Introduction to Cryptography 4/17/18
Lecture 21: Zero-Knowledge Proofs III

Instructor: Vipul Goyal Scribe: Colin Kelly

1 3-colorable Graphs

We will show how you can construct a zero-knowledge proof for Graph 3- Coloring, using a security
assumption. Since Graph 3-Coloring is NP-complete, this will allow us to produce zero-knowledge
proofs for all NP problems.

Definition 1 A graph G is 3-colorable if the vertices of a given graph can be colored with only three
colors, such that no two vertices of the same color are connected by an edge.

Figure 1: A 3-coloring of a graph

In other words given a graph we denote each vertices as v; and v; where 4,j < n. If there exists
an edge between v; and v; we will denote that edge as e; j. We are supposed to color the graph of
all vertices with only three colors (R, G, B) such that no edge should have two vertices of the same
color. Below are two common facts about 3-colorable graphs.

e Fact 1: If we are given a 3-coloring, permuting the 3 colors (R, G, B) still gives rise to a valid
3-coloring. Ie: Coloring all red vertices blue and coloring all blue vertices red gives a valid
3-coloring.

e Fact 2: If the graph is not 3-colorable, then at least one edge has matching colors.

2 Zero-Knowledge Proof for 3-coloring Graphs

Let G be graphs on n vertices and define V' = {vy,...,v,} be the set of vertices,

E = {e;; : 3 edge between v;,v;}. On input the graph G is known to both parties. The prover is
given a private input in the protocol that is the witness which is a 3-coloring of the graph G. The
protocol proceeds as follows.

e Prover: Given w a 3-coloring of the graph G. Randomly permute the 3-colors to obtain a
new coloring. Utilize a commitment scheme to commit the color of all vertices.

Vi € [n],¢; = COM (v;, color of v;)

21-1

e Verifier: Pick edge ¢; ; € I/ and send e¢; ; to the Prover.
e Prover: Open ¢; and c;.
e Verifier: Return Accept if ¢; # ¢;. Reject otherwise.

An explanation of this protocol is provided. At the first step the Prover will randomly permute
the 3-colors to obtain a new coloring. This does not modify the validity of w. We use a committment
scheme to hide the coloring of each vertex as a string. Every string is essentially hidden and binded.
The Verifier is allowed to select one edge. The Prover opens the committment ¢; and ¢; and hence
the Verifier learns the colors of vertices v; and v;. Finally the Verifier checks if the two colors ¢; and
c; are different. If so, accept. Else reject. Now lets try to prove this protocol is a zero-knowledge
protocol of 3-coloring graphs.

Theorem 1 The above protocol satisfies completeness, soundness with ﬁ, and zero-knowledge

Proof.

Completeness: If witness w provides a valid 3-coloring of the graph G. Then the Prover
can commit to the colors such that regardless of what edge the Verifier chooses the Verifier will see
that ¢; # ¢; and will return accept.

Soundness: We need to show that if w provides an invalid 3-coloring of G. Then the

Prob[Verifier returns accept] < negl(n)

Since w is an invalide 3-coloring of G, then there exists edge e; ; such that ¢; = ¢;. Thus

1

Prob[Verifier returns reject] > Prob[Verifier picks e; ;] = 3]

Once we have protocol with soundness of 1/E we can just repeat the protocol sequentially to
improve the soundness.
By sequential repetition if we repeat the protocol k times and k& >> F then

Prob| Verifier returns accept] < (1 — 1/E)* < negl(n)

Zero-Knowledge: To prove Zero-Knowledge we construct a simulator S which has the code
of V*, the Verifier, and works as follows.

¢ Step 1: Choose random ¢; ; = (v, v}) and commit to 2 different random colors for ¢}, ¢;. For

all other vertices, vy where k #£ 4, j. Let ¢ = 0, the zero string.

e Step 2: Send first message to V* and get e; ; from V*.

i+ ¢;. Else go to Step 1.

o Step 3: If¢; j =¢; ; open ¢

Now we need to prove the transcript of simulator S is indistinguishable from the transcript of
the real world protocol. Intuitively the only difference is that in the real protocol, all commitments
to all the vertices are nicely done. They all are colored whereas in S, most of the vertices have a
commitment of a zero string. Next thing to note is that all these other commitments will never
be opened. So by the hiding property, all those zero string commitments look identical to the
commitments of the vertices in the real protocol.

We will use the hybrid lemma to show that these two transcripts are indistinguishable. Let Hy

be the description of the protocol, Hg be the description of simulator S.

21-2

e Hj Algorithm Sy has the correct witness w and code of V*. Sy acts as an honest Prover and
interacts with V* which means:

— Step 1: Commit colors of vertices and compute first message honestly with witness w.
— Step 2: Get ¢;;

— Step 3: Open ¢;, ¢; and if ¢; # ¢ return accept, else return reject.
Output the transcript 79. 79 has the same distribution as in the real protocol.

e H; Algorithm S; has the correct witness w and code of V*. S7 guesses a random edge efu
S1 acts as an honest Prover and interacts with V* which means:

j.

— Step 1: Commit colors of vertices and compute first message honestly with witness w.

