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25 Ergodicity for Finite-State
Discrete-Time Markov
Chains

At this point in our discussion of discrete-time Markov chains (DTMCs) with 𝑀
states, we have defined the notion of a limiting probability of being in state 𝑗 :

𝜋 𝑗 = lim
𝑛→∞
(P𝑛)𝑖 𝑗 ,

where the limiting distribution is

®𝜋 = (𝜋0, 𝜋1, 𝜋2, . . . , 𝜋𝑀−1), where
𝑀−1∑︁
𝑖=0

𝜋𝑖 = 1.

We have also defined the notion of a stationary distribution, ®𝜋, as a distribution
that satisfies

®𝜋 · P = ®𝜋 and
𝑀−1∑︁
𝑖=0

𝜋𝑖 = 1,

or, equivalently,

𝜋 𝑗 =

𝑀−1∑︁
𝑖=0

𝜋𝑖𝑃𝑖 𝑗 and
𝑀−1∑︁
𝑖=0

𝜋𝑖 = 1.

We also proved Theorem 24.9 for finite-state chains that says that, assuming the
limiting distribution exists, the limiting distribution is a stationary distribution
and no other stationary distribution exists. This theorem is important because it
allows us to simply solve the stationary equations to get the limiting distribution.

In Chapter 24, we did not spend time on questions like the following:

1. Under what conditions does the limiting distribution exist?
2. How does 𝜋 𝑗 , the limiting probability of being in state 𝑗 , compare with 𝑝 𝑗 ,

the long-run time-average fraction of time spent in state 𝑗?
3. What can we say about 𝑚 𝑗 𝑗 , the mean time between visits to state 𝑗 , and how

is this related to 𝜋 𝑗?

This entire chapter is devoted to these and other theoretical questions, all related
to the notion of ergodicity, to be defined soon. This chapter will only address
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ergodicity questions for finite-state chains. Infinite-state chains are deferred to
Chapter 26.

25.1 Some Examples on Whether the Limiting Distribution
Exists

We dive right into the question of existence of the limiting distribution, with a
few examples.

Question: What is an example of a valid two-state transition matrix for which
𝜋 𝑗 does not exist?

Answer: Figure 25.1 shows an example of a chain with transition matrix

P =

[
0 1
1 0

]
.

1

1

0 1

Figure 25.1 Limiting distribution does not exist.

The problem is that the chain P is periodic; specifically, a given state is only
visited every other time step (we will formally define the term “periodic” soon).
Observe that 𝜋 𝑗 = lim𝑛→∞ (P𝑛) 𝑗 𝑗 does not exist, although lim𝑛→∞

(
P2𝑛)

𝑗 𝑗
does

exist.

Question: Does this chain have a stationary distribution?

Answer: Yes, the stationary distribution does exist. To see this, let’s set up the
stationary equations ®𝜋 · P = ®𝜋:

𝜋0 = 𝜋1

𝜋1 = 𝜋0

𝜋0 + 𝜋1 = 1.

Solving these, we get ®𝜋 = ( 1
2 , 1

2 ).

Question: If you walk along the Markov chain for a long time, what fraction of
time, 𝑝 𝑗 , do you spend in state 𝑗?
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Answer: 𝑝0 = 𝑝1 = 1
2 . These match the stationary probabilities. This is no

coincidence. We will see that for any Markov chain, the 𝑝𝑗’s satisfy the stationary
equations and thus form a stationary distribution.

Question: Is there another two-state example for which the limiting distribution
does not exist?

Answer: Consider the transition matrix Q:

Q =

[
1 0
0 1

]
.

The corresponding chain is shown in Figure 25.2.

1

0

1

1

Figure 25.2 Limiting distribution does not exist.

The chain Q has the problem that the limiting state depends on where you
start. Recall that the limiting probability of being in state 𝑗 is supposed to be
independent of the start state, 𝑖, that is, for transition matrix Q we want

𝜋 𝑗 = lim
𝑛→∞
(Q𝑛)𝑖 𝑗

to be independent of 𝑖.

However, in our example, if you start in state 1, then you stay there forever, and
if you start in state 0, then you stay there forever. Similarly, 𝑝1, the long-run
time-average fraction of time spent in state 1, isn’t well defined, since it depends
on the start state.

Question: What is the stationary distribution of chain Q?

Answer: Chain Q has an infinite number of stationary distributions!

Examples like these illustrate why we need to differentiate between the stationary
probability of being in state 𝑗 , the limiting probability of being in state 𝑗 , and
the long-run fraction of time spent in state 𝑗 .

Question: As a final example, does chain R have limiting probabilities?

R =


0 0 1/2 1/2
1 0 0 0
0 1 0 0
0 1 0 0

 .
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Answer: No, chain R is also periodic – it is just a little harder to see.

25.2 Aperiodicity

Definition 25.1 The period of state 𝑗 is the greatest common divisor (gcd) of
the set of integers 𝑛, such that (P𝑛) 𝑗 𝑗 > 0. A state is aperiodic if its period is
1. A chain is said to be aperiodic if all of its states are aperiodic.

To understand the reasoning behind the definition of aperiodic, we recall the
Chicken McNugget theorem. Once upon a time, a mathematician walked into
McDonald’s, hoping to buy food for all his 𝑛 friends. He wanted to feed them
each one chicken nugget (now you know why mathematicians are so skinny).
Unfortunately the chicken nugget boxes only came in sizes of 4 nuggets/box or
9 nuggets/box. The mathematician (who was not just skinny but also thrifty)
started to wonder if he could express 𝑛 as a linear combination of 4 and 9, so
that no nuggets would go to waste. As often happens, all this thinking led to a
theorem, which is called the Chicken McNugget Theorem.

Theorem 25.2 (Chicken McNugget Theorem) There exists a positive integer
𝑛0, such that, for all integers 𝑛, where 𝑛 ≥ 𝑛0, we can express 𝑛 as a non-negative
linear combination of 4 and 9. Specifically, we can write:

𝑛 = 𝑎 · 4 + 𝑏 · 9,

where 𝑎 and 𝑏 are non-negative integer coefficients.

The Euclidean Number Property extends the Chicken McNugget Theorem to
other-sized nugget boxes.

Theorem 25.3 (Euclidean Number Property) Suppose we’re given 𝑘 posi-
tive integers, 𝑖1, 𝑖2, . . . , 𝑖𝑘 , where gcd(𝑖1, 𝑖2, . . . , 𝑖𝑘) = 1. Then there exists a
positive integer 𝑛0, such that for all integers 𝑛, where 𝑛 ≥ 𝑛0, we can express
𝑛 as a non-negative linear combination of 𝑖1, 𝑖2, . . . , 𝑖𝑘 . Specifically, we can
write:

𝑛 = 𝑎1 · 𝑖1 + 𝑎2 · 𝑖2 + · · · + 𝑎𝑘 · 𝑖𝑘
where the 𝑎𝑖’s are non-negative integer coefficients.

Question: Returning to Markov chains, suppose there’s a 𝑗 to 𝑗 path of length 4
and also one of length 3, as shown in Figure 25.3. Since gcd(3, 4) = 1, state 𝑗
by definition has period 1. But why intuitively does state 𝑗 have period 1?
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j

Figure 25.3 There’s a 𝑗-to- 𝑗 path of length 3 and 4.

Answer: By the Euclidean Number Property we know that for every integer 𝑛,
greater than some 𝑛0, we can express 𝑛 as a linear combination of 3 and 4, with
non-negative integer coefficients. Thus, there exists a 𝑗-to- 𝑗 path of length 𝑛0, as
well as a 𝑗-to- 𝑗 path of length 𝑛0 + 1, as well as a 𝑗-to- 𝑗 path of length 𝑛0 + 2,
and so on. Since there’s a 𝑗-to- 𝑗 path of length 𝑘 for every sufficiently large 𝑘 ,
we say that the period of 𝑗 is 1.

Question: Why is it necessary that 𝑗 be aperiodic for the limiting probability 𝜋 𝑗

to exist?

Answer: If 𝑗 has period 𝑑 > 1, then we can’t say that there’s a 𝑗-to- 𝑗 path of
length 𝑘 for every sufficiently large 𝑘 (in fact, it turns out we will only end up
visiting 𝑗 once every 𝑑 steps). But this means that we can’t talk about a limiting
probability of being in state 𝑗 independent of the time step 𝑛.

25.3 Irreducibility

We’ve seen that aperiodicity is necessary for the limiting probabilities to exist.
Even when a DTMC is aperiodic, there’s another problem that could come up: it
is possible that the limiting probabilities could depend on the start state, whereas
we want

𝜋 𝑗 = lim
𝑛→∞
(P𝑛)𝑖 𝑗

to be the same for all start states 𝑖.

If we also want the limiting probabilities to be independent of the start state, we
need one more condition, known as irreducibility, which says that from any state
one can get to any other state.

Definition 25.4 State 𝑗 is accessible from state 𝑖 if (P𝑛)𝑖 𝑗 > 0 for some 𝑛 > 0.
States 𝑖 and 𝑗 communicate if 𝑖 is accessible from 𝑗 and vice-versa.
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Definition 25.5 A Markov chain is irreducible if all its states communicate
with each other.

Question: Why is irreducibility important for the limiting probabilities to exist?

Answer: The chain might consist of two disconnected components, as in Fig-
ure 25.4(a). Here the limiting probability of being in state 𝑗 depends on the
starting state, which is not allowed. Note, however, that irreducibility is not al-
ways necessary for the existence of the limiting probability. Consider for example
Figure 25.4(b), which is also not irreducible, yet the limiting probabilities are all
well defined.

0.5

0 1

0.5

0.50.5

2

1.0

(a) No limiting distribution (b) Limiting distribution exists

0 1
0.8

1.00.2

Figure 25.4 Both (a) and (b) show chains which are not irreducible. In (a) the limiting
distribution does not exist, because it depends on the start state. In (b) the limiting
distribution is ®𝜋 = (0, 1).

Question: Do you think that aperiodicity and irreducibility are enough to guar-
antee the existence of the limiting distribution?

