17 Bayesian Statistical
Inference

In Chapter 16, we defined an estimator of some unknown quantity, 8, based on
experimentally sampled data, X. This estimator, denoted by 8, (X), is called a
maximum likelihood (ML) estimator, because it returns that value of 6 that pro-
duces the highest likelihood of witnessing the particular sampled data. Specifi-
cally,

Oy (X =x) = argmax P{X = x | 6}. (17.1)
0

The ML estimator makes a lot of sense in situations where we have no a priori
knowledge of 6. However, what do we do in situations where we have some
knowledge about 6 — for example, we know that @ is likely to be high? 8, (X = x)
asdefined in (17.1) doesn’t have any way of incorporating this a priori knowledge.

In this chapter, we therefore introduce a new kind of estimator, called a maximum
a posteriori (MAP) estimator. Like the ML estimator, the MAP estimator is again
an estimator of an unknown quantity, 8, based on experimentally sampled data,
X. However, the MAP estimator starts with a distribution ® on the possible
values of 6, allowing us to specify that some values are more likely than others.
The MAP estimator then incorporates the joint distribution of ® and the sampled
data X to estimate 6.

Because it assumes a prior distribution, ®, the MAP estimator is a Bayesian
estimator, as compared with the ML estimator which is a classical estimator.
We will start with a motivating example that sheds some light on how the MAP
estimator and the ML estimator are related.

17.1 A Motivating Example

Example 17.1 (Gold or silver coin?)

In this example, you are given a coin that you can’t see. The coin is either gold
or silver. If the coin is gold, then it has bias p = 0.6 (chance p = 0.6 of heads).
If the coin is silver, then it has bias p = 0.4.
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286 17 Bayesian Statistical Inference

We wish to determine whether p = 0.6 or p = 0.4. To do this, we flip the coin
nine times. Let X denote the number of heads observed.

Question: Define the ML estimator to determine whether p = 0.6 or p = 0.4.

Answer:

Pw(X =x) = argmax P{X =x|p}. (17.2)
pe{0.4,0.6}

Question: Consider these two expressions: P{X =x|p =04} versus
P{X =x | p = 0.6}. Which is bigger?

Answer: The answer depends on x.

P{X=x|p=04})= (i) (0.4)*(0.6)°~~

P{X=x|p=06}= (2) (0.6)%(0.4)°7~.

SoP{X =x|p=04}islarger if x < 5, and P{X =x | p = 0.6} is larger if
x >5.

Thus, we have that

o[04 ifxe{0,1,2,3,4}
Pu(X =) ‘{ 0.6 ifxe{56,7,89}" a7.3)

Example 17.2 (Gold or silver coin with added information)

Now suppose we are in the same setting as Example 17.1, but we are given the
additional information that gold coins are four times more common than silver
ones. So, absent any samples, with probability 80% our coin is gold.

To capture this, define a random variable (r.v.) P, where P represents the bias of
the coin:
o .| 04 w/prob 20%
P = bias of coin = { 0.6 w/prob 80%
Question: How can we incorporate this distributional information about the bias
into our ML estimator?

Answer: Our ML estimator, as defined in (17.2), does not have a way of incor-
porating the distributional information represented by P.

Question: Intuitively, how do you imagine that knowing that the bias is modeled
by P might change the result in (17.3)?
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17.2 The MAP Estimator 287

Answer: It seems like the output of p = 0.6 should be more likely, given the fact
that most coins are gold. Thus, even when the sampled data is X = x < 5, it may
still be true that the best estimate for p is p = 0.6.

As an idea for how to incorporate the distributional information embodied by P,
consider the weighted ML estimator, given in (17.4). This new estimator starts
with the ML estimator given in (17.2), but multiplies the likelihood function by
the prior:

ﬁweightedML(X = )C) = argmax P{X =X | p} ' P{P = p} . (174)
pe{04,0.6} | V4——rn—/m—— ———
likelihood prior

This “weighted ML estimator clearly puts more weight on the output p = 0.6
as compared to p = 0.4. We will soon see that this weighted ML estimator in
(17.4) is equivalent to the MAP estimator, which we define next!

