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Remember KKT conditions

Recall that for the problem

min
x∈Rn

f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

`j(x) = 0, j = 1, . . . r

the KKT conditions are

• 0 ∈ ∂f(x) +

m∑
i=1

ui∂hi(x) +

r∑
j=1

vi∂`j(x) (stationarity)

• ui · hi(x) = 0 for all i (complementary slackness)

• hi(x) ≤ 0, `j(x) = 0 for all i, j (primal feasibility)

• ui ≥ 0 for all i (dual feasibility)

These are necessary for optimality (of a primal-dual pair x? and
u?, v?) under strong duality, and sufficient for convex problems
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Remember solving the primal via the dual

An important consequence of stationarity: under strong duality,
given a dual solution u?, v?, any primal solution x? solves

min
x∈Rn

f(x) +

m∑
i=1

u?ihi(x) +

r∑
j=1

v?i `j(x)

Often, solutions of this unconstrained problem can be expressed
explicitly, giving an explicit characterization of primal solutions
(from dual solutions)

Furthermore, suppose the solution of this problem is unique; then
it must be the primal solution x?

This can be very helpful when the dual is easier to solve than the
primal
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Consider as an example (from B & V page 249):

min
x∈Rn

n∑
i=1

fi(xi) subject to aTx = b

where each fi : R→ R is a strictly convex function. Dual function:

g(v) = min
x∈Rn

n∑
i=1

fi(xi) + v(b− aTx)

= bv +

n∑
i=1

min
xi∈R

(fi(xi)− aivxi)

= bv −
n∑

i=1

f∗i (aiv)

where f∗i is the conjugate of fi, to be defined shortly
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Therefore the dual problem is

max
v∈R

bv −
n∑

i=1

f∗i (aiv)

or equivalently

min
v∈R

n∑
i=1

f∗i (aiv)− bv

This is a convex minimization problem with scalar variable—much
easier to solve than primal

Given v∗, the primal solution x? solves

min
x∈Rn

n∑
i=1

(fi(xi)− aiv?xi)

Strict convexity of each fi implies that this has a unique solution,
namely x?, which we compute by solving ∂fi(xi) 3 aiv? for each i
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Dual subtleties

• Often, we will transform the dual into an equivalent problem
and still call this the dual. Under strong duality, we can use
solutions of the (transformed) dual problem to characterize or
compute primal solutions

Warning: the optimal value of this transformed dual problem
is not necessarily the optimal primal value

• A common trick in deriving duals for unconstrained problems
is to first transform the primal by adding a dummy variable
and an equality constraint

Usually there is ambiguity in how to do this, and different
choices lead to different dual problems!
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Lasso dual

Recall the lasso problem:

min
x∈Rp

1

2
‖y −Ax‖2 + λ‖x‖1

Its dual function is just a constant (equal to f?). Therefore we
redefine the primal as

min
x∈Rp, z∈Rn

1

2
‖y − z‖2 + λ‖x‖1 subject to z = Ax

so dual function is now

g(u) = min
x∈Rp, z∈Rn

1

2
‖y − z‖2 + λ‖x‖1 + uT (z −Ax)

=
1

2
‖y‖2 − 1

2
‖y − u‖2 − I{v : ‖v‖∞≤1}(A

Tu/λ)

This calculation will make sense once we learn conjugates, shortly
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Therefore the lasso dual problem is

max
u∈Rn

1

2

(
‖y‖2 − ‖y − u‖2

)
subject to ‖ATu‖∞ ≤ λ

or equivalently

min
u∈Rn

‖y − u‖2 subject to ‖ATu‖∞ ≤ λ

Note that strong duality holds here (Slater’s condition), but the
optimal value of the last problem is not necessarily the optimal
lasso objective value

Further, note that given u?, any lasso solution x? satisfies (from
the z block of the stationarity condition) z? − y + u? = 0, i.e.,

Ax? = y − u?

So the lasso fit is just the dual residual
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Outline

Today:

• Conjugate function

• Dual cones

• Dual polytopes

• Polar sets

(And there are lots more duals—e.g., dual graphs, alebgraic dual,
analytic dual—all related in some way...)
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Conjugate function

Given a function f : Rn → R, define its conjugate f∗ : Rn → R,

f∗(y) = max
x∈Rn

yTx− f(x)

Note that f∗ is always convex, since it is the pointwise maximum
of convex (affine) functions in y (f need not be convex)

f∗(y) : maximum gap between
linear function yTx and f(x)

(From B & V page 91)

For differentiable f , conjugation is called the Legendre transform
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Properties:

• Fenchel’s inequality: for any x, y,

f(x) + f∗(y) ≥ xT y

• Hence conjugate of conjugate f∗∗ satisfies f∗∗ ≤ f
• If f is closed and convex, then f∗∗ = f