Answer: As we see in Theorem 25.6, for a finite-state DTMC, aperiodicity and
irreducibility are all that are needed to ensure that the limiting probabilities
exist, are positive, sum to 1, and are independent of the starting state. This is
convenient, as it is often easy to argue that a DTMC is aperiodic and irreducible.

25.4 Aperiodicity plus Irreducibility Implies Limiting
Distribution

Theorem 25.6 (Aperiodicity + irreducibility implies limiting distribution)
Given an aperiodic, irreducible, finite-state DTMC with transition matrix P,
as 𝑛 → ∞, P𝑛 → L, where L is a limiting matrix all of whose rows are the
same vector, ®𝜋. The vector ®𝜋 has all positive components, summing to 1.

Question: What does 𝐿𝑖 𝑗 represent?
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Answer: The (𝑖, 𝑗)th element of L represents lim𝑛→∞ (P𝑛)𝑖 𝑗 , namely the limiting
probability of being in state 𝑗 given we started in state 𝑖.

Question: What does the 𝑖th row of L represent?

Answer: The 𝑖th row of L is the vector of limiting probabilities
(𝜋0, 𝜋1, . . . , 𝜋𝑀−1), where 𝜋 𝑗 = lim𝑛→∞ (P𝑛)𝑖 𝑗 , and 𝑀 is the number of states
in the DTMC.

Question: Why is it important that the rows of L are the same?

Answer: The fact that row 𝑖 and row 𝑘 are the same says that

lim
𝑛→∞
(P𝑛)𝑖 𝑗 = lim

𝑛→∞
(P𝑛)𝑘 𝑗 ,

which says that the starting state does not affect the limiting probability of being
in state 𝑗 .

As a concrete example of Theorem 25.6, suppose that

P =


1/2 1/3 1/6
1/3 1/3 1/3
1/8 3/4 1/8

 .

Then Theorem 25.6 is saying that P𝑛 converges to a matrix L all of whose rows
are the same. That is,

P𝑛 −→


0.34 0.43 0.23
0.34 0.43 0.23
0.34 0.43 0.23

 = L.

Proof: [Theorem 25.6] The remainder of this section is devoted to the proof of
Theorem 25.6. This is a long proof and will require introducing a couple claims
along the way. We are trying to show that P𝑛 converges to a matrix where all
rows are the same. Equivalently, we are trying to show that, for any 𝑗 , the 𝑗 th
column of P𝑛 converges to a vector whose components are all the same.

Let ®𝑒 represent the column vector of dimension matching P, whose 𝑗 th compo-
nent is 1 and whose remaining components are all 0. That is,

®𝑒 =



0
...

0
1
0
...

0


.
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We are trying to show that
P𝑛 · ®𝑒

converges to a vector all of whose components are the same. The idea is to view

P𝑛 ®𝑒 = P(· · · (P(P(P®𝑒)))).

Consider the innermost product P®𝑒. Because P is a matrix of probabilities,
where each row sums to 1, the effect of multiplying ®𝑒 by P is to replace each
component of ®𝑒 by a value that is a weighted average of all the components. In
particular, the effect is to bring all the components of ®𝑒 closer together. That is,
the difference between the maximum component and the minimum component
should decrease.

Here is an example of the effect of successive multiplications by P:

P®𝑒 =


1/2 1/3 1/6
1/3 1/3 1/3
1/8 3/4 1/8

 ·


0
1
0

 =


1/3
1/3
3/4

 .

P(P®𝑒) =


1/2 1/3 1/6
1/3 1/3 1/3
1/8 3/4 1/8

 ·


1/3
1/3
3/4

 =


0.40
0.47
0.39

 .

Observe that after just two successive multiplications by P, the components are
already quite close!

We now claim that the difference between the maximum and minimum compo-
nents of P𝑛 ®𝑒 shrinks as we increase 𝑛.

Claim 25.7 Let 𝑀𝑛 denote the maximum component of P𝑛 ®𝑒 and let 𝑚𝑛 denote
the minimum component of P𝑛 ®𝑒. Then

𝑀𝑛 − 𝑚𝑛 ≤ (1 − 2𝑠) (𝑀𝑛−1 − 𝑚𝑛−1), (25.1)

where 𝑠 is the smallest element in P.

Proof: [Claim 25.7] To see intuitively why Claim 25.7 is true, consider the vector
®𝑦 = P𝑛−1 ®𝑒. By our definition, the maximum component of ®𝑦 is 𝑀𝑛−1 and the
minimum is 𝑚𝑛−1. Now, if we multiply ®𝑦 by P (obtaining P®𝑦 = P𝑛 ®𝑒), we are
replacing each component of ®𝑦 by a weighted average of all the components of
®𝑦.

Question: More formally, what is an upper bound on the largest possible com-
ponent, 𝑀𝑛, in P · ®𝑦 = P ·

(
P𝑛−1 ®𝑒

)
?
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Answer: The largest possible 𝑀𝑛 value is obtained when P is multiplied by ®𝑦
where all but one of the elements of ®𝑦 are 𝑀𝑛−1, with the remaining one being
𝑚𝑛−1, that is, ®𝑦 has only one small component.

To maximize 𝑀𝑛, we now want to make sure that the small 𝑚𝑛−1 component
of ®𝑦 is multiplied by the smallest possible value of P, namely 𝑠. To do this, we
consider the row, 𝑖, of P that contains 𝑠. Suppose 𝑠 occurs in the 𝑗 th column of P.
Then we make sure that 𝑚𝑛−1 is likewise in the 𝑗 th component of ®𝑦. This forces
𝑚𝑛−1 to be multiplied by 𝑠. The remaining total weight in row 𝑖 of P is 1 − 𝑠,
which gets multiplied by only 𝑀𝑛−1 terms in ®𝑦. Thus an upper bound on 𝑀𝑛 is
given by:

𝑀𝑛 ≤ 𝑠 · 𝑚𝑛−1 + (1 − 𝑠) · 𝑀𝑛−1. (25.2)

Question: What is a lower bound on the smallest possible component, 𝑚𝑛 in
P · ®𝑦 = P ·

(
P𝑛−1 ®𝑒

)
?

Answer: Similarly, the smallest possible 𝑚𝑛 value is obtained if all but one of
the elements of ®𝑦 are 𝑚𝑛−1, with the remaining one being 𝑀𝑛−1. This time we
want to make sure that the 𝑀𝑛−1 component of ®𝑦 is weighted by the smallest
possible value of P, namely 𝑠. This allows the biggest possible remaining row
weight of 1 − 𝑠 to be applied to 𝑚𝑛−1. Thus a lower bound on 𝑚𝑛, the smallest
component of P · ®𝑦, is:

𝑚𝑛 ≥ (1 − 𝑠) · 𝑚𝑛−1 + 𝑠 · 𝑀𝑛−1. (25.3)

Thus,

𝑀𝑛 − 𝑚𝑛 ≤ (25.2) − (25.3)
= 𝑠 · 𝑚𝑛−1 + (1 − 𝑠) · 𝑀𝑛−1 − (1 − 𝑠) · 𝑚𝑛−1 − 𝑠 · 𝑀𝑛−1

= (1 − 2𝑠) (𝑀𝑛−1 − 𝑚𝑛−1). ■

From Claim 25.7, it seems that the difference between the maximum and min-
imum elements of P𝑛 ®𝑒 continues to decrease as we continue to multiply by P,
until eventually all elements are the same, so we’re done with the proof. This is
true, except for a small hole ...

Question: Can you see the hole in the argument?

Answer: If P contains a zero element, then 𝑠 = 0. In this case Claim 25.7 does
not result in convergence, because (1 − 2𝑠) = 1.

Question: How can this be fixed?
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Hint: Even if P contains some zero elements, what do we know about P𝑛 for
high enough 𝑛, given that P is aperiodic and irreducible?

Answer: When P is aperiodic and irreducible, we will now show that even if P
contains some zero elements, for all 𝑛 beyond some point, P𝑛 has all positive
elements.

Claim 25.8 Given P is aperiodic and irreducible, there exists some 𝑛0, such
that ∀𝑛 ≥ 𝑛0, P𝑛 has all positive elements.

Proof: [Claim 25.8] The proof is a consequence of the Euclidean Number Prop-
erty (Theorem 25.3), as follows: Consider an arbitrary ( 𝑗 , 𝑗) entry of P.

Question: If 𝑃 𝑗 𝑗 > 0, can we conclude that (P𝑛) 𝑗 𝑗 > 0, ∀𝑛?

Answer: Yes. The fact that there’s a path of length 1 from 𝑗 to 𝑗 implies that
there’s a path of length 𝑛 from 𝑗 to 𝑗 .

So suppose that 𝑃 𝑗 𝑗 = 0. By irreducibility, there exist paths from 𝑗 to 𝑗 . By
aperiodicity, the gcd of these 𝑗-to- 𝑗 paths is 1. Suppose, for example, the 𝑗-to- 𝑗
paths have lengths 𝑥, 𝑦, and 𝑧, where gcd(𝑥, 𝑦, 𝑧) = 1. Hence, by the Euclidean
Number Property, ∃𝑛0( 𝑗 , 𝑗), s.t., ∀𝑛 ≥ 𝑛0( 𝑗 , 𝑗), 𝑛 can be expressed as a linear
combination of 𝑥 and 𝑦 and 𝑧 with non-negative integer coefficients; hence,
∀𝑛 ≥ 𝑛0( 𝑗 , 𝑗), there is a path of length 𝑛 from 𝑗 to 𝑗 , and thus the ( 𝑗 , 𝑗)th entry
of P𝑛 is positive.

Now repeat this argument for all (𝑖, 𝑖) pairs (there are only a finite number).

Next, consider two arbitrary states, 𝑖 and 𝑗 , where 𝑖 ≠ 𝑗 . By irreducibility, there
is some 𝑥 s.t. there is a path from 𝑖 to 𝑗 of length 𝑥. However, since we also
know that ∀𝑛 ≥ 𝑛0(𝑖, 𝑖) there is a path of length 𝑛 from 𝑖 to 𝑖, it follows that
∀𝑛 ≥ 𝑛0(𝑖, 𝑖)+𝑥 there’s a path of length 𝑛 from 𝑖 to 𝑗 . Define 𝑛0(𝑖, 𝑗) = 𝑛0(𝑖, 𝑖)+𝑥.

