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Part VI

Tail Bounds and
Applications
In this part of the book we delve deeply into understanding the tail of a random
variable, namely the probability that the random variable exceeds some value.
While we briefly touched on this topic in Section 5.9, in Chapter 18 we derive
much more sophisticated tail bounds, including Chernoff bounds and Hoeffding
bounds.

Tail bounds are important in providing guarantees on the probability of some
bad outcome. In Chapters 19 and 20, we study some common applications of
tail bounds.

First, in Chapter 19, we look at how tail bounds allow us to create confidence
intervals on a statistical estimate. We also study a popular problem in theoretical
computer science, called the balls-and-bins problem, where balls are distributed
independently at random among bins, and we prove bounds on the bin occupancy.

Next, in Chapter 20, we turn to the problem of designing and evaluating hashing
algorithms. Here we show how our tail bounds and the balls-and-bins analyses
from Chapter 19 give us bounds on the number of items in a hash bucket and the
probability of a hash collision.

Tail bounds are extremely important in the analysis of many randomized algo-
rithms. Randomized algorithms are covered in depth in Part VII of the book.
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18 Tail Bounds

Until now, we have typically talked about the mean, variance, or higher moments
of a random variable (r.v.). In this chapter, we will be concerned with the tail
probability of a r.v. 𝑋 , specifically,

P {𝑋 ≥ 𝑥} or P {𝑋 > 𝑥} .

The tail behavior is very important for offering quality of service (QoS) guaran-
tees. For example, we might have to pay a penalty if the response time exceeds
1 second, and thus we want to know the fraction of jobs whose response time
exceeds 1 second. Equivalently, we might want to be able to formulate a service
level objective (SLO), like “99% of jobs should experience response time less
than 1 second.” There are many other examples of tail behavior in computer sci-
ence. For example, router buffers in a network need to be provisioned so that the
probability of overflow is low. Likewise, when designing a hash table, we care
not only about keeping the expected number of items in a bucket low, but also
about ensuring that no bucket has a huge number of items. All these examples
require deriving tail behavior.

While the variance of a r.v. tells us something about its deviation from its mean,
the tail of the r.v. gives us a lot more information. Unfortunately, it is often not
easy to reason about the tail behavior of even very simple random variables.
Consider, for example, 𝑋 ∼ Binomial(𝑛, 𝑝):

P {𝑋 ≥ 𝑘} =
𝑛∑︁
𝑖=𝑘

(
𝑛

𝑖

)
𝑝𝑖 (1 − 𝑝)𝑛−𝑖 . (18.1)

We do not have a closed-form representation of the tail probability in (18.1).
Specifically, we don’t have a sense of what this tail probability looks like as
a simple function of 𝑘 , 𝑛, and 𝑝. The tail probability in (18.1) comes up in
many applications. Suppose, for example, that you are distributing 𝑛 jobs among
𝑛 machines by assigning each job to a random machine. In expectation each
machine should get one job. You would like to know the probability that a
particular machine gets ≥ 𝑘 jobs. This probability is represented by (18.1) in the
case where 𝑝 = 1

𝑛
.

As another example, consider 𝑋 ∼ Poisson(𝜆). Here, 𝑋 is representative of the
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number of arrivals to a website during 1 hour, where arrivals come from many
different sources at an average total rate of 𝜆 arrivals per hour (see Chapter 12).
To understand the probability that there are ≥ 𝑘 arrivals during the hour, we
need:

P {𝑋 ≥ 𝑘} =
∞∑︁
𝑖=𝑘

𝑒−𝜆
𝜆𝑖

𝑖!
. (18.2)

Again, we do not have a closed-form expression for the tail probability in (18.2).

The purpose of this chapter is to investigate upper bounds on these tail probabil-
ities. These upper bounds are generally called tail bounds. Sometimes the goal
is to upper bound a tail probability of the form P {𝑋 ≥ 𝑘} . Other times, our goal
is to upper bound the tail of the distance of a r.v. from its mean, i.e., we’re trying
to upper bound:

P {|𝑋 − 𝜇 | ≥ 𝑘} , where 𝜇 ≡ E [𝑋] .

In this latter case, our tail bound is more specifically referred to as a con-
centration bound or concentration inequality, because we’re looking at the
concentration of 𝑋 around its mean.

We will start by reviewing the Markov bound and the Chebyshev bound before
moving on to the much more powerful Chernoff bound.

Note: This chapter and the next few will require knowing asymptotic notation well.
Before you continue, you should review Section 1.6. You will need to understand
the definitions of𝑂 (𝑛), 𝑜(𝑛), 𝑜(1), Ω(𝑛), 𝜔(𝑛) and their significance for high 𝑛.

18.1 Markov’s Inequality

Theorem 18.1 (Markov’s inequality) Let 𝑋 be a non-negative r.v., with finite
mean 𝜇 = E [𝑋]. Then, ∀𝑎 > 0,

P {𝑋 ≥ 𝑎} ≤ 𝜇

𝑎
.

Proof: This was proved earlier as Theorem 5.16. ■

Markov’s bound is extremely weak.

Question: Suppose we flip a fair coin 𝑛 times. Using Markov’s inequality, what
is an upper bound on the probability of getting at least 3

4𝑛 heads?
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Answer: Let 𝑋 denote the number of heads. Then 𝑋 ∼ Binomial
(
𝑛, 1

2

)
.

P
{
𝑋 ≥ 3𝑛

4

}
≤ 𝜇

3𝑛
4

=

𝑛
2

3𝑛
4

=
2
3

. (18.3)

This is clearly a terrible bound because it doesn’t even involve 𝑛.

Question: Intuitively, as 𝑛 gets higher, would you expect that the tail probability
should get higher or lower?

Answer: Lower. As 𝑛 gets higher, we would expect that we’re unlikely to be so
far from the mean.

The reason why Markov’s inequality is so poor is that it only takes into account
the mean of the r.v. Nevertheless, this is an important inequality because we will
derive all our other inequalities from this one.

18.2 Chebyshev’s Inequality

Chebyshev’s inequality is a lot stronger than Markov’s inequality because it
takes into account the variability of the r.v. Chebyshev’s inequality is derived by
applying Markov’s inequality to the deviation of a r.v. from its mean.

Theorem 18.2 (Chebyshev’s inequality) Let 𝑋 be a r.v. with finite mean 𝜇 =

E [𝑋] and finite variance Var(𝑋). Then, ∀𝑎 > 0,

P {|𝑋 − 𝜇 | ≥ 𝑎} ≤ Var(𝑋)
𝑎2 .

