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Support vector machines
(separable case)

Review

• SVM duality
‣ min  vTv/2 + 1Ts   s.t.   Av – yd + s – 1 ! 0    s ! 0

‣ max 1Tα – αTKα/2  s.t.  yTα = 0   0 " α " 1

‣ Gram matrix K

• Interpretation
‣ support vectors                                                                

& complementarity

‣ reconstruct primal                                               
solution from dual
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Review

• Kernel trick
‣ high-dim feature spaces, fast

‣ positive definite function

• Examples
‣ polynomial

‣ homogeneous polynomial

‣ linear

‣ Gaussian RBF
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Review: LF problem Ax + b ! 0

• Ball center
‣ bad summary of LF problem

• Max-volume ellipsoid / ellipsoid center
‣ good summary (1/n of volume), but expensive

• Analytic center of LF problem 
‣ maximize product of distances to constraints

‣ min –# ln(ai
Tx + bi)

• Dikin ellipsoid @ analytic center: not quite as 
good (just 1/m < 1/n), but much cheaper
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Ball center
aka Chebyshev center

• X = { x | Ax + b ! 0 }

• Ball center:
‣  

‣ if ||ai|| = 1

‣ in general:
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Force-field interpretation
of analytic center

• Pretend constraints 
are repelling a particle
‣ normal force for each 

constraint

‣ force ! 1/distance

• Analytic center = 
equilibrium = where 
forces balance
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Newton for analytic center

• f(x) = –# ln(ai
Tx + bi)

‣ df/dx =

‣ d2f/df2 = 
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Dikin ellipsoid

• E(x0) = { x | (x–x0)TH(x–x0) " 1 }
‣ H = Hessian of log barrier at x0

‣ unit ball of Hessian norm at x0

• E(x0) ⊆ X for any strictly feasible x0

‣ affine constraints can be just feasible

‣ E(x0): as above, but intersected w/ affine constraints

• vol(E(xac)) ! vol(X)/m
‣ weaker than ellipsoid center, but still very useful
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E(x0) ⊆ X

• E(x0) = { x | (x–x0)TH(x–x0) " 1 }
‣ H = ATS-2A

‣ S = diag(s) = diag(Ax0 + b)
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mE(x0) ⊇ X

• Feasible point x:  Ax + b ! 0

• Analytic center xac:    ATy = 0    y = 1./(Axac+b)

• Let Y = diag(yac), H = ATY2A; show:
‣ (x–xac)TH(x–xac) " m2   [+ m]
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Combinatorics v. analysis

• Two ways to find a feasible point of Ax+b ! 0
‣ find analytic center—minimize a smooth function

‣ find a feasible basis—combinatorial search
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Bad conditioning? No problem.
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• Analytic center & Dikin 
ellipsoids invariant to affine 
xforms w = Mx+q
‣ W = { w | AM-1(w–q) + b ! 0 }

• Can always xform so that a 
ball takes up ! vol(Y)/m
‣ Dikin ellipsoid @ac → sphere
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LF→LP: the central path

• Analytic center was for:  find x  st  Ax + b ! 0

• Now:  min cTx  st  Ax + b ! 0

• Same trick: 
‣ min ft(x) = cTx – (1/t) # ln(ai

Tx + bi)

‣ parameter t > 0

‣ central path =

‣ t → 0:                t → !:
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Force-field interpretation
of central path

• Force along objective; normal forces for each 
constraint
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568 11 Interior-point methods

PSfrag replacements
−c

PSfrag replacements

−3c
Figure 11.3 Force field interpretation of central path. The central path is
shown as the dashed curve. The two points x!(1) and x!(3) are shown as
dots in the left and right plots, respectively. The objective force, which is
equal to −c and −3c, respectively, is shown as a heavy arrow. The other
arrows represent the constraint forces, which are given by an inverse-distance
law. As the strength of the objective force varies, the equilibrium position
of the particle traces out the central path.

This force is in the direction of the inward pointing normal to the constraint plane
Hi = {x | aT

i x = bi}, and has magnitude inversely proportional to the distance to
Hi, i.e.,

‖Fi(x)‖2 =
‖ai‖2

bi − aT
i x

=
1

dist(x,Hi)
.

In other words, each constraint hyperplane has an associated repulsive force, given
by the inverse distance to the hyperplane.

The term tcT x is the potential associated with a constant force −tc on the particle.
This ‘objective force’ pushes the particle in the direction of low cost. Thus, x!(t)
is the equilibrium position of the particle when it is subject to the inverse-distance
constraint forces, and the objective force −tc. When t is very large, the particle is
pushed almost to the optimal point. The strong objective force is balanced by the
opposing constraint forces, which are large because we are near the feasible boundary.

Figure 11.3 illustrates this interpretation for a small LP with n = 2 and m = 5. The
lefthand plot shows x!(t) for t = 1, as well as the constraint forces acting on it, which
balance the objective force. The righthand plot shows x!(t) and the associated forces
for t = 3. The larger value of objective force moves the particle closer to the optimal
point.

11.3 The barrier method

We have seen that the point x!(t) is m/t-suboptimal, and that a certificate of this
accuracy is provided by the dual feasible pair λ!(t), ν!(t). This suggests a very
straightforward method for solving the original problem (11.1) with a guaranteed
specified accuracy ε: We simply take t = m/ε and solve the equality constrained

t=1 t=3
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Newton for central path

• min ft(x) = cTx – (1/t) # ln(ai
Tx + bi)

‣ df/dx = 

‣ d2f/dx2 =
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Central path example

15

objective

t→0

t→∞
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New LP algorithm?

• Set t=1012.  Find corresponding point on central 
path by Newton’s method.
‣ worked for example on previous slide!

‣ but has convergence problems in general

• Alternatives?
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Constraint form of central path

• min –# ln si  st  Ax + b ! 0   cTx " λ
• ∃ a 1-1 mapping λ(t) w/ x(λ(t)) = x(t) ∀t>0

‣ but this form is slightly less convenient since we 
don’t know minimal feasible value of λ or maximal 
nontrivial value of λ
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Dual of central path

• min cTx – (1/t) # ln si  st  Ax + b = s ! 0

‣ minx,s maxy L(x,s,y) = cTx – (1/t) # ln si + yT(s–Ax–b)
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Primal-dual correspondence

• Primal and dual for central path:
‣ min cTx – (1/t) # ln si  st  Ax + b = s ! 0

‣ max (m ln t)/t + m/t + (1/t) # ln yi – yTb  st           
ATy = c   y ! 0

• L(x,s,y) = cTx – (1/t) # ln si + yT(s–Ax–b)
‣ grad wrt s:  

‣ to get x: 
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Duality gap

• At optimum:
‣ primal value    cTx – (1/t) # ln si    =                               

dual value       (m ln t)/t + m/t + (1/t) # ln yi – yTb

‣ s  y = te
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