17.2 The MAP Estimator

We will first define the MAP estimator in the context of Example 17.2 and then
define it more generally a little later.

Definition 17.3 (MAP estimator for Example 17.2) Our goal is to estimate
p € {0.4,0.6}. We are given a prior distribution on the possible values for p,
denoted by r.v. P (we intentionally use the capitalized form of p). We also have
experimental data, denoted by r.v. X.

We say that P,,.(X) is the MAP estimator of p. We use a capital P to denote
that the estimator takes into account both the prior distribution P and the data
X to create an estimate of p:
P,..(X=x)= argmax P{P=p| X =x}. (17.5)
p<€{0.4,0.6}
Note that P,,,,(X) is a function of a r.v. X and thus is a r.v., while P,,,(X = x)
is a constant.

Let us compare Pow(X = x) in (17.5) with py, (X = x) in (17.2). Both of these
are estimates of p based on data sample X = x. Both involve finding the value of
p which maximizes some expression. However, (17.5) uses the prior distribution
P and has swapped the order of the conditional as compared to (17.2).
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288 17 Bayesian Statistical Inference

Question: Argue that ISMAP(X = x) from (17.5) is equal to P zmean (X = x) from
(17.4).

Answer: Starting with P,,,,(X = x), and applying Bayes’ Rule, observe that we

are looking for the p that maximizes:

P{P=p&X=x} P{X=x|P=p} P{P=p}
P{X =x} B P{X =x} '

P{P=p|X=x}=

But the P {X = x} term doesn’t affect this maximization, so we’re really looking
for the p that maximizes

P{X=x|P=p} -P{P=p}. (17.6)
N————
likelihood prior

But this in turn is exactly the expression that we’re maximizing in (17.4).
Question: Is there any situation where Py = Pw?

Answer: Yes, this happens when the prior, P, provides no additional information,
in that all possible values of p are equally likely. For our current example, this
would mean that the gold and silver coins are equally likely. In the case of a
continuous setting, P would follow a Uniform distribution.

We now proceed to evaluate

PMAP(X :X) = argmax P{P:p | X :x}.
pe{0.4,06}

Given that there are only two possible values of p, we simply need to compare
the following two expressions:

() - 0.4% - 0.6°7% - 20%

P{P=04|X=x}= PIX = (17.7)
PP 06| X () -0.6*- 0477 - 80% 78
{P=06]|X=x}= P (X =) (17.8)

Question: How do we determine which of (17.7) and (17.8) is higher?

Answer: It’s easiest to look at their ratio and see when the ratio exceeds 1:

P{P=06]X=x}  (3\*
P{P=04|X=x} (_)

2

But

3 2x-9
4(5) > 1 — x> 3.
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17.2 The MAP Estimator 289

Thus, p = 0.6 is the maximizing value when x > 3. So

R . [04 ifxe{0,1,2}
Pu(X = x) ‘{ 06 ifxe{3,4,56,7,8,9} " 7.9
Thus,
5 04 ifX<3
P (X) ={ 06 ifX>3" (17.10)

Intuitively, this makes sense, since we are starting out with a coin that is gold
with probability 80%.

We end this section by defining the MAP estimator in general settings, beyond
the context of Example 17.2.

Definition 17.4 Our goal is to estimate some unknown 6. We are given a prior
distribution on the possible values for 6, denoted by r.v. ©. We also have
experimental data, denoted by r.v. X.

We say that ©,,,(X) is our MAP estimator of 6. We use a capital ® in
our estimator to denote that the estimator takes into account both the prior
distribution © and the data X to create an estimate of 6.

