Part VI

Discrete-Time Markov
Chains

This final part of the book is devoted to the topic of Markov chains. Markov
chains are an extremely powerful tool used to model problems in computer sci-
ence, statistics, physics, biology, and business — you name it! They are used
extensively in Al/machine learning, computer science theory, and in all areas of
computer system modeling (analysis of networking protocols, memory manage-
ment protocols, server performance, capacity provisioning, disk protocols, etc.).
Markov chains are also very common in operations research, including supply
chain, call center, and inventory management.

Our goal in discussing Markov chains is two-fold. On the one hand, as always,
we are interested in applications and particularly applications to computing. On
the other hand, Markov chains are a core area of probability theory and thus we
have chosen to cover the theory of Markov chains in some depth here.

In Chapter 24, we introduce finite-state Markov chains, limiting distributions,
and stationary distributions.

In Chapter 25, we delve into the theory of finite-state Markov chains, discussing
whether the limiting distribution exists and whether the stationary distribution
is unique. We also introduce time reversibility, time averages, and mean passage
times. A more elementary class might choose to skip this chapter, but it is my
experience that undergraduates are fully capable of understanding this material
if they proceed slowly and focus on examples to help illustrate the concepts.

In Chapter 26, we turn to infinite-state Markov chains. These are great for
modeling the number of packets queued at a router, or the number of jobs at a data
center. Although we skip the hardest proofs here, there is still a lot of intuition to
be gained just in understanding definitions like transient and positive-recurrent.

All these chapters are full of examples of the application of Markov chains for
modeling and solving problems. However, it is the final chapter, Chapter 27 on
queueing theory, which really ties it all together. Through queueing theory, we
see a real-world application of all the abstract concepts introduced in the Markov
chain chapters.
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24 Discrete-Time Markov
Chains: Finite-State

This chapter begins our study of Markov chains, specifically discrete-time
Markov chains. In this chapter and the next, we limit our discussion to Markov
chains with a finite number of states. Our focus in this chapter will be on under-
standing how to obtain the limiting distribution for a Markov chain.

Markov chains come up in almost every field. As we study Markov chains, be
on the lookout for Markov chains in your own work and the world around you.
They are everywhere!

24.1 Our First Discrete-Time Markov Chain

Love is complicated. Figure 24.1 depicts the day-by-day relationship status of
CMU students.

Figure 24.1 The states of love, according to Facebook.

There are three possible states for the relationship status. We assume that the
relationship status can change only at the end of each day, according to the
probabilities shown. For example, if we’re “single” today, with probability 0.95
we will still be single tomorrow. When entering the “relationship” state, we stay
there on average for five days (note the Geometric distribution), after which we
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24.2 Formal Definition of a DTMC 421

move into the “it’s complicated” state. From the “it’s complicated” state, we’re
equally likely to return to the single state or the relationship state.

For such a Markov chain, we will ask questions like: What fraction of time does
one spend in the “relationship” state, as opposed to the “single” state?

24.2 Formal Definition of a DTMC

Definition 24.1 A discrete-time Markov chain (DTMC) is a stochastic pro-
cess {X,,n=0,1,2,...}, where X,, denotes the state at (discrete) time step n
and such that Vn > 0, Vi, j, and Vi, . . .,i,—1 € Z,

P{Xp1 = j | Xp =i, Xp-1 = in-1,..., Xo = io}
=P {Xn+1 =j | X, = i} (Markovian property)
= P;; (stationary property),

where P;; is independent of the time step and of past history.

Let’s try to understand this definition line-by-line.
Question: First, what is a “stochastic process”?

Answer: A stochastic process is simply a sequence of random variables. In the
case of Markov chain, this is a sequence of the states at each time step.

Question: What is being stated in the equality in marked ‘“Markovian property”
in the definition?

Answer: In a nutshell, past states don’t matter. Only the current state matters.

Definition 24.2 The Markovian property states that the conditional distri-
bution of any future state X1, given past states Xy, X1,...,Xn—1, and the
present state X,,, is independent of past states and depends only on the present
state X,,.

