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17.1 Three things talked in class

• How to construct the dual problem with/without constraints.

• What is the conjuate of a function and how to construct the dual via conjugate functions.

• What is the dual cone and software packages that utilize cone constraints.

17.2 Constructing the dual problem

17.2.1 Recall

The primal and dual of an optimization problem is essentially a change in the order of which variables to
optimize,

L(x, u, v) = f(x) +
m∑

i=1

uihi(x) +
r∑

j=1

vj lj(x) (Lagrangian)

min
x

max
u≥0,v|x

L(x, u, v) = min
hi(x)≥0,lj(x)=0

f(x) (primal problem)

max
u≥0,v

min
x|u,v

L(x, u, v) = max
u≥0,v

g(u, v) (dual problem)

Special with the dual problem, under strong duality, given any dual solution u∗, v∗, the minimizer x∗ solves
g(u∗, v∗) = L(x∗, u∗, v∗), i.e.,

min
x
f(x) +

m∑
i=1

u∗i hi(x) +
r∑

j=1

v∗j lj(x)

and conversely the minimizer for the above is the primal solution if the primal solution is unique.

17.2.2 Two running examples

Example:Running example 1. Consider the following convex problem when fi : R→ R is strictly convex,

min
x

n∑
i=1

fi(xi) subject to aTx = b
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The dual function is g(v) = min
x∈Rn

L(x, v) = min
x∈Rn

n∑
i=1

fi(xi) + v(b− aTx) = bv +
n∑

i=1

min
xi∈R

(fi(xi)− aivxi).

Now the dual problem is a univariate problem that is much easier to solve,

v∗ = arg max
v∈R

g(v) = bv −
n∑

i=1

max
xi∈R

(aivxi − fi(xi)), (17.1)

x∗i = arg max
xi

aiv
∗xi − fi(xi). (17.2)

Example:Unconstrained optimization. Running example 2. In order to derive a dual problem of the Lasso
problem,

min
x∈Rp

1
2
‖y −Ax‖2 + λ‖x‖1

We mandate a constraint by introducing z = Ax as,

min
x∈Rp,z∈Rn

1
2
‖y − z‖2 + λ‖x‖1 subject to z = Ax

Now the dual function is

g(u) = min
x∈Rp,z∈Rn

1
2
‖y − z‖2 + λ‖x‖1 + uT (z −Ax)

= min
z∈Rn

(
1
2
‖y − z‖2 + uT z) + min

x∈Rp
(λ‖x‖1 − uTAx) (17.3)

where

first term = min
z∈Rn

(
1
2
‖z‖2 + (u− y)T z +

1
2
‖y‖2)

= min
z∈Rn

(
1
2
‖z + (u− y)‖2 − 1

2
‖u− y‖2 +

1
2
‖y‖2) =

1
2
‖y‖2 − 1

2
‖y − u‖2,

and because ∂λ‖x‖1 ∈ [−λ, λ]p, ∂x(λ‖x‖1 − uTAx) = ∂(λ‖x‖1)− uTA = 0⇒ uTA ∈ [−λ, λ]p.

second term =

{
0 −λ ≤ uTA < λ

−∞ otherwise

}
≈ I{v:‖v‖∞≤1}(ATu/λ)

Therefore the lasso dual function and dual problem are resp.

g(u) =
1
2

(‖y‖2 − ‖y − u‖2)− I{v:‖v‖∞≤1}(ATu/λ)

and max
u∈Rn

1
2

(‖y‖2 − ‖y − u‖2) subject to ‖ATu‖∞ ≤ λ.

The primal correspondance,

x∗ = arg max
x∈Rp

(uTAx− λ‖x‖1)

z∗ = arg max
z∈Rn

(−uT z − 1
2
‖y − z‖2). (17.4)
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17.2.3 Summary

• (Disclamer). For clarity (or laziness), an equivalent problem of the dual problem is still called the dual
problem, even though its optimal value does not necessarily equal the optimal primal value.

• The dummy variable z used in example 2 is a common trick in deriving duals for unconstrained
problems.

• (Question for the reader). How to derive a dual problem for example 2 when the dummy variable is
defined alternatively as z = x?

17.3 Conjugate functions: definition and properties

In both the above examples, (17.1), (17.2), (17.3), (17.4) fall in the framework of conjugate functions.

Definition 17.1 Given a function f : Rn → R, define its conjugate f∗ : Rn → R as

f∗(y) = max
x∈Rn

yTx− f(x). (17.5)

The conjugate of differentiable f is called its Legendre transform.

Figure 17.1: conjugate

Note that the f∗(y) is always convex even when f is not. This is because (17.5) is a maximization of the
family of linear functions f(y;x, f(x)) = xT y − f(x), where x and f(x) are viewed as parameters.