In the case where O is a discrete r.v., the MAP estimator is defined by:

Opr(X =x) = argmaxP{® =0 | X = x}
0

argmaxP{X =x|0=0}-P{O® =0} if X is discrete
0

argmax fxje=¢(x) - P{® = 6} if X is continuous
0

In the case where O is a continuous r.v., the MAP estimator is defined by:
®MAP(X =x)= argmax f@IX:x(e)
0

argmaxP{X =x | ® =86} fo(0) if X is discrete
0

argmax fxje=e(x) - fo(6) if X is continuous
0

Note that 8,,,,(X) is a function of a rv. X and thus is a r.v., while ©,,,,(X = x)
is a constant.
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290 17 Bayesian Statistical Inference

Definition 17.5 While the r.v. © represents the prior distribution, the con-
ditional rv., [® | X = x|, represents the posterior distribution since it
represents the updated version of the prior distribution, given the value of the
data. Likewise, P{® = 0 | X = x} is called the posterior probability (where
we write fo|x=x(6) for the continuous case). Thus O, (X = x) represents the
value of 0 that maximizes the posterior probability.

Remark: While ©,,,, (X) in Definition 17.4 depends on both the prior distribution
® and also on X, we note that ©,.,,(X) is a function of just X. Specifically, once
we specify the value of X, say X = x, then ©,,,,(X) becomes a constant.

17.3 More Examples of MAP Estimators

Example 17.6 (Estimating voting probability)

Suppose we want to estimate the fraction of people who will vote in the next
election. Let’s call this quantity p. To estimate p, we sample 100 people inde-
pendently at random. Suppose that 80 of the sampled people say that they plan
to vote. This feels high, so we go back to look at prior elections and how many
people voted in prior elections. We find that the fraction of people who voted in
prior elections is well modeled by the r.v. P, with density function:

fr(p)=3(1-p)*>,  where0<p<1,

shown in Figure 17.1. Given this prior, P, and the sample X = 80, how can we
estimate the true fraction of people, p, who will actually vote?

Jp(®)

Figure 17.1 llustration of fp(p).

In order to formulate this question in terms of Definition 17.4, we start with a
few questions.

Question: If X denotes the number of people sampled, how is X distributed?
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17.3 More Examples of MAP Estimators 291

Answer: X ~ Binomial (100, p).
Question: Which of the cases of Definition 17.4 should we be looking at?

Answer: ® = P is continuous, and X is discrete. Thus,

Py (X = 80) = argmax fp|x=so(p) = argmax P{X =80 | P = p} - fr(p).
p 4

Since X ~ Binomial(100, p), we know that

1
P{X:80|P:p}:(oo

80 20
1-p)2,
20 )p (I-p)

Our posterior probability is thus:

P(X=80|P=p} folp)= (18000

_ (100
180

)p8°(1 -p)*-3(1-p)*

) . 3p80(1 _ p)22.

To find the maximizing p, we differentiate the posterior with respect to p,
ignoring the constant unrelated to p, and set the derivative equal to 0, yielding:

0=p%-22-(1-p)*-(-1)+80p™ - (1 -p)*.

This in turn is easily solved by dividing both sides by (1 — p)?! - p”°, yielding:

_ 80
P=q02°
Thus,
N 80
PMAP(X = 80) = @ ~ 78070

Question: This may still feel off to you. Shouldn’t the prior matter more?

Answer: The answer lies in the number of people sampled. The fact that we
sampled 100 people (picked uniformly at random) makes the prior distribution
not so meaningful. Had we sampled a smaller number of people, then the prior
distribution would matter much more.

Question: Repeat the voting example, where now we sample five people, uni-
formly at random and X = 4 report that they will vote. What is our estimate for
p now?
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292 17 Bayesian Statistical Inference

Answer: You should get

Puw(X =4) = = ~ 57%.

| &~

Observe that the prior distribution has much more of an effect now.
Another example of where estimation comes up has to do with signals that are
(partially) corrupted by noise.

Example 17.7 (Deducing original signal in a noisy environment)

When sending a signal, 6, some random noise gets added to the signal, where the
noise is represented by r.v. N ~ Normal (0, 0'12\,). What is received is the sum of
the original signal, 8, and the random noise, N. We represent the data received
by r.v. X, where

X=0+N. (17.11)

Suppose that we receive X = x. Based on that, we’d like to estimate the original
signal, 6.