Finally, define
𝑛0 = max

𝑖, 𝑗
{𝑛0(𝑖, 𝑗)}.

Now, for all 𝑛 ≥ 𝑛0, P𝑛 has all positive elements. ■

To complete the proof of Theorem 25.6, we now define P′ = P𝑛0 . Then,

P𝑛 = (P𝑛0)𝑛/𝑛0 = (P′)𝑛/𝑛0 .

Now repeat the argument in Claim 25.7, except that rather than the decrease by a
factor of (1−2𝑠) < 1 occurring with each multiplication of P, this decrease only
happens every 𝑛0 multiplications of P. However, because 𝑛/𝑛0 →∞ as 𝑛→∞,
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we still have an infinite number of these decreases, meaning that

(P′)𝑛/𝑛0 → L, as 𝑛→∞.

Note that this argument still works even if 𝑛/𝑛0 is a fraction. In that case we
define 𝑛 = 𝑚 · 𝑛0 + 𝑟, where 𝑟 < 𝑛0 and use 𝑚 in place of 𝑛/𝑛0 in our argument.
Here,

P𝑛 = P𝑟 · (P𝑛0)𝑚 ,

where the rightmost term converges to L as 𝑚 → ∞, and the P𝑟 term doesn’t
affect this limit.

To finish off the proof of Theorem 25.6, we note that by Exercise 24.2, all powers
of P have the property that the components of each row sum to 1. Furthermore,
because P𝑛0 has all positive elements, and because multiplying by P only creates
weighted averages of already positive values, then P · P𝑛0 still has all positive
elements and so forth as we continue to multiply by P. Hence the limiting
matrix L will still have all positive elements and will have the property that the
components of each row sum to 1. ■

Summary: We have proven that for any aperiodic, irreducible, finite-state
Markov chain, the limiting probabilities exist and are all positive.

Definition 25.9 We say that a finite-state DTMC is ergodic if it has both
desirable properties: aperiodicity and irreducibility. For the case of an infinite-
state DTMC, ergodicity requires one more property (see Chapter 26).

25.5 Mean Time Between Visits to a State

Consider the mean time between visits to state 𝑗 , which we’ll call 𝑚 𝑗 𝑗 . It seems
that 𝑚 𝑗 𝑗 should be related to 𝜋 𝑗 , the limiting probability of being in state 𝑗 .
Theorem 25.12 shows that 𝑚 𝑗 𝑗 and 𝜋 𝑗 are in fact reciprocals.

Definition 25.10 Let 𝑚𝑖 𝑗 denote the expected number of time steps needed to
first get to state 𝑗 , given we are currently at state 𝑖. Likewise, let 𝑚 𝑗 𝑗 denote the
expected number of steps between visits to state 𝑗 .

Theorem 25.11 For an irreducible finite-state DTMC, 𝑚𝑖 𝑗 is finite, for all 𝑖, 𝑗 .

Proof: See Exercise 25.19. ■
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Theorem 25.12 For an irreducible, aperiodic finite-state Markov chain with
transition matrix P,

𝜋 𝑗 =
1
𝑚 𝑗 𝑗

> 0,

where 𝑚 𝑗 𝑗 is the mean time between visits to state 𝑗 and 𝜋 𝑗 = lim𝑛→∞ (P𝑛)𝑖 𝑗 .

Proof: We derive 𝑚𝑖 𝑗 by conditioning on the first step, as follows:

𝑚𝑖 𝑗 = 𝑃𝑖 𝑗 · 1 +
∑︁
𝑘≠ 𝑗

𝑃𝑖𝑘 (1 + 𝑚𝑘 𝑗)

= 1 +
∑︁
𝑘≠ 𝑗

𝑃𝑖𝑘𝑚𝑘 𝑗 . (25.4)

Likewise,

𝑚 𝑗 𝑗 = 𝑃 𝑗 𝑗 · 1 +
∑︁
𝑘≠ 𝑗

𝑃 𝑗𝑘 (1 + 𝑚𝑘 𝑗)

= 1 +
∑︁
𝑘≠ 𝑗

𝑃 𝑗𝑘𝑚𝑘 𝑗 . (25.5)

We will now express (25.4) and (25.5) using matrix notation. All the matrices
in this proof are of the same dimension as P. Let M be a matrix whose (𝑖, 𝑗)th
entry is 𝑚𝑖 𝑗 . For purposes of the proof, it will be convenient to express M as a
sum of two matrices,

M = D + N,

where D is a matrix whose entries are all zero, except for its diagonal entries:
𝑑 𝑗 𝑗 = 𝑚 𝑗 𝑗 , and N is a matrix whose diagonal entries are all zero, but where
𝑁𝑖 𝑗 = 𝑚𝑖 𝑗 , ∀𝑖 ≠ 𝑗 . Finally, let E be a matrix with all entries 1. Then we can
express (25.4) and (25.5) as:

M = E + PN. (25.6)

Rewriting (25.6), we have

N + D = E + PN
(I − P) · N = E − D.

From Theorem 25.6, since we have aperiodicity and irreducibility, we know that
the limiting distribution, ®𝜋, exists. Multiplying both sides by ®𝜋, we have:

®𝜋 · (I − P) · N = ®𝜋 (E − D) . (25.7)

Question: What do we know about the left-hand side of (25.7)?

Hint: Remember that ®𝜋 is also a stationary distribution, by Theorem 25.6.
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Answer:

®𝜋P = ®𝜋
⇒ ®𝜋(I − P) = ®0
⇒ ®𝜋(I − P)N = ®0.

Thus, from (25.7) we have:
®0 = ®𝜋(E − D)
®𝜋E = ®𝜋D

(1, 1, . . . , 1) = (𝜋0𝑚00, 𝜋1𝑚11, . . . , 𝜋𝑀−1𝑚𝑀−1,𝑀−1)
𝜋𝑖𝑚𝑖𝑖 = 1, ∀𝑖

𝜋𝑖 =
1
𝑚𝑖𝑖

> 0, ∀𝑖,

where the last line follows from the fact that 𝑚𝑖𝑖 is finite by Theorem 25.11. ■

Corollary 25.13 For an irreducible, periodic finite-state Markov chain,

𝜋
stationary
𝑗

=
1
𝑚 𝑗 𝑗

> 0,

where 𝑚 𝑗 𝑗 is the mean time between visits to state 𝑗 and 𝜋
stationary
𝑗

is the
stationary probability of being in state 𝑗 .

Proof: This is an easy consequence of the proof of Theorem 25.12 and is shown
in Exercise 25.5. ■

25.6 Long-Run Time Averages

For the purpose of this section, we imagine that we have an ergodic, finite-state
DTMC, such as that shown in Figure 25.5.

A random walk is a walk through a Markov chain, where we move indefinitely
between the states of the Markov chain according to the probabilities of the chain.
For example, we might start at some state like Blah, and next move to Tired and
then to Wasted and from there maybe back to Blah, and so on. Of course, you
might take a different random walk through the chain, where you again start at
state Blah, but this time next move to state Achy and from there back to state
Blah and so on. Each random walk is often referred to as a sample path in that
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Blah Tired

² ³⁄

¹ ³⁄

Achy Wasted

Grumpy

½
¹ ³⁄

¾
¹ ³⁄

½
¹ ³⁄

¹⁄8ÊÊ

¹⁄8ÊÊ 1

Figure 25.5 The moods of students in the aftermath of Carnival festivities.

it depends on the random coin flips. We say sample path rather than a sample
point, because the walk is infinitely long.

Let 𝑁 𝑗 (𝑡) be the number of visits to state 𝑗 by time 𝑡 on our random walk. Our
goal is to formally define 𝑝 𝑗 , the long-run proportion of time that a random walk
spends in state 𝑗 .

Question: How might we define 𝑝 𝑗 using 𝑁 𝑗 (𝑡)?

Definition 25.14 Given an irreducible DTMC, we define the long-run time-
average fraction of time that a random walk on the DTMC spends in state 𝑗
as:

𝑝 𝑗 = lim
𝑡→∞

𝑁 𝑗 (𝑡)
𝑡

,

where 𝑁 𝑗 (𝑡) is the number of times that the random walk enters state 𝑗 by time
𝑡 (in the first 𝑡 time steps).

Question: Why does Definition 25.14 start by specifying that the DTMC is
irreducible?

Answer: If the DTMC were not irreducible, then the time-average fraction of
time spent in state 𝑗 might depend on where we start, which would make it
undefined.

In this section we ask: How does 𝑝 𝑗 compare to 𝜋 𝑗?

Recall the definition of 𝜋 𝑗 , the limiting probability of being in state 𝑗 :

𝜋 𝑗 = lim
𝑛→∞
(P𝑛)𝑖 𝑗 .

While 𝑝 𝑗 is an average over a single sample path, 𝜋 𝑗 is an average over many
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sample paths. To see this, let’s consider the quantity

(P𝑛)𝑖 𝑗 .

This represents the probability of being in state 𝑗 after 𝑛 steps, given that we
started in state 𝑖. If we consider 𝑛 = 1,

(
P1)

𝑖 𝑗
= 𝑃𝑖 𝑗 , namely the probability that

in the first step we move to state 𝑗 . On the other hand,
(
P2)

𝑖 𝑗
is the weighted

average over 𝑀 two-step sample paths (the intermediate state could be any of the
𝑀 states). Similarly,

(
P3)

𝑖 𝑗
is the weighted average over 𝑀2 three-step sample

paths, and so on. We refer to

𝜋 𝑗 = lim
𝑛→∞
(P𝑛)𝑖 𝑗

as an ensemble average, meaning that it is an average over many sample paths,
in fact an infinite number.

Question: Does 𝑝 𝑗 = 𝜋 𝑗?

