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Abstract

Visual Hull (VH) construction from silhouette images is
a popular method of shape estimation. The method, also
known as Shape-From-Silhouette (SFS), is used in many ap-
plications such as non-invasive 3D model acquisition, ob-
stacle avoidance, and more recently human motion track-
ing and analysis. One of the limitations of SFS, however,
is that the approximated shape can be very coarse when
there are only a few cameras. In this paper, we propose
an algorithm to improve the shape approximation by com-
bining multiple silhouette images captured across time. The
improvement is achieved by first estimating the rigid motion
between the visual hulls formed at different time instants (vi-
sual hull alignment) and then combining them (visual hull
refinement) to get a tighter bound on the object’s shape. Our
algorithm first constructs a representation of the VHs called
the bounding edge representation. Utilizing a fundamen-
tal property of visual hulls which states that each bounding
edge must touch the object at at least one point, we use
multi-view stereo to extract points called Colored Surface
Points (CSP) on the surface of the object. These CSPs are
then used in a 3D image alignment algorithm to find the 6
DOF rigid motion between two visual hulls. Once the rigid
motion across time is known, all of the silhouette images
are treated as being captured at the same time instant and
the shape of the object is refined. We validate our algorithm
on both synthetic and real data and compare it with Space
Carving.

1. Introduction

Three dimensional shape estimation from multiple cam-
eras has long been an important and active research topic
in computer vision. Among the algorithms that were pro-
posed in the last two decades, the method of Visual Hull
(VH) construction or Shape-From-Silhouette (SFS) approx-
imates the shape of an object using silhouette images.
Since its first introduction in [1], different variations, rep-
resentations and applications of SFS have been proposed
[14, 15, 10, 11, 2, 4, 9, 21], and it has become a standard and
popular method of shape estimation. Estimating 3D shape
using SFS has many advantages. Silhouettes are readily and
easily obtainable and the implementation of SFS methods
is generally straightforward. The visual hulls constructed
using SFS provide an upper bound on the shape of the ob-

ject. This inherently conservative property is particularly
useful in applications such as obstacle avoidance and visi-
bility analysis.

On the other hand, if there are only a few cameras, the
visual hulls obtained using SFS can be a very coarse ap-
proximation to the shape of the actual object. This poses
a big disadvantage for SFS in applications such as detailed
shape acquisition and realistic re-rendering of objects.

Better shape estimates can be obtained using SFS if the
number of distinct silhouette images is increased. This can
be done in one of two ways: across space or across time.
By across space, we mean increasing the number of cam-
eras used. The across space approach, though simple and
straightforward, may not be feasible in many practical sit-
uations due to financial (buying more cameras) or physical
(system setup) limitations. For rigidly moving objects, an
alternative way to increase the number of effective cameras
is by combining silhouette information across time. In other
words, if we estimate the rigid motion of the object between
the time instants, we can combine the silhouette images at
these time instants to get a refined shape of the object. We
refer to the task of computing the rigid transformation as
visual hull alignment and the task of combining the larger
number of images as visual hull refinement.

It can be shown that using silhouette images alone to
align two visual hulls is inherently ambiguous. Gener-
ally there are an infinite number of consistent rigid mo-
tion/object shape pairs which produce the same sets of sil-
houette images at two different time instants [5]. In or-
der to get an unambiguous alignment between two visual
hulls, additional information besides the silhouette images
is needed. In this paper, we show how color consistency can
be used to break the alignment ambiguity.

The remainder of this paper is organized as follows. The
problem scenario is introduced in Section 2. In Section 3 a
new visual hull representation called the bounding edge rep-
resentation is proposed. We then use a fundamental prop-
erty of the bounding edge representation to find a number
of 3D points on the surface of the object. These 3D surface
points are used to align two visual hulls using a 3D image
alignment algorithm. After the alignment process, the shape
of the object is refined by treating all the silhouette images
as being captured at a single time instant. In Section 4 the
problem of determining visibility is addressed while both
synthetic and real results are presented in Section 5. We
conclude in Section 6 with a summary and discussion.
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Figure 1. An example of classical Shape-From-Silhouette
with a head-shaped object and four cameras at time

���
.

