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During the last several decades compiler developers have invented a set of powerful heuris-
tics to deal with the complexity of the algorithms they have to use. However, this led to
a new problem of finding the best values for every heuristic. This paper describes how
machine learning techniques, such as logistic regression, can be used to build a framework
for the automatic tuning of compiler heuristics. In this paper we were focused on decreas-
ing the compile time for the static commercial compiler called TPO (Toronto Portable
Optimizer) while preserving the execution time. Nevertheless, our techniques can also
be used for decreasing the execution time and in dynamic behavior. Our experiments
showed that we can speedup the compile process by at least a factor of two with almost
the same generated code quality on the SPEC2000 benchmark suite, and that our logistic

classifier achieves the same prediction quality for non-SPEC benchmarks.
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Chapter 1

Introduction

What we call ”Progress” is the exchange of one nuisance for another nuisance.

— Havelock Ellis

Compiler writers need to implement many optimizations that are NP-hard problems,
but still need to be solved efficiently. In order to address this problem a number of
powerful heuristics were invented. However, this led to a new problem of finding the
optimal parameter value for every heuristic. The solution for this task is still a mixture
of art and experience and often needs a great amount of human time and effort. There are
several reasons that finding the optimal values is difficult. The first problem is the highly
non-linear interaction between optimizations, such that a change in one transformation
needs unpredictable adjustments to others. The second problem is that the number
of these heuristics can be huge, and thus it is impossible to check the search space

completely.

Hence, the idea of making this process as automatic as possible seems very natural.
One of the ways to do this efficiently is using machine learning (ML) algorithms, which
can be powerful tools for searching for optimal solutions in a high dimensional space.
Previous work showed several methods that can be applied for such a task. Among them

are nearest neighbors (NearN) [16, 1], logistic regression [6, 5], neural networks (NN) [4],
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genetic programming (GP) [17], and support vector machines (SVM) [16]. Thus, if we
can choose a group of valuable transformations from our list of compiler optimizations,
it is possible to make a tool for finding the optimal values for heuristics inside these

transformations using ML techniques, thereby improving overall performance.

Most of the previous works were focused on decreasing execution time or total time
(in the dynamic case), but for commercial static compilers the compilation time can also
be an issue. Most of them have a significant number of transformations that can use
all the information about the target platform, programming language, and even hints
about the specific application. However, it is hard to predict when and where these
transformations are needed, so in most cases compiler writers apply all of them to every
piece of code. As the result, the compilation time can become a significant problem. Using
different levels of optimizations ( e.g. -00, -02, -O3) with fixed sets of transformation
provide some flexibility for the customers to trade off compile time and code quality. But
there are still many cases when you need the quickest code you can get with reasonable
compilation time (e.g. OS or Web Server compilation). Hence, you need a way to predict
what transformations are needed for a particular program and apply only this list of

transformations.

To distinguish different programs you need a way to characterize them. We suppose
that the whole program level is not an appropriate level, because a program contains
many functions with different characteristics. Applying the same set of transformations
to all of them is unlikely to give the best results. Similarly, when ”features” are aggregated
across a whole program, two programs may appear similar when in fact they should use
different transformations for best behavior. Hence, we need a method-based description
for our purposes. After we have a method description we can use different techniques
to predict the set of transformations that is the best for this method. We decided to
apply a machine learning technique called logistic regression to predict the best set of

transformations between two levels inside the IBM Toronto Portable Optimizer (TPO).
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TPO is based on IBM’s xl compiler infrastructure, supports several languages (e.g.
C/C++, Fortran), and generates highly optimized code. Two levels were chosen: one
with acceptable execution time (-O8 -ghot) and one with the desired compilation time
(-03). There are around 50 transformations between these levels that require a lot
of compilation time, but in most cases do not improve execution time. We gathered
training data by disabling transformations for every hot function for a set of SPEC2000
benchmarks. Then, we used this data to predict the transformation set for every function
in SPEC2000 benchmarks as well as for other benchmarks. We showed that it is possible
to decrease the compilation time at least 2.46 times for SPEC2000, coming close to the
compilation time at -03 level. At the same time we did not increase, but even improve
the average execution time by 2% (5 tests from SPEC2000 significantly improved). Some
previous works achieved a similar speedup when the execution time was their primary

goal [16, 17].

In order to achieve our goals we created a framework that consists of additional options
and opportunities inside TPO, a set of perl scripts to get training data and find the best
set of transformations, and the ML algorithm implemented as Matlab([11]) functions.
This framework is flexible enough to add new code features, new transformations to
analyze and different types of heuristics (not necessarily binary). We expect that with
minor changes this framework can be used to improve the execution time as the primary
goal and it can also be used for dynamic compilers or JIT (just-in-time) optimizers to

control their decisions automatically.

The remainder of this paper is organized as follows. The next chapter introduces our
motivation in more detail. Chapter 3 describes the main ideas of our approach including
feature extraction, heuristic modifiers, gathering training data, and the learning process.
Chapter 4 discusses the methodology that we used and the infrastructure that was created
to achieve the project goals. It also describes the measurements we did to show the result

of our technique. Chapter 5 presents and discusses the results. Chapter 6 relates our
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work to previous work on similar topics. We conclude and describe the potential of this

work in Chapter 7.



Chapter 2

Motivation

Some men have thousands of reasons why they cannot do what they want to;
all they need is one reason why they can.

— Willis Whitney

This chapter provides more detail to motivate our project goal and the means (e.g.
machine learning, the industry compiler) we chose to achieve them. There are also
several more goals that can be reached using the framework we have implemented, and
we describe the usage possibilities for this framework and the reasons why certain changes

and additions are needed in the existing compiler framework.

2.1 Why Compile Time?

As we mentioned in Chapter 1, decreasing the compilation time is our primary goal for
this project. However, it is easy to argue that compiling is only a one-time process and
then you will use efficiently generated code frequently. For most simple cases this is fine,
but there are big projects where this can be a serious problem. As an example, we can
consider the case of compiling a real industry Operating System (OS). It has several

critical sections of code that should be compiled with the highest optimization level,
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while the rest do not need to be optimized so extensively. Compiling with the traditional
approach may lead to a compile time of more than one day using TPO. And this is not
the whole problem. It is a common case when there are bugs either during the compile
process or later after the execution. For debugging purposes you will probably need to
recompile the OS at least several times, and a delay while waiting for the code to compile

slows down this process significantly.

Our approach gives an opportunity to avoid the delay by using the full "power” of
the optimizer only if it is needed. This benefit is not a serious advantage for a user with
a simple application to compile and run, but it is certainly interesting for industry or
serious scientific projects. It is also possible to improve the execution time in some cases,
because the transformations can sometimes do "bad” things with your code. Preventing

them from applying to a code can sometimes give a speedup in the execution time.

2.2 Why Machine Learning and TPO?

Another question that may arise is why we apply the ML technique and not something
else. We are not going to prove that ML is the best possible approach, but the nature of
our problem - predicting something about the code using its characteristics, appears to
be a suitable application for one of the artificial intelligence (AI) methods. The expert
systems (ES) were the second possibility that we kept in mind, but the complexity of
retrieving the ”expert opinion” about the transformations stopped us from using it.
Instead we chose the ML technique called logistic regression, which will be described
in Section 3.6.2 in more detail. It is possible to use our framework to retrieve some
knowledge about the optimizer that can be used as a part of the ES, but we currently

do not put any efforts to investigate this possibility.

At the starting point of our project we were thinking about what compiler to choose:

a commercial one or an open source alternative. Except for the traditional advantage of
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the open source projects (i.e. freely available code) these compilers are usually less com-
plicated. There was probably less effort in finding the best values for their optimization
heuristics, which gives us a better chance to show good results. However, these projects
usually do not have enough resources to make their code very stable, and our changes
in the heuristic values can cause an unpredictable number of bugs that will not be fixed
quickly. Previous works showed that all these bugs may happen, for example the unroll

factor limitation in [16].

