A Modal Analysis of Staged Computation

Rowan Davies and Frank Pfenning
August 1999
CMU-CS-99-153

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Also published as FOX Memorandum CMU-CS-FOX-99-02

Abstract

We show that a type system based on the intuitionistic modal logic S4 provides an expressive
framework for specifying and analyzing computation stages in the context of typed lambda-calculi
and functional languages. We directly demonstrate the sense in which our calculus captures staging,
and also give a conservative embedding of Nielson & Nielson’s two-level functional language in our
language, thus proving that binding-time correctness is equivalent to modal correctness. In addition,
our language can express immediate evaluation and sharing of code across multiple stages, thus
supporting run-time code generation as well as partial evaluation.

This is an extended and revised version of the conference paper [DP96].

This work was sponsored in part by the National Science Foundation under grant CCR-9619832 and by the
Advanced Research Projects Agency (ARPA) CSTO, under the title “The Fox Project: Advanced Development of
Systems Software”, ARPA Order No. 8313, issued by ESD/AVS under Contract No. F19628-91-C-0168. This work
was also partly supported by a Hackett Studentship from the University of Western Australia. Part of this work was
completed during a visit by the first author to BRICS (Basic Research in Computer Science, Centre of the Danish
National Research Foundation)

The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of NSF, the Defense Advanced Research Projects
Agency or the U.S. Government.

Keywords: Programming Languages, Staged Computation, Modal Logic

Contents
1 Introduction

2 A Modal \-Calculus

2.1 Natural Deduction for Validity
2.2 Syntax e e e
2.3 Typing Rules 0 e
2.4 Reduction and Expansion Lo e
2.5 Staged Computation L
3 Modal Mini-ML: Explicit Formulation
3.1 Syntax e
3.2 Typing Rules e
3.3 Operational Semantics
3.4 Example: The Power Function in Explicit Form
3.5 Implementation Issues

4 A Kripke-Style Modal A-Calculus

4.1 A Kripke-Style Natural Deduction System
4.2 Syntax e e e e
4.3 Natural Deduction Judgment oo
4.4 Properties of the Kripke-style A-calculus
4.5 Environments and Environment Stackso oo oL
4.6 Translation from Explicit System Lo Lo
4.7 Translation to Explicit System oo oo
5 Modal Mini-ML: Implicit Formulation
5.1 Syntaxo e e
5.2 Typing Rules
5.3 Examples in Implicit Form oo
5.4 Compilation to Explicit Language
6 A Two-level Language
6.1 Syntax e
6.2 Typing Rules e
6.3 Translation to Implicit Language oo,
6.4 Equivalence of Binding Time Correctness and Modal Correctness
7 Examples
7.1 Ackermann’s Function
7.2 Inner Products e
7.3 Regular Expression Matching o o

8 Related Work

9 Conclusion and Future Work

13
13
13
15
17
17

18
18
21
21
22
23
24
27

30
30
30
32
32

33
33
34
36
37

38
39
40
41

42

45

1 Introduction

Dividing a computation into separate stages is a common informal technique for the derivation of
algorithms [JS86]. For example, instead of directly matching strings against a regular expression
we may first compile the regular expression into a finite automaton and then execute the same
automaton on different strings. Because significant efficiency gains can often be realized, there is a
substantial body of work concerned with the automation of staged computation. Partial evaluation
(see, for example, [JGS93]) divides the computation into two stages based on the early availability
of some function arguments. In practice this appears most successful when supported by binding-
time analysis [GJ91], which statically determines which parts of a computation may be carried out
in the first phase, and which parts remain to be done in the second phase.

It often takes considerable ingenuity to write programs in such a way that they exhibit proper
binding-time separation, that is, that the computation intended to occur when the early arguments
become available can in fact be carried out. From a programmer’s point of view it is therefore
desirable to declare the expected binding-time separation and obtain constructive feedback when
the computation may not be staged as expected. This suggests that the binding-time properties of
a function should be expressed in a prescriptive type system, and that binding-time analysis should
be a form of type checking. The work on two-level functional languages [NN92] and some work on
partial evaluation (for example, [GJ91]) shows that this view is indeed possible.