Answer: It is not at all obvious that 𝑝 𝑗 , the time-average fraction of time spent in
state 𝑗 on a single sample path, should equal 𝜋 𝑗 , the ensemble average fraction of
time spent in state 𝑗 , averaged over all sample paths. The purpose of this section
is to prove that, when 𝜋 𝑗 exists, then, on “almost all” sample paths, 𝑝 𝑗 = 𝜋 𝑗 . We
will spend the rest of this section making this claim precise and proving it.

Before we get into it, we note one important way in which 𝜋 𝑗 and 𝑝 𝑗 differ.

Question: Recall that aperiodicity was required for 𝜋 𝑗 to exist. Is aperiodicity
required for 𝑝 𝑗 to exist?

Answer: No. Irreducibility is all that is needed to ensure 𝑝 𝑗 is well defined.

To prove our claim that 𝑝 𝑗 = 𝜋 𝑗 , we will need to first understand the Strong Law
of Large Numbers and then to learn a little renewal theory.

25.6.1 Strong Law of Large Numbers

The Strong Law of Large Numbers (SLLN) is an extremely important result in
probability theory, but it is difficult to prove. We refer the interested reader to
[22].

Theorem 25.15 (SLLN) Let 𝑋1, 𝑋2, . . . be a sequence of independent, iden-
tically distributed (i.i.d.) random variables each with finite mean E [𝑋]. Let
𝑆𝑛 =

∑𝑛
𝑖=1 𝑋𝑖 . Then, with probability 1,

lim
𝑛→∞

𝑆𝑛

𝑛
= E [𝑋] .



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

25.6 Long-Run Time Averages 453

While we omit the proof in this book, we will spend time discussing the meaning
of the result. Let’s consider, for example, that

𝑋𝑖 ∼ Bernoulli (0.5) ,

that is 𝑋𝑖 represents the 𝑖th flip of a fair coin. Here, 𝑆𝑛 represents the sum of the
first 𝑛 coinflips, and 𝑆𝑛

𝑛
represents the average over the first 𝑛 coinflips. SLLN

says that, when 𝑛 gets large, this average should converge to 0.5.

At first this sounds entirely obvious. After all, what else could the average be?

Looking a little closer, we note that SLLN says this happens “with probability
1.” The term “with probability 1” is roughly saying that the statement is true on
almost every sample path. A sample path here refers to a sequence of instances
of 𝑋1, 𝑋2, 𝑋3, . . . Each sample path is infinitely long, and there are infinitely
many sample paths (there are two values possible for each 𝑋𝑖). More precisely,
the statement “with probability 1” says that if we consider the number of “bad”
sample paths on which the convergence doesn’t happen and divide that by the
total number of sample paths, then:

Number bad sample paths up to length 𝑛
Total number sample paths up to length 𝑛

→ 0 as 𝑛→∞.

Let’s consider whether this makes sense.

Question: What’s an example of a “bad” sample path?

Answer: 00000 . . . or 11111 . . .

Question: Are there a finite or infinite number of bad sample paths?

Answer: Infinite.

Question: Is the number of bad sample paths countably infinite or uncountably
infinite?

Answer: Uncountably infinite. Here’s how to see this. Let’s refer to the sequence
110 as a “red car” and to the sequence 101 as a “blue car” (Figure 25.6). Now
any sequence made up of red and blue cars is clearly bad, because it has twice as
many 1’s as 0’s. However, there are an uncountable number of possible sequences
of red and blue cars (by Cantor’s diagonalization argument [11]).

101 110 110 101

Figure 25.6 Any sequence of red and blue cars is a bad sample path.
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Given that there are an uncountably infinite number of bad sample paths, it
should be a little clearer why it’s not so obvious that the fraction of bad sample
paths goes to 0. This explains the power of SLLN.

25.6.2 A Bit of Renewal Theory

Definition 25.16 A renewal process is any process for which the times between
events are i.i.d. random variables, with a non-negative distribution 𝑋 .

Events

Time
X2 X3X1

Figure 25.7 A renewal process. 𝑋𝑖 ∼ 𝑋 , for all 𝑖.

An example of a renewal process is shown in Figure 25.7. Let 𝑁 (𝑡) denote the
number of renewal events by time 𝑡. Then, we have the following theorem:

Theorem 25.17 (Renewal Theorem) For a renewal process, if E [𝑋] > 0 is
the mean time between renewals, where E [𝑋] is finite, we have

lim
𝑡→∞

𝑁 (𝑡)
𝑡

=
1

E [𝑋] with probability 1. (25.8)

Proof: The basic idea in this proof is to apply SLLN, which gives us the conver-
gence on all sample paths with probability 1 (abbreviated, w.p.1). Let 𝑆𝑛 be the
time of the 𝑛th event. Then we have, ∀𝑡,

𝑆𝑁 (𝑡 ) ≤ 𝑡 < 𝑆𝑁 (𝑡 )+1

𝑆𝑁 (𝑡 )
𝑁 (𝑡 ) ≤ 𝑡

𝑁 (𝑡 ) <
𝑆𝑁 (𝑡 )+1
𝑁 (𝑡 ) .

Looking at the leftmost term, we have:

𝑆𝑁 (𝑡 )
𝑁 (𝑡) =

∑𝑁 (𝑡 )
𝑖=1 𝑋𝑖

𝑁 (𝑡) −→ E [𝑋] as 𝑡 →∞ w.p.1 (SLLN).
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Looking at the rightmost term, we have:
𝑆𝑁 (𝑡 )+1
𝑁 (𝑡) =

𝑆𝑁 (𝑡 )+1
𝑁 (𝑡) + 1

· 𝑁 (𝑡) + 1
𝑁 (𝑡) −→ E [𝑋] · 1 as 𝑡 →∞ w.p.1 (SLLN).

So, by the sandwich theorem, the center term likewise converges to E [𝑋],
namely:

𝑡

𝑁 (𝑡) −→ E [𝑋] w.p.1,

which implies that

⇒ 𝑁 (𝑡)
𝑡
−→ 1

E [𝑋] as 𝑡 →∞ w.p.1. ■

25.6.3 Equality of the Time Average and Ensemble Average

We are finally ready to relate 𝑝 𝑗 , the time-average fraction of time that a DTMC
spends in state 𝑗 , to 𝜋 𝑗 , the limiting probability of being in state 𝑗 .

Theorem 25.18 For a finite-state irreducible DTMC, with probability 1,

𝑝 𝑗 =
1
𝑚 𝑗 𝑗

.

For a finite-state, irreducible, and aperiodic DTMC, with probability 1,

𝑝 𝑗 = 𝜋 𝑗 .

Proof: By Theorem 25.11, we know that 𝑚 𝑗 𝑗 is finite. Thus we can apply the
Renewal Theorem (Theorem 25.17) to say that

𝑝 𝑗 = lim
𝑡→∞

𝑁 𝑗 (𝑡)
𝑡

=
1
𝑚 𝑗 𝑗

w.p.1,

where 𝑁 𝑗 (𝑡) is the number of visits to state 𝑗 by time 𝑡.

Now, if we have both irreducibility and aperiodicity, we can invoke Theo-
rem 25.12 which says that

𝜋 𝑗 =
1
𝑚 𝑗 𝑗

.

Thus, 𝜋 𝑗 = 𝑝 𝑗 , w.p.1. ■
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25.7 Summary of Results for Ergodic Finite-State DTMCs

So far we’ve seen that for a finite-state DTMC which is both aperiodic and
irreducible, the limiting distribution, ®𝜋 exists. This ®𝜋 is also the unique stationary
distribution and furthermore represents the time-average probabilities of being
in each state. In Theorem 25.19 we summarize all the results we’ve seen about
ergodic finite-state DTMCs.

Theorem 25.19 (Summary theorem for ergodic, finite-state DTMCs) In a
finite-state DTMC, the word ergodic refers to two properties: aperiodic and
irreducible. Given an ergodic finite-state chain, the following results hold:

• (Theorem 25.6) The limiting distribution exists and has all-positive compo-
nents.
• (Theorem 25.12) 𝜋limiting

𝑗
= 1

𝑚 𝑗 𝑗
.

• (Theorem 24.9) The stationary distribution is unique and is equal to the
limiting distribution.
• (Theorem 25.18) Time-average 𝑝 𝑗 =

1
𝑚 𝑗 𝑗

, w.p.1.
• Putting it all together, we have that:

0 <
1
𝑚 𝑗 𝑗

= 𝜋
limiting
𝑗

= 𝜋
stationary
𝑗

= 𝑝 𝑗 , w.p.1.

25.8 What If My DTMC Is Irreducible but Periodic?

So life is great when your DTMC is ergodic. But suppose instead you have a
finite-state DTMC that is irreducible but periodic.

For any periodic chain, the limiting distribution does not exist (because the
probability of being in a state depends on the time step).

However, it turns out that if the finite-state DTMC is irreducible, that alone
suffices to ensure that the stationary distribution exists and is unique [35, section
9.8]. We saw an example of such an irreducible periodic chain in Figure 25.1.
For such chains, the stationary distribution represents the long-run time-average
proportion of time spent in each state, that is, the 𝑝𝑗’s.

Very roughly the proof in [35, section 9.8] starts with the observation that when
a chain is irreducible, all states have the same period 𝑑 (see Exercise 25.17).
Thus, it turns out that we can divide all the states into 𝑑 residue classes, where
some states are visited at times 0 mod 𝑑, some at times 1 mod 𝑑, . . ., and some
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are visited at times 𝑑 − 1 mod 𝑑. Thus, while lim𝑛→∞ (P𝑛)𝑖 𝑗 does not exist,
lim𝑛→∞

(
P𝑛𝑑

)
𝑖 𝑗

does exist, where 𝑑 is the period of the chain. Thus we can think
of the limiting distribution as existing if we only observe the chain every 𝑑th
time step; and when the limiting distribution exists, we get a unique stationary
distribution.

Since the case of irreducible, periodic finite-state DTMCs comes up quite a bit,
we provide another summary theorem with everything you need to know about
this case.