We will consider two situations: In the first, we have no prior information about
the original signal. In the second, we have a prior distribution on the original
signal.

Question: What is ,, (X = x)?
Since X is continuous, by Definition 16.6 we have that
Ou.(X = x) = argmax fx|g(x)
6

= argmax fn(x — 6), by (17.11).
0

Question: Now, where does N have its highest density?

Answer: Since N ~ Normal(0, U,ZV), we know that it achieves its highest density
at 0. Thus, fy (x — 0) is highest when 6 = x. So

Oy (X =x) = x. (17.12)
Since this holds for all x, we have that 8,, (X) = X.
Question: Why does (17.12) make sense?

Answer: We are trying to estimate the original signal, 6. We know that the noise
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17.3 More Examples of MAP Estimators 293

is symmetric, meaning that it is equally likely to add or subtract from the original
signal. Thus, when we receive x, our best guess for the original signal is x.

Now consider that we have additional information in the form of a prior distri-
bution on the original signal, represented by r.v. ® ~ Normal(u, o2). Thus we
can think of X as a sum of two independent random variables:

X=0+N.

Again, we are trying to estimate the original signal, 8, given that we have received
data X = x. To do this, we use a MAP estimator.

Question: What is C:)MAP(X =x)?
Answer: By Definition 17.4,
Ouar (X = x) = argmax fy|e-0(x) - fo(6).
0

Now, since X = ® + N and ® L N, we know that
[X | ®=6] ~Normal(#0, 0',2\,).

Hence,
1 - 12 (X_H)z
fxje=0(x) = N (17.13)
| V2rnon
So
(:)MAP(X =x) = argmax fXI@zH(x) : f@(g)
0
1 _ﬁ(x_g)z 1 _1(9_,“)2)
= argmax e N . e 2072
0 ( V2ron \V2ro
— 5 (x=0) =55 (0-p)° )
=argmax (e "N (can ignore constants)
0

1 1
= argmax (__2(x 07— >0~ mz) ,
0 20'N 200

where the last line follows since it suffices to maximize the exponent. Let

e Loy
8(6) = =3 (=0 = 55 (0= "
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To find the maximizing 6, we take the derivative and set it equal to 0, obtaining

, 1 1
0=g/(6) =———  (-2)(x - 6) — — - 2(6 - ),
207, 20
which easily solves to
u
ate o ok
0= R R a
e O +oy a2 +oy,
Thus,
A 2 o2
Oue(X =x) = —— x4 — Ny (17.14)
a2 +oy, a2 +oy,

Question: What is the meaning behind the fact that the MAP estimate of 6 in
(17.14) looks like a weighted average?

Answer: Observe that (17.14) represents a weighted average of the received data,
x, and the prior mean u. So the MAP takes into account both the received data
and also the prior distribution. Looking at the weights, we see that they depend
on the variance of the original signal, o2, and also the variance of the noise, o2,
If the variance of the noise is (relatively) low, then we weigh the received data,
x, more highly in our estimate. If the variance of the noise is (relatively) high,

then we weigh the mean of the prior, u, more highly in our estimate.

17.4 Minimum Mean Square Error Estimator

This chapter has been devoted to coming up with an estimator, in the case where
we have a prior distribution, denoted by r.v. ®, and also data, denoted by r.v. X.
The idea has been to create a posterior distribution, denoted by

[6] X =x].
Then, from Definition 17.4,
Ounr(X =x) =argmax P{® =60 | X =x}.
0

We can view (:)MAP as the mode of the posterior distribution. In the case of a
discrete distribution, this represents the value, 6, that comes up most frequently in
the posterior distribution. In the case of a continuous distribution, this represents
the value with highest density.
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17.4 Minimum Mean Square Error Estimator 295

One could alternatively define a different Bayesian estimator for 6 that is the
mean of the posterior distribution. We do this now.