Question: What is being stated in the equality marked “‘stationary property” in
the definition?

Answer: The stationary property indicates that the transition probability, P;;,
is independent of the time step, n.
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422 24 Discrete-Time Markov Chains: Finite-State

Definition 24.3 The transition probability matrix associated with any
DTMC is a matrix, P, whose (i, j)th entry, P;j, represents the probability
of moving to state j on the next transition, given that the current state is i.

Observe that, by definition, ), j P;j =1, Vi, because, given that the DTMC is in
state 7, it must next transition to some state j.

Finite state versus infinite state: This chapter and the next will focus on DTMCs
with a finite number of states, M. In Chapter 26, we will generalize to DTMCs
with an infinite (but still countable) number of states.

DTMC:s versus CTMCs: In a DTMC, the state can only change at synchronized
(discrete) time steps. This book focuses on DTMC:s. In a continuous-time Markov
chain (CTMC) the state can change at any moment of time. CTMCs are outside
the scope of this book, but we refer the interested reader to [35].

Ergodicity issues: In working with Markov chains, we will often be trying to
understand the “limiting probability” of being in one state as opposed to another
(limiting probabilities will be defined very soon). In this chapter, we will not dwell
on the question of whether such limiting probabilities exist (called ergodicity
issues). Instead we simply assume that there exists some limiting probability
of being in each state of the chain. We defer all discussion of ergodicity to
Chapter 25.

The three Ms: Solving Markov chains typically requires solving large systems of
simultaneous equations. We therefore recommend taking the time to familiarize
yourself with tools like Matlab [52], Mathematica [80], or Maple [50].

24.3 Examples of Finite-State DTMCs

We start with a few examples of simple Markov chains to illustrate the key
concepts.

24.3.1 Repair Facility Problem

A machine is either working or is in the repair center. If it is working today,
then there is a 95% chance that it will be working tomorrow. If it is in the repair
center today, then there is a 40% chance that it will be working tomorrow. We
are interested in questions like, “What fraction of time does my machine spend
in the repair shop?”
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24.3 Examples of Finite-State DTMCs 423

Question: Describe the DTMC for the repair facility problem.

Answer: There are two states, “Working” and “Broken,” where “Broken” denotes
that the machine is in repair. The transition probability matrix is

w B
p_ [095 005
= 21040 0.60|

The Markov chain diagram is shown in Figure 24.2.

0.05

0.95 ‘Working‘

04

Broken ’ 0.6

Figure 24.2 Markov chain for the repair facility problem.
Question: Now suppose that after the machine remains broken for four days, the
machine is replaced with a new machine. How does the DTMC diagram change?
Answer: The revised DTMC is shown in Figure 24.3.

0.05 0.6 0.6 0.6

0.95 .Working.

Figure 24.3 Markov chain for the repair facility problem with a four-day limit.

24.3.2 Umbrella Problem

An absent-minded professor has two umbrellas that she uses when commuting
from home to office and back. If it rains and an umbrella is available in her
location, she takes it. If it is not raining, she always forgets to take an umbrella.
Suppose that it rains with probability p each time she commutes, independently
of prior commutes. Our goal is to determine the fraction of commutes during
which the professor gets wet.
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424 24 Discrete-Time Markov Chains: Finite-State

Question: What is the state space?
Hint: Try to use as few states as possible!

Answer: We only need three states. The states track the number of umbrellas
available at the current location, regardless of what this current location is. The
DTMC is shown in Figure 24.4.

Figure 24.4 DTMC for the umbrella problem.

0 I 2
|0 0 1

The transition probability matrixisP = 1| 0 1-p p|.
211-p )4 0

The probability of getting wet is the probability that it rains during a commute
from a location with zero umbrellas.