2. Problem Scenario

Suppose there are � fixed cameras positioned around
a rigid Lambertian 3D object � . Let ���	�
�� 
 �
�� �������������������� ��� be the set of color and corresponding silhou-
ette images of the object � obtained from the � cameras
at time � 
 . It is assumed that the cameras are color bal-
anced and calibrated with ���	� �"!#� $�%'&(� $�) and *'� being
the perspective projection function and the center of cam-
era � respectively. Using the silhouette images � 
 �
 � and
the camera calibration functions �����+� , an upper bound of
the object’s shape called the visual hull , 
 at time � 
 can
be reconstructed by either visual cone intersection [10] or
voxel-based [15] methods. The situation at time �.- with
four cameras is shown in Figure 1. Now suppose the ob-
ject is moving arbitrarily but rigidly over time and we are
given / sets of color and silhouette images taken at time�0- ��������������� �21 . Without loss of generality, we assume the
orientation and the position of the object at time ��- is �43 �

0
¯
�

and that at time � 
 it is � 5 
 �26 
 � �879�;: ��������������� / . The
problem is to find the motion of the object �<5 
 �06 
 ) over
time and a refined shape of the object by combining the�>=?/ silhouette images.

3. Visual Hull Alignment and Refinement

Although SFS is a popular method of shape reconstruc-
tion at single time instant, little work has been done in ex-
tending it across time. The work most related to this paper
is by Cipolla and Wong [20, 21]. They study the problem of
estimating the structure and motion of an object undergoing
circular motion from silhouette profiles. They assume a sin-
gle camera which is weakly calibrated (i.e. with known in-
trinsic but unknown extrinsic parameters). Either the cam-
era (on a robotic arm) or the object (on a turntable) per-
forms unknown circular motion while the silhouette images
are taken. They identify and estimate the frontier points on
the silhouette boundary and use them to estimate the cir-
cular motion (axis of rotation) between images. Once the

motion is estimated, the object shape is reconstructed us-
ing a voxel-based SFS method. Ponce et al. also study the
problem of recovering the motion and shape of a smooth
curved object from silhouette images in [7, 19]. They de-
fine a local parabolic structure on the surface of the object
and use epipolar geometry to locate corresponding frontier
points on three silhouette images. Motion between images
is then estimated by a two-step nonlinear minimization.

It is shown in [5] that the problem of visual hull align-
ment using silhouette images alone is inherently ambigu-
ous. The motion ambiguity is closely related to the inde-
terminacy in shape. To break this ambiguity, we now de-
scribe how to incorporate color information into the tradi-
tional SFS formulation, thereby combining SFS and stereo.

3.1. The Bounding Edge Visual Hull Representation

Consider the set of � silhouette images � 
 �
 � at a given
time instant � 
 . We propose the following representation of
the visual hull , 
 which we call the bounding edge repre-
sentation.

Definition of Bounding Edge
Let @BA
 be a point on the boundary of the silhouette image
 �
 . By projecting @CA
 into 3D space through the camera
center *'� , we get a ray DEA
 . A bounding edge FGA
 is defined
to be the part of DEA
 such that the projection of FGA
 onto theHJI4K

image plane lies completely inside the silhouette 
ML
 for
all

HON � ���������.������� ��� . Mathematically the condition is ex-
pressed as

F A
'P D A
 and � L �4F A
 � PQ
 L
SR HTN � �U��������������� ����V (1)

An example illustrating the definition of a bounding edge at� - is shown in Figure 2. A bounding edge can be computed
by first projecting the ray D A
 onto the �XW �

silhouette im-
ages 
 L
 � H � ����������������� � � HZY��� , and then re-projecting
the segments which overlap with 
 L
 back into 3D space.
The bounding edge is the intersection of the reprojected seg-
ments. Note that the bounding edge FGA
 is not necessarily a
continuous line. It may consist of several segments if any of
the silhouette images are not convex. Hereafter, a bounding
edge F A
 is denoted by a set of ordered 3D vertex pairs as:

F A
 �\[^]_
O` A
 �JaS� �cb ` A
 �JaS�2d � a � �U� V�V�V ��e A
gf �
(2)

where 
O` A
 �JaS� and
b ` A
 �JaS� represent respectively the start

vertex and finish vertex of the a I4K
segment of the bounding

edge and
e A
 is the number of segments that FGA
 is com-

prised of. By sampling points on the boundaries of all the
silhouette images � 
 �
h�i��� �U��������������� ��� , we can con-
struct a list of j 
 bounding edges that represents the visual
hull , 
 .

There are two main advantages of using bounding edges
to represent the visual hull. Firstly, they lie exactly on the
surface of visual hull and therefore are not approximations
like discrete voxel representations [8]. Secondly the essence
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Figure 2. The bounding edge � �� is obtained by first project-
ing the ray � � � onto ���� , ���� , ���� and then re-projecting the
segments overlapped with the silhouettes back into the 3D
space. � �� is the intersection of the reprojected segments.

of Shape-From-Silhouette is naturally embedded in the def-
inition of bounding edges, as indicated by the second fun-
damental property of visual hulls stated below.

Fundamental Properties of Visual Hulls (FPVHs)
1st FPVH: The object that created the silhouette lies com-
pletely inside the visual hull.
2nd FPVH: Each bounding edge of the visual hull touches
the object (that formed the silhouette images) at at least one
point.

The 2nd FPVH allows us to use bounding edges to store
and represent the key shape information of the object that
can be obtained from the set of silhouette images. In the
next section, we will combine the 2nd FPVH and color
stereo on the bounding edges to extract 3D points on the
surface of the objects. One negative aspect of the bound-
ing edge representation is that it is incomplete. Since the
boundary of the silhouette is sampled at a finite collection
of points, the surface of the visual hull is not represented
entirely by the bounding edges. By increasing the number
of samples on the boundary, the surface can be represented
more completely.

In [4, 13, 3], Matusik et al. proposed algorithms to build
and render visual hulls in real-time. Their way of inter-
secting viewing rays for VH rendering [13] and intersecting
visual cones for VH construction [3] are similar to the way
our bounding edges are constructed. However, there are two
fundamental differences between their algorithms and the
definition of bounding edge. Firstly, our bounding edges
are originated only from points on the silhouette boundary
while in [13], the viewing rays can originate from any point
inside the silhouette. Also the VH constructed in [3] is 2D
surface-based while our bounding edge is 1D line-based.
Secondly, both their viewing rays and the surface-based VH
do not embed the important :
	�� FPVH as bounding edges
do. On the other hand, Lazebnik et al. proposed a new
way of representing visual hulls in [12]. The definition of
bounding edge in our paper is theoretically equivalent to the
edge of the visual hull mesh defined in their work, although
they derive the edges from locating frontier and triple points
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Figure 3. Locating the touching point (colored surface
point) by searching along the bounding edge for the point
with the minimum projected color variance.

while we construct the edges directly from the silhouette
images.

3.2. Locating 3D Colored Surface Points

The 2nd FPVH states that each bounding edge touches
the object at at least one point. How are we going to to lo-
cate this touching point? Here we use information from the
color images ���+�
 � to help find the touching point. Since the
object is assumed to be Lambertian and all the cameras are
color balanced, any point on the surface of the object will
have the same projected color in all of the color images. In
other words, for any point on the surface of the object, its
projected color variance across the visible cameras should
be zero. Hence on a bounding edge, the point with zero
projected color variance is the point where the edge touches
the object. Hereafter we call these touching points the col-
ored surface points of the object.