The second reason for choosing a commercial compiler was the desire to get benefit
for something that has really good performance while executing, and is so complex that
it is almost impossible to do this work manually. The final reason was the existence of
the Heuristic Context approach [18], which significantly decreases the changes we need
to make inside TPO. We describe the Heuristic Context approach in more detail in

Section 3.3.

2.3 Initial Experiment

In order to verify that we have possibilities for decreasing the compile time we conducted
the following simple initial experiment for TPO. We measured the compile time for two
levels, -O3 and -ghot -03, to see whether there is enough difference to start optimizing.
The results were promising, showing more than 3 times difference for most of the twenty-
one SPEC2000 [8] benchmarks, as shown in Figure 2.1. These results were used as the

baseline for the future measurements.

2.4 Different Ways of Tuning

The process of searching for the optimal values of the transformation heuristics is usually

called the tuning process. We can apply tuning in different ways - both for individual
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Initial Experiment -O3 vs -ghot -O3
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Figure 2.1: Comparison of the compile time for two optimization levels (-O3 and -ghot

-03) on SPEC2000 benchmarks.

optimizations and for any group optimizations in which we are interested. The method
we choose will influence most of our subsequent design decisions. The problem of tuning
certain optimizations by ML was discussed early in several works. Examples include:
hyperblock formation, register allocation and prefetching [17]; unroll factors [16]; and
branch prediction [4]. These papers have several promising results, but they did not try
to analyze any group of optimizations as a whole object for learning process. However,
there are a lot of dependencies between different optimizations, and, hence, to obtain the
best performance level we should try to apply learning for certain groups of optimizations

or even for the whole set of transformations.

As a good simple example, consider a pair of optimizations called in-line expansion and
loop unrolling [12]. In-line expansion is based on the idea of avoiding the call overhead

by replacing it with the function body. Loop unrolling is a well-known transformation in
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which the loop body is replicated a number of times. It reduces overhead by decreasing
the number of branch operations, because the backward branch is needed only after
executing the whole unrolled loop body. Both of them increase the code size and, if they
are not limited by some parameter, can be the source of instruction cache misses. If
we tune them separately, first, we will find a limitation for the first optimization, say
in-line expansion. Later, we can try to tune the unrolling and the increase of the code
size may be a problem for some applications. However, if we apply in-line expansion less

aggressively we might be able to achieve greater speedup by using more unrolling.

A somewhat similar problem arises when you are trying to find the best order for
a group of optimizations [6]. As a side effect, we can find interesting dependencies
between optimizations that can lead to a redesign in our optimizer. We are not focusing
on the order of optimizations/transformations in this paper, and assume that the compiler
writers chose the optimal or at least close to the optimal order for transformations. In
general, it is also an interesting issue to be solved and ML techniques could be applicable

again.

In order to create a framework that can be flexible enough to solve all mentioned
tasks, we make it possible to tune any specified set of heuristics for every transformation
and to disable/enable every optimization. While most of our experiments were conducted
with the goal of finding the smallest set of transformations with the acceptable execution

time, it is still possible to tune just a single heuristic value.

2.5 Technological Process

The described capabilities of this framework can be used not only for existing optimiza-
tions, but for every new transformation that is going to be added inside the optimizer.
This approach will significantly decrease manual tuning, and, hence, will save human

work time for other tasks. At the same time, when you add something new inside the
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optimizer, it may be necessary to re-tune for the previous transformations. This can be
hard to do manually (even for experienced compiler writers), and can be the source of
performance inefficiency. Ideally we should use the framework for every new optimization,
and it can become a part of existing technological process for the compiler development
process. This will decrease the time for making a new compiler and make it more stable

and predictable.

A good description of characteristics that should be present in the modern compiler
to deliver a satisfactory level of performance, to be flexible enough to deal with new hard-
ware, and to avoid fixed or unclear heuristics is presented in Building a Practical Iterative
Interactive Compiler [10]. The authors mentioned a set of characteristics that should be
present in a good compiler framework. Most of them are present in our approach: reuses
for the compiler program analysis, a simple and unified mechanism to obtain information
about compiler decisions, transparency for user (at high level), fine-grain (function level)
and only legal transformation for a given application. Unfortunately, TPO did not have
all of these capabilities at the beginning, and, hence, it was necessary to expend some

engineering efforts to extend the current optimizer.

2.6 Customer Application

It is a very common case when certain customers need better performance for their appli-
cations. Compiler writers usually choose their heuristic values based on the performance
results for a set of well-known benchmarks, like SPEC benchmarks. Hence, the result-
ing parameters may be good only in general; in most cases reducing the geometrical
mean of the execution time on the whole set of tests is the primary goal. But we can
do much better in most cases for specific applications by changing the aggressiveness
of our transformations. You can use compiler writers to do this routine job, and these

people will be then a ”critical resource” if you have a lot of customers. Or you can use
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a ML tool/framework that will try to do this job automatically. In many cases such
an automated tool can be enough, but it can be the case when you need to rewrite
some optimizations or add new ones to increase this application’s performance, making

additional human work unavoidable.

2.7 Bug Finding

In every complex software tool there are a certain number of bugs. A compiler is not an
exception and even industrial releases have hundreds of bugs. When you are changing
parameters for one optimization inside your optimizer you will change the input to other
phases, which can easily be the cause of bugs [17]. So, if you automatically execute this
tool for different parameters, you can find different bugs that were in a compiler before,
but were not tested with the appropriate input. In some cases it can be very useful
to run optimization in "stress” mode, for example for register allocation with a small
number of available registers, the spill/fill technique can be tested better than in the
general case. We can also find performance problems/bugs when disabling optimization
makes the code faster. In our experiments we found both execution (gcc, perlbmk) and

performance bugs.

In this chapter we described the reasons why our current project is interesting and
what benefits it can provide. We conducted the initial experiment that showed the
possibilities for decreasing the compile time. The next chapter will present the core of
our work, including the description of all approaches and techniques we used in this

research.



Chapter 3

Approach and Methodology

The beginning of knowledge s the discovery of something we do not understand.

— Frank Herbert

In this chapter we give a description of how we use the ML technique called logistic
regression to predict a good set of compiler heuristics. The first section gives a brief
overview of our approach. The next three sections describe the preparation phases that
are needed to collect the training data, described in Section 3.5. Then, we describe both
the learning and the deployment processes with the appropriate examples and algorithm

overviews.

3.1 Overview

The whole process can be separated into four phases that do not intersect: data prepara-
tion, gathering training data, learning, and deployment. Data preparation itself consists
of feature extraction, modifying heuristics and choosing the transformation set. Features
describe characteristics for each function that may be relevant to particular optimiza-
tions; if they are chosen well, they can be used to predict the best set of transformations

for a new function. That is why choosing the right set of features is one of the key

12
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points in this research. The Context Heuristic Modifiers [18], which were previously im-
plemented in TPO, give a quick and easy way to change the current heuristic values. The
final key point is choosing the right set of transformations to search through, because
every additional transformation increases the search space. But at the same time, if we

lose a valuable transformation it could prevent us from getting interesting results.

We gather training data in two steps. First, we get all hot functions for every single
test using the profile tool called tprof. Then, we run every single test with different set of
heuristics for all its hot functions. One of the main problems is how to make an efficient
search over such a huge search space that increases exponentially with both the number

of heuristic values and the number of hot functions. Details are provided in Section 3.5.

The main characteristic of the learning phase in our approach is that it can be done
offline, just like the training phase. We do not need to have any significant overhead
during the compile time because of the time-consuming learning. Instead, we perform
learning beforehand using the training data and, then, we can use the learned param-
eters together with the features (which are easy to compute) to predict the best set of
transformations for a new function. This makes it possible to use any learning algorithm

we want with the same straightforward deployment implementation.