Up to now these type systems have been motivated algorithmically, that is, they are explicitly
designed to support specialization of a function to its early arguments. In this paper we show that
they can also be motivated logically, and that the proper logical system for expressing computation
stages is the intuitionistic variant of the modal logic S4 [Pra65]. This observation immediately gives
rise to a natural generalization of standard binding-time analysis by allowing multiple computation
stages, initiation of successor stages, and sharing of code across multiple stages. Such extensions
are normally considered external issues. For example, Jones [Jon91| describes a typed framework
for such concepts, but only at the level of operations on whole programs. Our framework instead
provides these operations within the language of programs. This makes our approach particularly
relevant to run-time code generation, where specialization takes place when the program is exe-
cuted. Indeed, the authors and others have designed and implemented an extension of ML based
on the type system described here which generates and executes abstract machine code at run
time [WLPD98, WLP98|.

One of our conclusions is that when we extend the Curry-Howard isomorphism between proofs
and programs from intuitionistic logic to the intuitionistic modal logic S4 we obtain a natural and
logical explanation of computation stages. The isomorphism relates proofs in modal logic to func-
tional programs which manipulate program fragments for later stages. Each world in the Kripke
semantics of modal logic corresponds to a stage in the computation, and a term of type OA corre-
sponds to code to be executed in a future stage of the computation. The modal restrictions imposed
on terms of type OA guarantee that a function of type B — OA can carry out all computation
concerned with its argument while generating the residual code of type A.

We begin by considering A;’7, a modal A-calculus based on a natural-deduction formulation of
intuitionistic modal S4. The presentation is new, but draws on ideas in [BdP92, PW95, Gir93].

We then construct a functional language Mini—MLeD by augmenting A\;’" with a fixpoint oper-
ator, natural numbers, and pairs and endow it with a natural call-by-value operational semantics
along the lines of Mini-ML [CDDKS6].

Mini-ML{ can be somewhat awkward because it often requires a broad syntactic structuring of
the program to directly reflect staging. This simplifies the study of staging properties of Mini-ML_,

but it also makes it difficult to directly relate it to previous work on staged languages, such as two-
level languages [NN92]. We thus consider a more implicit formulation of S4 motivated by its Kripke
semantics following [MM94, PW95] and then augment it as before to form Mini-ML"”. With some
syntactic sugar, Mini-ML" is intended to serve as the basis for a conservative extension of ML
with practical means to express and check staging of computation. The operational semantics
of Mini-ML" is given by a type-preserving translation to Mini-ML whose correctness is not en-
tirely trivial. This translation also describes the first phase of a plausible compilation strategy for
Mini-ML" for run-time code generation.

We then exhibit a simple full and faithful embedding of Nielson & Nielson’s two-level lan-
guage [NN92] in Mini-ML", providing further evidence that Mini-ML"” provides an intuitively
appealing, technically correct, and logically motivated view of staged computation.

2 A Modal M-Calculus

In this section we present the modal A-calculus \;’". We start by directly motivating the calculus
in terms of “manipulation of code” and relate this to modal logic. We then present typing rules
based on a natural deduction system for modal S4, give 8 and n rules for the modal O operator,
and show that they satisfy subject reduction and expansion, respectively. We also demonstrate the
relationship between A\;’" and computation staging via two theorems.

2.1 Natural Deduction for Validity

A common feature of many forms of staged computation is the manipulation of code. Macro ex-
panders and partial evaluators typically manipulate source expressions, run-time code generators
typically manipulate object code or some form of intermediate code. To show how such manipu-
lation of code may be accounted for in a typed framework, we start with a typed A-calculus and
introduce a new type constructor O, where O A represents code of type A. This type remains ab-
stract in the sense that we do not commit ourselves to a particular way of implementing it. In this
way our type system can support diverse applications.

Next we have to decide which operations should be supported on code. First, we should be
able to manipulate an arbitrary closed expression as code. This suggests a constructor box where
box F : OA if £ : A in the empty context. This is essentially the modal rule of necessitation. The
second means of constructing code is by substitution: we can substitute code for a free variable
appearing in code to obtain code. In a meaningful type system such substitution must be “hy-
gienic” and rename bound variables if necessary to avoid capture. The restriction that we can only
substitute code (and not arbitrary expressions) into code is reflected exactly in one of Prawitz’s
variants of the modal necessitation rule [Pra65]: We can infer that box E : OA from E : A if all
hypotheses of the latter derivation are of the form x : OB. This means that every free variable x
in ' must have a type of the form OB. Prawitz’s elimination rule allows us to infer A from OA.
In terms of the functional interpretation, this suggest evaluation: we execute the code of type A to
obtain a value of type A.

