Introduction to Cryptography 04/12/18
Lecture 20: Zero-Knowledge Proofs II

Instructor: Vipul Goyal Scribe: Shaun Allison

1 Review: Zero-Knowledge Proof of Graph Isomorphism

We briefly review the construction of the zero-knowledge proof of graph isomorphism from last
lecture.

Suppose that the prover P wants to prove (in a zero-knowledge way) to verifier V' that two graphs
Gy and G are isomorphic. Suppose also that P has a witness 7 : Gg =& (1 to the isomorphism.

P starts by choosing a random automorphism o of Gy and sending o(Gg) to V. The verifier
responds with a random challenge Ch € {0,1}. If Ch = 0 then P responds with o, otherwise P
responds with o7 ~!. Finally, V' checks that the function it just received is indeed an isomorphism
between Gy and the graph it received in the first step (i.e. o(Gp).)

To simulate transcripts between the prover and verifier, given the description V* of a verifier,
our simulator S will do the following;:

e (Step 1): Choose b € {0,1} randomly and say that P sends o(Gy).
e (Step 2): Get Ch from V* and say that V sends Ch.

e (Step 3): If Ch = b, say that P sends 0. Otherwise, restart.

We proved last time that this satisfies the Completeness and Zero-Knowledge properties, but
for the Soundness property, we only showed that a cheating prover can only succeed against the
honest verifier with probability at most one half. In order to get the probability down to a negligible
amount, we will need to use a general technique to turn a zero-knowledge proof satisfying Soundness
in this weaker sense, to a zero-knowledge proof satisfying the full Soundness proprety.

2 Soundness Amplification
Let’s modify the scheme above for a given integer k like so:

e (Step 1-1): P chooses a random automorphism o; of Gy and sends o1 (Gp).

(Step 1-2): V sends Ch; l {0,1}.

(Step 1-3): If Ch; = 0 thet P sends o1, otherwise P sends o7,

(Step k-1): P chooses a random automorphism oy, of Gy and sends oy (Gp).

(Step k-2): V sends Chy, & {0,1}.

(Step k-3): If Chy = 0 thet P sends oy, otherwise P sends o7

20-1

In each step, V' checks that P’s responses all match up in the same way as before.
It turns out that this modification will satisfy the full soundness property, using the following
lemma, which we will not prove (you can read on your own).

Lemma 1 (Soundness) If Gy is not isomorphic to G then any cheating prover P* fails with
probability at least 1 — 27F.

We need to check that this modification still satisfies the Zero-knowledge property.
Lemma 2 Sequential repitition is still zero-knowledge.

Proof. Given a (possibly dishonest) PPT verifier V, we can produce a PPT algorithm S
simulating transcripts in much the same way as before, using a new idea called ”"rewinding”.
The simulator S will produce transcripts as follows:

1. (Step 1-1) Choose b; € {0,1} at random. Choose o7 to be a random automorphism of Gy, .
Send o1 (Gbl)'

2. (Step 1-2) Get Ch; from V*.
3. (Step 1-3) If Chy = by, send o;. Otherwise, restart.

4. (Step k-1) Choose by, € {0,1} at random. Choose o}, to be a random automorphism of Gy, .
Send Uk(Gbk)‘

5. (Step k-2) Get Chy from V*.

6. (Step k-3) If Chy = by, send 0. Otherwise, restart from Step k-1, restoring V'’s state to
where it was before (this is called rewinding).

One can check in much the same way as last lecture that these transcripts are computationally
indistinguishable from transcripts between the honest prover and verifier.

Rewinding is necessary here. If, instead of rewinding, the simulator restarted from the very
beginning, it would become exponential, as the probability of making it to the end of all 3k steps
will have probability 27%.

One can think of rewinding as making a copy of the state of V* at every step, so if S ever
fails, they can just restore the last copy of V* and start again. S is allowed to have a complete
description of V* and V* is assumed to be a PPT algorithm, so this is possible. The intuition here
is that V* could have just generated the transcript themself, without having access to the witness,
which means that the transcript gives no new knowledge.

This idea can in fact be applied to any zero-knowledge proof in much the same way:

Lemma 3 Sequential repetition of any zero-knowledge proof yields a zero-knowledge proof.

20-2

3 Foreshadowing: Graph 3-Coloring

In the next lecture, we will show how you can construct a zero-knowledge proof for Graph 3-
Coloring, using a security assumption. Since Graph 3-Coloring is NP-complete, this will allow us
to produce zero-knowledge proofs for all NP problems.

Graph 3-Coloring is the problem of deciding if the vertices of a given graph can be colored with
only three colors, such that no two vertices of the same color are connected by an edge.

Before we present a zero-knowledge proof of Graph 3-Coloring, we need to introduce the idea of
a commitment scheme. This idea will be important for the construction of zero-knowledge proofs,
but they are also useful and interesting in their own right.