To express the idea mathematically, consider a bounding
edge F A
 from the 7 I4K

visual hull. We parameterize a point
 A
 �4a ��� � on F A
 by two parameters a and
�

, where a N
� �U�������.�������ce A
 � and ��� � � �

with


 A
 �Ja ��� � � 
O` A
 �JaS��� ��� ] b ` A
 �JaS�TW 
O` A
 �JaS� d V (3)

Let � �
 ���'� be the function which returns the projected color
of a 3D point � on the � I4K

color image at time � 
 . The
projected color mean �hA
 �Ja ��� � and variance � A
 �Ja ��� � of
the point


 A
 �Ja ��� � are given as

� A
 �Ja ��� � � -
	���

 
� � �
 � 
 A
 �4a ��� �2� �

� A
 �Ja ��� � � -
	���

 
�
! � �
 � 
 A
 �4a ��� �2� W"� A
 �4a ��� �$# ) V (4)

The projected color � �
 � 
 A
 �4a ��� �2� from camera � is used
in calculating the mean and variance only if


 A
 �4a ��� � is
visible in that camera and %hA
 denotes the number of the vis-
ible cameras for point


 A
 . We will discuss in Section 4 how



to conservatively determine the visibility of a 3D point w.r.t
a camera using only the silhouette images. Figure 3 illus-
trates the idea of locating the touching point by searching
along the bounding edge.

In practice, due to noise and inaccuracies in color balanc-
ing, instead of searching for the point which has a zero pro-
jected color variance, we locate the point with the minimum
variance. In other words, we set the colored surface point of
the object on F'A
 to be


 A
 ���a � �� � where �a and �� minimizes
�CA
 �Ja ��� � for � � � � � � a N � �������������������ce A
 � . Note
that by choosing the point with the minimum variance, the
problem of tweaking parameters or thresholds of any kind
is also avoided. The need to adjust parameters or thresholds
is always a problem in other shape reconstruction methods
such as space carving [9] or stereo. Space carving relies
heavily on a color variance threshold to remove non-object
voxels and stereo matching results are sensitive to the search
window size. In our case, knowing that each bounding edge
touches the object at at least one point (2nd FPVH) is the
key piece of information that allows us to avoid any thresh-
olds. In fact locating CSPs is a special case of the problem
of matching points on pairs of epipolar lines as discussed
in [17, 6]. In [17] and [6], points are matched on “general”
epipolar lines on which there may or may not be a matching
point so threshold and an independent decision is needed
for each point. To locate CSPs, points are matched on “spe-
cial” epipolar lines which guarantee to have at least one
one matching point so no threshold is required. Note that
there is no point-to-point correspondence relationship be-
tween two different sets of CSPs obtained at different time
instant. The only property common to the CSPs is that they
all lie on the surface of the object. For simplicity, we de-
note


 A
 ���a � �� � � �CA
 ���a � �� � and � A
 ���a � �� � by �
 A
 � ��CA
 and �� A

respectively.

3.3. Alignment Using Colored Surface Points

Suppose we have located two sets of colored surface
points at two different time instants �c- and � ) . To align the
visual hulls , - and , ) , we use an idea similar to the 2D
image alignment problem as in [16]. In our case, instead
of aligning a 2D image with another 2D image, we align
2D images ( � �+�) � ) at time � ) with a “3D image” (the col-
ored surface points � �
 A- � ) at time �c- through the projection
functions ���g�U� . The error measure used is the sum of color
differences between the colored surface points at time � -
and their projected colors from the color images at time � )
and vice versa. Mathematically, let ���#�
 � 
 �
 � �
 A
 � �� A
 � ��CA
 � � ������������������ j 
 �S� � �U��������������� � � 7G� �U� : � be the two sets
of data. To find the most color consistent alignment � 5 �26 � ,
consider the color error function

� �
����

A
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� A -�� ) �
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�

A
	 -
� A) � -

�
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Figure 4. Visual alignment using color consistency. The
error between the colors of the 3D surface points and their
projected image colors is minimized.