• If f is closed and convex, then for any x, y,

x ∈ ∂f∗(y) ⇔ y ∈ ∂f(x)

⇔ f(x) + f∗(y) = xT y

• If f(u, v) = f1(u) + f2(v) (here u ∈ Rn, v ∈ Rm), then

f∗(w, z) = f∗1 (w) + f∗2 (z)
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Examples:

• Simple quadratic: let f(x) = 1
2x

TQx, where Q � 0. Then
yTx− 1

2x
TQx is strictly concave in y and is maximized at

y = Q−1x, so

f∗(y) =
1

2
yTQ−1y

Note that Fenchel’s inequality gives:

1

2
xTQx+

1

2
yTQ−1y ≥ xT y

• Indicator function: if f(x) = IC(x), then its conjugate is

f∗(y) = I∗C(y) = max
x∈C

yTx

called the support function of C; we’ll revisit this later
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• Norm: if f(x) = ‖x‖, then its conjugate is

f∗(y) =

{
0 if ‖y‖∗ ≤ 1

∞ else

where ‖ · ‖∗ is the dual norm of ‖ · ‖ (recall that we defined
‖y‖∗ = max‖z‖≤1 z

T y).

Why? Note that if ‖y‖∗ > 1, then there exists ‖z‖ ≤ 1 with
zT y = ‖y‖∗ > 1, so

(tz)T y − ‖tz‖ = t(zT y − ‖z‖)→∞, as t→∞

i.e., f∗(y) =∞

On the other hand, if ‖y‖∗ ≤ 1, then

zT y − ‖z‖ ≤ ‖z‖‖y‖∗ − ‖z‖ ≤ 0

and = 0 when z = 0, so f∗(y) = 0
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Conjugates and dual problems

Conjugates appear frequently in derivation of dual problems, via

−f∗(u) = min
x∈Rn

f(x)− uTx

in minimization of the Lagrangian. E.g., consider

min
x∈Rn

f(x) + g(x)

⇔ min
x∈Rn, z∈Rn

f(x) + g(z) subject to x = z

Lagrange dual function:

g(u) = min
x∈Rn, z∈Rn

f(x) + g(z) + uT (z − x) = −f∗(u)− g∗(−u)

Hence dual problem is

max
u∈Rn

−f∗(u)− g∗(−u)
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Examples of this last calculation:

• Indicator function: dual of

min
x∈Rn

f(x) + IC(x)

is
max
u∈Rn

−f(u)− I∗C(−u)

where I∗C is the support function of C

• Norms: the dual of

min
x∈Rn

f(x) + ‖x‖

is
max
u∈Rn

−f∗(u) subject to ‖u‖∗ ≤ 1

where ‖ · ‖∗ is the dual norm of ‖ · ‖
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Double dual

Consider general minimization problem with linear constraints:

min
x∈Rn

f(x)

subject to Ax ≤ b, Cx = d

The Lagrangian is

L(x, u, v) = f(x) + (ATu+ CT v)Tx− bTu− dT v

and hence the dual problem is

max
u∈Rm, v∈Rr

−f∗(−ATu− CT v)− bTu− dT v

subject to u ≥ 0

Recall property: f∗∗ = f if f is closed and convex. Hence in this
case, we can show that the dual of the dual is the primal
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Actually, the connection (between duals of duals and conjugates)
runs much deeper than this, beyond linear constraints. Consider

min
x∈Rn

f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

`j(x) = 0, j = 1, . . . r

If f and h1, . . . hm are closed and convex, and `1, . . . `r are affine,
then the dual of the dual is the primal

This is proved by viewing the minimization problem in terms of a
bifunction. In this framework, the dual function corresponds to the
conjugate of this bifunction (for more, read Chapters 29 and 30 of
Rockafellar)
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Cones

A set K ∈ Rn is called a cone if

x ∈ K ⇒ θx ∈ K for all θ ≥ 0

It is called a convex cone if

x1, x2 ∈ C ⇒ θ1x1 + θ2x2 ∈ C for all θ1, θ2 ≥ 0

i.e., K is convex and a cone

(From B & V page 26)
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Examples:

• Linear subspace: any linear subspace is a convex cone

• Norm cone: if ‖ · ‖ is a norm then

K = {(x, t) ∈ Rn+1 : ‖x‖ ≤ t}

is a convex cone, called a norm cone (epigraph of norm
function). Under 2-norm, called second-order cone, e.g.,

(From B & V page 31)
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• Normal cone: given a set C, recall we defined its normal cone
at a point x ∈ C as

NC(x) = {g ∈ Rn : gTx ≥ gT y for any y ∈ C}

●

●

●

●

This is always a convex cone,
regardless of C

• Positive semidefinite cone: consider the set of (symmetric)
positive semidefinite matrices