4 Commitment Schemes

Imagine that you can see the future, and you would like to prove this to your friend. So you write
down tomorrow’s lottery numbers on a piece of paper and lock it in a safe, and give the safe to
your friend, away from your control. The next day, the lottery numbers are announced (as you
predicted). You hand your friend the key to the safe, and they open it up and see that you indeed
predicted today’s lottery numbers. Since you were not able to alter the message since you wrote it
yesterday, you have proven that you can see the future. This is an example of a use of commitment
schemes.

A commitment scheme consists of a communication between a committer C' and a receiver R.

e Commitment Stage: If the commiter wants to commit to a message m, C sends a string
COM to R.

e Decommitment Stage: To allow R to open the message, C sends m and a string DECOM
to R. R can either accept or reject.

A commitment scheme must satisfy two properties:

e Hiding Property: After the commitment stage, m is semantically secure, i.e. for all mes-
sages mg and my,
{COM — C(mo)} ~c {COM — C’(ml)}

¢ Binding Property: Given COM, there exists exactly one m such that R outputs accept for
(m, DECOM)

Some observations:

e The hiding property clearly requires C to be randomized.

e Consider this proposed commitment scheme: C' chooses some string k at random and sends
COM =k & m. Then, when decommiting, C' sends DECOM = k and m.

This scheme clearly satisfies hiding (it is a one-time-pad), however it does not satisfy binding.
In fact, C' doesn’t commit to anything at all, as C' can make the message look like anything
they want to at the decommitment stage.

We will present two different constructions of commitment schemes: one using the Decisional
Diffie-Hellman assumption, and one using any 1-1 one-way function.

20-3

4.1 Commitment Scheme from DDH

Let G be a prime-order group with generator g, and let ¢ be the order of the group.

e Commitment Stage: C will choose a and b at random from Z,, and send

COM = (g,¢% ¢",m - g™)

e Decommitment Stage: C' will send
DECOM = (m,a,b).
R will then check that (g, g%, g°, m - ¢*°) matches COM. If so, R will accept, otherwise reject.
Let’s see that this satisfies the hiding and binding properties, using the DDH assumption.

e Hiding Property: This follows directly from the DDH assumption, but let’s see this care-
fully, using properties of computational indestinguishability.

The DDH assumption states that

$ $
{(9,9% 9% 9" | (a,b) < Zg} ~c {(9,9% 9", 9" | (a,b,7) < Zg}.

Using the fact that computational indistinguishability is preserved under PPT functions, for
any message m,

$ $
{(gvga7gb7m : gab | (avb) — Zq} ~C {(gagaagbam 'gr | (a,b,r) <~ ZCI}
But g 5
{(9:9% 9" m-g" | (a,;b,7) & Zg} = {(9:9% 9", 9" | (a,b,7) < Zg}.

So we have
a a $ a r $
{(9,9% g, m - g™ | (a,b) < Zg} ~c {(9. 9% 6", g" | (a,b,7) < Zg}.

Using the fact that computational indistinguishability is transitive, for any messages my and

ma,

5 5
{(9,9% g°,m1 - g" | (a,b) < Zg} ~c {(g,9% 9", m2 - g™ | (a,b) < Zg}.

This is exactly what we need.

e Binding Property: When the commiter sends COM = (g, g1, g2, g3), we need to check that
the message is fixed. But indeed, there are unique a,b € Z; such that g; = g%, and g2 = q°.
So a and b are fixed. So the message would have to be g3 - (¢9*°)~1. So the message is fixed.

20-4

4.2 Blum Commitment

This construction, due to Manuel Blum, works for any 1-1 one-way function f with a hard-core bit.
Recall that the existence of a one-way function implies the existence of a one-way function with a
hard-core bit. This particular construction only allows the sending of a single bit, but it is clear
that it can be modified to allow the commitment of longer messages.

e Commitment Stage: Let m € {0, 1} be the message to commit. C' will sample z uniformly
at random from the domain of f. Then C will send

COM = (f(x),m & h(z)),
where h is a hard-core bit for f.

e Decommitment Stage: C will simply send
DECOM = (m, x).
R will then compute (f(z),m & h(x)) and check that it matches COM.
Let’s see that this satisfies the definition of a commitment scheme.

¢ Hiding Property: This follows simply from the definition of hard-core predicate, which can
be rewritten as

{(f(@), h()) | 2 & dom(f)} ~c {(f(2),b) | 2 < dom(f),b & {0,1}}.

¢ Binding Property: Follows immediately from the fact that f is 1-1.

What happens if we replace f with a one-way function that is not 1-17 The binding property
will fail. But just because collisions exist, doesn’t mean that they are easy to find. So we could
design a commitment scheme using a collision-resistant hash function instead. But there is a subtle
issue here — in order for the receiver R to trust that C could not have found collisions, R would
need to have chosen the random seed themself. So we would need to modify our model to allow an
extra round of communication during the commitment stage, where R sends C' the random seed
that they must use.

It is not known if there is a way to avoid this extra round of communication:

Open Problem 1 Design a commitment scheme with one-round commitment and decommitment
stages from the existence of any one-way function.

20-5