Proof: This was proved earlier as Theorem 5.17. ■

Using the notation𝜎𝑋 to denote the standard deviation of 𝑋 , where𝜎2
𝑋
= Var(𝑋),

and using 𝐶2
𝑋
=

Var(𝑋)
E[𝑋]2 to denote the squared coefficient of variation of 𝑋 , we

obtain a few additional interpretations of Chebyshev’s inequality:

P {|𝑋 − 𝜇 | ≥ 𝑎𝜎𝑋} ≤
1
𝑎2 (18.4)

P {|𝑋 − 𝜇 | ≥ 𝑎E [𝑋]} ≤
𝐶2
𝑋

𝑎2 . (18.5)
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Now let’s go back to the coin flipping example.

Question: Suppose we flip a fair coin 𝑛 times. Using Chebyshev’s inequality,
what is an upper bound on the probability of getting at least 3

4𝑛 heads?

Answer: Again letting 𝑋 denote the number of heads:

P
{
𝑋 ≥ 3𝑛

4

}
= P

{
𝑋 − 𝑛

2
≥ 𝑛

4

}
=

1
2
· P

{���𝑋 − 𝑛2 ��� ≥ 𝑛4 }
≤ 1

2
· Var(𝑋)(

𝑛
4
)2

=
1
2
·

𝑛
4(
𝑛
4
)2

=
2
𝑛

. (18.6)

Question: Where did the 1
2 in the second line come from?

Answer: Since 𝑋 ∼ Binomial
(
𝑛, 1

2

)
, 𝑋 is symmetric around 𝑛

2 .

Assuming that 𝑛 > 3, the 2
𝑛

bound in (18.6) is much tighter than the 2
3 bound

that we got from Markov’s inequality. Furthermore, 2
𝑛

at least decreases with 𝑛.

18.3 Chernoff Bound

We derived the Chebyshev bound by squaring the r.v. 𝑋 − 𝜇 and then applying
Markov’s inequality. To derive the Chernoff bound, we will first exponentiate the
r.v. 𝑋 and then apply Markov’s inequality.

For any 𝑡 > 0,

P {𝑋 ≥ 𝑎} = P {𝑡𝑋 ≥ 𝑡𝑎}
= P

{
𝑒𝑡𝑋 ≥ 𝑒𝑡𝑎

}
≤

E
[
𝑒𝑡𝑋

]
𝑒𝑡𝑎

. (18.7)

Question: Why were we allowed to apply Markov’s inequality?

Answer: For any 𝑋 and any 𝑡, we know that 𝑒𝑡𝑋 is a non-negative r.v.



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

310 18 Tail Bounds

Since (18.7) is true for all 𝑡, it follows that:

P {𝑋 ≥ 𝑎} ≤ min
𝑡>0

E
[
𝑒𝑡𝑋

]
𝑒𝑡𝑎

.

Bounds on specific distributions are obtained by choosing the appropriate value
of 𝑡. Even if a minimizing 𝑡 cannot be found, it is still true that any 𝑡 provides a
tail bound.

Theorem 18.3 (Chernoff bound) Let 𝑋 be a r.v. and 𝑎 be a constant. Then

P {𝑋 ≥ 𝑎} ≤ min
𝑡>0

{
E

[
𝑒𝑡𝑋

]
𝑒𝑡𝑎

}
. (18.8)

Question: Why should we expect that the Chernoff bound is stronger than the
Chebyshev bound?

Hint: The Chebyshev bound got its strength by invoking the second moment of
the r.v. What moments of the r.v. does the Chernoff bound invoke?

Answer: Notice the E
[
𝑒𝑡𝑋

]
in the Chernoff bound expression. This is a type

of moment-generating function. It looks very similar to the Laplace transform,
E

[
𝑒−𝑠𝑋

]
. In fact, the 𝑛th derivative of E

[
𝑒𝑡𝑋

]
, when evaluated at 𝑡 = 0, yields

the 𝑛th moment of 𝑋 . Hence E
[
𝑒𝑡𝑋

]
encapsulates all moments of 𝑋 .

Question: What do we do if we want to upper bound the other side of the tail,
P {𝑋 ≤ 𝑎}?

Hint: Think about using 𝑡 < 0.

Answer: For any 𝑡 < 0,

P {𝑋 ≤ 𝑎} = P {𝑡𝑋 ≥ 𝑡𝑎}
= P

{
𝑒𝑡𝑋 ≥ 𝑒𝑡𝑎

}
≤

E
[
𝑒𝑡𝑋

]
𝑒𝑡𝑎

(by Markov’s inequality).

Hence,

P {𝑋 ≤ 𝑎} ≤ min
𝑡<0

E
[
𝑒𝑡𝑋

]
𝑒𝑡𝑎

. (18.9)

The Chernoff bound originated in this statistics paper [14], but it is widely used
in theoretical computer science. We now consider several applications of the
Chernoff bound to different distributions.
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18.4 Chernoff Bound for Poisson Tail

We start by illustrating how the Chernoff bound can be used to bound the tail of
𝑋 where 𝑋 ∼ Poisson(𝜆), as in (18.2).

Let 𝑋 ∼ Poisson(𝜆). For 𝑡 > 0,

E
[
𝑒𝑡𝑋

]
=

∞∑︁
𝑖=0

𝑒𝑡𝑖 · 𝑒
−𝜆 · 𝜆𝑖
𝑖!

= 𝑒−𝜆 ·
∞∑︁
𝑖=0

(𝜆𝑒𝑡 )𝑖

𝑖!

= 𝑒−𝜆 · 𝑒𝜆𝑒𝑡 by (1.11)
= 𝑒𝜆(𝑒

𝑡−1) .

Let 𝑎 > 𝜆. Using the above, we have:

P {𝑋 ≥ 𝑎} ≤ min
𝑡>0

{
E

[
𝑒𝑡𝑋

]
𝑒𝑡𝑎

}
= min

𝑡>0

{
𝑒𝜆(𝑒

𝑡−1)

𝑒𝑡𝑎

}
= min

𝑡>0

{
𝑒𝜆(𝑒

𝑡−1)−𝑡𝑎
}

.

It suffices to minimize the exponent of the above expression, 𝜆(𝑒𝑡 − 1) − 𝑡𝑎,
which is minimized at

𝑡 = ln
(𝑎
𝜆

)
,

which is positive, since 𝑎 > 𝜆.