Theorem 25.20 (Summary for irreducible, periodic, finite-state DTMCs)
For a finite-state DTMC that is irreducible, but periodic:

• The limiting distribution does not exist (it depends on the time step).
• The stationary distribution exists and is unique [35].
• (Theorem 25.11) For every state 𝑗 , 𝑚 𝑗 𝑗 is finite.
• (Corollary 25.13) 𝜋stationary

𝑗
= 1

𝑚 𝑗 𝑗
.

• (Theorem 25.18) Time-average 𝑝 𝑗 =
1

𝑚 𝑗 𝑗
, w.p.1.

• Putting it all together, we have that:

0 <
1
𝑚 𝑗 𝑗

= 𝜋
stationary
𝑗

= 𝑝 𝑗 , w.p.1.

25.9 When the DTMC Is Not Irreducible

In the case of a finite-state DTMC that is not irreducible, the limiting distribution
may or may not exist.

For examples of chains which are not irreducible and the limiting distribution
does not exist, see Figure 25.2 and Figure 25.4(a). Generally, a lack of existence
happens if the DTMC consists of two completely disconnected components. In
such situations, the limiting probability of being in state 𝑗 is not independent
of the starting state 𝑖. Note that while the limiting distribution doesn’t exist,
in Exercise 25.20 we prove that (at least one) stationary always exists for any
finite-state chain.

An example of a chain which is not irreducible, yet the limiting distribution
nevertheless exists, is given in Figure 25.4(b), where the limiting distribution is
®𝜋 = (0, 1), even though the chain is not irreducible and the period is undefined.
In cases when the limiting distribution does exist, it is no longer the case that
the limiting probability of every state 𝑗 is positive, as we had in Theorem 25.12,
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since some states may not be reachable, or there may be an “absorbing” state (or
states), from which one never leaves, as is the case in Figure 25.4(b).

Even if the entire chain is not irreducible, the chain can still be subdivided
into irreducible components (sometimes individual states), where an irreducible
component may function as its own ergodic chain.

In the next section, we will encounter some examples of chains that are not
irreducible and illustrate the above points.

25.10 An Application: PageRank

We now consider an application of finite-state DTMCs and some of the ergodicity
concepts that we’ve been studying.

Question: How many web search engines can you name?

Answer: Here are a few: W3Catalog (1993), WebCrawler (1994), Lycos (1994),
AltaVista (1995), Excite (1995), Yahoo! (1995), Google (1998), Bing (2009).

The goal of a web search engine is not just to find a page that contains the item
that you’re searching for, but to find the best page that contains that item. For
example, your name might appear on a lot of web pages: chess tournaments,
swim competitions, theater productions, etc. Every search engine will show all
these different pages. However what makes a search engine good is its ability
to rank the pages, showing the most important pages first, so that someone
searching for you will first see your Homepage or Linked In page, rather than
that picture of you as a third grader.

Of course, how can a search engine know exactly which of the thousand pages
is the most relevant one?

A common solution is to rank the pages in order of the number of links to that
page (often called backlinks of the page), starting with the page that has the
highest number of pointers into it. We refer to this strategy as citation counting.

Citation counting is a very commonly used measure of importance. For example,
many tenure decisions are determined not by your number of publications, but
by the number of citations to your publications.

Question: Suppose that we could determine the number of backlinks of each
page (number of links pointing to the page). Why would that not necessarily be
a good measure of the importance of the page?
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Answer:

(1) Not all links are equal. If a page is pointed to from cnn.com, that link should
be counted much more than if a page is pointed to from Joe Schmo’s page.

(2) The citation counting scheme is easily tricked. Suppose I want my web page
to have a high rank. I simply create a thousand pages that each point to my
web page. Now my web page has a thousand pointers into it, so it should be
ranked highly. (Hmmm ... not a bad way to handle the tenure citation issue
too).

Okay, so citation counting is not the best of schemes. While it is insufficient to
just count the number of pages pointing into a page 𝑝, we might do better by
weighting each pointer by the number of pages pointing into it.

Question: Why is this system also easy to fool?

Answer: I can again create a thousand dummy web pages and have them all point
to each other, in a clique, as well as pointing to my page. Now my web page has
a high number of backlinks, all of which also have a high number of backlinks.

Google’s PageRank Solution: Google’s solution is to define PageRank recur-
sively: “A page has high rank if the sum of the ranks of its backlinks is high.”
Observe that this covers both the case when a page has many backlinks and when
a page has a few highly ranked backlinks.

Question: It is easy to say that “a page has high rank if the sum of the ranks of
its backlinks is high,” but how does that help us figure out the rank of a page?

Answer: The “aha” that the Google founders made was to realize that the recur-
sive definition is actually saying

𝜋 𝑗 =

𝑛∑︁
𝑖=1

𝜋𝑖𝑃𝑖 𝑗 ,

where 𝑛 is the number of pages.

That is, the only way for page 𝑗 to have high limiting probability is if the pages
𝑖 pointing into 𝑗 have high limiting probability. Remind you of anything?

The rank of a page is thus just its stationary probability in a Markov chain!
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Algorithm 25.21 (Google’s PageRank algorithm)

1. Create a DTMC transition diagram where there is one state for each web
page and there is an arrow from state 𝑖 to state 𝑗 if and only if page 𝑖 has a
link to page 𝑗 .

2. If page 𝑖 has 𝑘 > 0 outgoing links, then set the probability on each outgoing
arrow from state 𝑖 to be 1/𝑘 .

3. Solve the DTMC to determine stationary probabilities. Pages are then ranked
based on their stationary probabilities (higher probability first).

This simple algorithm was the original basis behind the entire Google company.
Today, Google has incorporated additional heuristics.

Example 25.22 (Well-behaved web graph)

Suppose the entire web consists of the three pages shown in Figure 25.8(a). Then
the corresponding DTMC transition diagram is shown in Figure 25.8(b).

A M

N

A M

N

½Ê

½

½Ê

1

½Ê

(a) (b) 

Figure 25.8 (a) Links between web pages. (b) Corresponding DTMC transition diagram.

We now solve the stationary equations:

𝜋𝐴 =
1
2
𝜋𝑁 + 𝜋𝑀

𝜋𝑁 =
1
2
𝜋𝐴 +

1
2
𝜋𝑁

𝜋𝑀 =
1
2
𝜋𝐴

1 = 𝜋𝐴 + 𝜋𝑀 + 𝜋𝑁 .

This results in: 𝜋𝐴 = 𝜋𝑁 = 2
5 ; 𝜋𝑀 = 1

5 .
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Intuition behind the PageRank algorithm: Imagine that each page initially has
one unit of importance. At each round, each page shares whatever importance it
has among its successors. Pages with a lot of incoming links will receive lots of
importance (will be visited frequently in the DTMC).

25.10.1 Problems with Real Web Graphs

Unfortunately, PageRank does not work well on all web graphs. Consider the
following two examples.

Example 25.23 (Dead end or spider trap)

Consider Figure 25.8(a), where this time there is either no outgoing link from
page 𝑀 (in this case 𝑀 is called a “dead end”) or there is a self-loop at state 𝑀
(in this case 𝑀 is called a “spider trap”). In either case, Figure 25.9 shows the
corresponding DTMC transition diagram.

A M

N

1

½Ê

½Ê

½Ê

½Ê

Figure 25.9 DTMC for a web graph with a dead end or spider trap at 𝑀 .

The stationary equations are:

𝜋𝑁 =
1
2
𝜋𝐴 +

1
2
𝜋𝑁

𝜋𝑀 =
1
2
𝜋𝐴 + 𝜋𝑀

𝜋𝐴 =
1
2
𝜋𝑁

𝜋𝐴 + 𝜋𝑁 + 𝜋𝑀 = 1.

The solution to these equations is 𝜋𝑀 = 1, 𝜋𝑁 = 0 = 𝜋𝐴. These are also the
limiting probabilities (note that the start state does not matter). Somehow this
solution is very unsatisfying. Just because person 𝑀 chooses to be anti-social and
not link to anyone else, it should not follow that person 𝑀 is the only important
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person on the web. Our solution does not match our intuitive view of surfing a
web graph.

Example 25.24 (Two spider traps)

Now imagine that both 𝑀 and 𝑁 are anti-social and link only to themselves. The
resulting DTMC transition diagram is shown in Figure 25.10.

A M

N

1

1

½Ê

½Ê

Figure 25.10 DTMC for a web graph with two spider traps.

The corresponding stationary equations are:

𝜋𝑁 =
1
2
· 𝜋𝐴 + 𝜋𝑁

𝜋𝑀 =
1
2
· 𝜋𝐴 + 𝜋𝑀

𝜋𝐴 = 0
𝜋𝐴 + 𝜋𝑁 + 𝜋𝑀 = 1.

Again our graph is not irreducible. Observe that there are now an infinite number
of possible stationary solutions. This is because the limiting probabilities depend
on the start state. Again the solution is very unsatisfying.

25.10.2 Google’s Solution to Dead Ends and Spider Traps

Google’s initial solution to dead ends and spider traps is to “tax” each page some
fraction of its “importance” and then distribute that taxed importance equally
among all pages in the web graph. This “tax” keeps the DTMC from getting
trapped in a dead end or spider trap.

Figure 25.11 shows the effect of applying a 30% tax on the DTMC of Figure 25.9.
First, every original transition is multiplied by 70%. Then, for each state 𝑠 in an
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𝑀-state chain, we add a transition of weight 30%
𝑀

from state 𝑠 to every other state,
including itself. Thus in the three-state chain in Figure 25.9, we add a transition
of weight 10% from each state to every other state.

A M

N

0.1

0.7·½+Ê0.1

0.8

0.7·½+Ê0.1

0.1

0.7·½+Ê0.1

0.1

0.7·½+Ê0.1

0.1

Figure 25.11 Corresponding DTMC transition diagram.

Observe that the spider trap is now no longer a problem, and we can easily solve
for the limiting probabilities:

𝜋𝐴 = 0.19 𝜋𝑀 = 0.55 𝜋𝑁 = 0.26.

The problem now is that these limiting probabilities are highly dependent on the
amount of tax!