Unfortunately, the natural deduction formulation of modal logic based on these two rules does
not obey subject reduction (see [PW95] for a counterexample). We can trace the difficulty to the
global side-condition on the necessitation rule which requires assumptions to be of a particular
form. If we express this condition directly on the level of the judgments, we are led to a different
system which does satisfy subject reduction and other properties desirable for a system of natural
deduction. To this end, we introduce two basic judgments on propositions, “A is true” and “A is

valid”. We have hypotheses expressing that certain proposition are true and others are valid. We
write

(Al,...,Am);(Bl,...,Bn) e C
to express
Under the hypothesis that Ay, ..., An, are valid and By, ..., B, are true, C is true.

Since our main goal is the analysis of the Curry-Howard isomorphism between proofs and programs,
we label the hypotheses and annotate C' with a proof term F.

(u1:A1, .. um:Ap); (x1:By, ..,z Bp) F E: C

Here and throughout this paper, we presuppose that that all variables labelling hypotheses are
distinct.

Taking the functional view for a moment, we think of u1, ..., u,, as variables ranging over code
and z1, ..., T, as variables ranging over values which may occur free in the expression E. Generally,
we write A for a context ui:Ay, ..., un:Ay,, declaring modal variables u (also called code variables)
and I" for a context x1:By, ..., zy: B, declaring ordinary variables x (also called value variables).

But how do we conclude that A is valid? In informal terms, A is valid if it is true under all
possible interpretations. In other words, its derivation may not depend on any hypotheses about
the truth of propositions. That is, we judge that C' is valid under the hypothesis that A,..., A;,
are valid if

(Al,...,Am);' e C

or, with proof terms,
(u1:Az, .. umilp); FE:C

With respect to our functional interpretation, this means that E contains only free code variables,
but no free value variables.
We now develop the inference rules characterizing the judgments and then introduce the logical
connectives. First we have
z:Ain

— —— ovar
A;THz:A

since we can conclude that A is true from the hypothesis that A is true. But it is certainly also the
case that A is true if A is valid.

The transition from a judgment of validity to that of truth corresponds on the functional side to a
transition from code to value. We will use this later to encode evaluation.

Second, we consider the substitution principles which are derived from the nature of the hypo-
thetical judgments. In purely logical terms: if we have a derivation showing that C' is true from
the hypothesis that A is true, then we can substitute an actual derivation establishing the truth
of A for all uses of the hypothesis. This results in a derivation for the truth of C' which no longer
depends on the hypothesis. With proof terms, the substitution principle for ordinary hypotheses
reads:

Ordinary Substitution Principle
If A;TF Ey: A and A; (T, 2:A,TY) ¥ Ey : B then A; (T, TV) ¢ [Eq /2] Es2 : B.

Similarly, we should be able to substitute a derivation demonstrating the validity of A for all
uses of the hypothesis that A is valid.

Modal Substitution Principle
IfA;-F Ep A and (Au:A,A'); T Ey: B then (A, A"); T [E1/ulEs : B.

It is critical here that A is valid and not just true, which should be obvious from what is said
above. Therefore, we must require A;- ¢ E; : A rather than just A;T' F Ej : A (which would be
unsound).

Eventually, when our system is complete, we have to prove the validity of the two substitution
principles to verify that there is no mistake in the design of our rules. Similar guiding properties
of hypothetical judgments are exchange (the order of hypotheses should not matter), weakening
(hypotheses need not be used) and contraction (hypotheses may be used more than once). All of
these are proved in Section 2.4.

The next step is to introduce the logical connectives and operators. In natural deduction, these
are characterized by introduction and elimination rules which must match in an appropriate way.
One of the underlying principles of natural deduction is that connectives should be orthogonal to
each other: each introduction or elimination rule should refer only to the connective whose meaning
we define.

We first discuss this using the familiar implication (or function type, under the Curry-Howard
corrspondence). We want to express that A — B should be true if B is true under the hypothesis
that A is true.

A;(TyzA)FF E: B
ATHEAMA E:A— B
Note that A is not affected—validity does not enter the considerations for this connective. On
proof terms, this rule explicitly introduces the function which maps proofs of A to proofs of B.

Conversely, if we know that A — B is true then B should be true under hypothesis A. So if we

also know that A is true, we can conclude that B must be true.

A;TH Ey: A— B A;TH E A
A;F}ngEliB

On proof terms, this applies the function F9 which maps proofs of A to proofs of B to the given
proof E; of A.