This yields

P {𝑋 ≥ 𝑎} ≤ 𝑒𝜆(𝑒𝑡−1)−𝑡𝑎
���
𝑡=ln( 𝑎𝜆 )

= 𝑒𝜆( 𝑎𝜆 −1)−𝑎 ln( 𝑎𝜆 )

= 𝑒𝑎−𝜆 ·
(
𝜆

𝑎

)𝑎
. (18.10)

Question: What is a bound on the probability that 𝑋 is at least twice its mean?

Answer: From (18.10), we have P {𝑋 ≥ 2𝜆} ≤
(
𝑒
4
)𝜆.
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18.5 Chernoff Bound for Binomial

Chernoff bounds are most commonly applied to a sum of independent random
variables, as in the case of a Binomial. In this section, we derive the Chernoff
bound on the tail of 𝑋 where 𝑋 ∼ Binomial(𝑛, 𝑝). There are many generalizations
and variants of this result; see, for example, Exercises 18.15 and 18.20.

Theorem 18.4 (Pretty Chernoff bound for Binomial) Let random variable
𝑋 ∼ Binomial(𝑛, 𝑝), where 𝜇 = E [𝑋] = 𝑛𝑝. Then, for any 𝛿 > 0,

P {𝑋 − 𝑛𝑝 ≥ 𝛿} ≤ 𝑒−2𝛿2/𝑛 (18.11)
P {𝑋 − 𝑛𝑝 ≤ −𝛿} ≤ 𝑒−2𝛿2/𝑛. (18.12)

Observe that the bounds in Theorem 18.4 decrease with higher 𝛿, as expected.

Question: One would likewise expect that the bounds in Theorem 18.4 decrease
with higher 𝑛. Is this true?

Answer: This is a bit subtle:

• If 𝛿 is Θ(𝑛), like the 𝛿 = 𝑛
4 that we saw earlier, then the bound is of the form

𝑒−Θ(𝑛) , which does in fact decrease with 𝑛, as we would expect. This is the
strongest case of the bound. This is the appropriate regime for using the pretty
Chernoff bound.
• If 𝛿 is Θ(

√
𝑛), then the bound appears to be constant in 𝑛. This makes sense

because now we’re looking at the probability of deviating from the mean by
some number of standard deviations (again assuming 𝑝 is a constant), which
should become independent of 𝑛 for high 𝑛 and should just converge to a
constant by the Central Limit Theorem (CLT).
• If 𝛿 is a constant, like 10, then the bound sadly grows with 𝑛. This is because the

variance of Binomial(𝑛, 𝑝) is 𝑛𝑝(1− 𝑝), which grows with higher 𝑛 (assuming
that 𝑝 is a constant), so the probability of exceeding a constant 𝛿 increases as
𝑛 gets bigger. This is the weakest case of the bound.

We will prove Theorem 18.4 in Section 18.7. But first we consider an example
of its use.

Question: Suppose we flip a fair coin 𝑛 times. Using the Chernoff bound, what
is an upper bound on the probability of getting at least 3

4𝑛 heads?
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Answer: Again letting 𝑋 denote the number of heads:

P
{
𝑋 ≥ 3𝑛

4

}
= P

{
𝑋 − 𝑛

2
≥ 𝑛

4

}
≤ 𝑒−2(𝑛/4)2/𝑛

= 𝑒−𝑛/8. (18.13)

The bound in (18.13) goes to zero exponentially fast in 𝑛 and is much tighter
than the bound of 2

𝑛
that we obtained in (18.6) via Chebyshev’s inequality.

18.6 Comparing the Different Bounds and Approximations

At this point, it is useful to step back and compare the bounds that we’ve seen
(Markov, Chebyshev, Chernoff) with both the exact answer and the approximation
given by CLT (Theorem 9.8). We focus on our usual question.

Question: What is the exact answer for the probability of getting at least 3
4𝑛

heads with a fair coin?

Answer:
𝑛∑︁

𝑖= 3𝑛
4

(
𝑛

𝑖

)
·
(

1
2

) 𝑖
·
(
1 − 1

2

)𝑛−𝑖
= 2−𝑛 ·

𝑛∑︁
𝑖= 3𝑛

4

(
𝑛

𝑖

)
. (18.14)

The exact answer has no closed form (which is why we’ve been looking for
bounds), but we will evaluate it soon numerically so that we can see how it
compares with the bounds that we’ve already computed.

CLT offers an approximate solution for the problem. Notice that all of our coin
flips are independent, with probability 𝑝 = 1

2 . If the number of these coin flips,
𝑛, is large, then the total number of heads, 𝑋 , converges to a Normal distribution
by the CLT.

Question: What is the mean and standard deviation of this Normal?

Answer: E [𝑋] = 𝑛
2 . Since 𝑋 ∼ Binomial(𝑛, 1

2 ), we know Var(𝑋) = 𝑛
4 , so

𝜎𝑋 =
√︁

𝑛
4 .

We now apply the CLT approximation by first formulating our question in terms



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

314 18 Tail Bounds

of a standard Normal:

P
{
𝑋 ≥ 3𝑛

4

}
= P

{
𝑋 − 𝑛

2
≥ 𝑛

4

}
= P

{
𝑋 − 𝑛

2√︁
𝑛
4
≥

𝑛
4√︁
𝑛
4

}
= P

{
𝑋 − 𝑛

2√︁
𝑛
4
≥

√︂
𝑛

4

}
= P

{
Normal(0, 1) ≥

√︂
𝑛

4

}
= 1 −Φ

(√︂
𝑛

4

)
.

Figure 18.1 compares the different approximations and bounds that we’ve seen,
along with the exact result. As you can see, the Markov and Chebyshev bounds
are both worthless for this example (we didn’t even plot the Markov bound). The
Chernoff bound is reasonable. The Normal approximation from the CLT is not a
bound, but it’s a really good approximation, particularly when 𝑛 is high.

Chebyshev

Exact

0

0.01

0.02

0.03

8040

P{X ≥ ¾n}

20 60 100
n

Chernoff

Normal

70 908075 85 100

P{X ≥ ¾n}

95

5×10
-6

n

-5
10

Figure 18.1 Evaluation of P
{
𝑋 ≥ 3𝑛

4

}
via Chebyshev, Chernoff, and Normal (CLT),

where 𝑋 ∼ Binomial(𝑛, 0.5). Both graphs show the same comparison, but under
different ranges. The first graph, with range 1 ≤ 𝑛 ≤ 100, shows that the Chebyshev
bound is poor; the Chernoff bound is better; the Normal approximation from the CLT is
very good. The second graph, with range 𝑛 > 70, shows that, for higher 𝑛, Chebyshev is
so bad that it doesn’t even appear on the graph, and even the Chernoff bound doesn’t
look so great. Notice that the Normal approximation gets better and better with higher 𝑛.
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18.7 Proof of Chernoff Bound for Binomial: Theorem 18.4

The proof of Theorem 18.4 relies on Lemma 18.5. In the exercises, we will not
in general have such a cute lemma to simplify our analysis, so the bounds that
we will be able to prove will not always look as cute.