25.10.3 Evaluation of the PageRank Algorithm and Practical
Considerations

PageRank is intended to give an indication of the popularity of a page. This works
well when the graph is irreducible, but it is problematic when there are spider
traps or dead ends. The taxation solution for solving the spider trap problem
seems ad hoc. If the tax is too small, then we still end up with too high a limiting
probability at the spider trap state (as in 𝜋𝑀 = 0.55 in Section 25.10.2). Thus we
need to use a high tax. Yet a high tax seems totally unrealistic, because it leads
to every state being of equal weight.

There’s also the practical consideration: How does Google go about solving the
DTMC for the stationary probabilities, given that it is a huge (finite) DTMC?
Solving such a large number of simultaneous equations seems difficult.

Question: Is there another approach to obtain the limiting probabilities?

Answer: Yes, we can take powers of P, the transition probability matrix. This
turns out to be faster when P is large and sparse and only an approximate solution
is needed. This is the approach employed by Google.
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25.11 From Stationary Equations to Time-Reversibility
Equations

Thus far, to derive the limiting distribution of a DTMC, we solve the stationary
equations. The purpose of this section is to consider a few alternative systems of
equations. We will introduce “balance equations,” which are only a small twist
on stationary equations, and then introduce “time-reversibility equations,” which
are entirely different and sometimes greatly simplify the process.

All this is best illustrated via an example. Consider the DTMC in Figure 25.12
and its corresponding stationary equations.

1-r

r r r

s s s

0

1-r-s

1

1-r-s

2

1-r-s

3

r

s

r

s

99 1-s

Figure 25.12 A finite-state DTMC. Assume that 0 < 𝑟, 𝑠 < 1.

Stationary equations for DTMC in Figure 25.12:
𝜋0 = 𝜋0 (1 − 𝑟) + 𝜋1𝑠
𝜋1 = 𝜋0𝑟 + 𝜋1 (1 − 𝑟 − 𝑠) + 𝜋2𝑠
𝜋2 = 𝜋1𝑟 + 𝜋2 (1 − 𝑟 − 𝑠) + 𝜋3𝑠
. . .

𝜋𝑖 = 𝜋𝑖−1𝑟 + 𝜋𝑖 (1 − 𝑟 − 𝑠) + 𝜋𝑖+1𝑠
. . .

𝜋99 = 𝜋98𝑟 + 𝜋99 (1 − 𝑠)
99∑︁
𝑗=0

𝜋 𝑗 = 1.

These stationary equations are solvable (see Exercise 25.6), but are cumbersome.

Now consider an alternative to stationary equations, called balance equations.

Definition 25.25 The balance equations for a Markov chain equate the total
rate of leaving each state with the total rate of entering the state.

Question: For a DTMC with transition probability matrix P, what is the rate of
leaving state 𝑖?

This may be hard to think about, so let’s start with an easier question:
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Question: For a DTMC with transition probability matrix P, what is the rate of
transitions from state 𝑖 to state 𝑗?

Answer:
𝜋𝑖𝑃𝑖 𝑗 = rate of transitions from state 𝑖 to state 𝑗 .

To see this, note that the “rate” of transitions from state 𝑖 to state 𝑗 is defined
as the number of transitions per time step that have their start point in 𝑖 and end
point in 𝑗 . To understand this quantity, observe that the DTMC is in state 𝑖 for
𝜋𝑖 fraction of all time steps. For 𝑃𝑖 𝑗 fraction of those time steps, the DTMC will
next move to state 𝑗 . Hence, for 𝜋𝑖𝑃𝑖 𝑗 fraction of all time steps, the DTMC is
in state 𝑖 and will move to state 𝑗 in the next transition. Thus, if we look over 𝑡
time steps (let 𝑡 be large), then 𝜋𝑖𝑃𝑖 𝑗 𝑡 total transitions will have their start point
in 𝑖 and their end point in 𝑗 . Dividing by 𝑡, we see that the rate of transitions
(number of transitions per time step) that go directly from 𝑖 to 𝑗 is 𝜋𝑖𝑃𝑖 𝑗 .

Question: So what is the total rate of transitions out of state 𝑖?

Answer: The expression
∑

𝑗 𝜋𝑖𝑃𝑖 𝑗 represents the total rate of transitions out of
state 𝑖, including possibly returning right back to state 𝑖 (if there are self-loops
in the chain). If we want the total rate of transitions out of state 𝑖 not including
returning back to 𝑖, then we write:

∑
𝑗≠𝑖 𝜋𝑖𝑃𝑖 𝑗 .

Definition 25.26 The balance equations for a DTMC with transition matrix
P is the set of equations∑︁

𝑗≠𝑖

𝜋𝑖𝑃𝑖 𝑗 =
∑︁
𝑗≠𝑖

𝜋 𝑗𝑃 𝑗𝑖 and
∑︁
𝑖

𝜋𝑖 = 1. (25.9)

These hold for every state 𝑖. They equate (balance) the rate that we leave state
𝑖 to go to a state other than 𝑖, with the rate that we enter state 𝑖 from a state
other than 𝑖.

Balance equations for DTMC in Figure 25.12:
𝜋0𝑟 = 𝜋1𝑠

𝜋1 (𝑟 + 𝑠) = 𝜋0𝑟 + 𝜋2𝑠
𝜋2 (𝑟 + 𝑠) = 𝜋1𝑟 + 𝜋3𝑠

. . .

𝜋𝑖 (𝑟 + 𝑠) = 𝜋𝑖−1𝑟 + 𝜋𝑖+1𝑠
. . .

𝜋99 (𝑠) = 𝜋98𝑟
99∑︁
𝑗=0

𝜋 𝑗 = 1.
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It is easy to see that the balance equations for Figure 25.12 are equivalent to the
stationary equations (we’ve basically just ignored the self-loops in the chain to
create simpler equations). Intuitively, the balance equations make sense because
every time we leave state 𝑖, we cannot again leave state 𝑖 until we first return to
state 𝑖.

Theorem 25.27 Given a DTMC with transition matrix P, the balance equa-
tions for the DTMC are equivalent to the stationary equations. Thus, satisfying
either set of equations is equally good.

Proof: Recall the stationary equation for state 𝑖:

𝜋𝑖 =
∑︁
𝑗

𝜋 𝑗𝑃 𝑗𝑖 . (25.10)

We also know that

𝜋𝑖 = 𝜋𝑖

∑︁
𝑗

𝑃𝑖 𝑗 =
∑︁
𝑗

𝜋𝑖𝑃𝑖 𝑗 . (25.11)

Combining (25.10) and (25.11), we have:

𝜋𝑖 =
∑︁
𝑗

𝜋𝑖𝑃𝑖 𝑗 =
∑︁
𝑗

𝜋 𝑗𝑃 𝑗𝑖 . (25.12)

We now subtract 𝜋𝑖𝑃𝑖𝑖 from both sides of (25.12):∑︁
𝑗

𝜋𝑖𝑃𝑖 𝑗 − 𝜋𝑖𝑃𝑖𝑖 =
∑︁
𝑗

𝜋 𝑗𝑃 𝑗𝑖 − 𝜋𝑖𝑃𝑖𝑖∑︁
𝑗≠𝑖

𝜋𝑖𝑃𝑖 𝑗 =
∑︁
𝑗≠𝑖

𝜋 𝑗𝑃 𝑗𝑖 .

Hence we obtain the balance equations. ■

Balance equations can also be applied to a set of states as well as to a single state.
For example, if a Markov chain is divided into two sets of states – call these 𝑆 and
𝑆𝑐 (here 𝑆𝑐 denotes the complement of 𝑆) – then we can write equations equating
the rate of transitions (the “flux”) from 𝑆 to 𝑆𝑐 with the rate of transitions from
𝑆𝑐 to 𝑆.

Question: Why does it make sense that the total flux from 𝑆 to 𝑆𝑐 should equal
that from 𝑆𝑐 to 𝑆?

Answer: The argument is identical to what we observed for a single state. Every
time a transition takes us from 𝑆 to 𝑆𝑐, we have left the states in 𝑆. We therefore
cannot have another transition from 𝑆 to 𝑆𝑐 until we reenter the states in 𝑆, but
this requires a transition from 𝑆𝑐 to 𝑆.
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We now return to the DTMC in Figure 25.12, and try to write even simpler
equations. Such equations are referred to as time-reversibility equations.

Definition 25.28 The time-reversibility equations for a DTMC with transi-
tion matrix P is the set of equations

𝜋𝑖𝑃𝑖 𝑗 = 𝜋 𝑗𝑃 𝑗𝑖 , ∀𝑖, 𝑗 and
∑︁
𝑖

𝜋𝑖 = 1. (25.13)

These equations apply to every pair of states, 𝑖, 𝑗 . Specifically, there is one
equation written for each pair of state, 𝑖, 𝑗 . They equate the rate of transitions
from 𝑖 to 𝑗 with the rate of transitions from 𝑗 to 𝑖.

Time-reversibility equations for DTMC in Figure 25.12:
𝜋0𝑟 = 𝜋1𝑠
𝜋1𝑟 = 𝜋2𝑠
𝜋2𝑟 = 𝜋3𝑠

. . .

𝜋𝑖𝑟 = 𝜋𝑖+1𝑠
. . .

𝜋98𝑟 = 𝜋99𝑠
99∑︁
𝑗=0

𝜋 𝑗 = 1.

The time-reversibility equations are much simpler than the stationary equations.

Question: Are the time-reversibility equations above equivalent to the stationary
equations or balance equations that we’ve seen?

Answer: No!

While the time-reversibility equations look very different from the stationary and
balance equations, it turns out that they do yield the correct stationary distribution
for the chain in Figure 25.12. This seems impossible, but try it!

Question: Given an aperiodic, irreducible DTMC, are the time-reversibility
equations always satisfied?

Answer: No.

Question: What’s an example of a chain where the time-reversibility equations
are not satisfied?

Answer: Imagine a chain which is irreducible, but where there is an edge from
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𝑖 to 𝑗 , but no edge from 𝑗 to 𝑖. Then the rate of transitions from 𝑗 to 𝑖 is by
definition 0, although the rate of transitions from 𝑖 to 𝑗 is non-zero.