How do we know the introduction and elimination rules match and thus define a meaningful
connective? We should verify two conditions: local soundness and local completeness. Local sound-
ness ensures that we cannot gain information by introducing a connective and then immediately
eliminating it—we must already be able to make the same judgment without the detour. This
guarantees that the elimination rules are not too strong. Local completness ensures that we can
recover all information present in a connective: there is some way to apply the elimination rules so
we can reconstitute a proof of the original proposition using its introduction rules. This guarantees
that the elimination rules are not too weak.

On proof terms, local soundness and completeness are witnessed by local reduction and expan-
sion, taking advantage of the substitution principles.

— |

— E

Dy
AT x:AF Es: B N D, . D,
A;TF (Ar:A. Ey): A— B A;THEE A A;TF [Ey/x)Ey: B
—E

A;TF (A\x:A. E9) Eq - B

Here, D4 is constructed by substitution of D; into Do, as indicated in the discussion of the
(ordinary) substitution principle. On proof terms we have ordinary S-reduction. Local completeness
is witnessed by n-expansion.

'D/
ATV AFE:A— B AT, AF x: A
D
A THE:A— B AT A Ex: B

%
AT H (Az:A.Ex): A— B

ovar

Here, D' is constructed by weakening from D (we add the unused hypothesis z:A), which has
no effect on the proof term E. On proof terms, therefore, we have ordinary n-expansion.
Next we consider the modal operator. OA should be true if A is valid. Written as an inference
rule:
A;-FFE:A
A;I“}—‘EboxE’:DAD

Note how the premise enforces that A is valid by requiring the ordinary context to be empty.
On proof terms this means that only modal variables from A can occur free in E.

The corresponding elimination is not straightforward. For example, Prawitz’s rule from above
which concludes A from OA is locally sound but not complete. Intuitively, this should be clear
because we are losing information when we make the step from “OA is true” to “A is true”. An
alternative rule which concludes “A s valid” from “OA is true” is unsound, because the judgment
that OA is true may actually depend on hypotheses about the truth of other propositions.

Instead we reason as follows: if O A is true under some hypotheses, then any judgment we make
under the additional hypothesis that A is valid, must in fact be evident.

A;THF E:OA (A u:A);T'HF Ey: B
A;T'HF let box u = Fqin Es : B

OE

Thus the elimination rule for O introduces a modal hypothesis and the corresponding term
construct has the form of a let. From the functional point of view, F; represents a value of
type OA containing some code. This code is accessible in Fy with the name u. Local soundness
and completeness with this construction are easily verified. Local soundness is guaranteed by the
reduction

D
A;-FEE A
! Dy D)

ol
A;T ¥ box Ey : OA (A,wA);T ¥ Ey: B 7 AT [EyulBy: B

]
A;T'F let box u = box E in E5 : B
where D5 is the derivation constructed by substitution as indicated in the modal substitution
principle.
The expansion below demonstrates local completness, since the result of the elimination rule
applied to a derivation of OA contains enough information to reconstitute a derivation of O A.

mvar

(A uwA);-Fu: A
D D
ATHE:0A — A THEE:DA (A, u:A);T H boxu:0OA
A;T'Flet box u = Finbox u : OA

OE

Other standard logical connectives such as negation, conjunction, disjunction, universal and
existential quantification can be defined by introduction and elimination rules in a similar manner
to implication—they do not need to directly interact with the modal hypotheses. Since we are in
the intuitionistic setting, the modal possibility operator <& A cannot be defined via negation. It
can be characterized directly by introduction and elimination rules which are locally sound and
complete, but only if we introduce a new judgment “A is possibly true”. We leave the details to a
future paper, since it does not directly concern our main objective here.

Our presentation simplifies that of the modal A-calculus A\;’" from [BdP92, PW95] by elim-
inating the need for simultaneous substitution while preserving subject reduction. It is inspired
by sequent calculi proposed by Andreoli [And92] for linear logic and by Girard [Gir93] for LU.
Wadler [Wad93| has formulated a linear A-calculus with two contexts, which shares some features
with our calculus. The methodolgy we followed is due to Martin-Lo6f [ML85a, ML85b], although we
have not seen the normative use of local soundness and completeness as witnessed by (-reduction
and 7n-expansion. Note that only [-reduction has computational significance, while n-expansion
internalizes an extensionality principle.