24.3.3 Program Analysis Problem

A program has three types of instructions: CPU (C), memory (M), and user
interaction (U). In analyzing the program, we note that a C instruction with
probability 0.7 is followed by another C instruction, with probability 0.2 is fol-
lowed by an M instruction and with probability 0.1 is followed by a U instruction.
An M instruction with probability 0.1 is followed by another M instruction, with
probability 0.8 is followed by a C instruction, and with probability 0.1 is followed
by a U instruction. Finally, a U instruction with probability 0.9 is followed by a
C instruction, and with probability 0.1 is followed by an M instruction.

In the exercises for this chapter and the next, we answer questions like, “What is
the fraction of C instructions?” and “How many instructions are there on average
between consecutive M instructions?” For now, we simply note that the program
can be represented as a Markov chain with the transition probability matrix:

c M U
c 107 02 0.1
P=»]08 01 0.1].
vif{09 01 O
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24.4 Powers of P: n-Step Transition Probabilities 425

24.4 Powers of P: n-Step Transition Probabilities

Definition 24.4 Let P" = P - P-- - P, multiplied n times. Then (P");; denotes
the (i, j)th entry of matrix P". Occasionally, we will use the shorthand:

Question: What does (P");; represent?
Answer: To answer this, we first consider two examples.
Example 24.5 (Back to the umbrellas)

Consider the umbrella problem from before, where the chance of rain on any
given day is p = 0.4. We then have:

0 0 1 06 30 .64 230 385 .385
P=|0 6 4 P=| .18 38 .44 PO =| 230 .385 .385
6 4 0 38 44 .18 230 385 .385

Observe that all the rows become the same! Note also that, for all the above
powers, each row sums to 1.

Example 24.6 (Back to the repair facility)

Now, consider again the simple repair facility problem, with general transition
probability matrix P:

1-a a
P_l b l—b]’ O<a<1l,0<b< 1.

You should be able to prove by induction that

n o_ +b +b
PY=| v @@0-byn  arn(a-b)n

a+b a+b

b+a(l-a—b)" a—a(l—a—b)"l

b _a
lim P" = l azb a+b }
a .
n—eo a+b  a+b

Question: Again, all rows are the same. Why? What is the meaning of the row?

Hint: Consider a DTMC in state i. Suppose we want to know the probability that
it will be in state j two steps from now. To go from state i to state j in two steps,
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426 24 Discrete-Time Markov Chains: Finite-State

the DTMC must have passed through some state k after the first step. Below we
condition on this intermediate state k.

For an M-state DTMC, as shown in Figure 24.5,

M-1
), - S reon
Yo k=0

= Probability of being in state j in two steps, given we’re in state i now.

Figure 24.5 (PZ)

ij
Likewise, the n-wise product can be viewed by conditioning on the state k after

n — 1 time steps:

M-1

P = () Py

k=0
Probability of being in state j in n steps, given we are in state i now.

24.5 Limiting Probabilities

‘We now move on to looking at the limit. Consider the (i, j)th entry of the power
matrix P" for large n:

lim (P");; = (lim P") .
n—oo n—oo ij

This quantity represents the limiting probability of being in state j infinitely far
into the future, given that we started in state i.

Question: So what is the limiting probability of having zero umbrellas?
Answer: According to P it is 0.23.

Question: The fact that the rows of lim,_,., P" are all the same is interesting
because it says what?
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24.5 Limiting Probabilities 427

Answer: The fact that (P");; is the same for all values of i says that the starting
state, 7, does not matter.

Definition 24.7 Let
7Tj = nh—l;lgo (Pn)lj .

n; represents the limiting probability that the chain is in state j, independent

of the starting state i. For an M-state DTMC, with states 0, 1, ..., M — 1,
M-1
7= (mg,m1,...,Tp1-1), Where Z =1,
=

represents the limiting distribution of being in each state.

Important note: As defined, xr; is a limit. Yet it is not at all obvious that the
limit 7r; exists! It is also not obvious that 77 represents a distribution (that is,
>.; m; = 1), although this latter part turns out to be easy to see (Exercise 24.2).
For the rest of this chapter, we will assume that the limiting probabilities exist.
In Chapter 25 we look at the existence question in detail.

Question: So what is the limiting probability that the professor gets wet?

