.16 Markov chain for Exercise 26.14.

(a) Under what conditions does the limiting distribution exist (explain)?
What is that limiting distribution? [Hint: It suffices to derive the
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following: (i) Express mp; in terms of 7;; (ii) Express 7541 in terms
of n;; (iii) Derive 7;.]
(b) What is the long-run expected layer?

26.15 Pricing model

You are the market maker for GOGO. You have no clue whether GOGO
stock will rise or fall, but you are obligated to buy or sell single shares
from customers at all times. However, you do get to set the share price. To
control the size of your position (number of shares of GOGO you own),
when you are long (that is, own) GOGO, you set the price so that with
probability p < % your next trade is a buy, and with probability g =1 —p
your next trade is a sell. In contrast, if you are short (that is, owe) GOGO,
you set the price so that with probability p your next trade is a sell, and
with probability g your next trade is a buy.

q q q 0.5 P p
p p 0.5 q q q

Figure 26.17 Bidirectional chain for pricing.

Your position is represented by the bidirectional chain in Figure 26.17.
A negative state indicates how many shares you owe, and a positive state
indicates how many shares you own.

(a) Given this pricing, what does your position tend to revert to?

(b) Derive the time-average fraction of time spent in each state.

(c) Why weren’t you asked to find the limiting probabilities?

(d) What is the expected (absolute value) size of your position?

26.16 Brownian motion
Brownian motion models the walk of a drunkard, as depicted by Fig-
ure 26.18. Assume that the drunkard starts in state 0 and makes one move
per day.

0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5

Figure 26.18 Brownian motion.
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(a) Let Ty, denote the number of days it takes the drunkard to get from
state O to state n. What is E [TO,n] ? Prove it formally.
(b) Let Dy, denote the number of days until the drunkard first achieves
distance n from its origin (that is, the drunkard first hits either state
n or —n). Prove that E [DO,n] = n?. Provide any proof that you like.
The steps below are (optional) helping steps:
(i) Define D; ; to be the number of days until the drunkard first gets
to either state j or state —j, given that the drunkard starts in state
i. Argue that Do, = Do1+ D12+ Doz + -+ Dp_y1,.
(ii) Whatis E [Dg,;|? Derive E [D1,]. Derive E [ D 3]. Do you see
a pattern?
(iii) Guess a formula for E [Di,m] and verify that your guess is
correct.
(iv) Returning to step (i), derive E [DO,n]-

26.17 Wandering around the Pittsburgh airport
[Proposed by Adrian Abedon] At the Pittsburgh international airport, each
of the terminals A, B, C, and D now have an infinite number of gates. A
weary traveler in the airport wanders the gates at random, starting from
the central hub (0). The traveler’s movement is modeled by the Markov
chain in Figure 26.19.

Figure 26.19 DTMC for Exercise 26.17.

(a) Find the stationary distribution 7 4;, 7 g;, Tci, Tpi, and mg.
(b) Find mg 42, the expected time for the traveler to get to their gate A2.
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26.18 Gambler ruin problem
Imagine a gambler who is equally likely to win a dollar or to lose a dollar
every day (see Figure 26.20). The gambler starts out with i dollars. What
is P; ,,, the probability that he makes it to n dollars before going bankrupt?
[Hint: It helps to guess an expression for P; ,, in terms of Pj4q ,.]

%) %) %) %) %)
QUOL @ PO
%) Y %) %) Y
Figure 26.20 State i indicates that there are i more tails than heads.

26.19 Mouse in infinite maze

[Proposed by Misha Ivkov] A mouse is trapped in a maze with an infinite
number of layers. At each time step, with probability % the mouse de-
creases its layer by 1, and with probability % it increases its layer by 1, as
shown in Figure 26.21. The mouse can only escape from layer 0. Suppose
that we drop the mouse into this maze at a random layer > 1, where the
mouse is dropped at layer i with probability 21—1 Let T denote the number
of steps until the mouse escapes (gets to layer 0).

%] V! %) V%)
% % % %

Figure 26.21 Markov chain for Exercise 26.19, where the state represents the mouse’s
current layer.

(a) Derive the z-transform, f(z). It helps to define T in terms of 7;, where
T; is the time to escape when starting in layer i. Follow these steps:
(i) Start by deriving the z-transform of 77. [Hint: You will need to
use the fact that X (z) = 1 when z = 1 for any discrete r.v. X.]
(i1) Now derive the z-transform of 7; in terms of 7].
(iii) Finally derive the z-transform of 7' by conditioning on the starting
state i.
(b) Differentiate your answer to (a) to get E [T].