In Theorem 25.29, we prove that if we can find 𝜋𝑖’s that satisfy the time-
reversibility equations, then those 𝜋𝑖’s are the stationary probabilities. In that
case, we say that the chain is called “time-reversible.” If we can’t find 𝜋𝑖’s that
satisfy the time-reversibility equations, this does not imply that there’s no sta-
tionary distribution. It just means that we have to start from scratch with the
(more complicated) stationary equations.

Theorem 25.29 (Time-reversibility implies stationarity) For a DTMC with
transition matrix P, suppose we can find 𝑥0, 𝑥1, 𝑥2, . . . such that, ∀𝑖, 𝑗:

𝑥𝑖𝑃𝑖 𝑗 = 𝑥 𝑗𝑃 𝑗𝑖 and
∑︁
𝑖

𝑥𝑖 = 1. (25.14)

Then the vector ®𝑥 = (𝑥0, 𝑥1, 𝑥2, . . . ) is a stationary distribution, and we say
that the DTMC is time-reversible.

Proof:

𝑥𝑖𝑃𝑖 𝑗 = 𝑥 𝑗𝑃 𝑗𝑖 , ∀𝑖, 𝑗
⇒

∑︁
𝑖

𝑥𝑖𝑃𝑖 𝑗 =
∑︁
𝑖

𝑥 𝑗𝑃 𝑗𝑖

⇒
∑︁
𝑖

𝑥𝑖𝑃𝑖 𝑗 = 𝑥 𝑗

∑︁
𝑖

𝑃 𝑗𝑖

⇒
∑︁
𝑖

𝑥𝑖𝑃𝑖 𝑗 = 𝑥 𝑗 .

Hence, together with
∑

𝑖 𝑥𝑖 = 1, the 𝑥 𝑗’s satisfy the stationary equations. ■

Remark 1: In some books, the definition of “time-reversible” requires additionally
that the chain be ergodic, but we won’t be making ergodicity a requirement.
Remark 2: Theorem 25.29 does not require that the number of states is finite.

Question: The time-reversibility equations are much simpler than the stationary
or balance equations, but they aren’t always solvable. For the chain in Fig-
ure 25.12, the time-reversibility equations had a solution. What was special
about this chain?

Answer: The chain in Figure 25.12 has the property that the rate of transitions
from state 𝑖 to state 𝑗 is always equal to the rate of transitions from state 𝑗 to
state 𝑖. To see this, notice first that if 𝑗 is anything other than 𝑖 + 1 or 𝑖 − 1, then
the rate of transitions from 𝑖 to 𝑗 is zero, and, likewise, the rate of transitions
from 𝑗 to 𝑖 is zero. Now suppose 𝑗 = 𝑖 + 1. The number of transitions from 𝑖 to
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𝑖 + 1 during time 𝑡 is the same (within 1) of the number of transitions from 𝑖 + 1
to 𝑖. This is because every time we go from state 𝑖 to 𝑖 + 1, we can’t repeat that
transition until we first go from 𝑖 + 1 to 𝑖. This translates to the rates being the
same when we divide by time.

As we’ll see in the exercises (see, for example, Exercises 25.9 and 25.18) there
are plenty of Markov chains that are time-reversible, but it is not always easy
to guess in advance which chains will have this beautiful property. When trying
to determine the stationary solution, you first try to solve the time-reversibility
equations. If those yield a solution, then you’re done (your solution also satisfies
the stationary equations). If the time-reversibility equations are not solvable, then
you’ll need to try solving the stationary or balance equations.

Question: A final reminder: Solving the stationary equations, or balance equa-
tions, or time-reversibility equations, yields a stationary distribution. What does
that tell us about the limiting distribution?

Answer: The fact that we have a stationary distribution, ®𝜋, does not tell us
anything about whether a limiting distribution exists. However, if we have a
finite-state, irreducible, aperiodic DTMC, then, by Theorem 25.19, ®𝜋 is also the
limiting distribution.

25.12 Exercises

25.1 Two finite-state chains
Figure 25.13 depicts two finite-state chains. For each chain, answer the
questions below.

Chain 2Chain 1

0 1

1½

½

2

0

1

½ ½

½

½

½ ½

Figure 25.13 Two finite-state chains for Exercise 25.1.

(a) Is the DTMC irreducible?
(b) Is the DTMC aperiodic?



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

470 25 Ergodicity for Finite-State Discrete-Time Markov Chains

(c) Does the DTMC have a limiting distribution? If so, what is it? If not,
why not?

(d) Does the DTMC have a stationary distribution? If so, what is it? If
not, why not?

Explain each answer by citing the appropriate theorems.

25.2 Passing around a ball
[Proposed by Sam Yeom] In answering these questions, cite the theorems
that you use in making your claims.
(a) Five people stand in a circle, passing a ball around. Suppose that

each person either passes the ball right or left with 50% probability
each. What is the stationary distribution? Is this also the limiting
distribution?

(b) Five people stand in a circle, passing a ball around. Suppose that each
person passes the ball to their right with probability 1. What is the
stationary distribution? Is this also the limiting distribution?

(c) Now suppose that the five people are standing in a line. Each person
passes the ball to their right or left with 50% probability each, ex-
cept for the two people at the ends who always pass it to their one
neighbor. What is the stationary distribution? Is this also the limiting
distribution?

(d) Again the five people are standing in a line. Again each person passes
the ball to their right or left with 50% probability each, except for
the two people at the ends who always hold on to the ball instead of
passing it. What is the stationary distribution? Is this also the limiting
distribution?

25.3 Multiple stationary distributions
Ishani’s finite-state DTMC has multiple stationary distributions. We do
not know whether the chain is aperiodic or irreducible. What can we
conclude?
(a) Ishani’s DTMC has multiple limiting distributions.
(b) Ishani’s DTMC has no limiting distribution.
(c) Ishani’s DTMC has exactly one limiting distribution.
(d) We can’t conclude any of these for sure.
Provide full justification for your answer by citing the appropriate theo-
rems.

25.4 Practice with the definitions
Consider each of the two simple DTMCs shown in Figure 25.14. For
each chain, please answer the following questions. Justify your answers
by citing theorems.
(a) Is the chain aperiodic?
(b) Is the chain irreducible?
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(c) Is the chain ergodic?
(d) Does the limiting distribution exist? If so, what is it? If not, why not?
(e) Does one or more stationary distributions exist? If so, what are the

stationary distribution(s)?
(f) Is 𝑝𝑐, the time-average fraction of time spent in state 𝑐, well defined?

If so, what is it?
(g) Consider 𝑚𝑐𝑐, the mean time until we again visit state 𝑐, given we are

in state 𝑐. Is 𝑚𝑐𝑐 well-defined? If so, what is it?

¼

a b 1

c

1

½

¼Ê

Chain 2

¼

a b

c

1

½

¼Ê

¼

½
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Chain 1

Figure 25.14 Chains for Exercise 25.4.

25.5 Proof of Corollary 25.13
Prove Corollary 25.13.

25.6 A simple finite-state chain
For the DTMC shown in Figure 25.15, explain how we know that the
limiting distribution exists by citing theorems from the chapter. Then

1-r

r r r

s s s

0

1-r-s

1
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r

s

r

s

99 1-s

Figure 25.15 Chain for Exercise 25.6.

solve for the limiting distribution via these steps:
(a) From the stationary equations, express 𝜋1 in terms of 𝜋0. Then express

𝜋2 in terms of 𝜋0.
(b) You will notice a pattern that will help you make a guess for how to

express 𝜋𝑖 in terms of 𝜋0 for any 𝑖.
(c) Determine 𝜋0 by using

∑
𝑖 𝜋𝑖 = 1 and verify the correctness of your

guess.
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25.7 Some example DTMCs
For each chain shown in Figure 25.16, answer the following questions:
(a) Is the chain irreducible?
(b) Is the chain aperiodic?
(c) Does a stationary distribution exist?
(d) Does the limiting distribution exist?
Provide a one-line explanation for your answer, citing theorems.

0

1
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3

Chain 3

½ 1

² ³⁄ ½

¹ ³⁄1

1

Chain 1

0 1

½

½1

2

1

Chain 2

0 1

3

1

1² ³⁄

¹ ³⁄

2

Figure 25.16 Markov chains for Exercise 25.7.

25.8 Caching
If you think about it, web browsing is basically a Markov chain – the page
you will go to next depends on the page you are currently at. Suppose
our web server has three pages, and we have the following transition
probabilities:
𝑃1,1 = 0 𝑃1,2 = 𝑥 𝑃1,3 = 1 − 𝑥
𝑃2,1 = 𝑦 𝑃2,2 = 0 𝑃2,3 = 1 − 𝑦
𝑃3,1 = 0 𝑃3,2 = 1 𝑃3,3 = 0,

where 𝑃𝑖, 𝑗 represents the probability that I will next request page 𝑗 , given
that I last requested page 𝑖. Assume that 0 < 𝑥 < 𝑦 < 1

2 .
Recall that web browsers cache pages so that they can be quickly retrieved
later. We will assume that the cache has enough memory to store two
pages. Whenever a request comes in for a page that is not cached, the
browser will store that page in the cache, replacing the page least likely to
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be referenced next based on the current request. For example, if my cache
contained pages {2,3} and I requested page 1, the cache would now store
{1,3} (because 𝑥 < 1 − 𝑥).
(a) Find the proportion of time that the cache contains the following

pages: (i) {1,2} (ii) {2,3} (iii) {1,3}. [Hint 1: You will need to
think carefully about what information you need in your states to
create the appropriate DTMC.] [Hint 2: When solving your DTMC,
you will find that two of the states are only visited a finite number of
times, with probability 1, so the long-run fraction of time spent there
is 0. You can thus ignore these states and just solve for the stationary
probabilities of the remaining states.]

(b) Find the proportion of requests that are for cached pages.