Answer: The professor gets wet if both (1) the state is 0, that is, there are zero
umbrellas in the current location (mp); and (2) it is raining (p = 0.4). So the
limiting probability that the professor gets wet is g - p = (0.23)(0.4) = 0.092.

Question: Can you see why the limiting probability of having one umbrella is
equal to the limiting probability of having two umbrellas?

Answer: Let’s go back to Figure 24.4. Suppose now that we’re only trying to
determine the fraction of time that we’re in a location with one umbrella versus
the fraction of time that we’re in a location with two umbrellas. In that case, all
that matters is the number of visits to state 1 versus the number of visits to state
2. But, over a long period of time, the number of visits to state 1 and the number
to state 2 are equal. To see this, if one considers only those two options of 1 and
2, then the chain from Figure 24.4 collapses to that shown in Figure 24.6. But
the chain in Figure 24.6 is symmetric, hence the equal limiting probabilities.

p
G G-
p

Figure 24.6 Compressed umbrella problem.
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428 24 Discrete-Time Markov Chains: Finite-State

24.6 Stationary Equations

Question: Based only on what we have learned so far, how do we determine

Answer: We take the transition probability matrix P and raise it to the nth power

for some large n and look at the jth column, any row.

Question: Multiplying P by itself many times sounds quite onerous. Also, it
seems one might need to perform a very large number of multiplications if the

Markov chain is large. Is there a more efficient way?

Answer: Yes, by solving stationary equations, given in Definition 24.8.

Definition 24.8 A probability distribution 1 = (ng, w1, ..., Tpr-1) is said to

be stationary for the Markov chain with transition matrix P if

Figure 24.7 provides an illustration of 7 - P = 7.

[”0 & ”2] Py Py Por | = [”0 T ”2]
Py Py Py
P P P

Figure 24.7 Visualization of it - P = 7 for the case of M = 3 states.

Doing the row-by-column multiplication in Figure 24.7 results in the following

stationary equations:

mo - Poo+m - Pro+m - Py =mg

mo-Por+m - Pri+m- Py =m
mo-Pop+m - Prp+m-Pyp=m

7T0+7T1+7T2=1.

These stationary equations can be written more compactly as follows:

M-1

M-1
Zﬂ'ipij:ﬂj, V] and Zﬂ'iz
i=0

i=0
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24.7 The Stationary Distribution Equals the Limiting Distribution 429

Question: What does the left-hand side of the first equation in (24.1) represent?

Answer: The left-hand side represents the probability of being in state j one
transition from now, given that the current probability distribution on the states
is 77. So (24.1) says that if we start out distributed according to 7, then one step
later our probability of being in each state will still follow distribution 7. Thus,
from then on we will always have the same probability distribution on the states.
Hence, we call the distribution “stationary,” which connotes the fact that we stay
there forever.

24.7 The Stationary Distribution Equals the Limiting
Distribution

The following theorem relates the limiting distribution to the stationary distribu-
tion for a finite-state DTMC. Specifically, the theorem says that for a finite-state
DTMC, the stationary distribution obtained by solving (24.1) is unique and rep-
resents the limiting probabilities of being in each state, assuming these limiting
probabilities exist.

Theorem 24.9 (Stationary distribution = limiting distribution) In a finite-
state DTMC with M states, let
i = nh_r}go (P");;

be the limiting probability of being in state j (independent of the starting state
i) and let

M-1
7= (ng,m1,...,Tp0-1), Where Z =1,
.=0

be the limiting distribution. Assuming that 7t exists, then 7 is also a stationary
distribution and no other stationary distribution exists.

Question: What’s the intuition behind Theorem 24.9?

Answer: Intuitively, given that the limiting distribution, 7, exists, it makes sense
that this limiting distribution should be stationary, because we’re not leaving
the limit once we get there. It’s not as immediately obvious that this limiting
distribution should be the only stationary distribution.

Question: What’s the impact of Theorem 24.9?
Answer: Assuming that the limiting distribution exists, Theorem 24.9 tells us
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430 24 Discrete-Time Markov Chains: Finite-State

that to get the limiting distribution we don’t need to raise the transition matrix to
a high power, but rather we can just solve the stationary equations.

