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Remember KKT conditions

Recall that for the problem

min f(z)
subject to h;(xz) <0, i=1,...m
li(x) =0, j=1,...r
the KKT conditions are
e 0€0f(x)+ Z w;Oh;(x) + Z v;00;(x) (stationarity)
i=1 j=1

e u; - hi(z) =0 for all ¢ (complementary slackness)
e hi(x) <0, £j(x) =0 forall 4, (primal feasibility)
e u; >0 forall ¢ (dual feasibility)

These are necessary for optimality (of a primal-dual pair z* and
u*,v*) under strong duality, and sufficient for convex problems



Remember solving the primal via the dual

An important consequence of stationarity: under strong duality,
given a dual solution u*, v*, any primal solution z* solves

m

min f(x) + Y uthi(z) + > vil(x)
j=1

cRn
v i=1

Often, solutions of this unconstrained problem can be expressed
explicitly, giving an explicit characterization of primal solutions
(from dual solutions)

Furthermore, suppose the solution of this problem is unique; then
it must be the primal solution z*

This can be very helpful when the dual is easier to solve than the
primal



Consider as an example (from B & V page 249):

n

. . T

min i(z;) subjectto a'x =1b

min > fi(z) subj
=1

where each f; : R — R is a strictly convex function. Dual function:

— i (s .y
9(v) = min ;ﬂ(m +o(b—a’x)
=bv+ ;gﬂg& (fi(xi) — ajvx;)

=Y f )
=1

where f is the conjugate of f;, to be defined shortly



Therefore the dual problem is

n
nag b= ) filaw)
=1
or equivalently
n
Iglég Z; [ (a;v) —bu
1=

This is a convex minimization problem with scalar variable—much
easier to solve than primal

Given v*, the primal solution z* solves

n
. *
min (i) — av*x;
rER™ A (fl( ’L) 7 ’L)
=1
Strict convexity of each f; implies that this has a unique solution,
namely z*, which we compute by solving df;(z;) > a;v* for each i



Dual subtleties

e Often, we will transform the dual into an equivalent problem
and still call this the dual. Under strong duality, we can use
solutions of the (transformed) dual problem to characterize or
compute primal solutions

Warning: the optimal value of this transformed dual problem
is not necessarily the optimal primal value

e A common trick in deriving duals for unconstrained problems
is to first transform the primal by adding a dummy variable
and an equality constraint

Usually there is ambiguity in how to do this, and different
choices lead to different dual problems!



Lasso dual
Recall the lasso problem:

- 2
min o ~Jly — Awl? + Allell

Its dual function is just a constant (equal to f*). Therefore we
redefine the primal as
min ny—zHQ—i—)\Hle subject to z = Ax
r€RP, zeR?

so dual function is now

: 2 T
= Ay — A —A
o(u) = _min =y = 2| + Aol +u (: = Aa)

1 1
= 5 lyll* = Slly = ull® = T jofooy (ATw/2)

This calculation will make sense once we learn conjugates, shortly



Therefore the lasso dual problem is

mas 5 Iyl =y — ul) subject to A"l <
e n

or equivalently

m]%n ly — ul|® subject to ||ATulle < A
E n

Note that strong duality holds here (Slater's condition), but the
optimal value of the last problem is not necessarily the optimal
lasso objective value

Further, note that given u*, any lasso solution z* satisfies (from
the z block of the stationarity condition) z* —y +u* =0, i.e.,

Ar* =y —u*

So the lasso fit is just the dual residual



Outline

Today:

Conjugate function

Dual cones

Dual polytopes

Polar sets

(And there are lots more duals—e.g., dual graphs, alebgraic dual,
analytic dual—all related in some way...)