Properties

• Fenchel’s inequality: for any x, y, f(x) + f∗(y) ≥ xT y. (proof by definition)

• Hence, f∗∗ ≤ f . (proof left for the reader)

• If f is closed and convex, then f∗∗ = f . (proof left for the reader)

• If f is closed and convex, then for any x, y

x ∈ ∂f∗(y)⇔ y ∈ ∂f(x)⇔ f(x) + f∗(y) = xT y. (proof followed)

• If f(u, v) = f1(u) + f2(v) then f∗(w, z) = f∗1 (w) + f∗2 (z). (c.f. (17.3))
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Proof: Take ∂x or ∂y on both sides of f(x) + f∗(y) = xT y, we get the first two formulations resp. It suffices
to show that x ∈ ∂f∗(y)⇒ f(x) + f∗(y) = xT y.

Take the subdifferential of (17.5), which is a maximization over a family of convex linear functions, we have

∂f∗(y) = conv(
⋃
{x : yTx− f(x) = max

z∈Rn
yT z − f(z)})

Also note that ∀x =
∑
λixi with λi > 0,

∑
λi = 1, and yTxi − f(xi) = maxz∈Rn yT z − f(z), we have

f(x) ≤
∑

λif(xi)

⇒ f∗(y) ≥ yTx− f(x) ≥
∑

λi(yTxi − f(xi)) = f∗(y).

17.4 The conjugate function as a way to form the dual problem

There are four groups of objective functions that may generalize to most common cases, namely indica-
tor functions, norm functions, pairs of unconstraint functions, and convex functions with general linear
constraints.

17.4.1 Conjugates of the indicator function and the norm function

Example: indicator function If f(x) = IC(x), then its conjugate is

f∗(y) = max
x∈Rn

yTx− IC(x) = max
x∈C

yTx = I∗C(y). (17.6)

Here, the f∗(y) is the support function of C. Geometrically, it is the perpendicular distance from the origin
to the supporting hyperplane of C that has normal vector y and that contains C on the same side as the
origin. Specially, when C = ‖x‖ ≤ λ a is norm constraint, then I∗C(−u) = λ‖u‖∗ is a norm penalty.

Example: norm If f(x) = ‖x‖, then its conjugate is

f∗(y) = max
x∈Rn

yTx− ‖x‖ =

{
0 ‖y‖∗ ≤ 1
∞ else

. (17.7)

Recall that ‖y‖∗ = max
‖x‖≤1

yTx and hence ‖x‖‖y‖∗ ≥ yTx. When ‖y‖∗ ≤ 1, yTx ≤ ‖x‖‖y‖∗ ≤ ‖x‖, equality

(necessarily) when x = 0. When ‖y‖∗ > 1, the x that allows yTx = ‖x‖‖y‖∗ > ‖x‖ can make this inequality
gap arbitrarily large.

17.4.2 Dual construction via conjugates of pairs of functions

Example: pairs of functions Consider the problem

min
x∈Rn

f(x) + g(x)⇔ min
x∈Rn,z∈Rn

f(x) + g(z) subject to x = z (17.8)
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The Lagrange dual function of RHS, in a way similar to (17.3), is

g(u) = min
x∈Rn,z∈Rn

f(x) + g(z) + uT (z − x)

= min
x∈Rn

(f(x)− uTx) + min
y∈Rn

(g(z) + uT z)

= −max
x∈Rn

(uTx− f(x))− max
y∈Rn

(−uT z − g(z))

= −f∗(u)− g∗(−u).

Hence, the dual problem corresponding to (17.8) is

max
u∈Rn

−f∗(u)− g∗(−u).

Example: indicator function The dual of

min
x∈C

f(x) = min
x∈Rn

f(x) + IC(x)

is, via utilizing (17.8) and (17.6),
max
u∈Rn

−f(u)− I∗C(−u)

Specially, when C = ‖x‖ ≤ λ a is norm constraint, then I∗C(−u) = λ‖u‖∗ is a norm penalty.

Example: norm The dual of
min
x∈Rn

f(x) + ‖x‖

is, via utilizing (17.8) and (17.7),
max
u∈Rn

−f(u) subject to ‖u‖∗ ≤ 1

Notice that the above two examples solve the same problem with the definition of dual and primal altered,
when C is exactly {x : ‖x‖∗ ≤ 1}. Following the property f∗∗ = f under closeness and convexity, it is easy
to understand that I∗C(−u) = ‖u‖, c.f. (17.7).

17.4.3 Linear constraints and double dual

Example: Consider the general convex problem with linear constraints,

min
x∈Rn

f(x)

subject to Ax ≤ b, Cx = d

The Lagrangian is
L(x, u, v) = f(x) + (ATu+ CT v)Tx− bTu− dT v

and hence the dual problem is

max
u∈Rm,v∈Rr

− f∗(−ATu− CT v)− bTu− dT v

subject to u ≥ 0
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Now, the Lagrangian of the dual should be the same as above but represented by f∗,

L∗(x, u, v) = −f∗(t) + xT (t+ATu+ CT v)− bTu− dT v + yTu

The dual of dual is

max
u∈Rm,v∈Rr

L∗(x, u, v) = max
t∈R

(xT t− f∗(t)) + max
t∈Rm

(xTATu− bTu− yTu) + max
v∈Rr

(xTCT v − dT v)

= f(x) + I{(x,y):Ax−b−y=0}(x, y) + I{x:Cx−d=0}(x).