� A) � - � �

�
� A � �) � - � �

�
! � �) �<5 �
 A- � 6 ��W��� A - # ) �

(7)

where � A � �) � - represents the difference between the mean color

�� A - of the colored surface point �
 A- at time �c- and its pro-
jected color � �) � 5 �
 A- � 6 � in camera � at time � ) . Note
that at time � ) , the new position of �
 A- is 5 �
 A- � 6

due
to the motion of the object. Likewise, � A � �-�� ) is the differ-

ence between the mean color ���A) of �
 A) and its projected
color �U�- �<5�� �
 A) WS5�� 6 � on camera � at time � - . Just as for
calculating the color consistency of points on the bounding
edge, the summations in equations (6) and (7) include the
projected color of camera � only if the point of interest is
visible in that camera. The minimization of Eq. (5) can be
solved by Gradient Descent [18] or Levenberg-Marquardt
algorithm as discussed in [16]. The process of visual hull
alignment by color consistency is illustrated in Figure 4.

3.4. Visual Hull Refinement

After estimating the alignment across time, the rigid mo-
tion �+� 5 
 �26 
 �.� is used to combine the / sets of silhouette
images � 
 �
 � � � �U��������������� � �X7G� ����������������� /T� to get
a tighter upper bound of the shape of the object. By fixing� - as the reference time, we combine � 
 �
 � �B7G� : ������������� /
with � 
 �- � by considering the former as “new” silhouette
images captured by additional cameras placed at positions
and orientations transformed by �<5 
 �26 
 � . In other words,
for the silhouette image 
 �
 captured by camera � at time 7 ,
we use a new perspective projection function � �
�� - derived
from �"� through the rigid transformation � 5 
 �26 
 � . As a re-
sult, the effective number of cameras is increased from �
to � = / .
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Figure 5. (a) Visibility of points with respect to cameras
using Lemma 1. (b) An example where ��� is behind �

�
.

The correct line to be used in Lemma 1 is the outer segment
which passes through infinity instead of the direct segment.
(c) Boundary points that can be used to construct bounding
edges are marked by the thick boundary. These boundary
points are the ones which the resulting bounding edges can
be seen by at least two other cameras besides camera 1.

4. Determining Visibility

To locate the colored surface points using Eq. (4), the
visibility of the 3D point


 A
 �Ja ��� � with respect to all �
cameras is required. Here, we present a way to determine
the visibilities conservatively using only the silhouette im-
ages. Suppose we are given a 3D point � and a set of silhou-
ette images � 
 �
 � with camera centers � * � � and projection
functions ���g�	�<��� . The following lemma then holds:

Lemma 1 : Let � L � �'� and � L �<* ��� be the projections of
the point � and the � I4K

camera center *'� on the (infinite)
image plane of camera

H
. If the 2D line segment joining� L � �'� and � L � * �E� does not intersect the silhouette image
 L
 , then � is visible with respect to camera � at time � 
 .

Figure 5(a) gives examples where the points � - � � ) and
� % are visible with respect to camera 2. The converse of
Lemma 1 is not necessarily true : the visibility cannot be
determined if the segment joining � L � �'� and � L � * �E� in-
tersects the silhouette 
 L
 . One counter example is shown
in Figure 5(a). Both points � - and � ) project to the same
2D point � on the image plane of camera 1 and the segment
joining � and � - � *�� � intersects with 
 -- . However, � - and
� ) have different visibilities with respect to camera 4 ( � ) is
visible while � - is not). Note that special attention must be
given to situations in which camera center * � lies behind
camera center * L . In such cases, the correct line segment
to be used in Lemma 1 is the outer line segment (passing
through infinity) joining � L ���'� and � L �<* ��� rather than the
direct segment. An example is given in Figure 5(b).