3.2 Feature Extraction

As we mentioned above, we need a way to describe every method/function if we want
to predict something valuable about it. To be consistent with ML techniques [3] we
called these characteristics features and put several constraints on them (more or less
formal). The first constraint is to be a "good” function description and have a higher
chance to be different for the methods that are ”different” and be the same or close
to the ones that seem to be ”similar”. There is no point in having a feature that is

the same for all tests or has no connection with a decision of whether to apply any
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of the transformations. It is hard to make this more formal and we mostly reuse the
characteristics that were already analyzed inside the compiler to make decisions about
transformations. The second constraint is to be fast to compute, because we will have
the overhead of extracting features for every method that is compiled. Complex features
can be the reason for serious increase in the compilation time and this can kill the main

goal of our project, which is decreasing the compilation time.

The set of features we used can be separated into two major categories: general
and loop-based. The general features are the ones that characterize a method as to the
number and/or percentage of a certain type of instruction (e.g. the number of loads
or the percentage of branches). This group is listed in Table 3.1(a). These features
are similar to the features used by other authors [6, 1]. The second group consists of
the features that are either loop characteristics or need the loop tree to be computed
(Table 3.1(b)). Since their calculation depends on a certain compiler structure (the loop
tree), they can be computed only after certain phases in TPO. This situation is common
for the majority of modern compilers/optimizers, and a number of transformations may
work without any loop tree information. At the same time, more engineering efforts were
needed to implement these features. That is why their calculation was made separately
from the first group of features; thus, we could use either any single group or the whole
set. A somewhat similar set of features where used for the unroll factor prediction [16]

by Stephenson and Amarasinghe.

In Table 3.1 we show all 29 features that we used in this research. We do not state
that it is the best possible set of features, but the features themselves and their number
compared to other works [16, 6, 1, 17] appears sufficient to describe a method. Using
these features for every method we define a feature vector X that represents this method
for our classifier. For example, the resid method inside the mcf SPEC2000 [8] benchmark
has the feature vector x = {1379, 558, 0.4, 20, 0.01, 64, 0.05, 10, 0.01, 16, 0.01, 0.01,
222, 0.16, 0.05, 2, 6, 6, 1,0, 1, 1, 0, 0.33, 1, 0, 1, 33, 227}.
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Feature Explanation
Total The total number of instructions
Loads #,% The number /percentage of load operations
Store #,% The number /percentage of store operations
Float #.,% The number/percentage of floating point operations
Cmps #,% The number /percentage of comparison operations

Branches #.,%

The number/percentage of branch operations

Convs %

The percentage of type conversion operations

Indirect #,%

The number /percentage of indirect memory access operations

15

Long % The percentage of long-size operations
(a) General features
Feature Explanation
MaxNestLevel The maximum nest level in the method starting with 0.
LOOPS # The total number of loops

Perf.Loops #,%

The number/percentage of the perfect loops

Exaclter%

The percentage of loops with the known number of iterations

Norm %

The percentage of loops that are normalized

WellBehaved %

The percentage of loops that are ”well-behaved”

Indep. %

The percentage of loops that are independent

Inner %

The percentage of the inner-loops

Avg. Stmt Count

The average statement number per loop

Avg. Jump Count

The average jump number per loop

Multi-Dim Multi-Dimensional Access in the loops (binary)
Subscr. # The total number of subscripts inside the loops
Refs. # The total number of references inside the loops
(b) Loop-based features
Table 3.1: Set of features used for transformations’ prediction(29)
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This means that this method has 1379 operations in the TPO Intermediate Representa-
tion (IR); it has 64 float operations (that is 5% of the total number), a 2 level nested
loop, and multi-dimensional accesses inside the loops. Hence, this is a floating point
SPEC benchmark with hot loops that works with the arrays and/or complex data struc-
tures. This vector representation can be easily used by different ML techniques, since
it is represented in the most traditional way [3]. Clearly, some of the features could be
redundant, but this problem should be resolved by our logistic regression classifier by
making the corresponding weights relatively small. However, at the beginning of the
learning process they can be a source of noise, and, hence, the irrelevant ones should be

removed when they prove to be unneeded.

All the features listed are static, so they do not depend on the program input and do
not always characterize the method behavior well. Dynamic characteristics like perfor-
mance counters [5] or even the same features for the dynamic compilers could be even

more powerful.

3.3 Heuristic Context

The current method of saving default heuristic values for most compilers is based on
the idea of having them embedded somewhere inside the transformation code. However,
this has a serious disadvantage - it is hard to control multiple heuristic properties from
a central place. Adding new functionality to the compiler can be quite cumbersome
and error-prone, because of the need to find and update every heuristic property that is

affected by the change.

An alternative way is to record all of the heuristic values in a central data structure,
which can be read, updated and dumped to a file quickly. It should have a way to modify
the data from the command line, e.g. to override the default values. In addition we need

to have a fine-grain control over heuristic values, so that different values can be chosen
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for individual functions, with no need to modify the compiler source.

The TPO compiler provides all these characteristics using the Heuristic Context and
Heuristic Context Modifiers [18]. For each optimization transformation we assign an
abbreviation — a unique text string with no spaces that will represent the transformation
(e.g. Index-Set splitting transformation has the abbreviation ”ixsplit” and Unrolling
transformation has "unroll”). For each transformation the set of heuristic properties was
defined, controlling the ”"behavior” of the transformation, and an abbreviation of each

property was assigned.

Each instance of a heuristic property has the following components:
abbreviation - a short name that is used to represent the property ("abbrev”);

transformation abbreviation - a short name for current transformation in which this

instance is defined (”transabbrev”);
default value - the default value for the heuristic property;

range - the range of legal values for this heuristic property. For example, {0,1} for
Boolean type property, or {1-6, 10-20} for integer type property (with possible

sub-ranges);
description - a short textual description for the heuristic property.

Heuristics Property instances can be accessed by a key composed of ” transabbrev”.” abbrev”
(e.g. "unroll.enabled” allows to enable/disable unrolling transformation). To modify the
Heuristic Context and its properties we can use an Heuristic Context Modifier, which is
a set of triplets (key, operator, value). Operator is one of {"=",7 <7 7 > "} and key,

2

and value are just strings without spaces. For our project we used only ”"=" operator.
For example, if we want to consider register pressure while unrolling loops we just need
to use "unroll.regpr=1". Here the "unroll” string is the transformation abbreviation;

the "regpr” string is the property abbreviation for the register pressure factor; and we
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use ” :77

operator to set the property value to 71”7, which enables this heuristic property.
More details about the Heuristic Context approach can be found in Method and system

for managing heuristic properties [18].

3.4 Choosing the Transformation Set

After obtaining a method description with the features, we need to choose which trans-
formations to optimize. We are interested in those that are (i) included at the -ghot
-03 level, (ii) not included at the -O3 level, (iii) take a significant amount of time to
compile, and (iv) influence the performance of the generated code. With the help of
the TPO compiler writers we formed Table 3.2, which represents the transformations in
which we are interested. This set can be divided into three categories: heuristics that
either influence the usage of all other transformations (Loopnestonly) or operate with
a big set of transformations (Loops and LSCALS), late scalar optimizations and loop
optimizations. Every transformation from the last two groups has at least one heuristic
property called .enabled which is binary. If it is set to 0, then this transformation will be
disabled, and will be enabled otherwise. For example, the SCALS.MAXPASS heuristic
property, which defines how many times we will apply the set of scalar optimizations,

usually takes values from 2 (for -O3 level) up to 5 (for -ghot -O3 level).