Proof: [Theorem 24.9] We prove two things about the limiting distribution 7:

1. We will prove that 7@ = (g, 71,72, ...,Tar—1) is a stationary distribution.
Hence, at least one stationary distribution exists.

2. We will prove that any stationary distribution must be equal to the limiting
distribution.

Important: Throughout the proof, & = (7o, 711,72, ..., p—1) is used to refer to
the limiting distribution.

Part 1: Proof that 7 = (m, 71, 72,...,m)p_1) is a stationary distribution:

Intuitively, this should make a lot of sense. If we have some limiting distribution,
then once you get there, you should stay there forever.

7j = lim (P””) = lim Z (P") e - Py

n—oo n—oo

M-1

D, lim (P"); Py
k=0

M-1
= Z TPy
k=0

Hence 7 satisfies the stationary equations, so it’s also a stationary distribution.

Part 2: Proof that any stationary distribution, 7/, must equal the limiting
distribution, 7:

Let 7’ be any stationary probability distribution. As usual, 7 represents the
limiting probability distribution. We will prove that 7’ = 7, and specifically that

, .
7rj:7rj,\7’].

Suppose we start at time O with stationary distribution 7’ = (n(, 7}, ..., 7}, ).
After one step, we will still be in distribution 7”:

a-P=x
But this implies that after n steps, we will still be in distribution 7”:

7 oPt=7. (24.2)
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24.7 The Stationary Distribution Equals the Limiting Distribution 431

Looking at the jth entry of 7’ in (24.2), we have:

M-1

PIEACINETA

k=0

Taking the limit as n goes to infinity of both sides, we have:
M-1

lim Zn' P, . = lim , = 7.
n—co £ k(P nooo 4 i

We are now ready to prove that n;. =n;,Vj:

M-1 M-1
’ : ’ n — ’ . n
= Jim, 0 7 (P = ), Jim, (P

M-1
— 4 .
= ), T
k=0
M,
— . [ .
=7 Z T =T ]

k=0

—_

Note that we were allowed to pull the limit into the summation sign in both parts
because we had finite sums (M is finite).

One more thing: In the literature you often see the phrase “consider a stationary
Markov chain,” or “consider the following Markov chain in steady state ...”

Definition 24.10 A Markov chain for which the limiting probabilities exist is
said to be stationary or in steady state if the initial state is chosen according
to the stationary probabilities.

Summary: Finding the limiting probabilities in a finite-state DTMC:

By Theorem 24.9, provided the limiting distribution 7 = (7o, 71, 72, ..., Tpr—1)
exists, we can obtain it by solving the stationary equations:

M-1
7-P=7 and Znizl,
i=0

where 7 = (71'0,71'1,. . .,7TM_1).
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24.8 Examples of Solving Stationary Equations

Example 24.11 (Repair facility problem with cost)

Consider again the repair facility problem represented by the finite-state DTMC
shown again in Figure 24.8.

0.05

0.95 .Working.

04

Broken ‘ 0.6

Figure 24.8 Markov chain for the repair facility problem.

We are interested in the following type of question.

Question: The help desk is trying to figure out how much to charge me for
maintaining my machine. They figure that it costs them $300 every day that my
machine is in repair. What will be my annual repair bill?

To answer this question, we first derive the limiting distribution 7 = (7w, 7p)
for this chain. We solve the stationary equations to get 77 as follows:

7=n-P, where P = ( 0.950.05 )

04 0.6
aw +nag = 1.
This translates to the following equations:

aw =nw -095+m5-04
7Z'B=7TW'0.05+7TB'O.6

w+nag = 1.

Question: What do you notice about the first two equations above?

Answer: They are identical! In general, if 7 = 7 - P results in M equations, only
M — 1 of these will be linearly independent (this is because the rows of P all sum
to 1). Fortunately, the last equation above (the normalization condition) is there
1

to help us out. Solving, we get Ty = % and g = j.
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By Theorem 24.9, the stationary distribution also represents the limiting prob-
ability distribution. Thus my machine is broken one out of every nine days on
average. The expected daily cost is % -300 = $33.33 (with an annual cost of more
than $12,000).