Definition 17.8 Our goal is to estimate some unknown 6. We are given a prior
distribution © on the possible values for 6. We also have experimental data,
denoted by r.v. X.

We say that (:)MMSE(X ) is the minimum mean squared error (MMSE) estima-
tor of 6, where

éMMSE(X) =E [® | X] .
This is shorthand for saying that, for any x,
C:)MMSE(X:x) :E[® | XZX] .

Note that 8,,,5.(X) is a function of a r.v. X and thus is a r.v., while ©,,,5:(X = x)
is a constant.

The estimator @MMSE(X = x) gets its name from the fact that this estimator in fact
produces the minimum possible mean squared error of any estimator. We will
prove this fact in Theorem 17.12. For now, let’s consider a few examples of this
new estimator to better understand how it compares with the MAP estimator.

Example 17.9 (Coin with unknown probability: revisited)

We revisit Example 7.14, where there is a coin with some unknown bias, where
the “bias” of the coin is its probability of coming up heads. We are given that
the coin’s bias is drawn from distribution P ~ Uniform(0, 1). We are also given
that the coin has resulted in X = 10 heads out of the first 10 flips. Based on this,
we would like to estimate the coin’s bias.

Question: What is Pyys:(X = 10)?

Answer:

Pus:(X =10)=E[P| X = 10].

To derive this, we need to first derive the conditional probability density function
(p.d.f.) of P given X = 10:

P{X=10|P=p}- fr(p)

fP|x=1o(P) = P{X = 10}
10.1 .
0 otherwise
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Here,
1
P{X:m}:/o P{X=10|P=p}- fp(p)dp
: 10
=/ p dp
0
1
o
So,
f ()zP{X=10|P=p}-fp(p)
P|x=10{p P{X =10}
[ 11p!? ifo<p<1
_{ 0 otherwise (17.15)
Hence,
5 : 0 11
PMMSE(XZIO):E[P|X=10]: pllp dP:E.
0

Question: How does PMMSE(X = 10) compare with PMAP(X =10)?

Answer: The prior P is continuous and X is discrete, so using Definition 17.4
and (17.15), we have:

Py (X = 10) = argmax fpix=10(p) = argmax (llplo) =1.
p P

Question: Which is the more believable estimator?

Answer: This is a matter of opinion, but it feels like the MMSE estimator does
a better job of capturing the prior distribution than the MAP estimator.

Let’s consider one more example comparing the MMSE estimator and the MAP
estimator.

Example 17.10 (Supercomputing: estimating the true job size)

In supercomputing centers, users are asked to provide an upper bound on their
job’s size (running time). The upper bound provided by the user is typically
several times larger than the job’s actual size [49]. We can think of the upper
bound provided as a scalar multiple of the original job size. The relationship
between the original job and upper bound provided can be represented by:

X=5-0,
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17.4 Minimum Mean Square Error Estimator 297

where © is a r.v. denoting the original job size, S is a scalar multiple where
S > 1, and X is the reported upper bound. We will assume that § L ©. Given
a value on the upper bound, X = x, how do we estimate the original job size,
© = 6, from this? Specifically, we will be interested in deriving O (X = x)
and @)MMSE(X =X).

To keep the computations from getting too messy, we assume: ® ~ Pareto(a = 3)
and S ~ Pareto(a = 2). Hence,

fo(0) =3674, ifo > 1
fs(s) =257, if s > 1.

Both estimators will require deriving fo|x=x(6). To get there, we will have to
start with the other direction, namely fx|e=¢(X).

Question: Given that X = S - ©, what is fx|e-g(x)?
Hint: Is it fs (5)?
Answer: The correct answer is

fX\e):a(x)=é'fs (g), x>6>1.

To see why, recall that we need to make the arguments over probabilities, not
densities:

P{Xsﬂ@):@}:P{Ss%}

[;‘&@ﬂuMni[;”ﬁUMr

d t=x d t:%
| eoar= 5 [ pswar
dx =0 dx =0

1
frio=0() = = fs (g) by FTC, see (1.6) and (1.7) .