Sn+ = {X ∈ Rn×n : X = XT , X � 0}

This is a convex cone, because for A,B � 0 and θ1, θ2 ≥ 0,
xT (θ1A+ θ2B)x = θ1x

TAx+ θ2x
TBx ≥ 0
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Dual cones

For a cone K ∈ Rn,

K∗ = {y ∈ Rn : yTx ≥ 0 for all x ∈ K}

is called its dual cone. This is always a convex cone (even if K is
not convex)

Note that y ∈ K∗ ⇔
the halfspace {x ∈ Rn :
yTx ≥ 0} contains K

(From B & V page 52)

Important property: if K is a closed convex cone, then K∗∗ = K
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Examples:

• Linear subspace: the dual cone of a linear subspace V is V ⊥,
its orthogonal complement. E.g., (row(A))∗ = null(A)

• Norm cone: the dual cone of the norm cone

K = {(x, t) ∈ Rn+1 : ‖x‖ ≤ t}

is the norm cone of its dual norm

K∗ = {(y, s) ∈ Rn+1 : ‖y‖∗ ≤ s}

• Positive semidefinite cone: the convex cone Sn+ is self-dual,
meaning (Sn+)∗ = Sn+. Why? Check that

Y � 0 ⇔ tr(Y X) ≥ 0 for all X � 0

by looking at the eigenvalue decomposition of X
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Dual cones and dual problems

Consider the constrained problem

min
x∈K

f(x)

Recall that its dual problem is

max
u∈Rn

−f∗(u)− I∗K(−u)

where recall I∗K(y) = maxz∈K zT y, the support function of K. If
K is a cone, then this is simply

max
u∈K∗

−f∗(u)

where K∗ is the dual cone of K, because I∗K(−u) = IK∗(u)

This is quite a useful observation, because many different types of
constraints can be posed as cone constraints
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Generalized inequalities

If K ∈ Rn is a proper cone (convex cone, closed, solid, pointed),
then it induces a generalized inequality ≤K over Rn via

x ≤K y if y − x ∈ K

Examples:

• Componentwise inequality: the nonnegative orthant is a
proper cone, Rn

+ = {x ∈ Rn : xi ≥ 0 all i}, and it induces
the generalized inequality: x ≤Rn

+
y if and only if xi ≤ yi for

all i (we have been writing this as x ≤ y)

• Matrix inequality: Sn+ is a proper cone, and it induces the
generalized inequality: X ≤Sn+ Y if and only if Y −X is
positive semidefinite (we have been writing this as X � Y )

Hence any set of generalized inequalities can be posed in terms of
cone constraints
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Conic solvers

Two general suites of solvers, that rely on transforming a convex
problem into conic form (i.e., one with cone constraints) are CVX1

and TFOCS2

• Transformation to conic form is not necessarily unique, and
different transformations yield different problems, possibly of
varying difficulty

• CVX is more general; TFOCS is less general but can be a lot
faster (apparently close to state of the art)

• Both are freely available (implemented in MATLAB)

1M. Grant and S. Boyd (2008), Graph implementations for nonsmooth
convex problems, http://cvxr.com/cvx

2S. Becker and E. Candes and M. Grant (2010), Templates for convex cone
problems with applications to sparse signal recovery, http://cvxr.com/tfocs

25

http://cvxr.com/cvx
http://cvxr.com/tfocs


Given a problem in conic form, TFOCS (Templates for First-Order
Conic Solvers) derives and solves the dual problem3, and then
computes a primal solution relying on strong duality. Consider:

min
x∈Rn

f(x)

subject to Ax+ b ∈ K

for a convex cone K. The dual problem is

max
u∈Rn

−f∗(ATu)− bTu

subject to u ∈ K∗

Important point: projection onto K∗ is quite often a lot easier
than projection onto {x ∈ Rn : Ax+ b ∈ K}, so we can employ a
a first-order method on the dual

3Actually, in TFOCS the dual problem is often smoothed before being
solved, but we haven’t covered smoothing yet
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E.g., consider the problem

min
x∈Rp

f(x) subject to ‖y −Ax‖2 ≤ σ

where the parameter σ > 0 is a known fixed quantity. This can be
transformed into desired conic form by writing the constraint as[

A
0

]
x+

[
−y
σ

]
∈ {(z, t) ∈ Rn+1 : ‖z‖2 ≤ t}

i.e., K is the second-order cone. Note that K∗ = K, self-dual, and
projection onto K is easy:

PK(z, t) =


(z, t) if ‖z‖2 ≤ t
‖z‖2 + t

2‖z‖2
· (z, t) if − t ≤ ‖z‖2 ≤ t

(0, 0) if t ≤ −‖z‖2
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Polytopes

A polytope P ∈ Rn is the convex hull of a finite number of points
in Rn:

P = conv{x1, . . . xk}

This is called the V-representation of P . Fundamental result: P
is a polytope ⇔ P is a bounded polyhedron, i.e., P is bounded and