Though conservative, there are three advantages of us-
ing Lemma 1 to determine visibility in our alignment al-

gorithm. First of all, Lemma 1 uses information directly
from the silhouette images, avoiding the need to estimate
the shape of the object for the visibility test. Secondly,
recall that to construct a bounding edge FGA
 , we start with
the boundary point @BA
 of the � I4K

silhouette. Hence all the
points on F A
 project to the same 2D point @ A
 on camera� which implies all points on the bounding edge FGA
 have
the same set of conservative visible images. This prop-
erty ensures the color consistencies of points on the same
bounding edge are calculated from the same set of images.
Accuracy in searching the optimal point �
 A
 is increased
because comparisons are made fairly among points on the
same bounding edge. Finally Lemma 1 also provides a
guideline to sample the silhouette boundary points for con-
structing bounding edges. To have meaningful color con-
sistencies, the number of color images used in (4) has to be
at least 2 (or otherwise the projected color variances will
always be 0). By Lemma 1, boundary points @ A
 are chosen
such that the resulting F A
 is seen by at least 2 other images
(excluding the image 
 �
 from which the boundary point is
chosen from). An example is shown in Figure 5(c). Only
points on part of the boundary of 
 -- (marked by thicker
lines) are used to construct bounding edges because they
are the points from which the resulting bounding edges can
be seen by at least two other cameras (cameras 2 and 3).

5. Experimental Results

5.1. Synthetic Data Set : Torso Sequence

A synthetic data set is created to demonstrate the validity
of our alignment algorithm. A textured wire-frame com-
puter model resembling the human torso was used. The
model was moved under a known trajectory for twenty
two frames. At each time instant, images of six cam-
eras ( � ��� ) with known camera parameters are ren-
dered using OpenGL. A total of 22 sets of color and
silhouette images are generated. Example input images
can be found in the movie clip torso.mpg. All the
movie sequences mentioned in this paper can be found at
http://www.cs.cmu.edu/˜german/research/CVPR2003/VisualHull.

5.1.1. Alignment

Three alignment algorithms were implemented to compare
the effectiveness of using bounding edges/colored surface
points to align visual hulls as compared to using voxel
models created by Shape-From-Silhouette (SFS) and Space
Carving (SC) [9]. In algorithm I, bounding edges and col-
ored surface points are extracted and used to find the align-
ment between frames as described in Section 3.3. Two of
the six estimated motion parameters for this algorithm are
plotted in Figure 6 as red dashed lines with asterisks. They
are very close to the ground truth values represented by the
black solid lines. In algorithm II, a voxel model is built
from the silhouette images using voxel-based Shape-From-
Silhouette (SFS). Surface voxels are extracted and colored
by back-projecting onto the color images. The centers of the
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Figure 6. Results of two motion parameters (Y-axis rota-
tion angle and X-component of translation) estimated over
time from alignment experiments using different input data
: using bounding edges/colored surface points (red dashed
lines with asterisks), using SFS voxel models (magenta
dotted-dashed lines), using SFS+SC voxel models with op-
timal threshold (blue thick dotted lines) and ground-truth
values (solid black lines). The results of using bounding
edges/colored surface points are better than the other two.

colored surface voxels are treated as input data points to the
same alignment algorithm used in algorithm I. The results
of algorithm II are plotted as magenta dotted-dashed lines
in Figure 6. As can be seen, alignment using the SFS voxel
model is much less accurate than using bounding edges.

