Interior-point methods

10-725 Optimization Geoff Gordon Ryan Tibshirani

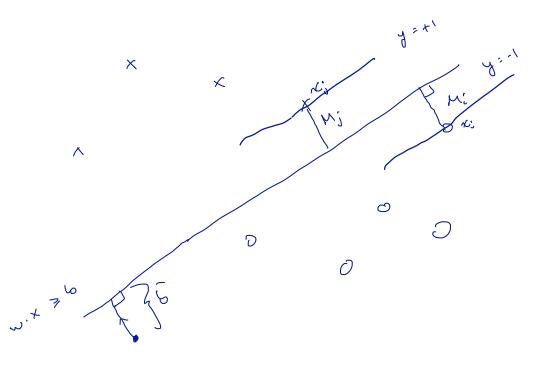
Review

SVM duality __

- ▶ min $v^Tv/2 + I^Ts$ s.t. $Av yd + s I \ge 0$ s ≥ 0
- ▶ max $I^T\alpha \alpha^T K\alpha/2$ s.t. $y^T\alpha = 0$ $0 \le \alpha \le I$
- Gram matrix K

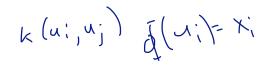
Interpretation

- support vectors& complementarity
- reconstruct primal solution from dual

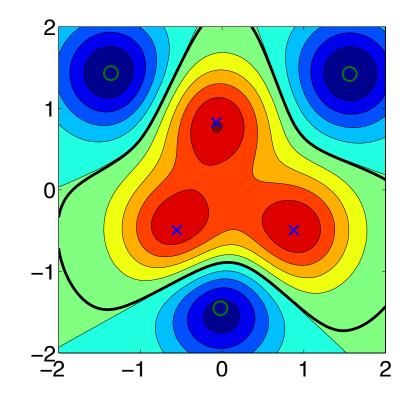


Review

Kernel trick

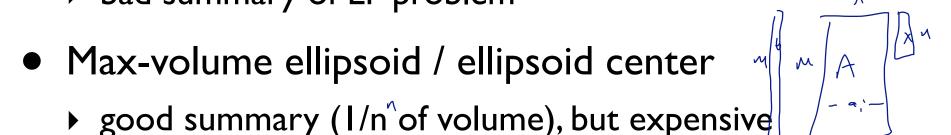


- high-dim feature spaces, fast
- positive definite function
- Examples
 - polynomial
 - homogeneous polynomial
 - linear
 - Gaussian RBF



Review: LF problem $Ax + b \ge 0$

- Ball center
 - bad summary of LF problem



- Analytic center of LF problem
 - maximize product of distances to constraints

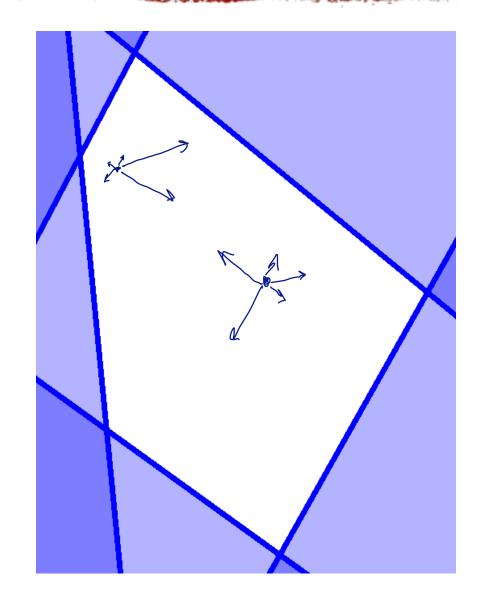
$$\rightarrow$$
 min $-\sum ln(a_i^Tx + b_i)$

 Dikin ellipsoid @ analytic center: not quite as good (just I/m[^] < I/n), but much cheaper

Force-field interpretation

of analytic center

- Pretend constraints are repelling a particle
 - normal force for each constraint
 - ▶ force ∞ I/distance
- Analytic center =
 equilibrium = where
 forces balance



Newton for analytic center

•
$$f(x) = -\sum_{i} \ln(a_i^T x + b_i)$$
 $5 = a_i^T x + b_i$ $9 = 0$

• $f(x) = -\sum_{i} \ln(a_i^T x + b_i)$ $5 = a_i^T x + b_i$ $9 = 0$

 $d^2f/df^2 = + \frac{7}{5} \left(\frac{\alpha_1^{-1} \times + \beta_2^{-1}}{\alpha_1^{-1} + \beta_2^{-1}} \right)^2 \alpha_1^{-1} q_1^{-1}$