There are a total of 24 heuristic values that we are trying to predict. This gives at
least 22* different variants if we assume that every property is binary. Of course, some
properties are not binary, and this gives only the variants for a single method. For the
case where we have N hot methods for a test we will get 22V as a lower bound on the
number of variants. Clearly it is not possible to try every variant. Hence, one of the

main problems is how to find the best values in such a huge search space.
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Transformation Explanation
Loops All loop transformations
Loopnestonly Apply all transformations to loop nests only
LSCALS Late Scalar Optimizer Set
SCALS.MAXPASS | Maximum number of passes for the scalar transformations set

(a) Complex Heuristics

Transformation Explanation

LOOPVRP Loop Vertical Routing

ICM Invariant Code Motion

UNSWS Unswitching

CSEFF Common Subexpression Elimination For Float

(b) Late Scalar Transformations

Transformation Explanation
ITCNTARR Array Iteration Counters
INDEP Mark Independent
UNROLL Inner Loop Unrolling
DUMLOAD Dummy Load Insertion
PARTREDUC Partial Sum Reduction
BALTREES Tree Balancing

IDIOM Init/copy Idioms
REDUC4 Reductions

CUNR Complete Unrolling
VECTS Vectorizer Set

NVSPLIT Node Splitting for Vectorization
BGATHER Gather for Blocks
IXSPLIT Index Set Splitting
VERSION Versioning
WANDWAVING | Wand Waving

BLOCK Loop Blocking

(¢) Loop Transformations

Table 3.2: Descriptions of the 24 transformations and heuristics that were used.
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3.5 Gathering Training Data

As we mentioned in the previous section the problem of finding the best set of trans-
formations for the current test can be a serious problem, because of the search space
size. But we still need to solve it in some way if we want to start the learning process.
Other works [6, 16] proposed either a full search for small spaces or the use of randomly
generated heuristic values. The full search is not suitable for our goals, because of the
search space size. The random set can be too unpredictable as to the quality of the result.
Several experiments to gather training data with the random approach did not give any
significant decrease in the compile time. However, the peculiarity of the problem that we

are trying to solve allows us to use another approach for searching.

The TPO optimizer has a fixed order of transformations such that the next transfor-
mation uses the output from the previous one as its input. This property suggests two
approaches: (1) start at the -O3 level and enable new transformations, (2) start at the
-ghot -O3 level and disable transformations . We decided not to enable new transforma-
tions starting at -O3 level. In this case we need to find the exact set of transformations
that decreases the execution time to the acceptable time of the -ghot -O3 level, and
this can be hard with the random approach. Instead, we can disable transformations
starting with the full set at -ghot -O3 level and control that the execution time does not
increase significantly and the compilation time gradually decreases too. If we start dis-
abling transformations backwards (from the last till the first) we are less likely to break

a useful queue of transformations that gives a speedup.

We do not state that this always gives the perfect values for heuristics. For example,
suppose one early transformation X does something bad with the IR (as to the per-
formance), and then transformation Y makes it okay again later. In our approach we
first will try to disable Y, and this will be unsuccessful, because Y does something good

as to our assumption; then we will disable X (assuming that it does not do something



CHAPTER 3. APPROACH AND METHODOLOGY 21

good). At the end we will have transformation Y enabled, but it is unnecessary after X
is disabled. However, this approach allows us to find the best (or nearly the best) set
of transformations that linearly depends on the number of heuristic parameters, which

makes it possible to be used in practice.

Now we are going to describe our algorithm in pseudo-code. The formal description

of this approach with the appropriate comments is in Figure 3.1.

GENERATETRAININGDATA (tests, hots, trans)

1 for each test in tests
2 do
3 INIT(curr_settings|test], best_settings|test])
4 for i < length[trans] downto 1
5 do
6 for each method in hots|test]
7 do
> Disable current transformation for method in test
8 curr_settings|test|[method][i].enabled = 0
> Run test and get the compile and execution time
9 result = Run(test, curr_settings, &curr_comp, &curr_exec)
10 if ISBETTER(result, curr_comp, curr_exec)
11 then UPDATE(best_settings[test], curr_comp, curr_exec)
12 else curr_settingsltest|[method|[i].enabled = 1

Figure 3.1: The algorithm for Generating Training Data

For every test we have a set of hot functions that we obtained by using the tprof
tool. Using the Heuristic Context Modifiers mechanism we can disable/enable certain
transformations. After the execution of the current test (line 9) we have results: the test
correctness, the compile and the execution time. Next, we check whether the current
execution was better than previous ones. This is done by the IsBetter function (line 10)

call.

The IsBetter function checks whether the new execution time is not significantly
(e.g. 1%) worse than the best execution time and the baseline execution time. The

same checks are performed for the compile time. The baseline check is needed to avoid
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a gradual degradation. For example, a 1% increase in every execution during 200 runs
can cause a 3 times increase in the execution time. The compile time should normally
decrease all the time, but there can be two cases when this does not happen. The first one
is a simple time fluctuation that is the result of limited accuracy of the time measurement.
It may happen even with the same executable when run twice. The second one is that
disabling of one transformation can cause others to perform much more work and, hence,

increase the compile time.

3.6 Learning Process

After gathering the training data for every method we have a feature vector x and the
corresponding vector of the best transformation set C. Our goal is now to find the

function:

F(x)=C
or at least to approximate it in some way. With this function F'(X) we then, having a

new feature vector X , can approximate its best transformation set C with some good

s

C.

3.6.1 Classification Algorithms

Our problem is the classical ML problem and several powerful methods were invented to
solve it. One of the simplest is the nearest neighbours (NearN) or K-nearest neighbours.
To classify a test feature in this method you need to calculate the most common class
amongst its K nearest neighbours in the training set. One of the questions here is
how to measure the distance? The usual way is to use the squared Euclidian distance
dim,n) =>4 (7 — z7)2

The second popular classification method is based on artificial neural networks (ANN)

or simply neural networks (NN) [3]. Historically it was motivated by relations to biology,
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but for classification purposes NN are just nonlinear classification machines.

In the simplest case with the linear activation function, the NN reduces to a linear
network equivalent to a logistic regression. The gradient of conditional likelihood can be
easily computed for NN with 1 hidden level, using the efficient backpropagation algorithm
[14]. The main disadvantage of this approach is that we loose convexity property, and,

hence, can find a local minima instead of a global one.

As we mentioned above in Section 2.2, in our research we used logistic regression
with penalty regularization as an easy and an effective way for classification. We have
a 29 dimensional space of features and a 24 dimensional space of outputs that can be
considered as 24 single outputs for simplicity; and we do not have any prior knowledge
(like sparsity or features’ dependencies) about our training data to apply something

special. The next section describes logistic regression in more detail.

3.6.2 Logistic Regression

Logistic Regression is a popular linear classification method. Its predictor function con-
sists of a transformed linear combination of explanatory variables.

The logistic regression model consists of a multinomial random variable y, a feature
vector X , and a weight vector #. In our case y is the possible value of the heuristic
property. We initially set the weight vector # with some random values, later, they will
be changed with the ones that maximize the conditional log-likelihood (3.2). y’s posterior

is the ”softmax” of linear functions of the feature vector X, as shown in Equation 3.1.

_ exp(0; X)
— kI, 0) = — k) 3.1
To fit this model we need to optimize the conditional log-likelihood £(0; D):
0(0; D) = logply = y"|x",0) = >_yi log p; (3.2)
n nk

n

where gt = [y == K], pj = ply = kIX"),
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To maximize the log-likelihood we set it’s derivatives with respect to 6 to zero.

T =S (5.3

n

Typically some method like conjugate gradients [15] can then be used to maximize log-

likelihood. It needs (3.2) and (3.3): value of ¢ and it’s derivatives.

For the case when we have one binary output at a time, these formulas (3.1, 3.2, 3.3)

can be simplified:
1
1+ exp((6; — 0] )%)

ply = 1]x,0) = (3.4)

0(0; D) => logp(y = y"x",0) =D y"logp" + (1 — y")log(1 —p") (3.5)

where y"* = [y" == 1],p" = p(y = 1]x").

Regularization

For supervised learning algorithms, over-fitting is a potential problem which we need to
solve. It is a well-known fact that for unregularized discriminative models fit via training
error minimization, sample complexity (training set size needed to learn "well” in some
sense) grows linearly with the Vapnik Chervonenkis Dimension (VCD) [19]. Moreover,
the VCD for most models grows linearly in the number of parameters, which usually
grows at least linearly in the number of input features. So, if we do not have training
set size large relative to the input dimension, we need some special mechanism, such as

regularization, which makes the fitted parameters smaller to prevent over-fitting [13].