In algorithm III, a voxel model is first built by using SFS
(as in algorithm II) and further refined by Space Carving
(SC). The centers of the surface voxels (which are already
colored by SC) are used for alignment. To study the effect
of the SC threshold on alignment, different values of the
threshold are used and the estimated motion parameters are
compared with the ground truth values. Graphs of the av-
erage RMS errors in the rotation and translation parameters
against the threshold used are shown as blue dotted-dashed
lines in Figure 7. When the threshold is too small, many
correct voxels are carved away, resulting in a voxel model
much smaller than the actual object. When the threshold
is too big, extra incorrect voxels are not carved away, leav-
ing a voxel model bigger than the actual object. In both
cases, the wrong data points extracted from the incorrect
voxel models cause errors in the alignment process. The
optimal threshold value is found to be around 0.108 and the
graph is amplified in the vicinity of this value in the bottom
part of Figure 7. As a comparison, the average RMS errors
for rotation and translation parameters obtained from algo-
rithm I is drawn as the horizontal red dashed line. With the
optimal SC threshold, the performance of using SFS+SC
voxel models is comparable but less accurate than that of
using bounding edges. The estimates of the motion param-
eters using SC with the optimal threshold (the thick blue
dotted lines) are also included in Figure 6. SC with the op-
timal threshold performs well but not as good as bounding
edges. Table 1 gives a rough comparison of the computa-
tional time needed for each step of all the experiments. The
timing is obtained on a 500MHz Pentium III CPU.
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Figure 7. Graphs of average RMS errors in rotation and
translation against the threshold used in SC in algorithm III.
The bottom half of the figure illustrates the amplified part of
the graph near the optimal threshold value (0.108). Using
bounding edges is always more accurate than using SC in
alignment, even optimal threshold is used for SC.

Table 1. The approximate time for each step in the align-
ment experiments. BE is about the same as SFS and faster
than SFS+SC.

Step Time required
per frame

Extracting bounding edge (BE) 0.92 s
Locating surface colored points

(100 points searched on each BE) 0.16s
SFS with ����� � voxels 1.08s

SFS + SC with ����� � voxels
and optimal threshold 4.74s

Alignment 16.2s

5.1.2. Refinement

The estimated parameters in the alignment experiments are
used to refine the shape of the torso model, using the voxel-
based SFS method [15]. The visual hull at time � 
 is con-
structed by using the silhouettes at � 
 and all those from the
previous frames ���c- ��������������� � 
�� -�� , transformed by the es-
timated motion parameters as described in Section 3.4. To
quantify the refinement results, the ground-truth wire-frame
model used to render the input images is converted into a
ground-truth voxel model and compared to the refined voxel
models. The results are plotted in Figure 8 with graphs
(a) and (b) showing respectively the number of extra and
missing voxels between the refined shapes and the ground-
truth voxel models against the number of frames used. Fig-
ure 8(c) illustrates the ratio of total incorrect (missing plus
extra) to total voxels.

In all the experiments, the number of extra voxels de-
creases as the number of frames used increases because a
tighter visual hull is obtained with an increase in the num-
ber of distinct silhouette images. However, the number of
missing voxels also increases as the number of frames used
increases. This is due to alignment errors which remove
correct voxels during construction. The number of missing
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Figure 8. Graphs of refinement errors (missing and extra
voxels) across time (frames). Using bounding edges has
lower error ratio than using either SFS or SFS+SC.

voxels is very large if the alignments are way off (e.g. the
magenta dotted-dashed curve of results from algorithm II
or the blue dotted curves (with ’+’ markers) of results from
algorithm III with threshold 30% lower than the optimal
value). The refinement result is the best using the motion
parameters estimated using bounding edges (the red dashed
lines with asterisks in Figure 8). The video clip torso.mpg
shows one of the six input image sequences (camera 4), the
unaligned and aligned colored surface points and the tem-
poral refinement/alignment results using bounding edges.

5.2. Real Data Sets

Pooh Sequence:
The first real test object is a toy (Pooh) and six calibrated
cameras ( � � � ) are used. The toy is placed on a table
and moved to new but unknown positions and orientations
manually in each frame. A total of fifteen frames are cap-
tured. The input image of camera 1 at time ��- is shown in
Figure 9(a). The extracted bounding edges with the cor-
responding colored surface points at time ��- are shown in
Figures 9(b) and (c). Figures 9(d) and (e) show respectively
the unaligned and aligned colored surface points from all
fifteen frames. Refinement is done using the voxel-based
SFS method. Figures 9(f),(g) and (h) illustrate the refine-
ment results at three time instants �c- , ��� and �0-�� . The im-
provement in shape is very significant from � - when 6 sil-
houette images are used to ��-�� when 90 silhouette images
are used. Note that for shape refinement, Space Carving
(SC) can also be used. Figures 9(i)(j) show the refinement
results using SFS + SC at � - (6 images) and � -�� (90 images).
Generally with a good threshold, refinement using SFS +
SC is better than SFS for the same number of images. The
video clip pooh.mpg shows one of the six input image se-
quences (camera 4), the unaligned/aligned colored surface
points and the temporal refinement/alignment results.