The elimination construct for O allows us to bind a variable u in A to code of type A, written
as let box u = F; in Fs. Evaluation of code, certainly one of the most fundamental operations, is
then definable by

eval = (Az:0A. let box u =z inu) : OA — A.

Here, and from now on, we associate O more strongly than — to avoid excessive parentheses. Note
that the opposite coercion, Azx:A. box z, cannot be well-typed, since z is an arbitrary argument and
will not necessarily be bound to code. Furthermore, it violates the concept of stage separation since
x is an “early” argument which we refer to “late”, that is, inside box. Here are a few other examples
of modal propositions and proofs from which the natural deductions can be easily reconstructed.

F Az:0(A — B). \y:0A. let box v = z in let box v = y in box (uv)
:0(A— B) — (DA — OB)

F Az:OA. let box v = z in box box u
:0A - OO0A

FAz:OA. let boxu=2zinu
:0A4A =5 A

Note that the first law holds in all modal logics, while the second and third correspond to reflexivity
and transitivity of the accessibility relation between worlds in the Kripke semantics [Kri63] in
axiomatic formulations of modal logics.

2.2 Syntax
We now summarize the system of natural deduction for S4 and its properties.
Types A == A — Ay |0OA
Terms E = z| A E|E|Es|
u | box E | let box u = E; in Ey
Ordinary Contexts I' == -|I,z:A4
Modal Contexts A = | AuwA

We use A, B for types, x for ordinary variables and u for modal variables assuming that any
variable can be declared at most once in a context. Bound variables may be renamed tacitly, and

leading -’s may be omitted from contexts. We write [E’/z|E (and similarly for modal variables) for
the result of substituting E’ for z in F, renaming bound variables as necessary in order to avoid
the capture of free variables in E’.

2.3 Typing Rules
A;T'HF E: A FE has type A in modal context A and ordinary context I

Our system has the property that a valid term has a unique type and typing derivation, except
for possibly unused hypotheses.

A-calculus Fragment

A;(TyzA)FF E: B
%
ATHEAMA E:A— B

ATHEE:B— A A;THF Ey: B
A;F}jElEgiA

— E

Modal Fragment

wAin A
A;THFu: A

mvar

A FEA
O
A;THF box E:0OA

A;THF E:OA (A u:A);T'HF Ey: B
A;T'F let box u = Fqin Es : B

OE

2.4 Reduction and Expansion

The notions of B-reduction and n-expansion are fundamental to the A-calculus. The preservation of
types under (-reduction is the functional analog of local soundness for rules of natural deduction;
the preservation of types under n-expansion is the functional analog of local completeness. But first
we need to verify the characteristic properties of hypothetical judgments: exchange, weakening,
contraction, and substitution.

Lemma 1 (Structural Properties of Contexts)
1. If (A, uw:A,v:B, Ag); T F E 2 C then (A1, v:B,w:A, Ay); T E: C.
2. If A; (T, z:A,y:B,T'9) F¢ E : C then A; (I, y:B,z:A,T9) E: C.

3. If AT E: C then (A, w:A);T ¥ E : C.

4. IFATH E 2 C then A; (T, z:A) £ E - C.

5. If (A wAv:A); T E: C then (A, w:A); T F [w/u][w/v]E: C.
6. If A; (T, x:A, y:A) ¢ E : C then A; (T, z:A) ¢ [z/x][z/y|E : C.

Proof: By straightforward inductions over the structure of the given derivations. Recall the global
assumption that each variable is declared at most once in a context, and that bound variables may
be renamed tacitly. |

Lemma 2 (Substitution)
1. If A;TH By A and A (T, 2: A, TY) ¢ Eo : B then A; (I, T7) ¢ [Ey/x]Es : B.
2. If A;-F By 2 A and (A, wA,A");T' ¢ Ey : B then (A, A');T'+ [E1/u]Ey : B.

Proof: By straightforward inductions on the typing derivations for Es. O

The (-reductions and 7n-expansions on proof terms used in the preceding section to verify local
soundness and completeness are summarized below.

()\.’BA Eg) E1 }i> [El/.’E]EQ
let box v = box F; in E, i> [E1/u]Es

E:A—-B 4% XA Ez
E:0A4 ' let boxu=F inboxu

We now validate these rules by showing that they satisfy subject reduction.
Theorem 3 (Subject Reduction and Expansion)

1. IfATEE: A and E-25 B then A;TH E' : A.

2. IfA;TE E:Aand E: AV E' then A;TH E : A.

Proof: In the case of a reduction we first apply inversion and then use the substitution properties
to obtain the result. In the case of an expansion we directly construct the typing derivation for the
expanded term. |

We will not discuss commuting conversions for the OE rule here, since they are not particu-
larly relevant to our intended application. Similarly, we will not present a formal proof of strong
normalization, although this is easy to obtain by an embedding into the ordinary simply-typed
A-calculus.