Lemma 18.5 For any 𝑡 > 0 and 0 < 𝑝 < 1 and 𝑞 = 1 − 𝑝, we have that:

𝑝𝑒𝑡𝑞 + 𝑞𝑒−𝑡 𝑝 ≤ 𝑒𝑡2/8.

Proof: The proof only uses calculus and is deferred to Section 18.10. ■

Proof: [Theorem 18.4] We will prove (18.11). The proof of (18.12) is left as an
exercise. It will help to view 𝑋 =

∑𝑛
𝑖=1 𝑋𝑖 where 𝑋𝑖 ∼ Bernoulli(𝑝).

For any 𝑡 > 0,

P {𝑋 − 𝑛𝑝 ≥ 𝛿} = P {𝑡 (𝑋 − 𝑛𝑝) ≥ 𝑡𝛿}
= P

{
𝑒𝑡 (𝑋−𝑛𝑝) ≥ 𝑒𝑡 𝛿

}
≤ 𝑒−𝑡 𝛿 · E

[
𝑒𝑡 (𝑋−𝑛𝑝)

]
= 𝑒−𝑡 𝛿 · E

[
𝑒𝑡 ( (𝑋1−𝑝)+(𝑋2−𝑝)+···+(𝑋𝑛−𝑝) )

]
= 𝑒−𝑡 𝛿 ·

𝑛∏
𝑖=1

E
[
𝑒𝑡 (𝑋𝑖−𝑝)

]
(because 𝑋𝑖’s are independent)

= 𝑒−𝑡 𝛿 ·
𝑛∏
𝑖=1

(
𝑝 · 𝑒𝑡 (1−𝑝) + (1 − 𝑝) · 𝑒−𝑡 𝑝

)
≤ 𝑒−𝑡 𝛿 ·

𝑛∏
𝑖=1

(
𝑒𝑡

2/8
)

(by Lemma 18.5)

= 𝑒−𝑡 𝛿+𝑛𝑡
2/8. (18.15)

We now want to find the 𝑡 > 0 that minimizes this bound. It suffices to minimize
the exponent in (18.15):

𝑑

𝑑𝑡

(
−𝑡𝛿 + 𝑛𝑡2/8

)
= −𝛿 + 2𝑛𝑡

8
𝑑2

𝑑𝑡2

(
−𝑡𝛿 + 𝑛𝑡2/8

)
=

2𝑛
8
> 0.
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Hence the minimum is obtained by finding that 𝑡 > 0 which satisfies:

−𝛿 + 2𝑛𝑡
8

= 0.

So

𝑡 =
4𝛿
𝑛

,

which is positive, as desired. Substituting this value of 𝑡 into (18.15), we have:

P {𝑋 − 𝑛𝑝 ≥ 𝛿} ≤ 𝑒− 4𝛿
𝑛
·𝛿+𝑛( 4𝛿

𝑛 )2/8

= 𝑒−
4𝛿2
𝑛
+ 2𝛿2

𝑛

= 𝑒−
2𝛿2
𝑛 . ■

18.8 A (Sometimes) Stronger Chernoff Bound for Binomial

The Chernoff bound that we derived in Theorem 18.4 was very pretty. However,
it’s not always as strong (tight) as possible. We now introduce another bound
for the Binomial. In addition to sometimes being a lot stronger, this new bound
holds for a more general definition of a Binomial, where the coins can have
different probabilities. Specifically, imagine that we are again interested in the
sum of 𝑛 coin flips (call this 𝑋), but this time the 𝑖th coin has probability 𝑝𝑖 of
coming up heads.

Theorem 18.6 (Sometimes stronger Chernoff bound for Binomial) Define
𝑋 =

∑𝑛
𝑖=1 𝑋𝑖 where the 𝑋𝑖’s are independent with 𝑋𝑖 ∼ Bernoulli(𝑝𝑖) and

𝜇 = E [𝑋] = ∑𝑛
𝑖=1 𝑝𝑖 . Then, ∀𝜖 > 0,

P {𝑋 ≥ (1 + 𝜖)𝜇} <
(

𝑒𝜖

(1 + 𝜖) (1+𝜖 )

)𝜇
. (18.16)

Furthermore, when 0 < 𝜖 < 1,

P {𝑋 ≤ (1 − 𝜖)𝜇} ≤
(

𝑒−𝜖

(1 − 𝜖) (1−𝜖 )

)𝜇
. (18.17)

Proof: The proof is given in Exercises 18.20 and 18.21. ■

To interpret the bound in Theorem 18.6, it helps to consider the inner expression:

𝑓 (𝜖) = 𝑒𝜖

(1 + 𝜖) (1+𝜖 )
. (18.18)
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Figure 18.2 shows a plot of this expression as a function of 𝜖 .

1

0

0.5

(  )f

0 5

Figure 18.2 Plot of expression (18.18). Higher 𝜖 leads to tighter bound.

We make two observations: First, ∀𝜖 > 0, 𝑓 (𝜖) < 1. This implies that the bound
in Theorem 18.6 is exponentially decreasing, as desired. Second, 𝑓 (𝜖) decreases
very quickly with higher 𝜖 . This too makes sense, since the Binomial should be
concentrated around its mean. The bound in Theorem 18.6 is particularly strong
when 𝜖 is high.

It is important to spend some time comparing the pretty bound for the Binomial
in Theorem 18.4 with the (sometimes) stronger bound in Theorem 18.6. The
following questions will help.

Question: Which is the better bound in the case where 𝑝𝑖 = 𝑝 = 1
2 , and where

we are interested in the probability of at least 3𝑛
4 heads in 𝑛 flips?

Answer: By Theorem 18.4, where 𝛿 = 𝑛
4 ,

P
{
𝑋 ≥ 3𝑛

4

}
= P

{
𝑋 − 𝑛

2
≥ 𝑛

4

}
≤ 𝑒− 𝑛

8 .

By Theorem 18.6, where 𝜖 = 1
2 ,

P
{
𝑋 ≥ 3𝑛

4

}
= P

{
𝑋 ≥

(
1 + 1

2

)
· 𝑛

2

}
≤

(
𝑒.5

(1.5)1.5

) 𝑛
2

≈ (0.89) 𝑛2
≈ (1.54)− 𝑛

8 .

