
10-725/36-725 Optimization Midterm Exam

November 6, 2012

NAME:

ANDREW ID:

Instructions:

This exam is 1hr 20mins long.

Except for a single two-sided sheet of notes, no other material or discussion is
permitted.

There are 11 one-sided sheets. Please use the other side for rough work.
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1 Warm start [Shiva, 25 points]

1.1 Multiple choice [15 points]

Circle the correct answer in each of the following questions.

1. Which of the following functions is convex in x ∈ Rn?

(a) ||x||1/2

(b)
√
||x||2

(c) maxj
√
xj

(d) mini a
T
i x

[e ] log
∑

j exp(xj)

2. What is the normal cone of the nonnegative orthant {x : xi ≥ 0} at the origin?

(a) The nonnegative orthant {x : xi ≥ 0}

[b ] The nonpositive orthant {x : xi ≤ 0}

(c) The line y = x

(d) The line y = −x

(e) The zero vector

3. In a nonsingular standard form linear program

min cTx s.t. Ax = b

where x, c ∈ Rn, b ∈ Rm, and A ∈ Rm×n, how many basic variables are there?

(a) n

[b ] m

(c) n−m

(d) n+m

(e) max{n,m}
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4. If the dual (maximization) LP is feasible and unbounded then the primal (minimiza-
tion) LP is

(a) nonsingular

[b ] infeasible

(c) bounded

(d) unbounded

(e) zero

5. Given the general optimization program

min f(x) s.t. g(x) ≤ 0, h(x) = 0

consider its Lagrangian L(x, u, v) with u and v introduced for the inequality and equal-
ity constraints, respectively. Which of the following is true?

(a) L(x∗, u, v) = L(x, u∗, v∗) for primal-optimal x∗, dual-optimal (u∗, v∗), and all
x, u, v

(b) L is convex in x

[c ] L is concave in u and v

(d) f(x) ≥ L(x, u, v) for all x, u, v

(e) u∗i · hi(x) = 0 at dual-optimal u∗ for all i

1.2 Conjugate functions [5 points]

Derive the conjugate function f ∗(y) for each of the following functions:

1. f(x) = 3x2 + 4x

f ∗(y) = maxx x · y − (3x2 + 4x). By stationarity y − 6x− 4 = 0 =⇒ x = y−4
6

. Thus

f ∗(y) = (y−4)2
12

.

2. f(x) = − lnx+ 2

f ∗(y) = maxx x · y + ln(x) − 2. If y ≥ 0, then clearly f ∗(y) = ∞. Otherwise, by
stationarity y + 1

x
= 0 =⇒ x = − 1

y
. Thus f ∗(y) = −3 + ln(− 1

y
) = −3− ln(y)
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1.3 Matrix differential [5 points]

Let L = ||Ax− b||22 where A is a matrix and x and b are vectors. Derive dL in terms of dx.

L = (Ax − b)T (Ax − b) = xTATAx − xTAT b − bTAx + bT b so dL = xTATdx − dxTAT b −
bTAdx.
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2 First and second order methods [Wooyoung, 20 points]

Consider the function f(x) = f(x1, x2) = (x1 + x22)
2.

(a) [4 points] Derive the gradient of f(x).
FSOLUTION:

∇f(x) =

(
2x1 + 2x22

4x1x2 + 4x32

)
.

(b) [3 points] At the point x0 = (0, 1)T , we consider the search direction p = (1,−1)T .
Show that p is a descent direction.
FSOLUTION:
∇f(x0) = (2, 4)T .
∇f(x0)

Tp = 2− 4 = −2 < 0.
Therefore, p is a descent direction at x0.

(c) [3 points] Find the stepsize α that minimizes f(x0 + αp); that is, what is the result of
this exact line search? Report f(x0 + αp).
FSOLUTION:
We need to find α that minimizes

f(x0 + αp) = f((0, 1)T + (α,−α)T ) = f((α, 1− α)T ) = (α + (1− α)2)2

= (α2 − α + 1)2 = ((α− 1

2
)2 +

3

4
)2

Minimizing f(x0+αp) with respect to α is equivalent to minimizing g(α) = (α−1

2
)2+

3

4

since g(α) > 0 and α =
1

2
is the minimizer.

Therefore, f(x0 + αp) = (
3

4
)2 =

9

16
.
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(d) [5 points] Derive the Hessian of f(x).
FSOLUTION:

∇2f(x) =

(
2 4x2

4x2 4x1 + 12x22

)
.

(e) [5 points] Run one Newton’s step with fixed stepsize t = 1 starting from x0 = (0, 1)T

to compute x1. Show x1 and f(x1).
Hint: The inverse of a 2× 2 matrix is as follows(

a b
c d

)−1
=

1

ad− bc

(
d −b
−c a

)
.

FSOLUTION:

∇2f(x0) =

(
2 4
4 12

)
.

∆xnt = −(∇2f(x0))
−1∇f(x0) = −1

8

(
12 −4
−4 2

)(
2
4

)
=

(
−1
0

)
.