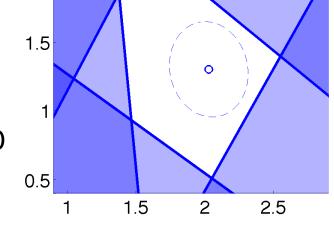
Ventor

$$\Delta x = (A^T S^{-2} A)^{-1} A^T Y$$

Dikin ellipsoid

$$\| \times \|_{\downarrow \downarrow} = \sqrt{\chi^T H \times}$$

- $E(x_0) = \{ x \mid (x-x_0)^T H(x-x_0) \le 1 \}$
 - \rightarrow H = Hessian of log barrier at x_0
 - \blacktriangleright unit ball of Hessian norm at x_0
- $E(x_0) \subseteq X$ for any strictly feasible x_0
 - ▶ affine constraints can be just feasible



- \blacktriangleright E(x₀): as above, but intersected w/ affine constraints
- $vol(E(x_{ac})) \ge vol(X)/m^{^{\land}}$
 - weaker than ellipsoid center, but still very useful

$$E(x_0) \subseteq X$$

•
$$E(x_0) = \{ x \mid (x-x_0)^T H(x-x_0) \le 1 \}$$
 $H = \{ x_0 \mid (x-x_0)^T H(x-x_0) \le 1 \}$

$$\rightarrow$$
 H = A^TS⁻²A

$$\Pi = A^{*}3^{-}A$$

$$\sum_{i} (\alpha_{i}^{T}(x-x_{0})/s_{i})^{2} \leq 1$$

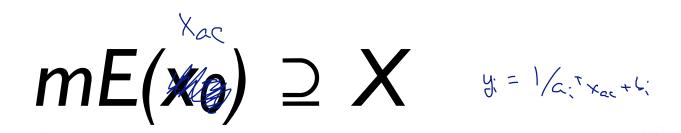
$$-1 \leq \alpha_{i}^{T}(x-x_{0})/s_{i} \leq 1 \quad \forall i$$

$$-s_{i} \leq \alpha_{i}^{T}(x-x_{0})$$

$$-s_{i} \leq \alpha_{i}^{T}(x+s_{0})$$

$$s_{i} \leq \alpha_{i}^{T}(x+s_{0})$$

$$S = diag(s) = diag(Ax_0 + b)$$



- Feasible point x: $Ax + b \ge 0$
- Analytic center x_{ac} : $A^Ty = 0$ $y = I./(Ax_{ac}+b)$
- Let $Y = diag(y_{ac})$, $H = A^TY^2A$; show:
 - ► $(x-x_{ac})^TH(x-x_{ac}) \le m^2$ [+ m]

Combinatorics v. analysis

- Two ways to find a feasible point of $Ax+b \ge 0$
 - find analytic center—minimize a smooth function
 - find a feasible basis—combinatorial search

Bad conditioning? No problem.

M-1 exists

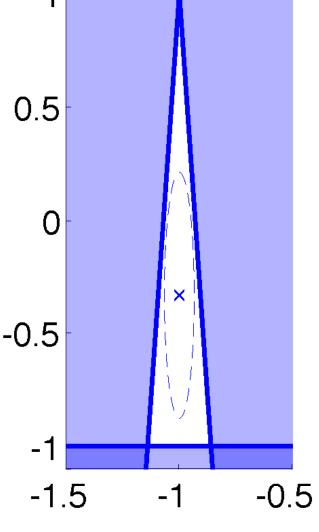
- Analytic center & Dikin ellipsoids invariant to affine xforms w = Mx+q
 - ► W = { w | $AM^{-1}(w-q) + b \ge 0$ }

$$W_{ac} = M \times_{ac} + q \qquad H_{\omega} = M^{-T} H_{\chi} M^{-1}$$

$$\left(M = R^{4} H_{\omega} = R^{-T} R^{T} R^{2}\right)$$

$$= I$$

- Can always xform so that a ball takes up ≥ vol(Y)/m
 - ▶ Dikin ellipsoid @ac → sphere



