10-725: Optimization Fall 2012

Lecture 10: September 27

Lecturer: Geoff Gordon Scribes: Antonio Juarez, Peter Lund

Note: LaTeX template courtesy of UC Berkeley EECS dept.

**Disclaimer**: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

This lecture's notes illustrate some uses of various LATEX macros. Take a look at this and imitate.

## 10.1 (Leftover from previous class) Optimization for nice problems

It is noticed that for problems that are "well-behaved":

- Have a decent signal-to-noise ratio
- Correlation between dimensions is under control.
- Number of dimensions is not much larger than the number of data.

Convergence rates are much quicker than the theoretical O(1/k) rate. Explanations for this behavior are still an open research topic.

#### 10.2 Matrix calculus

Taking derivatives of functions that involve matrices can be painful. They can involve:

- Writing out the matrix in full detail with many summations and indices
- Differentiating each of the terms carefully, taking care to treat each indexation correctly.
- Simplifying the expressions to a compact form, if any

An alternative is to use matrix differentials. Matrix differentials are justified by Taylor's theorem. If f is sufficiently nice, then

**Exercise:** 
$$f(y) = f(x) + f'(x)(y - x) + r(y - x)$$

has 
$$r(y-x) \to 0$$
 as  $y-x \to 0$ .

Then we define our differentials:

• 
$$df = f(y) - f(x)$$

 $\bullet \ dx = y - x$ 

These differentials are meant to be thought of as increments, not necessarily as infinitesimals.

We then define a, a linear function in dx, to be the differential of f:

$$df = a(x; dx) + r(dx)$$

Because a is linear in dx, we have:

- a(x; kdx) = ka(x; dx)
- $a(x; dx_1 + dx_2) = a(x; dx_1) + a(x; dx_2)$

These properties imply that:

- d(f(x) + g(x)) = df(x) + dg(x)
- d(kf(x)) = kdf(x)

#### 10.2.1 Examples of linear functions

- Reshape (e.g. Converting a 4X3 matrix to a 6X2 matrix)
- Trace (i.e.  $\Sigma_i A_{ii}$ )
- Transpose

#### 10.3 Differential rules

#### 10.3.1 Chain rule

We derive the chain rule for matrix differentials:

**Proof:** If L(x) = f(g(x)) we express the differentials df = a(g(x); dg)[+r(dg)] dg = b(x; dx)[+s(dx)]

We join them in L to obtain:

$$dL = a(g(x); b(x; dx) + S(dx)) + r(dg) = a(g(x); b(x; dx))[+a(g(x); S(dx)) + r(dg)]$$

The right side, in square brackets, goes to 0 as  $dx \to 0$ .

#### 10.3.2 Product rule

If L(x) = c(f(x), g(x)) where c is **bilinear** (e.g. linear in each argument when the other is fixed) then dL = c(df; g(x)) + c(f(x); dg)

The proof is skipped. (Note: f,g can be scalars, vectors, or matrices.)

## 10.3.3 Examples of products

- Cross product
- Hadamard product (element-wise product)
- Kronecker product (One matrix is expanded at the position of each element from the other)
- Frobenius product  $(\Sigma_{ij}A_{ij}B_{ij} = tr(A^TB))$

| >> kron(A | , B) |    |   |    |    |
|-----------|------|----|---|----|----|
| ans =     |      |    |   |    |    |
| 2         | 2    | 6  | 6 | 10 | 10 |
| 2         | 2    | 6  | 6 | 10 | 10 |
| 4         | 4    | 8  | 8 | 12 | 12 |
| 4         | 4    | 8  | 8 | 12 | 12 |
| >> kron(B | , A) |    |   |    |    |
| ans =     |      |    |   |    |    |
| 2         | 6    | 10 | 2 | 6  | 10 |
| 4         | 8    | 12 | 4 | 8  | 12 |
| 2         | 6    | 10 | 2 | 6  | 10 |
|           | 8    | 12 | 4 | 8  | 12 |

Figure 10.1: Kronecker product

## 10.4 Identification theorems

The identification theorems describe how to switch between conventional and differential notation. They are summarized in this figure:

| ID for df(x)    | scalar x                 | vector <b>x</b>                   | matrix X          |
|-----------------|--------------------------|-----------------------------------|-------------------|
| scalar f        | df = a dx                | $df = \mathbf{a}^{T} d\mathbf{x}$ | $df = tr(A^T dX)$ |
| vector <b>f</b> | d <b>f</b> = <b>a</b> dx | d <b>f</b> = A d <b>x</b>         |                   |
| matrix F        | dF = A dx                |                                   |                   |

Figure 10.2: Identification theorems

# 10.5 Independent Components Analysis

Suppose we have n training examples  $x_i \in \mathbb{R}^d$  and a scalar-valued, component-wise function g. We would like to find the  $d \times d$  matrix W that maximizes the entropy of  $y_i = g(Wx_i)$ . In the next lecture, we will be using the toolset developed today to tackle this problem.