(a) (b)

(c) (d)

(e) (f)

(a) (b)

(c) (d)

(e) (f)

(h)(g)

(j)(i)

(h)(g)

(j)(i)

Figure 9. Pooh Data Set. (a) Example input image, (b)
Bounding edges at

�c�
, (c) Colored surface points at

�c�
,

(d) Unaligned colored surface points from all frames, (e)
Aligned colored surface points of all frames, (f) SFS model
at

� �
(6 images used), (g) SFS refined shape at

� �
(36 im-

ages used), (h) SFS refined shape at
� �
� (90 images used),

(i) SFS + SC model at
� �

, (j) SFS + SC refined model at
� �
� .

Dinosaur-Banana Sequence:
A second real data set of a toy dinosaur on top of a bunch of
bananas is also captured with six cameras. The dinosaur and
the bananas are placed on a turntable with unknown rotation
axis and rotation speed. Fifteen frames are captured and the
alignment and refinement results are shown in Figure 10 and
in the movie clip dino-bana.mpg.

6. Summary and Discussion

In this paper we have proposed an algorithm to perform
Shape-From-Silhouette (SFS) across time for a rigid ob-
ject undergoing arbitrary rigid motion. At each time in-
stant bounding edges are constructed from the silhouette
images and colored surface points are located on the bound-
ing edges by comparing color consistencies. The colored
surface points are used to estimate the rigid motion of the
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Figure 10. Dinosaur-Banana Sequence. (a) Example in-
put image, (b) Unaligned colored surface points from all
frames, (c) Aligned colored surface points, (d) SFS model
at

� �
(6 images used), (e) SFS refined shape at

� �
(36 images

used), (f) SFS refined shape at
� �
� (90 images used).

object across time, using a 2D images/3D points alignment
algorithm. Once the alignment is known, all of the images
are considered as being captured at the same instant. The
refined shape of the object can then be obtained by any re-
construction method such as SFS or Space Carving.

Our algorithm combines the best advantages of both SFS
and Stereo. A key principle behind SFS, expressed in the
2nd Fundamental Property of Visual Hulls, is naturally em-
bedded in the definition of the bounding edges. The bound-
ing edges give us, as a representation for the visual hull,
all the accurate information that can be obtained from the
set of silhouette images. To locate the touching surface
points, multi-image stereo (color consistency among im-
ages) is used. Two major difficulties of doing stereo : vis-
ibility and search size are both handled naturally by the
properties of the bounding edges. The ability to combine
the advantages of both SFS and Stereo is the main reason
why using bounding edges/colored surface points gives bet-
ter results in motion alignment than using voxel models ob-
tained from SFS or SC, as is evident from the results in Sec-
tion 5.1. Another disadvantage of using voxel models and
Space Carving is that each decision (voxel is carved away or
not) is made individually for each voxel according to a cri-
terion involving thresholds. On the contrary, in locating col-
ored surface points on bounding edges, the decision (which
point on the bounding edge touches the object) is made co-
operatively (by finding the point with the highest color con-
sistency) along all the points on the bounding edge, without
the need of adjusting thresholds. In other words, the infor-
mation contained in bounding edges/colored surface points
is more accurate than that contained in voxel models from
SC/SFS. In parameter estimation, few but more accurate

data is always preferred over abundant but less inaccurate
data, especially in applications such as alignment.
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