We use our conditional density to get the joint density as follows:

-3
fro(x.0) = fxio-0() - fo(0) = 5 -2 (F) 307 = 2
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We can integrate the joint density to get fx(x), as follows:

O=x
fx(x) = fxoe(x,0)do
0=1
O=x
6
= — a9
</0:1 92x3
=6xC —6xt, x>

We are finally ready to obtain fg|x-.(6):
fxe(x,0)

fx(x)
6

_ 92x3
C6x 3 —6x4
3 X
62 - 62
B 1 X
62 x-1

f@lX:x(H) =

x>0>1.

Question: So what is O, (X = x)?
Answer:

A 1
Ouar (X = x) = argmax fo|x=x(0) = argmax — - —— = 1.
P o 0% x-—1

Question: What is C:)MMSE(X =x)?

Answer:

®MMSE(X =x)=E[O| X =x]

O=x
- / 0 forxer(6)d

O=x

1
S / —do
x—1 0=1 6

xInx

T x-1
Inx

=Ilnx+

Question: Which is the more believable estimator?

Answer: The MAP estimator is pretty useless, given that it simply returns an
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answer of & = 1. The problem is that the density of the prior is maximized at
6 = 1, and somehow this isn’t improved when we look at the conditional density.

The MMSE estimator returns a more reasonable answer of § ~ In x. This makes
more sense given that the upper bound on job size is x.

Question: You might wonder if the answers change if we make the problem a
little more symmetric, where ® and S have the same distribution. For example,
what do you think might happen if ® ~ Pareto(«@ = 2) and S ~ Pareto(a = 2)?

A

Answer: We find that, disappointingly, ®,,,(X = x) remains at 1. However, now

x—1

(:)MMSE(X =x)= Inx

17.5 Measuring Accuracy in Bayesian Estimators

We have seen different estimators, producing different results. It is helpful to have
some metrics for evaluating the accuracy of our estimators. One common metric
for measuring the accuracy of estimators is the mean squared error (MSE).

Recall the MSE as given by Definition 15.4, when we were looking at non-
Bayesian estimators. Here, 6 was an unknown constant, X represented the sample
data, and §(X) was our estimator for §. Under this setting we defined:

MSE(A(X)) =E [(é(X) - 9)2]. (17.16)

For Bayesian estimators we need an adaptation of the definition in (17.16)
because 6 is no longer a constant, but rather is drawn from a prior distribution,
0. For Bayesian estimators, we use Definition 17.11 for the MSE.

Definition 17.11 Let ©(X) be an estimator where © represents the prior dis-
tribution and X the sample data. Then the mean squared error (MSE) of
O(X) is defined by

MSE(@(X)) -E [(@(X) - @)2] : (17.17)

Question: How should one interpret Definition 17.11? What is the expectation
over?

Answer: Both terms within the expectation in (17.17) are random variables.
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The first term is a r.v. which is a function of just X (once a value of X is specified,
O(X) becomes a constant). The second term is the r.v. ®. The expectation in
(17.17) is over the joint distribution of ® and X (that is, it’s a double sum).

At first, Definition 17.11 may seem a little strange. However, it’s actually very
similar to our definition in (17.16) except that now the value of 6 is picked from
the prior distribution. To see this, we condition on 8:

MSE(@(X)) -E [(@)(X) - @)2]
:/HE[((:)(X)—(B)Z |®:9
:/HE[((C)(X)—G)2|®:9

fo(0)db

fo(0)do.

Observe that the integrand looks very similar to (17.16). The point is, whatever
our chosen value, 6, we want to say that our estimator, ®(X), is close to that
value in expectation.

Now recall the estimator (:)MMSE(X ). Theorem 17.12 says that this estimator has
the lowest MSE compared to all other estimators.

Theorem 17.12 8,,,,.(X) minimizes the MSE over all estimators ©(X).