25.9 Practice with balance equations and time-reversibility equations
Consider the following Markov chains:

P(1) =
©­­­«

0 2/3 0 1/3
1/3 0 2/3 0
0 1/3 0 2/3

2/3 0 1/3 0

ª®®®¬
P(2) =

©­­­«
1/3 2/3 0 0
1/3 0 2/3 0
0 1/3 0 2/3
0 0 1/3 2/3

ª®®®¬ .

(a) Draw the corresponding Markov chains for P(1) and P(2) .
(b) Solve for the time-average fraction of time spent in each state for both

P(1) and P(2) . First try to use the time-reversibility equations, and if
they do not work, then use the balance equations.

(c) Was P(1) time-reversible? Was P(2) time-reversible?
(d) For those chain(s) that were time-reversible, explain why it makes

sense that for all states 𝑖, 𝑗 in the chain, the rate of transitions from 𝑖

to 𝑗 should equal the rate of transitions from 𝑗 to 𝑖.

25.10 Data centers, backhoes, and bugs
Our data center alternates between “working” and “down.” There are two
reasons why our data center can be down: (1) a backhoe accidentally dug
up some cable, or (2) a software bug crashed the machines. Suppose that if
the data center is working today, it will be down tomorrow due to backhoe
reasons with probability 1

6 or will be down tomorrow due to a software
bug with probability 1

4 . A data center that is down today due to backhoe
reasons will be up tomorrow with probability 1. A data center that is down
today due to a software bug will be up tomorrow with probability 3

4 .
(a) Draw a DTMC for this problem.
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(b) Is your DTMC ergodic? Why or why not?
(c) Is your DTMC time-reversible? Why or why not?
(d) What fraction of time is the data center working?
(e) What is the expected number of days between backhoe failures?

25.11 CLT versus SLLN
Consider a sequence of i.i.d. random variables 𝑋1, 𝑋2, . . .with finite mean
E [𝑋] and finite variance 𝜎. Let 𝑆𝑛 =

∑𝑛
𝑖=1 𝑋𝑖 . Now consider the quantity:

𝑆𝑛 − 𝑛E [𝑋]
𝑛

.

What does the Strong Law of Large Numbers (SLLN) say about this
quantity as 𝑛 → ∞? What does the Central Limit Theorem (CLT) say
about this quantity as 𝑛→∞? Are they in contradiction?

25.12 Walks on undirected weighted graphs
This problem comes up in many areas. Consider any undirected connected
graph with weights: 𝑤𝑖 𝑗 = 𝑤 𝑗𝑖 is the weight on edge (𝑖, 𝑗) where 𝑤𝑖 𝑗 ≥
0, ∀𝑖, 𝑗 . See for example Figure 25.17. A particle moves between nodes in
a weighted graph as follows: A particle residing at node 𝑖 will next move
to node 𝑗 with probability 𝑃𝑖 𝑗 , where

𝑃𝑖 𝑗 =
𝑤𝑖 𝑗

Σ 𝑗𝑤𝑖 𝑗

.

1

0

2

3

100 2

30

150

Figure 25.17 A weighted graph with 𝑀 = 4 nodes describing a particle’s motion.

Your goal is to determine the long-run proportion of time that the particle
is in state 𝑖.
(a) Play around with the example in Figure 25.17. Which node do you

think is visited most often?
(b) You’ll now need to guess a solution for a general weighted graph and

show that your solution satisfies the stationary equations. It will help
a lot, both in making your guess and in verifying your guess, if you
write out the time-reversibility equations rather than the stationary
equations.
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25.13 Finite-state chain with equal weights
Consider the finite-state chain in Figure 25.18.

2

1

4

½

½

3

¹ ³⁄

¹ ³⁄

¹ ³⁄

¹ ³⁄

½
¹ ³⁄

¹ ³⁄
½

Figure 25.18 Markov chain for Exercise 25.13.

(a) Is the chain ergodic?
(b) Is the chain time-reversible?
(c) What is the limiting probability of being in each state?
(d) The finite-state chain in Figure 25.18 has two properties:

(i) Balanced weights: This is the property that the probabilities on
each of the arrows leaving a state are equal.

(ii) Bidirectional edges: This is the property that if there’s an edge
from 𝑖 to 𝑗 , then there’s also an edge from 𝑗 to 𝑖.

Look at the structure of the limiting probabilities that you obtained
for Figure 25.18. To see the structure, it will help to write these over
the same common denominator. Now imagine an arbitrary ergodic
finite-state chain with 𝑛 states that has both the “balanced weights”
property and the “bidirectional edges” property. What can you say
about 𝜋 𝑗 , the limiting probability of being in state 𝑗? Make a guess
and verify it.

25.14 Gas migration
You have a box with 𝑛 gas molecules, with a divider in the middle that
the molecules can pass through. As shown in Figure 25.19, there is an A
side and a B side to the box. Assume that 𝑛 is even.
All the molecules start out on the A side. Every second, we pick a random
gas molecule out of the 𝑛 molecules and transfer it to the other side.
(a) Determine the proportion of time that the box has the same number

of molecules on the A side and the B side. Start by drawing a Markov
chain!

(b) Let 𝑁𝐵 denote the number of molecules in the B side of the box.
(i) What is E [𝑁𝐵]?

(ii) What is Var(𝑁𝐵)?
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A B

Figure 25.19 Box of gas molecules for Exercise 25.14.

[Hint: What do you know about 𝑁𝐵’s distribution over a long time?]

25.15 Randomized chess
This problem concerns the behavior of various chess pieces as they move
randomly around the board. Chess is played on an 8 × 8 board divided
into 64 squares that alternate from white to black. The king can move one
square in any direction (including the diagonal). The bishop can move any
number of squares, but only in the diagonal directions. The knight moves
in an L-shape. That is, the knight moves two squares to either side (left
or right) and one square up or down. Or, the knight can move two squares
up or down and one square to the side (left or right).
(a) You are given an empty chessboard with a lone king placed in one

corner. At each time step, the king will make a uniformly random legal
move. Is the corresponding Markov chain for this process irreducible?
Is it aperiodic?

(b) What if a bishop is used instead?
(c) What if a knight is used instead?
(d) Now take advantage of Exercise 25.12 on undirected weighted graphs

and time-reversibility to calculate the expected time for the king to
return to the corner. Think about how hard this would be without
time-reversibility. [Hint: The calculation should be very simple.]

(e) Do the same for the bishop.
(f) Do the same for the knight.

25.16 Interpreting the stationary probabilities as fractions of time
Assume that you have an irreducible, finite-state DTMC with 𝑀 states
(numbered 0, 1, . . . ,𝑀 − 1) and transition matrix P.
Define

𝜙 𝑗 = lim
𝑛→∞

∑𝑛
𝑖=1 𝑝 𝑗 (𝑖)
𝑛

,

where 𝑝 𝑗 (𝑖) is the probability that the chain is in state 𝑗 at time step 𝑖.
(a) What is the meaning of 𝜙 𝑗? Please follow these steps:

(i) What does
∑𝑛

𝑖=1 𝑝 𝑗 (𝑖) mean?
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(ii) What does
∑𝑛

𝑖=1 𝑝 𝑗 (𝑖)
𝑛

mean?
(iii) What does 𝜙 𝑗 = lim𝑛→∞

∑𝑛
𝑖=1 𝑝 𝑗 (𝑖)

𝑛
mean?

(b) Prove that the distribution ®𝜙 = (𝜙0, 𝜙1, . . . , 𝜙𝑀−1) is a stationary
distribution. Please follow these steps:

(i) Express 𝑝 𝑗 (𝑖) in terms of a sum involving 𝑝𝑘 (𝑖 − 1).
(ii) Show that 𝜙 𝑗 satisfies the stationary equations.

(iii) Don’t forget to prove the needed condition on
∑𝑀−1

𝑗=0 𝜙 𝑗 .

25.17 In an irreducible DTMC, do all states have the same period?
Given an irreducible DTMC, either prove that all states have the same
period, or find a counter-example.

25.18 How rare are time-reversible DTMCs?
Edward feels that time-reversible chains are very rare. Erica disagrees.
Erica claims that it’s easy to create time-reversible chains, via the idea of
Exercise 25.12.
(a) Consider the DTMC in Figure 25.20 whose transitions are unlabeled.

Use what you’ve learned in Exercise 25.12 to label each edge (𝑖, 𝑗)
of the DTMC with a transition probability 𝑝𝑖 𝑗 such that 0 < 𝑝𝑖 𝑗 < 1
and such that the DTMC is time-reversible. Then write the limiting
distribution of your chain.

0 1

4 3

2

Figure 25.20 Markov chain for Exercise 25.18.

(b) How many possible answers are there to question (a)? That is, how
many choices of transition probabilities are there that create a time-
reversible DTMC? Pick the correct answer and give a one-line expla-
nation:

(i) exactly one
(ii) a finite number

(iii) countably infinite
(iv) uncountably infinite

25.19 Irreducible finite-state chains have finite mean time to return
Prove Theorem 25.11: For a finite-state, irreducible DTMC, 𝑚𝑖 𝑗 is finite,
for every 𝑖, 𝑗 .
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25.20 Every finite DTMC has at least one stationary distribution
[Proposed by Misha Ivkov] In this problem we will prove that every finite-
state DTMC has at least one stationary distribution. Note, we are not
making any assumptions about the DTMC.
(a) First, prove that a finite DTMC must have at least one recurrent state.

(i) Let 𝑖 be a state in the Markov chain. Argue that there exists some
state 𝑗 such that

∑∞
𝑛=0 (P𝑛)𝑖 𝑗 = ∞.

(ii) Now argue that
∑∞

𝑛=0 (P𝑛) 𝑗 𝑗 = ∞.
(b) Let 𝑗 be the recurrent state identified above, and let 𝑆 be the set of

states that are accessible from 𝑗 . Show that 𝑆 is an irreducible DTMC.
(c) As explained in Theorem 25.20, since 𝑆 is irreducible, we know that

it has a stationary distribution; let’s call that ®𝜋′. We now define ®𝜋 as

𝜋𝑖 =

{
𝜋′
𝑖

if 𝑖 ∈ 𝑆
0 otherwise .

Prove that ®𝜋 is a stationary distribution for the original DTMC.