The most two well-known regularization methods are Ridge Regression, which uses
L penalty function and Lasso, which uses L; penalty function. L, penalty function uses
the sum of the squares of the parameters and Ridge Regression encourages this sum to
be small. L; penalty function uses the sum of the absolute values of the parameters and

Lasso encourages this sum to be small. We can penalize the logistic regression from 3.2
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using the linear combination of a special function 1 for every parameter 6; in a such way:
:(0) = £(0) — N\J(0) (3.6)

where
J(0) = > ap(6r), (3.7)
ay > 0.

Usually this function ¢ is chosen to be symmetric and increasing on [0, +oc]. Fur-
thermore, ¢ can be convex or non-convex, smooth or non-smooth. A good choice for
this function should result in unbiasedness, sparsity and stability. We tried both Lq:
J(0) =34 |0k] (or £1) and Ly: J(0) = X, 07 (or £3) in our experiments. However, we did
not notice any significant changes depending on the penalty function type, and, hence,

we finally chose one of them (Ls) to present our results in Chapter 5 .

Cross Validation

In all our experiments we used a traditional cross-validation technique. That is, we
computed an optimum vector # on one set of tests and then used it to measure the
results for other tests. Hence, no train and test data intersection happened and thus the

results should be fair.

3.7 Deployment Process

After finishing with the learning process, we have a vector of optimum parameters ¢ that
we can use to predict the transformation set using the feature vector x. To achieve this we
just need to use Equation 3.4 for every transformation. If the probability is bigger than
0.5, then we will apply this transformation, and we will not apply it otherwise. Some-
times researches start to apply a transformation with a larger threshold (e.g. p > 0.6

[6] ), but this needs further investigation and it is not clear to what value the threshold
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should be set.

In this chapter we described the basis of our work - all the approaches and ideas
that were used to reach the goal. We explained how a method could be represented
using features; how the compiler decisions could be ruled externally using the Heuristic
Context approach; which transformations were an object for prediction; and how we
gathered training data, and, then used it in the learning and deployment processes. We
also provide enough details as to the ML techniques used to make our experiments easy

to reproduce.

The next chapter will provide more technical details about the implementation, in-
frastructure and methodology we used for executing the set of experiments. However, all

the experimental results with the appropriate discussion will be presented in Chapter 5.



Chapter 4

Infrastructure
God is in the details.

— QGustave Flaubert

This chapter describes the implementation details for our approach (framework overview,
compiler changes and logistic regression implementation) and the setup for all our exper-

iments. However, the experimental results will be provided in the next chapter.

4.1 Framework Overview

Every approach needs an implementation to be evaluated. In our case we need a frame-
work that consists of several parts: changes inside TPO, which we call the compiler part
of the framework; the part where all the training information can be collected, which we

call the middle layer; and the logistic classifier part, ML part.

The first part should be implemented in the same language as TPO was implemented
(C++4), because it consists of changes inside of the optimizer. For the other two parts
we had a certain freedom in implementation. The middle layer needs to perform the
benchmark executions, measure the compile and execution time, and then change the

options appropriately. Hence, most of the scripting languages, e.g. perl, are a suitable

27
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choice for the implementation of this part. The ML part can have a variety of different
choices for implementation, but we chose Matlab where it is relatively easy and efficient

to program matrix-based calculations.

4.1.1 Compiler Part

As we mentioned above, we need to make several changes inside TPO. The main problem
is the absence of the function-level granularity that we need to change Heuristic Context
(the values of the heuristics) for every single function. The second problem is how to
incorporate the feature gathering inside the existing optimizer. Now we describe how

these problems were solved.

Function-Level Granularity

A compiler user may need to change heuristic values for functions differently, and our
project also needs this possibility. To provide this flexibility we added new options inside
TPO that provide a notion of a mode. We can then specify all heuristics for the current
mode, all functions for the current mode, and the default mode for functions that do not

have any special mode.

We defined several new options

hmodifier option has the syntax:
hmodifier = mody, mods, ..., mody : mod; = f1, f2, f3 : mods = f10,...,mody = f7, f4
hmodpath and hpredict options have the the same syntax:

hmodpath = /home/.../hmod_dir |

The first option specifies a set of modes and a set of functions for every mode. For
every mode we should have a file in the hmodpath directory called mode_name.hmod and

one additional file for all functions that do not have any special mode called default.hmod.
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Heuritic Property name:
# Options for func mode
CSEFF.ENABLED=0
ITCNTARR.ENABLED=0
UNROLL.ENABLED=0
DUMLOAD.ENABLED=0
BALTREES.ENABLED=0
VECTS.ENABLED=0
BGATHER.ENABLED=0
IXSPLIT.ENABLED=0
VERSION.ENABLED=0
WANDWAVING.ENABLED=0
SCALS.MAXPASS=2

Figure 4.1: Hmod file example with heuristic properties

Every file should have a set of heuristic values properties set to some values according
to the Heuristic Context rules as shown in Figure 4.1 ("#” is used for comments). The
hpredict directory should have a file for every heuristic we want to use in TPO e.g.
loops.txt, unroll.txt. Every file should have a set of parameters learned with the logistic
regression classifier. The number of features that were used in the training phase, and,

then, learning and usage, should be the same.

The implementation of these options needs only a simple string parser that we added
inside TPO. The only possible problem with this approach is that function names can be
long, especially for C++4-, and every compiler has a limitation on the input string length.
This can be solved by replacing a function name with a short unique abbreviation; and
all the abbreviations should be in the special file of the format like filenamel fn_abbrevl

for every function that we are going to use with modes.
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FeaturesCollection Class

In order to collect the information about method features, we created a special C++ class
called FeaturesCollection. It was made as to the TPO rules for a single transformation
and can be called as a regular optimization in the transformation list. Every feature has
a member in the FeaturesCollection class (e.g. int32 opersNmbr for the total number of

operations or double pBranches for the percentage of branches).

The feature computation is separated into two functions called GatherFeatures and
CollectInnerLoopInfo. The first one is used to calculate the relatively simple features
that do not need the loop tree to be computed and can be called anywhere in the code
when the current procedure (Procedure *pProcedure) is valid. The second one is used to
calculate features that are ”"loop tree” dependant, e.g. the maximum nest level or the
presence of the multi-dimensional array access in the loops. CollectInnerLoopInfo needs
a current procedure, Procedure class, and a loop structure, LoopOptimizer class, as input

parameters.

The FeaturesCollection class also provides functionality to calculate a single transfor-
mation prediction that can be computed using the parameters from the logistic regression.
The CountPrediction method gives an answer to the question whether a transformation
should be applied to the current method or not. Using this function for every interest-
ing transformation, we generate the Heuristic Context that will be used for the current

method.

To add a new feature you need to add a class member in the header file and write
code to calculate it in the corresponding cpp file. The feature gathering has a switch
option called features that is switched off by default to avoid unnecessary overhead. The
whole class implementation is about 1000 lines of C++ code that was written separately

from the rest of the TPO code.
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4.1.2 ML Part

The ML technique called logistic regression was implemented in Matlab [11] and was
tested with several data sets from the UCI Machine Learning Repository [2]. Most of the

details were provided in Section 3.6.2 in the previous chapter.

Matlab Implementation

Our current classifier was implemented in Matlab and consists of the several .m files
that allow us to calculate likelihood and it’s gradient (likelihood.m), extract data for
different data sets (data_"testname”.m), and perform minimization (minimize.m). The
main method called [gc_f allows us to change the number of iterations in minimization,
choose the type of regularization (1 - for L1 and 2 for L2 see Chapter 3), and the parameter

A as the coefficient for regularization.

For minimization we used the Polack-Ribiere flavour of conjugate gradients [15], and
a line search using quadratic and cubic polynomial approximations. The Wolfe-Powell
stopping criteria is used together with the slope ratio method for guessing initial step

sizes. The Matlab implementation of minimization was made by Carl Edward Rasmussen.