2.5 Staged Computation

We now show the relationship between A\;’" and staged computation. It is our intention that those
parts of a term enclosed by a box constructor should be considered “uninterpreted code”. Thus,
when we construct a computational interpretation of A\’ based on (-reduction, it is appropriate
to omit the congruence rule for box. We have the judgment:

E+~—— E' FE reduces to E’

This judgment is defined by the following rules.

— p
()\.’BA Eg)El — [El/.’E]EQ
0B
let box u = box Ej in Ey — [E;/u]Es
E~— F
cong_lam
Mc:A. E— \z:A. E'
E1 — Ei
cong_appl
E1E2 — EiEQ
E2 — Eé
cong_app2

E1E2 — ElEé

El’—>Ei

cong_letbox1
let box u = E; in Es — let box u = E] in E

Eg}—>Eé

cong_letbox2
let box u = E in Ey — let box u = Ej in E},

We write —* for the reflexive and transitive closure of —.

Theorem 4 (Subject Reduction with Congruences)
IfA;TH E: Aand E—* E' then A;TH E': A.

Proof: By a simple induction on the derivation of E ——* E’, using subject reduction (Theorem 3)
for the base cases. O

To demonstrate the relationship between this reduction relation and computation staging, we

roughly follow the binding-time correctness criteria described by Palsberg [Pal93]. Palsberg pre-
sented a modular proof of correctness for binding-time analyses based on two-level languages, such

10

as those studied in [GJ91]. The first criterion is consistency, namely that static reduction of a
well-annotated term cannot “go wrong”. In our case, well-annotated means well-typed, and the
above subject reduction theorem corresponds roughly to the property of not “going wrong”. To
make the correspondence more evident, we can simply note that a well-typed term cannot contain
the “wrong” forms (box E{) E4 and let box u = (Az:A. EY) in Ej.

The second criterion for binding-time correctness is that when a stage is complete, no subterm
occurrences that are marked as eliminable remain. In our case, the subterm occurrences in the
scope of a box constructor are code to be executed at a later stage and are therefore considered
persistent; all other term occurrences are considered eliminable. Completing a stage means reducing
a term until it can not be further reduced by the rules of the judgment E —— E’. We call such
terms irreducible to avoid confusion with subtly different notions such as head-normal form or weak
head-normal form. Note that an irreducible term could still contain a “redex” in the traditional
sense underneath a box constructor. Since we only evaluate closed terms, the following theorem
expresses that our language satisfies the second critierion for binding-time correctness.

Theorem 5 (Eliminability) If ;- ¥ E : OA and E —* E’ and E’ is irreducible, then E’
contains no eliminable term occurrences.

Proof: By subject reduction, -;- ¢ E’ : OA. By inversion, and the fact that E’ is irreducible, E’
must have the form box Ej| for some Ej. Therefore all subterm occurrences in E’ are in the scope
of a box constructor and hence persistent. O

Thus, it appears that Palsberg’s two properties both follow relatively easily from subject re-
duction for \;’®. However, there is still more to consider, because it is possible that eliminable
subterms could reduce to persistent terms. This is ruled out syntactically in the two-level language
studied by Palsberg, but in our case we need to show this explicitly. To argue about “images under
reduction” we temporarily extend A;*" with labels.

Terms E = \El

Labels have no impact on typing and can be reduced away.

A;THEE:A
—FF LB
A;THEE - A

— unlabel
E'——E

Recall that there is no congruence rule for box so that the rule unlabel can not be applied to a
label in the scope of a box constructor.

Now suppose E7 and Fs differ only in that some subterms of F; have been labelled in E5. Then
typing and reduction correspond between E; and FE5. That is, A;T'F Fy: Aiff A;TF Ey: A, and
E, —* Ef iff E5 —* FY where E{ and Fj differ only in their labelling. This allows us to trace
the “images under reduction” of eliminable parts of an unlabelled term by labelling all persistent

11

subterm occurrences. The following theorem then expresses that only persistent parts of a term
can yield persistent images. Here, for every subterm occurrence of the form E!, both E and E' are
considered to be labelled with . No other subterm occurrences are considered labelled.