26.20 2D gambler’s walk
[Proposed by Weina Wang] A drunkard walks on the two-dimensional
plane depicted in Figure 26.22. Formally prove or disprove that this is a
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recurrent chain. You will need to make use of the following equations: !

S -0

k=0

[Hint: This will look a lot like Section 26.6. In expressing the V quantity, it
helps to use a single summation over k, rather than a double summation.]

Figure 26.22 Markov chain for Exercise 26.20.

26.21 Hellbound

[Proposed by Alec Sun] Every lifetime Iggy is reincarnated into either

heaven or hell. Since Iggy is a bad boy, reincarnations occur as follows:

— If Iggy is in heaven, then he will always be reincarnated into hell.

— If Iggy is in hell and has been in hell for j > 1 consecutive lifetimes
since last being in heaven, then with probability 0 < p; < 1 he is
reincarnated into heaven and with probability 1 — p; he is reincarnated
into hell.

Figure 26.23 depicts the infinite-state DTMC showing Iggy’s state:

(a) Is the DTMC in Figure 26.23 irreducible, assuming that every value

of p; satisfies 0 < p; < 1?7
' The equality is a special case of Vandermonde’s identity. The inequality can be derived from

Stirling’s approximation. See Section 1.5 for a discussion of both.
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Figure 26.23 DTMC for Exercise 26.21.

(b) Let ¢ € (0,1) be a constant and suppose p; = ¢ forall j > 1. Is
our DTMC transient, positive recurrent, or null recurrent? Prove your
answer.

(c) Suppose p; = I—il for all j > 1. Is this DTMC transient, positive
recurrent, or null recurrent? Prove your answer. [Hint: It may be
easier to consider 1 — fj.]

(d) Suppose p; = 27/ for all j > 1. Is this DTMC transient, positive
recurrent, or null recurrent? Prove your answer. [Hint: Compute fj.]

26.22 Irreducible finite-state chains are positive recurrent ... again
This is a repeat of Exercise 25.19. Once again, you're being asked to prove
that in a finite-state, irreducible DTMC, all states are positive recurrent.
This time, follow these steps:
(a) First show that all states are recurrent.
(b) Now show that there exists at least one positive recurrent state.
(c) Now make use of Theorem 26.16 to finish the proof.

26.23 Proving that positive recurrence and null recurrence are class prop-
erties
Prove Theorem 26.16, which states that positive recurrence and null re-
currence are class properties. [Warning: This is a difficult exercise.]

26.24 Processor with failures
The DTMC in Figure 26.24 is used to model a processor with failures.
The chain tracks the number of jobs in the system. At any time step, either
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Figure 26.24 DTMC for processor with failures.

the number of jobs increases by 1 (with probability p), or decreases by

1 (with probability ¢), or a processor failure occurs (with probability r),

where p + g + r = 1. In the case of a processor failure, all jobs in the

system are lost. Derive the limiting probability, ;, of there being i jobs

in the system.

You will want to use the z-transform approach that you learned in Chap-

ter 6. Here are some steps to help remind you how this works:

(a) Write the balance equation for state 0. Now express 7} in terms of 7g.

(b) Write the balance equations for state i > 1.

(c) LetII(z) = Y2 miz'. Derive an expression for I1(z) in terms of .
You should get

Ty — Mo — zfl

(z) = ——2L.
2P _ 1
=y zq+1

(d) Rewrite I1(z) with its denominator factored into (1 - r%) (1 - i),

where 71 and r; are roots that you specify, where | < r».
(e) Determine my. You will need three steps:
(i) Explain why I1(z) is bounded for all 0 < z < 1.
(i1) Now show that 0 < r| < 1.
iii. We thus can conclude that f[(rl) < o0, Thus, since ry is a root of
the denominator of I1(z), it must also be a root of the numerator
of I1(z). Use this to get 7. [Note: Although you now have 7,
wait until the very end of the problem to substitute in this value.]
(f) Apply partial fraction decomposition to I1(z).
(g) T1(z) should now be very simple. Rewrite I1(z) as a geometric series.
(h) Match coefficients to get the x;’s.
(i) Verify that your solution for 7r; satisfies the balance equations.
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