Thus, Theorem 18.4 produces a tighter bound than Theorem 18.6 in this case,
although both bounds are reasonable. Observe that it should be unsurprising that
Theorem 18.6 is not so great because 𝜖 is only 0.5 here, which is not a good
value for Theorem 18.6 (see Figure 18.2).
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Question: Which is the better bound, in the case where 𝑝𝑖 = 𝑝 = 1
𝑛

, and where
we are interested in the probability that 𝑋 ≥ 21?

Answer: By Theorem 18.4, with 𝛿 = 20, we have:

P {𝑋 ≥ 21} = P {𝑋 − 1 ≥ 20} ≤ 𝑒−2· (20)2/𝑛 = 𝑒−
800
𝑛 → 1 as 𝑛→∞.

The issue here is that, although 𝛿 is high, it does not increase with 𝑛, and
Theorem 18.4 is only really strong when 𝛿 is Θ(𝑛).

By contrast, by Theorem 18.6, with 𝜖 = 20, we have:

P {𝑋 ≥ 21} = P {𝑋 ≥ (1 + 20) · 1} ≤ 𝑒20

2121 ≈ 8.3 · 10−20.

So Theorem 18.6 yields a far stronger bound for large 𝑛 (although it is weaker
when 𝑛 is small). Note that 𝜖 = 20 here, which is in the ideal range for Theo-
rem 18.6, as shown in Figure 18.2.

The above shows clearly that one has to be careful in choosing a good (tight)
Chernoff bound for one’s application.

18.9 Other Tail Bounds

There are many other tail bounds in the literature, which either generalize the
Chernoff bound, or consider a more specialized case, or a little of both. One
important bound is the Hoeffding bound:

Theorem 18.7 (Hoeffding’s inequality) Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be independent
random variables satisfying 𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖 for all 𝑖 where 𝑎𝑖 ≤ 𝑏𝑖 are real
numbers. Let

𝑋 =

𝑛∑︁
𝑖=1

𝑋𝑖 .

Then,

P{𝑋 − E [𝑋] ≥ 𝛿} ≤ exp
(
− 2𝛿2∑𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2

)
(18.19)

P{𝑋 − E [𝑋] ≤ −𝛿} ≤ exp
(
− 2𝛿2∑𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2

)
. (18.20)

Proof: The proof of Hoeffding’s inequality is left to Exercise 18.24. It is similar
to the Chernoff bound proofs, but relies on a convexity argument. ■
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Question: For Hoeffding’s bound, do the 𝑋𝑖’s need to be identically distributed?

Answer: Interestingly, the answer is no. The 𝑋𝑖’s need to be independent, but
they can each follow a different distribution, and in fact have their own lower and
upper bounds. This makes the Hoeffding bound very general!

Notice that the format of the bounds in Theorem 18.7 is very similar to that in
Theorem 18.4. The difference is that the 𝑛 in the denominator of the exponent
in Theorem 18.4 is now replaced by

∑𝑛
𝑖=1(𝑏𝑖 − 𝑎𝑖)2. Notice that the Hoeffding

bound becomes smaller for higher 𝛿, and becomes larger as 𝑏𝑖 − 𝑎𝑖 increases.

18.10 Appendix: Proof of Lemma 18.5

This appendix contains the technical details needed to prove Lemma 18.5. We
start with a basic identity from calculus:

Lemma 18.8 If 𝑔(0) = ℎ(0) and 𝑔′ (𝑘) ≤ ℎ′ (𝑘) for all 𝑘 ≥ 0, then 𝑔(𝑡) ≤ ℎ(𝑡)
for all 𝑡 ≥ 0.

Proof:

ℎ(𝑡) − 𝑔(𝑡) = (ℎ(𝑡) − 𝑔(𝑡)) − (ℎ(0) − 𝑔(0))

=

∫ 𝑡

0
(ℎ′ (𝑘) − 𝑔′ (𝑘))𝑑𝑘

≥ 0, because ℎ′ (𝑘) − 𝑔′ (𝑘) ≥ 0. ■

Lemma 18.9 For all 0 ≤ 𝑝 ≤ 1 and 𝑡 ≥ 0,

𝑝𝑒𝑡 (1−𝑝) + (1 − 𝑝) 𝑒−𝑡 𝑝 ≤ 𝑒 𝑡2
8 . (18.21)

Proof: Multiplying both sides of (18.21) by 𝑒𝑡 𝑝 yields

𝑓 (𝑡) ≡ 𝑝𝑒𝑡 + 1 − 𝑝 ≤ 𝑒𝑡 𝑝+ 𝑡
2
8 . (18.22)

Now taking the natural log of both sides of (18.22) yields

𝑔(𝑡) ≡ ln( 𝑓 (𝑡)) = ln
(
𝑝𝑒𝑡 + (1 − 𝑝)

)
≤ 𝑡

2

8
+ 𝑡 𝑝 ≡ ℎ(𝑡). (18.23)

It suffices to show that 𝑔(𝑡) ≤ ℎ(𝑡), ∀𝑡 ≥ 0, as defined in (18.23).
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Note that 𝑓 ′ (𝑡) = 𝑓 ′′ (𝑡) = 𝑝𝑒𝑡 and 0 ≤ 𝑓 ′ (𝑡) ≤ 𝑓 (𝑡), so 0 ≤ 𝑓 ′ (𝑡 )
𝑓 (𝑡 ) ≤ 1.

Since 𝑔(𝑡) = ln( 𝑓 (𝑡)), we have that 𝑔′ (𝑡) = 𝑓 ′ (𝑡 )
𝑓 (𝑡 ) . Furthermore, using the fact

that 𝑓 ′′ (𝑡) = 𝑓 ′ (𝑡), we have

𝑔′′ (𝑡) = 𝑓 (𝑡) 𝑓 ′′ (𝑡) − 𝑓 ′2 (𝑡)
𝑓 2 (𝑡)

=

(
1 − 𝑓 ′ (𝑡)

𝑓 (𝑡)

)
· 𝑓
′ (𝑡)
𝑓 (𝑡) ≤

1
4

. (18.24)

The last step involving the 1
4 comes from the fact that, for all 𝑥, the quantity

(1 − 𝑥) (𝑥) is maximized at 𝑥 = 1
2 .

Since 𝑔(0) = ℎ(0), by Lemma 18.8 it suffices to show that 𝑔′ (𝑡) ≤ ℎ′ (𝑡) for all
𝑡 ≥ 0.