Proof: We start by defining:

MSE(@(sz)) :E[(@(X) —@)2|X:x]. (17.18)

We will show that @MMSE(X = x) minimizes MSE(C:)(X = x)) for all values of x.
It then follows that Oy (X) minimizes the MSE over all estimators ©(X).

MSE(@(X - x)) -E

. 2
(@(X) - @) | X :x]
=E [6(X)* - 20(X)0 + 0| X =x]

=0(X=x)>-20X=x)E[O| X =x]
+E[0* | X =x]. (17.19)

We now want to find the minimizing ®(X = x) in (17.19). Recall that (X = x)
is a constant function of x. We’ll denote this by ¢ (x) and replace ©(X = x) with
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c(x) throughout, obtaining:
MSE(@(X - x)) = c(x)2—2c(0)E[O | X =x] +E [0% | X =2x]
=(c(x)-E[®| X =x])*+E[0% | X =x|
~E[0|X=x],
which is clearly minimized when the first term is 0, namely when

c(x) =E[O | X =x] = Oy (X = x). [

17.6 Exercises

17.1 Deducing original signal in a noisy environment
We have an original signal, represented by r.v. ®, where ® ~ Normal(0, 1).
We also have noise, represented by r.v. N, where N ~ Normal(0, 1). The
received signal, represented by r.v. X, is then:

X=0+N.

Derive the MMSE estimator, @)MMSE(X = x). How does your answer com-
pare to Oy,,(X = x) under the same setting?

17.2 Mean squared error of the MMSE estimator
In Theorem 17.12, we saw that ©:(X) minimizes the MSE. But what

exactly is this error? Prove that MSE ((:)MMSE(X = x)) is the variance of the
posterior distribution.

17.3 MMSE estimator for gold vs. silver coin problem
For the Bayesian coin problem from Example 17.2, derive the MMSE
estimator, f’MMSE(X ).

17.4 Hypothesis testing for COVID: MLE vs. MAP

To determine whether you have COVID, you take an antigen self-test.
Rather than outputting “yes” or “no,” the test outputs a number, L, from the
set {0, 1,2, 3}, where L indicates the level of antigen detected. The level L
is not a perfect indicator. Table 17.1, called a “likelihood matrix,” shows
the probability distribution over the level output by the test, depending on
whether you have COVID or not. For example, if you don’t have COVID,
then the test outputs L = 0 with probability 0.6 and L = 1 with probability
0.3, etc. By contrast, if you have COVID, the probability distribution is
more biased toward higher levels.
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L=0 L=1 L=2 L=3

Hy: Don’t have COVID 0.6 0.3 0.1 0.0
H|: Have COVID 0.1 0.2 0.3 0.4

Table 17.1 Likelihood matrix.

Consider two hypotheses: Hy that you don’t have COVID and H; that you

do.

(a) For each possible reading of L, determine which hypothesis is returned
by the MLE, which returns the hypothesis with highest likelihood.

(b) For each possible reading of L, determine which hypothesis is returned
by the MAP decision rule. Assume that P {Hp} = 0.8 and P {H,} = 0.2.

17.5 Estimating the minimum: MLE vs. MAP
You observe 10 i.i.d. data samples, X1, X5, ..., Xj9 ~ Uniform(a, 1). You
know that a > 0 but not the exact value of a. Your goal is to estimate a.
(a) Determine d, (X, Xo, ..., Xi10), the ML estimator of a.
(b) Suppose that we have a prior on a, denoted by r.v. A, with p.d.f.:
W0 if0<as<1

i@ = 57

0 otherwise

Determine AMAP(X 1, X2,...,X10), the MAP estimator of a.

17.6 Interaction graph
Annie, Ben, and Caroline are three CMU students. CMU has only two
clubs: PnC club and Buggy club. Each student must join one and only one
club. Suppose that you (as an outsider) know that Annie has joined the PnC
club, but you cannot see which clubs Ben and Caroline join. However, you
can see the interaction graph in Figure 17.2. The interaction graph tells us
something about which students at CMU interact with other students. But

Club: PnC

Annie
Ben Caroline

Club:?? Club:??