4.1.3 Middle Layer

The changes inside the compiler do not give us the training data that we need to use the
logistic regression classifier. In order to unite the compiler and the ML part and gather
training data we implemented the middle layer. It consists of a set of perl scripts that
are used to execute benchmarks, evaluate the results and represent them in such a way

that they can be used in Matlab for classification.

The first group of scripts is the ”baseline” ones that are used to measure the compile
and execution time for -0O8 and -ghot -O3 levels for different benchmarks. They generate

results for every single benchmark that will be used by other scripts as the baseline. With
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the option features they are also used to collect method descriptions. The second group
of scripts is the "gather” ones that search for the optimal value for the set of heuristic
values. The main algorithm was described in Section 3.5, Gathering Training Data. The
last group is the ”"parse” one. It is used to transform results from the previous group

execution into the form that can be used in the classifier.

The scripts are easy to read and modify and could be transformed to work with other

benchmarks, not only SPECs.

4.2 Benchmarks

In our experiments we used benchmarks from SPEC2000 [8], SPEC2006 and some addi-
tional float benchmarks from IBM customers. For training purposes we used twenty-one
benchmarks from SPEC2000. This gave us 140 hot (from the top of the tprof tool
output) functions that were used to collect features and search for the optimal set of
transformations. It is possible to use benchmarks that are written in C, C++, Fortran,

and Fortran90.

4.3 Measurements

4.3.1 Platform

Our target platform was PowerPC. For evaluating the results we used one of the IBM
servers that has 4 x Power5 1900 MHz Processors, 32 GB Memory, running OS AIX 5.3.

We used -02 optimizations in all experiments to compile TPO.
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4.3.2 Compilation and Execution Time

Even on a server without any workload the same application execution can take different
amounts of time. The variation is usually relatively small, and may depend on many
factors. Since we measure and compare the execution and compile time, we need to keep
this possible time variation in mind. In order to solve the problem, we consider the time
interval, not just fixed time moment. If we want to compare two ”"times” we compare
time intervals instead. If intervals intersect then they can be considered as the same time
for our purposes. The interval time is generated as a small percentage from the base one,
e.g. for the execution time 100 seconds we will have the time interval 99 - 101 seconds

(1% possible fluctuation).

The size of intervals was found approximately during our executions. Currently we
use 1 % for the possible fluctuation for compile time and 0.5 % for the execution time.
Such a comparison may lead us to miss a small performance degradation. This is not a
great problem if it happens once per benchmark, but we need to avoid the accumulation
of a number of such degradations. To achieve this we compare every new time with the
previous best and the baseline, so it is impossible to become significantly worse than the

baseline.

In this chapter we described the infrastructure of our project, including all valuable tech-
nical details of implementation for both the compiler part and ML part of the project. We
introduced the special middle layer that was needed to gather training data and to per-
form the interaction between layers. We also provide information about the benchmarks

used for experiments, and some measurement-specific details.

In the next chapter we will provide our results as to the training data gathering that
shows possibilities for predicting with the current search approach. Then we evaluate our

predictor quality for both the compile and execution time, and discuss why we obtain
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certain results and how they can be improved.
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Chapter 5

Results and Discussion

People love chopping wood. In this activity one immediately sees results.

— Albert Einstein

In this chapter we present the results we achieve during our experiments. The first
part consists of the training data results, which are not only necessary for the learning
algorithm, but can also be used to analyze possible improvements and final speedup.
Then, we present the current prediction quality by showing how well we perform on
different tests: SPEC2000 that we used for training, other SPEC2000 tests, and non-

SPEC tests from the IBM customers.

5.1 Training the Classifier

As we mentioned above, we use SPEC2000 for most of our experiments. For training

purposes we chose 21 tests out of the 26 SPEC benchmarks.

The first question that arises when we have our optimal or sub-optimal heuristic values
is how well can we decrease the compile time. It is unrealistic to expect the predictor
to show better results than the optimum we found, hence, if the training results are not

good enough it does not make sense to evaluate our classifier.

35
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Training Data Results - Compile Time
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Figure 5.1: Comparison of the compile time for the new version with the set of heuristics

after training vs the original version at -qhot -O3 optimization level

Figure 5.1 shows the compile time for the set of optimal heuristic values, normalized
to the compile time of the -ghot -O3 level, to highlight the reductions achieved. Table 5.1
provides the raw compile times for both approaches. Of course, we have different results
for every test, but a significant speedup can be achieved for every benchmark starting with
a 1.30 speedup for the eon benchmark up to a 6 times speedup for applu. A geometrical
average speedup for all tests is 2.46. If we consider the SPECfp only, then we achieve a
2.75 times decrease in the compile time. These results look promising, but only provided

that we do not significantly slow down the benchmarks’ execution.

Figure 5.2 proves that we can efficiently find the optimum heuristic values such that
we do not have any significant increase for the execution time. Moreover, we can even
decrease the execution time for certain tests: gap, applu, mesa, sixtrack, swim and

wupwise. The overall result is a 1.02 speedup, which is comparable with the results
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Test Name Updated Version, sec Baseline, sec
bzip2 3.88 10.55
crafty 31.76 46.03
eon 98.67 127.22
gap 90.12 177.79
gzip 5.14 13.37
mcf 2.1 4.47
vortex 42.4 85.02
vpr 12.97 37
ammp 27.51 48.15
applu 10.1 60.7
art 3.05 5.31
equake 3.66 7.78
fmagdd 100.76 284.34
galgel 22.5 77.57
lucas 12.63 39.79
mesa 77.61 135.49
mgrid 6.44 9.55
sixtrack 128.27 496.38
swim 1.13 2.92
wupwise 3.36 15.3

after training vs the baseline

37

Table 5.1: Comparison of the compile time for the new version with the set of heuristics
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Training Data Results - Execution Time
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Figure 5.2: Comparison of the execution time for the new version with the set of heuristics

after training vs the original version at -qhot -O3 optimization level

from several other works ([16, 17]) where execution time speedup was the primary goal.
We should keep in mind that these results were obtained using a well-tuned commercial

compiler, TPO, in which significant effort has been made to show a good performance

level on the SPEC benchmarks.

Another interesting question is how often a transformation was needed among all the
benchmarks. The answer is that it depends on the benchmark type. The SPEC CPU
benchmarks are divided into two categories: the integer benchmarks (SPECint), and the
floating point benchmarks (SPECfp). For the SPECint set of benchmarks the trans-
formations were unnecessary in most cases except for the complex ones, e.g. LOOPS,
LSCALS. The situation is reversed for the SPECfp benchmarks where usually at least
several different transformations were needed to obtain good execution time. We also

found that the eon benchmark, which is considered as part of SPECint [8], has a signifi-
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cant number of the float operations in its hot functions (from 10% to 25%). Hence, it is

more convenient to consider this benchmark as a float one.

This data can be used for function classification and clustering even without any
machine learning algorithm. We can define a set of transformations that are needed for
a certain type of function, and, thus, decrease the compile time. However, it is not easy
to do so in the general case and it is less powerful and flexible than machine learning

approaches.

One of the most serious drawbacks of the results we obtained is that each single
transformation is needed in only a very few cases, usually for less than 5% percent of
the hot functions. It makes these rare cases, when a transformation is necessary, look
like noise, and reduces both the stability and the accuracy of our classifier. At the same
time we have an unavoidable noise, because we measure the real time and fluctuations
may easily occur. With such a usage level it is hard to expect any predictor to be very
efficient. In order to make the classifier perform well in a general case we need a more

serious set of training data, not only SPEC benchmarks.

The results of these runs were used to train the logistic regression classifier as described
in Section 3.6.2. The results of the classifier were incorporated into TPO as described in

Section 3.7 and Section 4.1.

5.2 Classifier Evaluation

Our main goal was to predict whether a transformation was needed for a given function
or not. The training data gives us this answer, but it can be considered only as an Oracle,
because we can not afford so many executions to collect this information. Hence, we need
to apply our logistic classifier and evaluate its prediction quality. There are two possible

ways to perform this evaluation: offline and online evaluation.
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5.2.1 Offline evaluation

Logistic Regression Classifier Results - Compile Time
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Figure 5.3: Comparison of the compile time using the classifier, the oracle, and the

baseline.