Since 𝑔′ (0) = ℎ′ (0), by Lemma 18.8 it suffices to show that 𝑔′′ (𝑡) ≤ ℎ′′ (𝑡) for
all 𝑡 ≥ 0. But this latter statement is true because, by (18.24),

𝑔′′ (𝑡) ≤ 1
4
= ℎ′′ (𝑡). ■

18.11 Exercises

18.1 Chebyshev bound
A coin has probability 𝑝 = 1

3 of coming up heads on each flip. You flip the
coin 𝑛 times. Let 𝑋 denote the number of heads you get. Use Chebyshev’s
inequality to upper bound the quantity: P

{
𝑋 ≥ 1

2𝑛
}
.

18.2 Test scores: easy bounds
Suppose I know only that the mean test score is 40%.
(a) What can I say about the fraction of the class with test score > 80%?
(b) Suppose I’m given further information that the standard deviation of

test scores is 10%. What can I now say about the fraction of the class
with test score > 80%?

18.3 Reverse Markov inequality
Let 𝑌 be a non-negative r.v. which is never greater than value 𝑏. Let
0 < 𝑎 < 𝑏. Prove:

P {𝑌 ≤ 𝑎} ≤ E [𝑏 − 𝑌 ]
𝑏 − 𝑎 .

18.4 The distribution of the average
There are 𝑛 = 25 students in my class. Their scores are independent
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because they don’t talk to each other, ever! Each student’s score is well
modeled by a r.v. (not necessarily Normal) with mean 40% and standard
deviation of 10% (it’s a hard class). Approximately what’s the chance that
the class average, 𝐴𝑛, exceeds 50%?
(a) What does Chebyshev’s inequality tell us about P {𝐴𝑛 > 50%}?
(b) For large 𝑛, what does the CLT tell us about P {𝐴𝑛 > 50%}?

18.5 Sunny Sundays
Sundays are sunny with probability 7

10 , while all other days are, indepen-
dently, only sunny with probability 7

40 . Upper bound the probability that
in a sequence of 𝑛 days (where 𝑛 is a multiple of 7), at least half of the
days are sunny. You’ll want a bound that is exponentially decreasing in 𝑛.

18.6 Kurtosis bound
Let 𝑋 be a r.v. and 𝑎 > 0 be some constant. Define

Kurt(𝑋) ≡ E
[
(𝑋 − E [𝑋])4

]
.

The Chebyshev bound gives an upper bound on P {|𝑋 − E [𝑋] | > 𝑎} in
terms of Var(𝑋). Derive an upper bound on P {|𝑋 − E [𝑋] | > 𝑎} in terms
of Kurt(𝑋).

18.7 Coupon collecting
There are 𝑛 distinct coupon types that you would like to collect. Each
day you are sent a random coupon from among the 𝑛 types. Let 𝑋 denote
the number of days needed to collect all 𝑛 distinct coupons, given that
coupons are chosen randomly with replacement. The following identity is
useful in answering some of the questions below:

∞∑︁
𝑖=1

1
𝑖2

=
𝜋2

6
.

(a) What is E [𝑋]? What does this approach for high 𝑛? Write your answer
using Θ(·).

(b) Derive Var(𝑋). What does this approach for high 𝑛? Write your
answer using Θ(·).

(c) Derive an asymptotic upper bound on P {𝑋 ≥ 2𝑛 ln 𝑛} for large 𝑛
using Markov’s inequality.

(d) Derive an asymptotic upper bound on P {𝑋 ≥ 2𝑛 ln 𝑛} for large 𝑛
using Chebyshev’s inequality. Express your answer using Θ(·).

Note: For E [𝑋] in (c) and (d), use the asymptotic mean from part (a).

18.8 Getting a job
Jiacheng has independent probability 50% of being hired by each company
at which he interviews. Suppose Jiacheng interviews at 20 companies.
What is the probability that Jiacheng doesn’t get a job?
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(a) Use the Chernoff bound in Theorem 18.4 to upper bound the proba-
bility that Jiacheng doesn’t get a job.

(b) Now use the Chernoff bound in Theorem 18.6 to upper bound the
probability that Jiacheng doesn’t get a job.

(c) Now compute the exact probability that Jiacheng doesn’t get a job.

18.9 Bounding wealth
Keshav’s Robinhood stock trading account loss limit is $1000 dollars.
Thus on any given day Keshav’s account value,𝑉 , can range from −$1000
to∞. Suppose that all we know about Keshav is that his average Robinhood
account value is $3000 dollars. Can we say anything about the fraction of
time that Keshav’s account value is at least $9000? Find the tightest upper
bound, 𝑡, such that

P {𝑉 ≥ 9000} ≤ 𝑡.

(a) Find a bound 𝑡 such that P {𝑉 ≥ 9000} ≤ 𝑡.
(b) Prove that the 𝑡 that you found in part (a) is tight. Specifically, show that

there exists a distribution, 𝑉 , such that E [𝑉] = 3000 and 𝑉 ≥ −1000
and P {𝑉 ≥ 9000} = 𝑡.

18.10 The tightness of Markov’s inequality
Markov’s inequality says that, for any non-negative r.v. 𝑋 ,

P {𝑋 ≥ 𝑘E [𝑋]} ≤ 1
𝑘

.

After reading this chapter, you likely got the impression that Markov’s
inequality is quite weak. Prove that Markov’s Inequality is “tight” in the
following sense: For any given 𝑘 ≥ 1, there exists a non-negative r.v. 𝑋
such that P {𝑋 ≥ 𝑘E [𝑋]} = 1

𝑘
.

18.11 Tightness of Chebyshev’s inequality
Chebyshev’s inequality tells us that for all random variables 𝑋 ,

P {|𝑋 − E [𝑋] | ≥ 𝑎} ≤ Var(𝑋)
𝑎2 .

Prove that Chebyshev’s Inequality is “tight” in the following sense: Give
a r.v. 𝑋 (not equal to a constant) and a value 𝑎 > 0 for which the above
inequality is met at equality.

18.12 Concentration bounds for pair-wise independent random variables
Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be pairwise-independent random variables, satisfying
Var(𝑋𝑖) ≤ 10 for all 𝑖 = 1, . . . , 𝑛. Let 𝑋 =

∑𝑛
𝑖=1 𝑋𝑖 . Prove that for all

𝑎 > 0,

P {|𝑋 − E [𝑋] | ≥ 𝑎} ≤ 10𝑛
𝑎2 .
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18.13 Weak Law of Large Numbers
Let 𝑋1, 𝑋2, 𝑋3, . . . , be i.i.d. with finite mean E [𝑋] and finite variance 𝜎2.
Let 𝑆𝑛 =

∑𝑛
𝑖=1 𝑋𝑖 . Your goal is to prove the Weak Law of Large Numbers:

∀𝜖 > 0, lim
𝑛→∞

P
{����𝑆𝑛𝑛 − E [𝑋]

���� > 𝜖} = 0,

where 𝑆𝑛 =
∑𝑛

𝑖=1 𝑋𝑖 . [Hint: Use Chebyshev’s Inequality.]