Example 24.12 (Umbrella problem)

Consider again the umbrella problem depicted in Figure 24.9.

1 P

Figure 24.9 DTMC for the umbrella problem.
Rather than raising the transition matrix P to a high power, this time we use the
stationary equations to obtain the limiting probabilities for general p:

mo=m-(1-p)

m=m-(1-p)+m-p

my=mng-l+m-p
71'()+7T1+7T2=1.

Their solution is

)= —— m=-— Ty =—.
Question: Suppose the professor lives in Pittsburgh, where the daily probability
of rain is p = 0.6. What fraction of days does the professor get soaked?

Answer: The professor gets soaked if she has zero umbrellas and it is raining:
mo-p= % -0.6 = 0.1. Not too bad. No wonder I never learn!

24.9 Exercises

24.1 Solving for limiting distribution
For the program analysis problem from Section 24.3.3, solve the stationary
equations to determine the limiting distribution, (7¢, 7as, 7y).
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24.2 Powers of transition matrix
Given any finite-state transition matrix, P, prove that for any positive
integer n, P" maintains the property that each row sums to 1.

24.3 Random walk on clique
You are given a clique on n > 1 nodes (a clique is a graph where there is
an edge between every pair of nodes). At every time step, you move to a
uniformly random node other than the node you’re in. You start at node
v. Let T denote the time (number of hops) until you first return to v.
(a) Whatis E [T]?
(b) What is Var(T)?

24.4 Card shuffling
You have n distinct cards, arranged in an ordered list: 1,2, 3, ..., n. Every
minute, you pick a card at random and move it to the front of the ordered
list. We can model this process as a DTMC, where the state is the ordered
list. Derive a stationary distribution for the DTMC. [Hint: Make a guess
and then prove it.]

24.5 Doubly stochastic matrix
A doubly stochastic matrix is one in which the entries in each row sum
up to 1, and the entries in each column sum up to 1. Suppose you have
a finite-state Markov chain whose limiting probabilities exist and whose
transition matrix is doubly stochastic. What can you prove about the
stationary distribution of this Markov chain? [Hint: Start by writing some
examples of doubly stochastic transition matrices.]

24.6 Randomized chess

In chess, arook can move either horizontally within its row (left or right) or
vertically within its column (up or down) any number of squares. Imagine
arook that starts at the lower left corner of an 8 x 8 chess board. At each
move, a bored child decides to move the rook to a random legal location
(assume that the “move” cannot involve staying still). Let 7' denote the
time until the rook first lands in the upper right corner of the board.
Compute E [T] and Var(T).

24.7 Tennis match
[Proposed by William Liu] Abinaya and Misha are playing tennis. They’re
currently tied at deuce, meaning that the next person to lead by two points
wins the game. Suppose that Misha wins each point independently with
probability % (where Abinaya wins with probability %).
(a) What is the probability that Misha wins the game?
(b) Whatis the expected number of remaining points played until someone
wins?
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24.8 Markovopoly

[Proposed by Tai Yasuda] Suppose you are playing a board game where
the board has 28 locations arranged as shown in Figure 24.10. You start
at the “Go” square, and, at each turn, you roll a six-sided die and move
forward in the clockwise direction whatever number you roll. However,
the dark squares in the corners are jail states, and once you land there, you
must sit out for the next three turns (for the next three turns, you stay in
jail instead of rolling a die and moving). On the fourth turn, you can roll
the die again and move. Your goal is to figure out the fraction of the turns
that you are in jail. (You are “in jail” if you are in a jail square at the end
of your turn.) Write stationary equations to determine this fraction.

Figure 24.10 Markovopoly for Exercise 24.8.

24.9 Axis & Allies

In the game Axis & Allies, the outcome of a two-sided naval battle is
decided by repeated rolling of dice. Until all ships on at least one side
are destroyed, each side rolls one six-sided die for each of its existing
ships. The die rolls determine casualties inflicted on the opponent; these
casualties are removed from play and cannot fire (roll) in subsequent
rounds.