Conjugate function
Given a function f : R™ — R, define its conjugate f* : R" — R,

(y) = max y'z — f(z)

Note that f* is always convex, since it is the pointwise maximum
of convex (affine) functions in y (f need not be convex)

/@ |
| ”‘ly ]
\ f*(y) : maximum gap between
\ linear function 3™z and f(z)
7 v (From B & V page 91)
y 0

For differentiable f, conjugation is called the Legendre transform
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Properties:

e Fenchel's inequality: for any x,y,

f@)+ f(y) > 2"y

e Hence conjugate of conjugate f** satisfies f** < f
If f is closed and convex, then f** = f

If f is closed and convex, then for any x,y,

r€df'(y) & yeif(@)
& fl@)+ [ (y) =2y
If f(u,v) = fi(u)+ fa(v) (here uw € R", v € R™), then

fr(w, z) = fi(w) + f5(2)
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Examples:

e Simple quadratic: let f(z) = %xTQa:, where @@ > 0. Then
yle — %I'TQ:E is strictly concave in y and is maximized at

y=Q 'z, so ,
fy) = inQfly

Note that Fenchel's inequality gives:
1 7 Lroa T
57 Qrt oy Qy2ay

e Indicator function: if f(x) = I=(x), then its conjugate is

* — I* _ T
[ () =1c(y) max - o

called the support function of C'; we'll revisit this later
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e Norm: if f(x) = ||z, then its conjugate is

oo else

where | - ||« is the dual norm of || - || (recall that we defined
[yl = max). <1 2"y).

Why? Note that if ||y|[« > 1, then there exists ||z]| < 1 with
Ty = llyll. > 1, 50

(t2)Ty — 2] = t(=Ty — |12])) > 00, as ¢ = oo
ie., f[*(y) =00
On the other hand, if ||y||« < 1, then
2y =zl < lzllllyll — N1zl < 0

and =0 when 2 =0, so f*(y) =0
13



Conjugates and dual problems

Conjugates appear frequently in derivation of dual problems, via

—f*(v) = min f(z) —u'z
TeR”™

in minimization of the Lagrangian. E.g., consider

min f(z) +9(z)

& min _ f(z) + g(z) subject to z =z
z€R™, zeR"

Lagrange dual function:

ow) = _min_ f(@)+ () + (= =) = =" () — g"(~u)

Hence dual problem is

max —f*(u) — g*(~u)
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Examples of this last calculation:

e Indicator function: dual of

min f(z) + Io(z)
zeR?

max —f(u) = Io(~u)

where I is the support function of C

e Norms: the dual of

min f(z) + [l«|
is
max —f*(u) subject to |lull. <1
ucR”
where || - ||« is the dual norm of | - ||
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Double dual

Consider general minimization problem with linear constraints:

min f(x)

zeR?
subject to Ax <b, Cx=d
The Lagrangian is
L(z,u,v) = f(z) + (ATu+ CTv)Tx — bTu — dTv
and hence the dual problem is
max —f(=ATu — CTv) = bTu — dTv
u€R™ veR”

subject to w >0

Recall property: f** = f if f is closed and convex. Hence in this
case, we can show that the dual of the dual is the primal
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Actually, the connection (between duals of duals and conjugates)
runs much deeper than this, beyond linear constraints. Consider

min f(z)

subject to h;(x) <
li(z) =

If fand hq,...h,, are closed and convex, and /1, ...¥¢, are affine,
then the dual of the dual is the primal

7

1,...m
ij=1,...r

0,
0,

This is proved by viewing the minimization problem in terms of a
bifunction. In this framework, the dual function corresponds to the
conjugate of this bifunction (for more, read Chapters 29 and 30 of
Rockafellar)
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Cones

A set K € R" is called a cone if
reK = 0OxecK forall 08>0
It is called a convex cone if
1,29 € C = 0O1x1+ 629 € C forall 61,00 >0

i.e., K is convex and a cone

(From B & V page 26)
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Examples:

e Linear subspace: any linear subspace is a convex cone
e Norm cone: if || - || is a norm then
K = {(z,t) e R"": ||z| < t}

is a convex cone, called a norm cone (epigraph of norm
function). Under 2-norm, called second-order cone, e.g.,