P =

m⋂
i=1

{x ∈ Rn : aTi x ≤ bi}

This is called the H-representation of P . These representations
also called primal and dual representations, we’ll see why shortly

H-representation

(From B & V page 32)
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Faces of polytopes

A face of a polytope P is a set F such that

x, y ∈ P and
x+ y

2
∈ F ⇒ x, y ∈ F

The set of faces of P written F(P ). Properties and definitions:

• Each face F of P satisfies F = ∅, F = P , or F = P ∩H for
a supporting hyperplane H to P

• Faces F 6= ∅, P are called proper

• A face F is said to have dimension d (or, called a d-face) if
aff(F ) is d-dimensional

• If F = {x} is a 0-face, then x is called a vertex. Moreover,

P = conv{x1, . . . xk}

for the vertices x1, . . . xk of P . Conversely, if P = conv(A),
then A contains the vertices of P

29



• If F is an (n− 1)-face, then it is called a facet.4 If F1, . . . Fm

are the facets of P , then

P =

m⋂
i=1

Hi

for halfspaces Hi such that bd(Hi) = aff(Fi). Conversely, if

P =

m⋂
i=1

Hi

for halfspaces Hi, then {bd(Hi) ∩ P : i = 1, . . .m} contains
the facets of P

• The set of faces F(P ) can be partially ordered by inclusion.
Note that, with respect to this ordering, vertices are minimal
proper faces, and facets are maximal proper faces

4This is assuming, without a loss of generality, that aff(P ) = Rn. Otherwise
we just reparametrize to Rd, where d = dim(aff(P ))
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Dual polytopes

Given a polytope P ∈ Rn, a polytope P ∗ ∈ Rn is called its dual
polytope if there exists a one-to-one mapping Ψ : F(P )→ F(P ∗)
that is inclusion-reversing:

F1 ⊆ F2 ⇔ Ψ(F1) ⊇ Ψ(F2), all F1, F2 ∈ F(P )

This implies that

dim(F ) + dim(Ψ(F )) = n− 1, all F ∈ F(P )

E.g., cross-polytope (1-norm ball) and
hypercube (∞-norm ball) are dual

(From http://en.wikipedia.org/

wiki/Dual_polyhedron)

Does every polytope have a dual? As we’ll see shortly, answer is yes
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One use of polytope dualilty (among many) is that it allows us to
compute (in theory) one type of representation from the other:

• Suppose we had an H-representation for P ∗. From this we
can enumerate facets of F ∗1 , . . . F

∗
k of P ∗, and hence vertices

x1 = Ψ−1(F ∗1 ), . . . xk = Ψ−1(F ∗k )

of P . Therefore conv{x1, . . . xk} is a V -representation for P

• Suppose we had V -representation for P ∗. Then we can
enumerate vertices x∗1, . . . x

∗
m of P ∗, which yields facets

F1 = Ψ−1(x∗1), . . . Fm = Ψ−1(x∗m)

of P . Hence ∪mi=1Hi is an H-representation for P , where Hi

are halfspaces with bd(Hi) = aff(Fi)
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Polar sets
Given a set C ∈ Rn,

C◦ = {y ∈ Rn : yTx ≤ 1 for all x ∈ C}

is called its polar set, and is always convex (even when C is not)

Polarity is the most general form of geometric duality. Properties
and examples:

• If C is a closed, convex set containing 0, then C◦◦ = C

• If C is a cone, then

C◦ = {y ∈ Rn : yTx ≤ 0 for all x ∈ C} = −C∗

where C∗ is the dual cone. Here C◦ is called the polar cone

• If C is a polytope, then C◦ is its dual polytope, and Ψ can be
defined by

Ψ(F ) = {y ∈ C◦ : yTx = 1 for all x ∈ C}
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• If C is the sublevel set of a norm ‖ · ‖,

C = {x ∈ Rn : ‖x‖ ≤ t}

for some t > 0, then its polar is also a sublevel set,

C◦ = {y ∈ Rn : ‖y‖∗ ≤ 1/t}

where ‖ · ‖∗ is the dual norm

• The support function of C satisfies

I∗C(y) ≤ 1 ⇔ y ∈ C◦

and if C is a cone, then I∗C(y) = IC◦(y)

• Support functions I∗C and I∗C◦ are called dual seminorms,
and satisfy

xT y ≤ I∗C(x)I∗C◦(y) for all x, y ∈ Rn

34



References

• S. Boyd and L. Vandenberghe (2004), Convex Optimization,
Cambridge University Press, Chapters 2, 3, 5

• B. Grunbaum (2003), Convex Polytopes, Springer, Chapters
2, 3

• R. T. Rockafellar (1970), Convex Analysis, Princeton
University Press, Chapters 12, 13, 14, 16

35