Figure 17.2 Interaction graph for Exercise 17.6.
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17.7

the interaction graph is not perfect: An edge between two people exists

with probability % if the two people are in the same club and exists with

probability é if the two people are in different clubs.

(a) What is your ML estimate of the clubs Ben and Caroline each joins?

(b) Suppose that you know Ben and Caroline well enough to have the
following prior: Ben joins PnC with probability % and joins Buggy with
probability % Caroline joins PnC with probability % and joins Buggy
with probability %. They make their choices independently. What is
your MAP estimate of the clubs Ben and Caroline each joins?

Error correcting codes
Suppose you want to transmit a message to your friend through a wireless
channel. Your message, denoted as M, has three possible values with this
distribution:
PM—O—1 PM—l—7 PM—2—1

M=0}=3,  PM=1}=—. P{M=2}=—.
You have decided to use a 5-bit string, U = U U,U3U4Us to encode message
M as follows:

M =0 = U = 00000,
M=1= U=11110,
M =2 = U =10101.

Here, the leftmost two bits, Uy, U;, are used to differentiate among the
values of M, and the remaining three bits, Us, U4, Us are redundant bits
for error correcting — that is, the remaining bits reinforce the information
in the first two bits. This coding scheme sets Us = U; , Uy = U;, and
Us=U,+U, mod 2.
When you transmit the string U, each bit U; gets flipped with probability € =
0.2, and Uy, U, ..., Us get flipped independently. Let X = X1 X, X3X4X5
denote the string that your friend receives. Your friend must estimate the
value of M based on the received string. For two binary strings with
the same length, the Hamming distance between the strings, denoted by
dg (-, ), is defined to be the number of bits on which the two strings differ.
(a) Suppose your friend decodes X by comparing X with the three strings
{00000, 11110, 10101} and selecting the string that has the smallest
Hamming distance to X. Then she declares that the value of M that
corresponds to the selected string is the value transmitted. When there is
a tie, she declares the smaller value for M. For example, if she receives
X = 10100, then 10101 is the string from {00000, 11110, 10101} that
is the closest to X. So she declares that M = 2 is the value transmitted.
If she receives X = 11000, then dg (X, 00000) = 2, dy (X, 11110) = 2,
and dgy (X, 10101) = 3. So she breaks the tie and declares that M = 0.
(1) What type of estimation is your friend doing?
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(ii) Suppose that the received stringis X = k = kjkokskqks. How does
your friend determine whether M equals O or 1 or 2?7 (Write down
the probabilities involved using expressions involving dg (k, -). ).

(b) If your friend uses a MAP decoder to estimate M, what will she declare

when she receives X = 10100?

17.8 MMSE estimator of temperature given noise

There is a heat source with temperature 7 ~ Normal(100, 16). You want
to know the value of the temperature, T = ¢, but you cannot directly
access the source. You are, however, able to approximately measure the
temperatures at two nearby locations: Let X4 denote your measurement of
the temperature at location A, which is 1 mile away and known to have
temperature % Let Xp denote your measurement at location B, which is 2
miles away with temperature %. Unfortunately, X4 and Xp are both affected
by noise, and hence what you actually read is:

T
X4 = 5 + Wy, W4 ~ Normal(0, 1),

T
Xp = n + Wg, Wpg ~ Normal(0, 1),

where the noises W4, Wg, and T are independent.
(a) What is the conditional p.d.f. of T given that you observe X4 = x4 and

XB = XB?
(b) What distribution does T follow given you observe X4 = x4 and
XB = )CB?

(c) Whatis TMMSE(XA, XB)?
[Hint: If ar.v. ¥ has a p.d.f. of the form fy (y) = C - e~2(@¥*+b¥+¢) \here

C,a, b, c are constants, independent of y, then Y ~ Normal (—% 1 ).]

’a

17.9 The MMSE is an unbiased estimator
Prove that the MMSE estimator is unbiased. Thatis, E [(:)MMSE(X )] =E [0].
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