Theorem 6 (Persistence) If A;T'F E : A, all persistent subterm occurrences of E are labelled
with 1, and E — E’, then all persistent subterm occurrences of E' are labelled with 1.

Proof: By induction on the derivation of £ —— E’.
Case:

— B
()\.’BA Eg)El — [El/.’E]EQ

The result follows because the modal restriction in the typing rules does not allow x to appear in
F» in a position enclosed by a box constructor. Formally, this case requires an auxiliary induction
on EQ.
Case:

ag
let box u = box Ej in Ey — [E;/u]Es

The result follows because every subterm in F; is labelled with [.

Case:
E2 — Eé

cong_letbox2
let box u = E; in Es — let box u = E; in E}

The result follows immediately by the induction hypothesis.

The other congruence cases are similar. If there were a congruence for box, that case would
fail.
Case:

unlabel
E'——E

The result is immediate, since E is not enclosed by box and therefore not persistent.
E[

Interpreted as a statement about code manipulation during evaluation, this theorems says that
we can never construct code from terms which were not originally code. This is one of the essential
properties of A_’7 which makes it a suitable basis for languages allowing explicit code manipulation.

There is a dual property to persistence which is also enforced syntactically in the languages
studied by Palsberg, namely that the eliminable parts of terms in the result of reduction only
appear as the images of the eliminable parts of the original term. It is an important aspect of A;’"
is that it does mot have this property, as shown by the counterexample:

let box u = box Finu —— F

E appears in a persistent (or code) position on the left, but in an eliminable (or value) position
on the right. From the point of view of code manipulation it is easy to explain why this is allowed.
In the languages we are interested in, the code representation for £ can be evaluated to return a
value for F, which stands in constrast to the languages studied by Palsberg.

12

Evaluation of code is expressed in A_’" by occurrences of code variables u which are not enclosed
by a box constructor. From a logical point of view, such instances correspond exactly to proofs
which depend on the reflexivity of the Kripke reachability relation for modal S4. If we modify
the rules to disallow such instances, we obtain the modal logic K4 and a corresponding modal
A-calculus which is somewhat closer to the two-level languages studied by Palsberg. If we also
remove the transitivity of reachability from K4, we obtain the modal logic K and a corresponding
modal A-calculus which removes another feature of A;’" that is not present in two-level languages,
namely the ability to substitute code directly into code which is itself part of a code expression. So
the following function from A;*® would no longer be well-typed.

(Az:0A. let box u = box E in box box u) : 0A — OOA

Allowing this feature in A\;’” seems reasonable and useful, though perhaps not as important
as the inclusion of evaluation of code. We will come back to languages based on modal K later
in Section 6, where we will briefly explain an exact correspondence between such languages and
multi-level generalizations of two-level languages.

3 Modal Mini-ML: Explicit Formulation

This section presents Mini-ML_', a language that combines some elements of Mini-ML [CDDKS6]

with the _*P-calculus of the previous section. For the sake of simplicity Mini-ML_' is explicitly
typed. ML-style or explicit polymorphism can also be added in a straightforward manner; we omit
the details here in order to concentrate on the essential issues.

We present an operational semantics for the language, and demonstrate some basic properties
such as type preservation. We also demonstrate the strong staging properties of the language.
In the description of the operational semantics we choose the usual device of representing values
(including code) by corresponding source expressions. This may be refined in different ways for
lower-level semantics describing, for example, run-time code generation or partial evaluation.

3.1 Syntax

Types A == nat| A — Ay | A1 x Ay |1 | OA

Terms E = z|\:A E|EE,
| u | box E | let box u = E in E»
‘ <E1,E2> ‘ fst £ ‘ snd F
| ()
|z|s E|(case Eyof z= FE3 | sz = Ej)
| fix x:A. E

Ordinary Contexts I' == -|I'|z:A

Modal Contexts A = - |AuwA

This language extends the one in the previous section, and we continue to use the conventions
introduced in that section.

3.2 Typing Rules

Our typing rules for the Mini-ML fragment of the explicit language are completely standard, and
we follow the previous section for the modal fragment.