Offline evaluation allows us to measure how many errors our classifier will have on the
test set. For this set we should know a set of necessary transformations from any source.
In practice this means one of two options. The first one is to run our training scripts
for another set of benchmarks, which will be time-consuming. The second option is to
use the training data we have as the test data excluding every single function from the
training set when "testing” it. This technique is called ”leave-one-out cross validation”
(LOOCV); it allows us to be fair in measuring the results (we exclude a function we test

from the training set), and it does not need additional data for testing.
The LOOCYV method is easy to implement - we already have all necessary components
to do it, but it has one serious drawback - it does not show the qualitative effects of pos-

sible mistakes, only quantitative aspect. We can easily see how many errors in prediction
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we have, but we do not know how exactly they affect the execution time, because this is

the offline evaluation.

There are also two type of possible errors. The first one is when we predict that a
transformation was needed, but it was not. This leads to an increase of the compile that
could be avoided and can be considered as a ”conservatism” in decision making. The
second type of error is the opposite case when we say "not needed”, when it should be
"needed”. This usually leads to a significant increase in the execution time and should

be considered a more serious error.

In our experiments we mostly considered the errors of the second type (execution
time increase). The error rate depends on the heuristic property type and is higher for
the complex heuristics, e.g. LOOPS.ENABLED. For all heuristic properties it was in the
0% - 4% interval. Clearly, the error rate depends on the learning process, which itself
depends on the initial value of a vector 6 (see Section 3.6.2). This initial value is chosen
randomly in certain interval for each component, e.g. [-1,41], and, hence, the learned
parameters may vary together with the error rate based on them. That is why we do not

report the full table of error rates for all heuristic properties.

5.2.2 Online Evaluation

The most interesting evaluation is the online one when we have incorporated the classifier
inside TPO and measured the results. For this case we used the parameters, which were
learned on the whole set of the hot functions, and then use them for each function, not
only the hot ones. This means that our training and testing set has a small intersection,
which may be unfair. To check whether this can be a problem we tried (for several
randomly chosen benchmarks) to exclude their hot functions from learning, and then
evaluate these benchmarks using these parameters. The results were the same to within
the accuracy of our measurements. In Section 5.3, we show the result of using these

parameters for the benchmarks that were not used in the training process.
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Figure 5.3 and Figure 5.4 present the results we obtained on the SPEC2000 bench-
marks. The compile time average shows a 1.99 times speedup, which is worse than
the Oracle (training data), but still allows us to decrease the compile time almost two
times. We were less conservative in the prediction for the SPECint, because they used

our transformations infrequently.

In some cases we have a compile time that is even smaller than with the Oracle, but
this does not mean that this is a positive situation. This means that we disabled some-
thing that was valuable, and this usually leads to a significant increase in the execution
time. For the ammp and art benchmarks we obtained a slowdown (18% and 10% respec-
tively) because of the classifier mispredictions. However, in general we had a satisfactory

prediction level and achieved only a 1% increase in the execution time compared with

the baseline (-ghot -03).

Logistic Regression Classifier Results - Execution Time

Legend
300 | Classifier Version
-ghot -O3
250 |-
o
0}
22
o 200 |-
=
'_
c
o 150 |-
5
o
%
w 100
50
0 N > < o o B x = o S v (9] (8] je) ) 1% [ kel X 1=} [}
= Q = = [3] =
S 85883 e g5E g 38288 58 5 ¢
o G S S © Uggm—EE_gwg_
() u“ 7] s
Benchmarks

Figure 5.4: Comparison of the execution time using the classifier and the baseline.

Hence, we decrease compile time almost two times with negligible increase in the
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execution time.

5.3 Other Benchmarks
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Figure 5.5: Comparison of the compile time using the classifier and the baseline.

In order to show that our classifier works not only for the tests that we chose for
training, we used three additional tests from SPEC2000 ( apsi, parser, twolf), and two
benchmarks from IBM customers called dmo and argonne. The first three benchmarks
were not used in the training set for different reasons. For example, due to a very ”flat”
profile with an absence of hot functions, or the need for special options to ensure an exact

output match.

Our measurements showed very similar results for this set of benchmarks (Figure 5.5,
Figure 5.6, and Table 5.2). We achieved a 2 times average speedup for the compile time

and 1.04 speedup for the execution time. The average speedup was because of the dmo
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Test Name Classifier Version, sec Baseline, sec

apsi 14.93 46.92
parser 15.34 38.92
twolf 33.92 66.32
dmo 3.14 6.05

argonne 76.09 80.74

Table 5.2: Comparison of the compile time using the classifier and the baseline.

benchmark, showing that one of the transformations or a whole group leads to an increase
of the execution time. This is probably a performance bug and should be analyzed by
the compiler writers and/or performance specialists. We do not have a significant slow-
down on any of these benchmarks, so we can conclude that our technique is effective in

decreasing the compile time without losing the ”code quality”.

In this chapter we presented our experimental results. We showed that we can effi-
ciently decrease the compile time using the logistic regression classifier without significant
increase in the execution time. The next chapter will provide information about related
work for searching both single and multiple heuristics. We also make a comparison with

our approach and the results we achieved.
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Logistic Regression Classifier Results - Execution Time
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Figure 5.6: Comparison of the execution time using the classifier and the baseline.



Chapter 6

Related Work

If I have seen further it is by standing on the shoulders of giants.

— Isaac Newton

In this chapter we provide an overview of the research papers, which are related with
our ideas and/or approach. The chapter is divided into three sections: single heuristic

learning, multiple heuristic learning and iterative compilation.

6.1 Single Heuristic Learning

During the last several years there has been a significant amount of work in compiler
optimization that tries to apply machine learning to find out the best parameter value

for single heuristics.

One of the first works, by Calder et al. [4], focused on branch prediction, which
is an important element in improving the performance of compiler-generated code. In
order to solve this problem the authors used a body of existing programs to predict the
branch behavior in a new program and applied machine learning techniques called neural
network (NN) and decision trees (DT). While this approach considered the program a

whole unit of processing, later work of others [16, 17, 6, 5, 1] used a single method or a

46
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function of a program as the smallest unit for description.

The authors called their approach evidenced-based static prediction (ESP); the main
idea is that the behavior of a corpus of programs can be used to infer the behavior of
new ones. This technique has two advantages. First, it generates predictions automat-
ically, and they can be specialized if needed. Second, using only static information, it
automatically determines which pieces of information are useful. For this problem the
optimal value for predicting a branch was easily obtained by observing the direction for
each branch, and, thus, you do not need a special process to retrieve the optimal values

for your training data set as in our approach and in several other works ([6, 5]).

Stephenson and Amarasinghe [16] addressed the problem of predicting unrolling fac-
tor for different loop nests. The authors chose supervised learning algorithms: nearest
neighbor (NearN) and support vector machines (SVM). A subset of loop features was
extracted from the unrolling optimization, and eight different unroll factors (1,2, ... ,
8) were used as labels during learning. The authors used the Open Research Compiler
(ORC) [9] in their experiments, but it was not stable enough, which significantly lim-
ited the number of possible unroll factors. The authors decided to perform supervised
learning offline, because they wanted to incorporate the learned classifier into the ORC
compiler. Accordingly, it was necessary to measure the runtime information of all inner-
most loops. However, extracting this information is not easy and usually requires loop
code instrumentation, which can significantly influence the execution of the program.

The authors invested a substantial engineering effort in minimizing this impact.

Experiments with the classification showed an overall speedup on 19 of the 24 SPEC
benchmarks, with a 5% average speedup. This is a good result because the classifier,
which can be trained in a few hours, outperformed human heuristics that have been
tuned for years. However, the experiments were conducted with the software pipelining
optimization disabled, while most of the tuning was performed with the software pipelin-

ing kept in mind. Another serious drawback of this work is that this technique is not
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general and it is not clear how it can be applied for every optimization.