]‘ \\\ 1777
N L,H/r 7/

~—
1

a1

(From B & V page 31)
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e Normal cone: given a set C, recall we defined its normal cone
at a point x € C as

Ne(z) ={g e R": gTa > gTy for any y € C}

»

This is always a convex cone,
regardless of C

e Positive semidefinite cone: consider the set of (symmetric)
positive semidefinite matrices

St ={X eR™: X =X X >0}

This is a convex cone, because for A, B = 0 and 61,60, > 0,
2T (01A + 63B)x = 0127 Az + 62" Bx > 0
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Dual cones

For a cone K € R",

K*={yeR":yTzx >0 forall z € K}

is called its dual cone. This is always a convex cone (even if K is

not convex)
Note that y € K* <
) the halfspace {z € R™:
: y''z > 0} contains K

- (From B & V page 52)

Important property: if K is a closed convex cone, then K** = K
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Examples:

e Linear subspace: the dual cone of a linear subspace V is V1,
its orthogonal complement. E.g., (row(A))* = null(A)

e Norm cone: the dual cone of the norm cone
K ={(z,t) € R™TL . x| <t}
is the norm cone of its dual norm

K" ={(y,s) €eR""" : [ly]l. < s}

e Positive semidefinite cone: the convex cone S’} is self-dual,
meaning (S%)* = S’. Why? Check that
Y>>0 & tr(YX)>0 forall X ~0

by looking at the eigenvalue decomposition of X
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Dual cones and dual problems

Consider the constrained problem

min f(z)

Recall that its dual problem is

max —f*(u) — Ii(—u)

where recall I} (y) = max,ecx 27y, the support function of K. If
K is a cone, then this is simply

*
max —f*(u)

where K* is the dual cone of K, because I} (—u) = I+ (u)
This is quite a useful observation, because many different types of
constraints can be posed as cone constraints
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Generalized inequalities

If K € R™ is a proper cone (convex cone, closed, solid, pointed),
then it induces a generalized inequality <y over R" via

r<gy if y—xeK

Examples:

e Componentwise inequality: the nonnegative orthant is a
proper cone, R = {z € R" : z; > 0 all 4}, and it induces
the generalized inequality: x <mrn Y if and only if z; < y; for
all i (we have been writing this as = < y)

e Matrix inequality: S’} is a proper cone, and it induces the
generalized inequality: X <sn Y ifandonlyif Y — X is
positive semidefinite (we have been writing this as X <Y’)

Hence any set of generalized inequalities can be posed in terms of
cone constraints
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Conic solvers

Two general suites of solvers, that rely on transforming a convex

problem into conic form (i.e., one with cone constraints) are CVX!
and TFOCS?

e Transformation to conic form is not necessarily unique, and
different transformations yield different problems, possibly of
varying difficulty

e CVX is more general; TFOCS is less general but can be a lot
faster (apparently close to state of the art)

e Both are freely available (implemented in MATLAB)

M. Grant and S. Boyd (2008), Graph implementations for nonsmooth
convex problems, http://cvxr.com/cvx

2S. Becker and E. Candes and M. Grant (2010), Templates for convex cone
problems with applications to sparse signal recovery, http://cvxr.com/tfocs

25
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Given a problem in conic form, TFOCS (Templates for First-Order
Conic Solvers) derives and solves the dual problem3, and then
computes a primal solution relying on strong duality. Consider:
min f(z)
subject to Ar +be€ K

for a convex cone K. The dual problem is
ax —f*(ATw) —bT
max —f*(A%u) — b u
subject to u € K*

Important point: projection onto K* is quite often a lot easier
than projection onto {x € R" : Az + b € K}, so we can employ a
a first-order method on the dual

3Actually, in TFOCS the dual problem is often smoothed before being
solved, but we haven't covered smoothing yet
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E.g., consider the problem

min f(z) subject to ||y — Azljs <o
TERP

where the parameter o > 0 is a known fixed quantity. This can be
transformed into desired conic form by writing the constraint as