18.14 Comparing bounds on tail of Exponential
Let 𝑋 ∼ Exp(𝜆), where 𝜆 > 0. We will evaluate P

{
𝑋 ≥ 𝑎

𝜆

}
, the proba-

bility that 𝑋 is at least 𝑎 times its mean, where 𝑎 > 1.
(a) What is P

{
𝑋 ≥ 𝑎

𝜆

}
exactly?

(b) What does the Markov bound tell us about P
{
𝑋 ≥ 𝑎

𝜆

}
?

(c) What does the Chebyshev bound tell us about P
{
𝑋 ≥ 𝑎

𝜆

}
?

(d) What does the Chernoff bound tell us about P
{
𝑋 ≥ 𝑎

𝜆

}
?

[Hint: Pick 𝑡 s.t. 0 < 𝑡 < 𝜆.]
(e) How far off is the Chernoff bound from the correct answer?

18.15 Chernoff bound for Binomial with 1/−1 variables
Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be i.i.d random variables, where

𝑋𝑖 =

{
1 w/prob 0.5
−1 w/prob 0.5 .

Let 𝑋 =
∑𝑛

𝑖=1 𝑋𝑖 , where 𝜇 = E [𝑋] = 0. Assume 𝑎 > 0. Follow the steps
below to prove from first principles that

P {𝑋 ≥ 𝑎} ≤ 𝑒− 𝑎2
2𝑛 .

(a) Start by setting up the usual Chernoff-based inequality for P {𝑋 ≥ 𝑎},
based on exponentiating and then applying the Markov bound.

(b) Prove that E
[
𝑒𝑡𝑋𝑖

]
< 𝑒𝑡

2/2, where 𝑡 > 0. [Hint: Taylor series]
(c) Form a simple closed-form bound for E

[
𝑒𝑡𝑋

]
and use this to get a

simple expression for P {𝑋 ≥ 𝑎} in terms of 𝑡.
(d) Find the 𝑡 that minimizes P {𝑋 ≥ 𝑎} and use this to get the final result.
(e) What can you say about P {|𝑋 | ≥ 𝑎}?

18.16 Chernoff change of variable
Let 𝑌1,𝑌2, . . . ,𝑌𝑛 be i.i.d. random variables, where

𝑌𝑖 =

{
1 w/prob 0.5
5 w/prob 0.5 .

Let 𝑌 =
∑𝑛

𝑖=1𝑌𝑖 , where 𝜇 = E [𝑌 ] = 3𝑛. For 𝑎 > 0, derive a bound on
P {𝑌 − 𝜇 ≥ 𝑎}. To do this, you will exploit the result in Exercise 18.15 by
defining a simple linear transformation between the 𝑌𝑖’s in this exercise
and the 1/−1 random variables in Exercise 18.15.
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18.17 Chernoff bound for sum of Exponentials
Let 𝑋 =

∑𝑛
𝑖=1 𝑋𝑖 , where the 𝑋𝑖’s are i.i.d. and are Exponentially distributed

with rate 𝜆 > 0. Use Chernoff bounds to derive an upper bound on the
probability that 𝑋 is at least twice its mean.

18.18 Tail on the sum of Uniforms
Let 𝑋 = 𝑋1 + · · · + 𝑋𝑛 where the 𝑋𝑖’s are i.i.d. with 𝑋𝑖 ∼ Uniform(0, 1).
What is an upper bound on P

{
𝑋 ≥ 3𝑛

4
}
? Please answer this question in

two different ways:
(a) Derive a Chernoff bound from scratch, following the usual process

involving E
[
𝑒𝑡𝑋

]
. [Hint: You will come across a term of the form

𝑒𝑡 − 1. Please upper bound this by 𝑒𝑡 to make your analysis nicer.]
(b) Compute the answer given by the Hoeffding bound (Theorem 18.7).
(c) Which bound do you expect to be better, (a) or (b)? Is that what

happened?

18.19 Chernoff bound on Binomial
Complete the proof of Theorem 18.4 by proving (18.12).

18.20 Chernoff bound for Binomial with different probabilities
Prove (18.16) from Theorem 18.6, with extensions. Let 𝑋 =

∑𝑛
𝑖=1 𝑋𝑖 , with

independent 𝑋𝑖 ∼ Bernoulli(𝑝𝑖) and 𝜇 = E [𝑋] = ∑𝑛
𝑖=1 𝑝𝑖 .

(a) Prove that ∀𝜖 > 0,

P {𝑋 ≥ (1 + 𝜖)𝜇} <
(

𝑒𝜖

(1 + 𝜖) (1+𝜖 )

)𝜇
.

Follow these steps, where 𝑡 > 0:
(i) Prove E

[
𝑒𝑡𝑋

]
< 𝑒 (𝑒

𝑡−1)𝜇. [Hint: Use 1 + 𝑥 < 𝑒𝑥 from (1.12).]
(ii) Apply the usual Chernoff bound technique to upper bound

P {𝑋 ≥ (1 + 𝜖)𝜇}. Write your answer as compactly as possible.
(iii) Find a 𝑡 > 0 that minimizes the answer in the previous step.
(iv) Substitute in that 𝑡 to yield the desired bound on

P {𝑋 ≥ (1 + 𝜖)𝜇}.
(b) Follow the steps below to prove that, if 0 < 𝜖 ≤ 1,

P {𝑋 ≥ (1 + 𝜖)𝜇} < 𝑒−
𝜖 2𝜇

3 .

(i) Using the result of part (a), write what you need to show as an
inequality where the right-hand side is (1 + 𝜖) ln(1 + 𝜖).

(ii) Derive the Taylor series expansion of ln(1 + 𝜖) where 0 < 𝜖 ≤ 1.
Then substitute this into your prior expression to prove the needed
result.

(c) From the result in part (b), deduce this immediate corollary:

For 0 < 𝛾 < 𝜇, P {𝑋 − 𝜇 ≥ 𝛾} ≤ 𝑒−
𝛾2
3𝜇 .
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18.21 Chernoff bound for Binomial with different probabilities, continued
Prove (18.17) from Theorem 18.6, with extensions. Let 𝑋 =

∑𝑛
𝑖=1 𝑋𝑖 , with

independent 𝑋𝑖 ∼ Bernoulli(𝑝𝑖) and 𝜇 = E [𝑋] = ∑𝑛
𝑖=1 𝑝𝑖 .