Hence the dual of dual problem is exactly the primal,

min
x∈Rn,y≥0

f(x) + I{(x,y):Ax=b+y}(x, y) + I{x:Cx=d}(x)

= min
x∈Rn

f(x) subject to Ax ≥ b, Cx = d.

The above conclusion that the dual of the dual is the primal can be extended to the general case

min
x∈Rn

f(x) subject to hi(x) ≤ 0, lj(x) = 0

where f and hi are closed and convex and lj are affine.

17.5 Cones and its application in optimization problems

Cone is one of the basic concepts in convex optimization which is going to be very useful in future lectures.
The formal definition of cone is as follow.

Definition 17.2 A set K ∈ R is called Cone iff x ∈ K =⇒ θx ∈ K for all θ ≥ 0

Examples of cone could be a the origin itself or any single ray going through the origin. Or even any two
rays intersecting at origin can be also considered as a cone.

If a cone K is a convex set then it is called convex cone, which is equivalent to say:

Definition 17.3 A set K ∈ R is called a Convex Cone iff x1, x2 ∈ C =⇒ θ1x1 +θ2x2 ∈ C for all θ1, θ2 ≥ 0

here a simple convex cone has been depicted in figure 17.1

Some Examples of convex cone:

• Any Linear subspace

• Non negative Orthant Rn
+ = {x ∈ Rn : xi ≥ 0 all i}

• Positive Semi definite cone: Set of (symmetric) positive semidefine materices

• Norm Cone: epigraph of norm function

• Normal Cone of Set C at any point x is always a convex cone.
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Figure 17.1: A picture of Convex Cone.

Figure 17.2: Second Order Cone.

Definition 17.4 Norm Cone: if ||.|| is a norm then the set defnied as K = {(x, t)Rn+1 : ||x|| ≤ t} is a
convex cone called a norm cone.

The second order cone which is a norm cone under 2-norm has be depicted in 17.2

Definition 17.5 Proper cone: a cone K is called paroper if it is convex, closed, solid and pointed

An example of proper cone could be nonnegative orthant.

Definition 17.6 Normal Cone: given a set C its normal cone at point x is defined as: Nc(x) = {g ∈ Rn :
gT (y − x) ≤ 0for any y ∈ C}

here normal cone for a set C at three different point been depicted in figure 17.3

17.5.1 generalized inequality

We can use the cone to generalized the definition of inequality as following:
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Figure 17.3: A picture of Convex Cone.

Definition 17.7 If K ∈ Rn is a proper cone then it induces a generalized inequatilit ≤K over Rn via
x ≤K yiffy − x ∈ K

Some Examples of inequailities induced by proper cones:

• componentwise inequailty: for two vecto x and y, x ≤Rn
+

iff xi ≤ yi for all i

• Matrix inequaity: for two matrix X and Y, X ≤Sn
+
Y iff Y −X ∈ Sn

+

17.5.2 Dual Cones

Dual cone is one of important concept in convex optimization that specially could be very useful in deriving
the dual program. Here we first define the concept of dual cone:

Definition 17.8 For a cone K ∈ Rn its dual cone K∗ is defined as: K∗ = {y ∈ Rn : yTx ≥ 0 for all x ∈ K}.

There are two important property for dual cones:

• the Dual cone K∗ is always a convex cone;

• If K is closed and convex then K∗∗ = K

Here is three popular examples of dual cones:

• Linear Subspace: the dual cone of any linear subspace is its orthogonal complement. The useful special
case: (RowSpace(A))∗ = null(A)

• The dual of a norm cone K = {(x, t) ∈ Rn+1 : ||x|| ≤ t} is the norm cone of its dual norm which is
K∗ = {(y, s) ∈ Rn+1 : ||y||∗ ≤ s}

• Non negative orthant is self dual (Rn
+)∗ = Rn

+.

• Positive semidefinite cone is self dual: ((S)n
+)∗ = (S)n

+
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17.5.2.1 Dual cone and Dual Program

We can use the dual cone concept to derive the dual program as following:

Consider the constraint poroblem minx∈Kf(x), Recall that its dual program is maxu∈Rn − f∗(u)− I∗K(−u),
where I∗K(y) = maxz∈Kz

T y is the support function of K. Now, if we assume that K is a cone, and its
dual cone is K∗, then considering the fact that I∗K(−u) = IK∗(u), the support funciton would be equal to
maxu∈K∗ − f∗(u) where K∗ is the dual cone of K.

The above observation could be very useful in findignt the dual program of optimization problems because
many different types of constraints can be posed as cone constraints.

17.5.3 Conic Solvers

Two general convex optimization packages, that rely on transforming a convex problem into conic form
(i.e. one with cone constraints) are CVX 1 and TFOCS 2 that both are implemented in matlab. Roughly
speaking CVX is more general and use better transfromation for derinving coninc constraints, However
TFOCS can be a lot faster even though its less general.
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