[ ﬂ“ [ _éﬂ € {(zt) eR™ |22 < t}

i.e., K is the second-order cone. Note that K* = K, self-dual, and
projection onto K is easy:

(z,t) if |zl <t
t
Prlent) = L0 i < <
el
(0,0) i ¢ < —|l2Il
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Polytopes
A polytope P € R" is the convex hull of a finite number of points

in R™:
P = conv{zy,...z}

This is called the V-representation of P. Fundamental result: P
is a polytope < P is a bounded polyhedron, i.e., P is bounded and

m
P:ﬂ{xeR”:aszSbi}
i=1
This is called the H-representation of P. These representations
also called primal and dual representations, we'll see why shortly

H-representation

(From B & V page 32)
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Faces of polytopes

A face of a polytope P is a set F' such that
x,y € P and %6}7 = z,yeF

The set of faces of P written F(P). Properties and definitions:

e Each face I of P satisfies F =(), F =P, or F = PN H for
a supporting hyperplane H to P

e Faces F' # (), P are called proper

e A face F is said to have dimension d (or, called a d-face) if
aff (F') is d-dimensional

o If = {x} is a O-face, then x is called a vertex. Moreover,

P = conv{zy,...xL}

for the vertices 1, ...z of P. Conversely, if P = conv(A),
then A contains the vertices of P

29



e If Fis an (n — 1)-face, then it is called a facet.* If Fy,...F,
are the facets of P, then

for halfspaces H;, then {bd(H;) N P :i=1,...m} contains
the facets of P

e The set of faces F(P) can be partially ordered by inclusion.
Note that, with respect to this ordering, vertices are minimal
proper faces, and facets are maximal proper faces

*This is assuming, without a loss of generality, that aff(P) = R"™. Otherwise
we just reparametrize to R?, where d = dim(aff(P))

30



Dual polytopes

Given a polytope P € R™, a polytope P* € R" is called its dual
polytope if there exists a one-to-one mapping ¥ : F(P) — F(P*)
that is inclusion-reversing:

FiCF < \I/(Fl) D) \II(FQ), all Fy, Fy € F(P)
This implies that
dim(F) + dim(¥(F)) =n — 1, all F e F(P)

E.g., cross-polytope (1-norm ball) and
hypercube (co-norm ball) are dual

(From http://en.wikipedia.org/
wiki/Dual_polyhedron)

Does every polytope have a dual? As we'll see shortly, answer is yes
31
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One use of polytope dualilty (among many) is that it allows us to
compute (in theory) one type of representation from the other:

e Suppose we had an H-representation for P*. From this we
can enumerate facets of FY,... F}7 of P*, and hence vertices

r=UYE), .. apy = UTYE)
of P. Therefore conv{zy,...x} is a V-representation for P

e Suppose we had V-representation for P*. Then we can
enumerate vertices x7, ...z, of P*, which yields facets

FL=9"Ya}), ... B, =v"1(z})

of P. Hence U/ | H; is an H-representation for P, where H;

are halfspaces with bd(H;) = aff (F;)
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Polar sets
Given a set C € R",

C°={yeR":yTz <1 forall z € C}
is called its polar set, and is always convex (even when C' is not)

Polarity is the most general form of geometric duality. Properties
and examples:

e If C is a closed, convex set containing 0, then C°° = C
e If C'is a cone, then

C°={yeR":yT2 <0 forall zc C} = -C*

where C* is the dual cone. Here C° is called the polar cone

e If C is a polytope, then C° is its dual polytope, and ¥ can be
defined by

U(F)={yeC®:y'z=1 forall z € C}
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e If C is the sublevel set of a norm || - ||,
C={zeR":|z| <t}
for some ¢t > 0, then its polar is also a sublevel set,
C°={y eR": |lyll. <1/t}

where || - ||« is the dual norm

e The support function of C satisfies
y) <1 & yecC°

and if C'is a cone, then I(y) = Ico(y)

e Support functions I} and I} are called dual seminorms,

and satisfy

Ty < IH(x)I5e(y) forall z,y € R™
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