Stephenson et al. [17] worked on creating a methodology for automatically fine-tuning
compiler heuristics. The authors try to solve the problem of finding good heuristics us-
ing machine learning techniques for optimizations such as register allocation, hyperblock
formation, and data prefetching. The authors chose to employ genetic programming
(GP) because it is useful for searching high-dimensional spaces. GP solutions are human
readable, so they can be easily converted into arithmetic equations. Moreover, GP is a
distributed algorithm, which makes it possible to dedicate a cluster of machines to search-
ing a solution space. Compiler priority functions (e.g. a "weight” of each instruction in
the list scheduler), which prioritize the options available to a compiler algorithm, are the
basis for effective heuristics, so these functions are the main goal of the GP evolution

process.

The authors achieved significant improvement for both hyperblock formation and
data prefetching (Case study 1 and 3 respectively), but these two optimizations were not
greatly tuned before. Their Case study 2, which concerns register allocation, is a good
example of an optimization that was previously tuned to a great extent. As a result, the
authors could not achieve any significant speedup for most of the benchmarks. One of
the main problems with the experiments is that the authors used the ORC, so a number
of preexisting bugs in this project forced them to remove several benchmarks from the

resulting table.

6.2 Multiple Heuristic Learning

Several recent works tried to optimize the whole set of heuristics, not a single one [6, 5],

which is very close to our goals in this work.

Cavazos et al. [6] developed a new method-specific approach that automatically se-

lects the best optimizations on a per method basis within a dynamic compiler. This paper
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is close to our research as to the approach they have used. The authors used the machine
learning technique of logistic regression to derive a model that can determine which op-
timizations to apply based on the features of a method. While this approach is limited
by its inability to change the order of optimizations, it shows that enabling/disabling of
different phases for certain methods achieves significant speedup for most of the bench-
marks. This speedup for a dynamic compiler may come from removing the compiler
overhead with the same or nearly the same quality of the generated code or from im-
proving the generated code. For optimizing Java methods, it was possible to search over
the entire space of optimizations, at least in the case of optimization levels O0 and O1.
However, if the number of optimizations is large, it is necessary to chose a set of randomly

generated settings.

The authors conducted two case studies to evaluate their approach. They provided
both the running time and the total time to show what component was speeded up
(the generated code, the compile time or both). The first was used on the SPECjvm98
benchmark and the O0, O1 and O2 levels of optimization and produced a speedup of
4%, 3% and 29% respectively. The second one, based one the DaCapo+ benchmark,
showed even better result, 33% for O2 level. However, it is not clear whether the random
approach will work in the case of huge search space and when the optimizations are used
rarely. The difference with our approach is that it is possible only to enable/disable
certain optimizations. We tried to be more flexible that allowed us (i) to change several

heuristics inside the transformation and (ii) to work with non-binary heuristics.

Cavazos et al. [5] tried to determine the best setting for a group of compiler optimiza-
tions inside the static open-source commercial compiler called PathScale EKOPath [7],
which is a non-trivial problem due to the non-linear interaction of compiler optimizations.
In this paper several techniques were developed to search the space of compiler options
to obtain a good solution, but most of them were time-consuming. This paper proposes

a new approach based on performance counters as a useful tool for finding good com-
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piler optimization settings. The authors used the performance counter values collected
from a few runs of the program as input to an automatically constructed model which
outputs a probability distribution of good compiler optimizations to use. This model
examines performance counter values of a new program and, using prior knowledge from
previously examined programs, determines the optimization setting most likely to result
in a speedup and improved performance counter values. One of the main advantages of
measuring with performance counters is that they do not affect the running program,

and, hence, do not influence overall performance.

This paper showed that the run-time information (e.g. performance counters) can be
very powerful in describing a method, and, clearly, can be used to improve our approach

results.

6.3 Iterative Compilation

Several works on iterative compilation, a popular approach for optimizing programs,
which is based on a repeated compiling and reevaluation with different options, appeared
in recent years ([1, 10]) that tried to apply machine learning algorithms and solve practical

questions inside compiler infrastructure [10].

Agakov et al. [1] developed a new methodology to reduce the number of program
executions, which is a traditional problem for iterative compilation. They evaluated
two models based on program features: independent identically distributed and Markov
model. The authors applied them to two embedded systems with the UTDSP benchmark,
however this benchmark had programs with sizes that ranged from 20-500 lines of code
and runtimes below 1 second, making them much simpler to analyze than SPEC [§]
benchmarks. The number of transformation that were used was a dozen of classical
optimizations like loop unrolling, dead code elimination, copy propagation, and common

subexpression elimination [12]. Their models could speed up iterative search by an order
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of magnitude. This resulted into an average speedup of 1.22 to 1.27 depending on the

platform.

A speedup of the iterative search is also a serious problem in our approach while
gathering training data optimal values. Hence, the ideas from this work can be useful
for decreasing the number of evaluations while searching over a large space of heuristic

values.

Fursin et al. [10] proposed a practical way to modify a current compiler, allowing
external frameworks to change internal compiler decisions. The authors mentioned a set
of characteristics that should present in a good compiler framework. Most of them are
present in our approach: reuses for the compiler program analysis, a simple and unified
mechanism to obtain information about compiler decisions, transparency for user (at high
level), fine-grain (function level) and only legal transformation for a given application.
These characteristics are a good starting point for creating a new compiler or modifying

an existing one.

In this chapter we described the research papers that were closed to our research and
provided the necessary basis for our work. We mentioned both ”single” and ”multiple”
heuristic papers, and provided some information about iterative compilation research

results that defined our future work direction.

The next chapter will provide conclusions of this research paper and discuss its future

potential.



Chapter 7

Conclusions and Future Work

Any road followed precisely to its end leads precisely nowhere.

— Frank Herbert

Compiler writers have always had to deal with complex systems that are hard to
model. As we mentioned in Chapter 1, they need to solve NP-hard problems efficiently
and heuristics are unavoidable in this case. However, this means that we need to find
the optimal values for these heuristics, sometimes for a set of different architectures
and, clearly, different applications. Compiler developers can generate highly effective
heuristics themselves, but the number of person hours that may be necessary to find the

best parameters for these heuristics may be prohibitive.

Our research experimented with the automatic search for the best heuristic values
using machine learning techniques. As an application of our ideas we chose the problem
of decreasing the compile time while preserving or improving the execution time in a

complex commercial compiler. The reasons were described in Chapter 2.

We developed a framework for the TPO compiler and applied the logistic regression
technique to predict valuable transformations. The learned classifier can be effective in
predicting which transformations are needed. Experiments showed that we can decrease

the compile time by at least a factor of two with a negligible increase in the execution
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time (1%). However, in the case of misprediction the increase can be significant. We also
found several bugs, both correctness and performance. The last ones can be the reason

for reevaluating certain heuristics and/or transformation decisions.

7.1 Future Work

In this research we were more focused on decreasing the compile time, however, it is
clear that the execution time is the primary goal in many cases. Hence, the extension
for our approach to be applicable for this problem seems a first natural step. We are also
interesting in trying other machine learning techniques (e.g. support vector machines or
neural networks) which may have better prediction quality. Clearly, the training data set
should be extended by other benchmarks and applications if we want our classifier to be

more general.

We believe that our technique is general enough to be a suitable choice for tuning
both static and dynamic compilers (e.g. just-in-time compilers). We even expect it to
work better in the case of dynamic ones, because we will get a better description during

runtime using the same features, and other features can be added if needed.

We want to add the dynamic features (e.g. by using performance counters) to increase
the quality of a method description. The reason for this is that the usefulness of static
features depend on the current input of your benchmark. For example, a small array size
may significantly decrease the value of "memory” transformations. But later the same
method can be used with another input where these transformations will be necessary.
Dynamic features allow us to distinguish these two cases and can increase the prediction

quality.

We believe that our framework can help engineers and compiler developers to deal
with the time-consuming heuristic tuning for new transformations, architectures, and for

specific applications. It can also motivate compiler writers to a certain redesign in the
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existing compiler.
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