Therefore, x1 = x0 + t∆xnt = (0, 1)T + (−1, 0)T = (−1, 1)T and f(x1) = 0.
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3 Projection and convexity [Aadi, 25 points]

3.1 Projecting onto nullspaces

The nullspace of a matrix A (∈ Rm×n,m < n) is defined to be the set of all x ∈ Rn such
that Ax = 0. The projection of a point z onto a convex set S is defined as the point x∗ ∈ S
which is closest in Euclidean distance to z. Find a closed form solution for the projection of
z onto the convex set {x | Ax = 0}. (You can assume A is full rank, i.e., rank m.) To solve
the problem, set it up as a constrained optimization, write out the Lagrangian, and derive
the KKT conditions. [13 points]

Solution minx ‖x− z‖22 such that Ax = 0. Lagrangian L(x, λ) = ‖x− z‖22 + λ>Ax. KKT
conditions give Ax∗ = 0 and x∗ − z + A>λ∗ = 0. The second condition (on multiplying by
A) yields Az = AA>λ∗, implying λ∗ = (AA>)−1Az, yielding x∗ = z − A>(AA>)−1Az.

3.2 Understanding convexity

Consider the five functions x, x2, x3, x4, x5. Which of these functions are convex on R? Which
are strictly convex on R? Which are strongly convex on R? Which are strongly convex on
[0.5, 4.5]? NO EXPLANATIONS REQUIRED! [12 points]

Convex: [3 pts] x, x2, x4

Strictly convex: [3 pts] x2, x4

Strongly convex: [3 pts] x2

Strongly convex on [0.5, 4.5]: [3 pts] x2, x3, x4, x5
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4 The Dantzig Selector [Kevin, 25 Points]

The Dantzig selector is another regression technique for when the problem dimension is larger
than the number of data points, like LASSO. That is, we wish to learn a sparse w ∈ Rp such
that y ≈ f(x) = wTx.

Let X is an n by p matrix of n examples, y is an n-dimensional vector of targets, and ε > 0 is
a supplied constant. The Dantzig selector is a solution to the following convex optimization
problem:

min
w
‖w‖1 subject to: (1)

‖XT (y −Xw)‖∞ ≤ ε (2)

The L1-norm objective attempts to keep the weight vector w sparse, like in the LASSO
optimization. The constraints impose that no feature has high dot product with the residual.
That is, either the prediction error is low, or no single feature can explain the remaining
error.

Let’s reformulate the optimization problem as a linear program by expanding the norms and
introducing an auxilary vector t ∈ Rp. Here, 1 is the vector of all ones.

min
w,t

1T t, subject to: (3)

XT (y −Xw) ≤ ε1, (4)

−XT (y −Xw) ≤ ε1, (5)

w ≤ t, (6)

−w ≤ t. (7)

(a) [6 points] Write the dual linear program of the reformulated program. Use α, β, γ, δ ≥ 0
as your dual variables for the four sets of constraints (in that order).

Solution:

max
α,β,γ,δ≥0

yTX(α− β)− ε1T (α + β) subject to: (8)

XTX(α− β) = γ − δ, (9)

δ + γ = 1. (10)

(b) [6 points] Rewrite this dual program by replacing α − β = q and γ − δ = z. Your
program will no longer be a linear program. You do not need to justify your answer.
Hint 1: Given the constraint zi = γi − δi and the constraints you derived on γi and δi,
what is the largest that zi could be? What is the smallest that zi could be?
Hint 2: Think about the norms and their duals in the original program.
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Solution:

max
q,z

yTXq − ε‖q‖1 subject to: (11)

XTXq = z, (12)

‖z‖∞ ≤ 1. (13)

(c) [1 points] You should have one remaining linear constraint involving XTX. Use it to
eliminate z.

Solution:

max
q

yTXq − ε‖q‖1 subject to: (14)

‖XTXq‖∞ ≤ 1. (15)

Let w̃(ε) be a LASSO solution with regularization parameter ε,

w̃(ε) = arg min
w
‖y −Xw‖2/2 + ε‖w‖1 (16)

and write w(ε) for the solution to the Dantzig selector program with the same value of ε.
We will show how to relate w̃(ε) to w(ε).

(d) [6 points] Write the KKT (i.e., first-order optimality) conditions for the LASSO opti-
mization at w̃(ε).

Solution:

XT (y −Xw̃(ε))

ε
∈ ∂‖w̃(ε)‖1 (17)

(e) [6 points] Using the KKT conditions, show that w̃(ε) is a feasible point for the Dantzig
selector optimization with parameter ε.

Solution:

For all j ∈ {1, 2, . . . , p},
|XT

j (y −Xw̃(ε))|
ε

≤ 1 (18)

|XT
j (y −Xw̃(ε))| ≤ ε (19)

max
j
|XT

j (y −Xw̃(ε))| ≤ ε (20)

‖XT (y −Xw̃(ε))‖∞ ≤ ε (21)

(22)

We’ve now shown that the Dantzig selector finds solutions whose L1-norm is at least as small
as the LASSO solution.
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GRADING

Shiva:

Wooyoung:

Aadi:

Kevin:

TOTAL: / 95
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