There are two types of ships: battleships and destroyers. For a battleship,
a die roll of four or lower is scored as a “hit” on the opponent. For a
destroyer, a die roll of three or lower is scored as a “hit” on the opponent.
It takes two hits (not necessarily in the same round) to destroy a battleship
and only one hit to destroy a destroyer. (Note: Battleships are twice as
expensive as destroyers.)

For example: Suppose side A has two destroyers and one battleship.
Suppose side B has one destroyer and three battleships. Side A rolls two
dice for its destroyers (rolling, say, 3 and 6) and one die for its battleship
(rolling, say, 5). This means that side A generates one hit against side B.
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At the same time, side B rolls one die for its destroyer (rolling, say 5) and
three dice for its battleships (rolling, say, 1, 4, and 6). This means that
side B generates two hits against side A.

The defender gets to decide to which ship to allocate the hit; we assume
that the defender chooses intelligently. In the above example, side A will
choose to be left with one destroyer and one weakened battleship. Side
B will choose to be left with one destroyer, one weakened battleship and
two undamaged battleships.

If two destroyers (side A) engage a battleship (side B) in a battle, what is
the probability that the destroyers win? What is the probability that the
battleship wins? [Hint: Raise a matrix to a large power.] [Note: A tie is
also possible.]

24.10 The SIR epidemic model

The SIR model is commonly used to predict the spread of epidemic

diseases. We have a population of n people. The state of the system is

(ns,ny,ng), where

e 75 is the number of people who are susceptible (healthy/uninfected);

e 7y is the number of people who are infected;

e ng is the number of people who are recovered. In the SIR model,
“recovered” includes both those recovered and deceased. The point is
that “recovered” people are no longer susceptible to the disease.

Clearly ng + ny + ng = n.

Each individual of the population independently follows this transmission

model:

o [f the individual is susceptible, then:

— with probability p - 2L, the individual will be infected tomorrow;
— with probability 1 — p - 7L, the individual will stay susceptible to-
MOITow.
e If the individual is infected, then:
— with probability % the individual will be recovered,;
— with probability %, the individual will stay infected.

o If the individual is recovered, then with probability 1 the individual
stays recovered.

The goal of the SIR model is to predict what fraction of people are in

the “susceptible” state when the epidemic ends (that is, n; = 0). These

are the people who never got sick and thus have the potential to get sick
if the disease resurfaces. You will determine this fraction as a function
of the parameter p. You will do this by first determining the appropriate
probability transition matrix and then raising this matrix to a very high
power. For both steps you’ll want to use a computer program like Matlab.

For the sake of this problem, please assume n = 3 (but feel free to try out

higher values of n as well).
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24.9 Exercises 437

(a) How many states are there in this system?

(b) How many absorbing states are there in this system, and what are
they? Absorbing states are states that you never leave once you enter
them. [Hint: What is n; for an absorbing state?]

(c) Derive the transition probability from state (2,1,0) to (1,1,1). Be
careful to think about all the ways that this transition can happen.
Plug in the values of n; and n and use p = 0.5 so that your final
answer is a constant.

(d) Use a computer program to generate the entire transition matrix P.
Assume that p = 0.5. Print out the row corresponding to state (2, 1, 0).
Now raise P to some very high power and watch what happens to row
(2,1,0). You’ll want a high enough power that most of your entries
are smaller than 0.01. What is the meaning of the row corresponding
to state (2,1,0)?

(e) The parameter p can be thought of as a social distancing parameter,
where lower p represents better social distancing practices. Consider
values of p between 0 and 1. For each value of p, determine the
expected fraction of the population who are left in the susceptible
state when the outbreak is over (you will do this by conditioning on
the probability of ending up in each absorbing state). Assume that you
start in state (2, 1,0). Your final output will be a graph with p on the
x-axis, but you can alternatively create a table with values of p spaced
out by 0.05.
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