— Step 2: Get ¢;;

— Step 3: Now if ¢; ; # e;’j go to Step 1. Else open ¢;, ¢; and if ¢; # ¢; return accept, else
return reject.

Output the transcript 1.

e Hs Algorithm S5 has the correct witness w and code of V*. S5 guesses a random edge e;’j.
So computes the first message using 6;7 ; which means:

— Step 1: Sy commits the coloring of every vertices to be zero for all ¢, where k # i, j. ¢}
and ¢} are still computed honestly using w.

— Step 2: Get ¢;;

— Step 3: Now if ¢; ; # ¢; ; go to Step 1. Else open ¢}, ¢j and if ¢; # ¢} return accept, else
return reject.

Output the transcript 7o.
e Hj3 Algorithm S is the simulator with code of V*. S guesses a random edge e;’ i

— Step 1: S commits the coloring of every vertices to be zero for all ¢ where k # i, j. ¢
and c;- are computed randomly.

— Step 2: Get ¢;

— Step 3: Now if e; ; # €} ; go to Step 1. Else open ¢}, ¢; and if ¢ # ¢} return accept, else

return reject.

Output the transcript 3.

Hy is indistinguishable from H; as the only difference is that H; randomly chooses eg’ ; until e; ;
is found. Thus the two transcripts have identical distribution.
H; is indistinguishable from H from the following lemma and informal proof.

Lemma 2 Distribution of 71 = Distribution of m

21-3

The proof follows from the hiding of commitment scheme. The basic idea is that suppose somebody
comes along that can distinguish between 71 and 7. Then they can create a distinguisher algorithm
that breaks the hiding idea. As a result all commitments which are not opened can be seen externally
by this algorithm and this algorithm would output 71 or 79, however this would contradict the
commitment scheme.

Ho> is indistinguishable from Hj since the only difference between Hy and Hg is that Hg assigns
a random coloring to v; and v; instead of utilizing the witness w. However since in the first step we
permute the witnessed colors of the vertices, then the witness commits ¢; and ¢; randomly. Thus
the distribution of 79 = distribution of 73. [|

3 Round Complexity and Efficiency

Lets talk about the round complexity, here we described a basic protocol with three steps but you
have to repeat in sequentially many times to reach the soundness that we want. In this section we
question how to achieve a zero-knowledge protocol with better round efficiency. What if we repeat
the protocol in parallel, rather than sequential. In other words if we have many copies of this basic
protocol, 71, ...m, then every copy starts with a random permutation of the witness. In particular
what makes this problem unique is that the actions of the Verifier in ms could depend on the first
message of the Verifier in m1.We ask if it would still remain zero-knowledge and which is difficult
to prove.

4 Fiat-Shamir Transformation

Now we go back to the random algorithm model to construct a zero knowledge protocol. Let
31, %9, 23 be the three messages sent between the Prover and the Verifier.

e Step 1: The message ¥; is sent to the Verifier.

e Step 2: The message Y is sent to the Prover based on the random picking of an edge which
is viewed as a string. The edge selected would be e; ; = r mod |E|. 33 is computed as
Y9 = H(¥1). Where H(.) is a public hash function.

e Step 3: Since H(.) is a public hash function, the computation can actually be done by the
Prover. Thus the Prover sends ¥y, H(31), ¥s.
5 Blockchains and Zero Knowledge Proofs

In this section we look at the utilization of Zero Knowledge protocols in Zero Coin and ZCash.
Zero coin is the precursor of Zcash. There is a bulletin board which is part of the public ledger and
at any given time, this bulletin board has a bunch of coins that are publicly posted.

ol cn
Coins = | : :
cf’ '

21-4

Then we have a list of coins which have already been spent. This spent list is smaller than the
bulletin.
Spent = {s1, ..., sk}

e Minting If you want to convert 1 bitcoin to 1 ZeroCoin, the process works as shown below.

— Step 1: The User computes ¢ = COM,.(s) which is a commitment scheme on the serial
number of a bitcoin to be minted. The User sends this ¢ to the miner. Note we ignore
the transaction fee.

— Step 2: The Miner burns this ¢ value and will put the ¢ value onto the bulletin board,
coin.

— Step 3: If user A wishes to spend this coin, and send the coin to B, A just sends (s,r)
to B.

e Coin Collection If B wishes to collect a coin ¢, the following steps occur.

— Step 1: B creates a new coin ¢ = COM,/(s)

— Step 2: B sends (s,c) and 7, a Zero-Knowledge Protocol with a statement defined as
s is an opening of one of the commitments in the bulletin board C'oin. Note that this is
an NP statement.

— Step 3: The Miner runs the following check. It checks if 7 is a valid Zero-Knowledge
Protocol. It then checks if s is not already on the spent list. If so, s is put on the spent
list and ¢’ is put on the coin list.

Note that this Minting and Coin Collection is crucial as the anonymity of each transaction is
hidden. For example in BitCoin, if A sends a coin to B followed by a second coin, the anonymity
of A’s transaction is lost since the coin itself is being directly transferred. On the other hand with
ZeroCoin, A does not send a coin to B but instead simply sends (s, 7). Thus although c is publicly
announced on Coin, it is impossible to track which coin in Coin is retrieved by B.

21-5