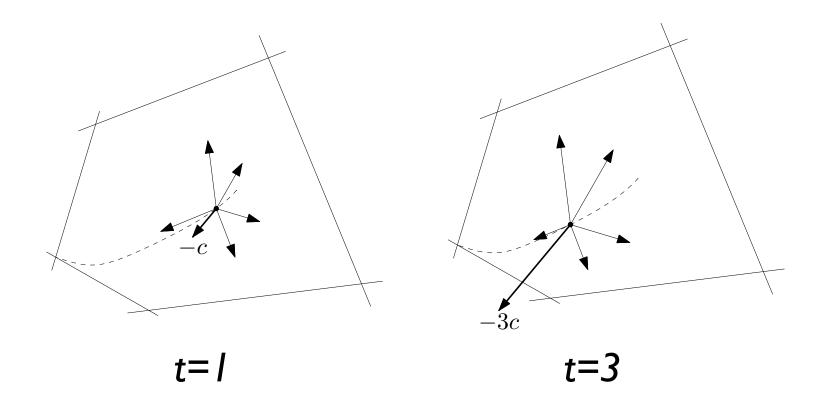
$LF \rightarrow LP$: the central path

- Analytic center was for: find x st $Ax + b \ge 0$
- Now: min c^Tx st $Ax + b \ge 0$
- Same trick:
 - $\blacktriangleright \min f_t(x) = c^T x (1/t) \sum \ln(a_i^T x + b_i)$
 - ▶ parameter t > 0
 - ▶ central path = $\{x(t) \mid t > 0\}$
 - ▶ $t \to 0$: analytic $t \to \infty$: LP opt

Force-field interpretation

of central path

Force along objective; normal forces for each constraint



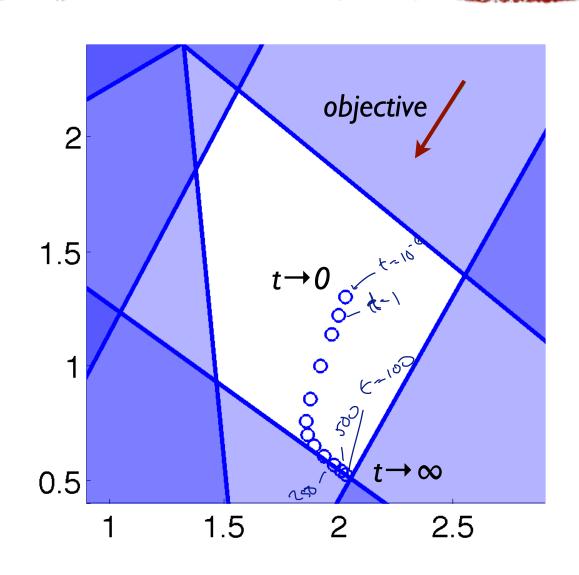
Newton for central path

- min $f_t(x) = c^T x (1/t) \sum ln(a_i^T x + b_i)$
 - $df/dx = c_{-(1/4)} \xi \frac{1}{5} \alpha_i$

$$\left(\sum_{i=1}^{2} a_{i}^{2} a_{i}^{2}\right) \Delta_{X} = \sum_{i=1}^{2} \frac{a_{i}^{2}}{s_{i}^{2}} \left(-\frac{1}{2}c\right)$$

►
$$d^2f/dx^2 = \frac{1}{6} \sum_{i=1}^{6} a_i^2 a_i^2 a_i^4$$

Central path example



New LP algorithm?

- Set t=10¹². Find corresponding point on central path by Newton's method.
 - worked for example on previous slide!
 - but has convergence problems in general

• Alternatives?

Constraint form of central path

- $\min -\sum \ln s_i \text{ st } Ax + b \ge 0 \quad c^Tx \le \lambda$
- \exists a I-I mapping $\lambda(t)$ w/ $x(\lambda(t)) = x(t) \forall t > 0$
 - but this form is slightly less convenient since we don't know minimal feasible value of λ or maximal nontrivial value of λ

Dual of central path

- min $c^Tx (1/t) \sum \ln s_i$ st $Ax + b = s \ge 0$

$$\nabla_{x}: C - A^{T}y$$

$$\nabla_{x}: - \frac{1}{4}s + y$$

$$\nabla_{x}: -$$

Primal-dual correspondence

- Primal and dual for central path:
 - ▶ min $c^Tx (1/t) \sum ln s_i st Ax + b = s \ge 0$
 - ► max (m ln t)/t + m/t + (1/t) \sum ln $y_i y^Tb$ st $A^Ty = c$ $y \ge 0$
- $L(x,s,y) = c^{T}x (1/t) \sum ln s_{i} + y^{T}(s-Ax-b)$
 - ▶ grad wrt s: y 1/2s ⇒ siyi = 4 soy = \$1/4

Duality gap

• At optimum:

▶ primal value $c^Tx - (I/t) \sum \ln s_i =$ dual value $(m \ln t)/t + m/t + (I/t) \sum \ln y_i - y^Tb$

►
$$s \circ y = t_{e}$$
 t_{e} t