(a) Show that for 0 < 𝜖 < 1,

P {𝑋 ≤ (1 − 𝜖)𝜇} ≤
(

𝑒−𝜖

(1 − 𝜖) (1−𝜖 )

)𝜇
.

(b) Show that for 0 < 𝜖 < 1,

P {𝑋 ≤ (1 − 𝜖)𝜇} < 𝑒−
𝜖 2𝜇

2 .

[Hint: start by proving that ln
(
(1 − 𝜖) (1−𝜖 )

)
> −𝜖 + 𝜖2/2 by using a

Taylor series around 0.]

18.22 Approximating the tail of the Normal distribution
[Proposed by Arisha Kulshrestha] Recall that we have no closed-form
expression for the tail of the Normal distribution, which must be computed
by numerically evaluating the integral. Let 𝑋 ∼ Normal(0, 1). Your goal
is to produce upper bounds on P {𝑋 ≥ 𝑎}, where 𝑎 > 0.
(a) Use Markov’s inequality to bound P {𝑋 ≥ 𝑎}. Note: This is not as

trivial as it might seem because 𝑋 is not non-negative. It will help to
observe that:

P {𝑋 ≥ 𝑎} = P {𝑋 ≥ 𝑎 | 𝑋 > 0} · P {𝑋 > 0} .

Now define the non-negative r.v. 𝑌 ≡ [𝑋 | 𝑋 > 0] and note that
P {𝑋 ≥ 𝑎 | 𝑋 > 0} = P {𝑌 ≥ 𝑎}.

(b) Use Chebyshev’s inequality to bound P {𝑋 ≥ 𝑎}.
(c) Use Chernoff bounds following these steps:

(i) Derive E
[
𝑒𝑡𝑋

]
.

(ii) Derive the Chernoff bound for P {𝑋 ≥ 𝑎}.

18.23 Negative Binomial tail
Suppose we are flipping a coin that lands on heads with probability 𝑝 >
0.5. Let 𝑋 be the number of heads that we see in 𝑛 flips. Let 𝑌 be the
number of flips until we see the 𝑘th head. We say that 𝑋 ∼ Binomial(𝑛, 𝑝)
and 𝑌 ∼ NegBinomial(𝑘 , 𝑝).
(a) Derive E [𝑌 ] and Var(𝑌 ).
(b) Prove that P {𝑌 > 𝑛} = P {𝑋 < 𝑘}. (Just use words to explain why

each side implies the other.)
(c) Is P {𝑌 = 𝑛} = P {𝑋 = 𝑘}? Explain.
(d) Use the above results and a Chernoff bound to derive an upper bound

on P {𝑌 > 𝑎E [𝑌 ]}, where 𝑌 ∼ NegBinomial(𝑘 , 𝑝) and 𝑎 > 1. You
should find that your upper bound decreases as 𝑘 increases. (Please
don’t worry about the fact that some quantities might not be integers.)
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(e) In part (d) we used the Chernoff bound to derive an upper bound on𝑌 ’s
tail. Now instead use CLT. Apply CLT to approximate the probability
that 𝑌 is at least twice its mean. You can leave your answers in terms
of Φ(·).

18.24 Hoeffding’s inequality
[Proposed by Misha Ivkov] In this problem, you will prove Hoeffding’s
Inequality, Theorem 18.7, which states the following: Let 𝑋1, 𝑋2, . . . , 𝑋𝑛

be independent random variables satisfying 𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖 for all 𝑖 where
𝑎𝑖 ≤ 𝑏𝑖 are real numbers. Let 𝑋 =

𝑛∑
𝑖=1
𝑋𝑖 . Then,

P{𝑋 − E[𝑋] ≥ 𝛿} ≤ exp
(
− 2𝛿2∑𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2

)
,

P{𝑋 − E[𝑋] ≤ −𝛿} ≤ exp
(
− 2𝛿2∑𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2

)
.

(a) Start with the usual Chernoff-based inequality for P{𝑋 − E[𝑋] ≥ 𝛿},
based on exponentiating and the Markov bound.

(b) Recall from Definition 5.21 that a real-valued function, 𝑔(·), defined
on interval 𝑆 ⊆ R is convex if ∀𝜆 ∈ [0, 1], and ∀𝛼, 𝛽 ∈ 𝑆,

𝜆𝑔(𝛼) + (1 − 𝜆)𝑔(𝛽) ≥ 𝑔(𝜆𝛼 + (1 − 𝜆)𝛽). (18.25)

Draw a picture of (18.25) where 𝑔(𝑥) = 𝑒𝑥 to illustrate that 𝑔(𝑥) = 𝑒𝑥
is convex.

(c) Suppose that 𝑌 is a r.v. which satisfies 0 ≤ 𝑌 ≤ 1 and has mean
E [𝑌 ] = 𝜇. Use the fact that 𝑒𝑥 is convex to prove that

E[𝑒𝑡𝑌 ] ≤ 𝜇𝑒𝑡 + (1 − 𝜇). (18.26)

[Hint: You will start with (18.25), but replace 𝜆 with the r.v. 𝑌 , which
is also in [0, 1]. You’ll need to set 𝛼 = 𝑡, 𝛽 = 0.]

(d) Use Lemma 18.5 to go from (18.26) to the expression below:

E[𝑒𝑡𝑌 ] ≤ 𝑒𝑡 𝜇+𝑡2/8. (18.27)

(e) Using part (d), derive a bound on E[𝑒𝑡𝑋𝑖 ] in terms of 𝑡, 𝑎𝑖 , 𝑏𝑖 , and 𝜇𝑖 ,
where 𝜇𝑖 is the mean of 𝑋𝑖 . It will help to start by defining

𝑌 =
𝑋𝑖 − 𝑎𝑖
𝑏𝑖 − 𝑎𝑖

or, equivalently, 𝑋𝑖 = (𝑏𝑖 − 𝑎𝑖)𝑌 + 𝑎𝑖 .

(f) Form a simple closed-form bound for E[𝑒𝑡𝑋]. Then use this bound to
get a simple bound for P{𝑋 − E[𝑋] ≥ 𝛿} in terms of 𝑡.

(g) Find the 𝑡 that minimizes P{𝑋 − E[𝑋] ≥ 𝛿} and use this to get the
final result.

(h) Argue that the bound you showed for P{𝑋 − E[𝑋] ≥ 𝛿} also works
for P{𝑋 − E[𝑋] ≤ −𝛿}.