13

A;TH E: A FE has type A in modal context A and ordinary context I

Functions
z:Ain I A;(T,z:A)F E: B
L tpe.ovar tpe_lam
A;THz: A A;THEA:A.E:A— B
ATHEE,:B— A A;THF Ey: B
tpe_app
A; T }_e E1 E2 cA
Code
uw:Ain A A E:A
— = tpe_mvar tpe_box
A;THu: A A;THF box E:0OA
A;THF E:0OA (A u:A);T'HF Ey: B
tpe_let_box
A;T'F let box u = Fy in By : B
Products
A;F}jEliAl A;F}_EEQIAQ i
tpe_pair

A;F e <E1,E2> : A1 X A2

A;F}_EEZA1><A2 A;F}_EEZA1><A2
tpe_fst tpe_snd
A;THFfst E: Ay A;THFsnd E: A

— tpe_unit
A;THE():1

Natural Numbers

A;TF FE :nat
- tpez tpe_s
A;TF z:nat A;TF s E:nat

A;TH By inat AT Ey: A A (T, zinat) ¥ Eg: A
A;TH (case E1of z= Ey | sx = E3): A

tpe_case

Recursion

AT, AF E: A
A;THfixz:A. E: A

tpe_fix

14

As before, there is only one rule which introduces variables into the modal context (here called
tpe_let_box).
3.3 Operational Semantics

The Mini-ML fragment of our system has a standard call-by-value operational semantics. For the
modal part, we represent code for F simply by box E, making the least commitment concerning
lower-level implementations.

Values V' = A:A. E|(V1,Va)|()|2z|sV |box E

We evaluate let box x = E; in F by substituting the code generated by evaluating F; for x in Fo
and then evaluating Fo. The code generated by E; may then be evaluated during the evaluation of
FE as necessary. On the A-calculus and modal fragments our semantics corresponds to a reduction
strategy for A;7F.

EF — V Expression E evaluates to value V.

Functions

ev_lam
MN:A. E — \t:A FE

E1 — Ax. Ei E2 — V2 [VQ/.’B]Ei —V
EiEy—V

ev_app

Code

ev_box

box E — box E

E1 — box Ei [Ei/u]Eg — V2
ev_let_box

let box u = Fj in By — V,

Products

El‘—>V1 EQ‘—>V2

ev_pair
(Ev, Eg) — (V1, Vo)

FE — <V1, V2> FE — <V1, V2>
———ev_fst ——— ev_snd
fst £ — snd E — Vy

ev_unit
()=

15

Natural Numbers

E—>V
ev_z — evs
Z 7 sE—sV
FEi—z Ey =V

ev_case_z

(case Erof z= FEy | sz = E3) -V
Fy—s Vll [V{/.’B]Eg —V

(case Erof z= Ey | sz = E3) -V

€v_case_s

Recursion
fixxz. E/z|E —V

fixx. E—=V

ev_fix

The structural and substitution properties for A\;>7 extend to Mini-MLY' in a completely straight-
forward way, and we will make use of it below. We restate only the substitution lemma.

Lemma 7 (Substitution)

1. If ;T Ey: A and A; (T, 2:A, V) I Ey : B then A; (T, 1) t¢ [Ey/z]Ey : B.

2. If A;-F Ey 2 A and (A, w:A,A");T+ Ey: B then (A, A'); T+ [E1/u]Es : B.
Proof: By straightforward inductions on the typing derivations for Fs. O
Theorem 8 (Determinacy and Type Preservation)

1. If E =V then V is a value.

2. IfE—V and E < V then V =V (modulo renaming of bound variables).

3 If E—>V and-;-F¥ E: A then ;- F VA

Proof: By inductions over the structure of the derivation D of E < V. The cases for the non-
modal part are completely standard. The cases for ev_box are trivial and those for ev_let_box are
straightforward for value soundness and determinacy. We thus show only the ev_let_box case in the
proof of type preservation.

Case:
Dy Do
D= FE; — box Ei [Ei/u]Eg — Vs
ev_let_box
let box u = Fq in Ey — V)

;- F Fqy: 0B and

wd;-FEy: A by inversion
;- H box By : OB by ind. hyp.
5-FE:B by inversion
5o F (B ulEyr A by substitution lemma
Ve A by ind. hyp.

16

|

Since our semantics for Mini-ML_ is a the natural extension of a reduction strategy for A\;*7,
the staging correctness results in Section 2 carry over to Mini-MLY. We now briefly discuss the
staging captured in Mini—MLeD in informal terms.

Suppose that ;- E : O0A and F — V. By value soundness and type preservation we have
V = box E’. Thus the result consists only of residual code to be executed in the next stage.
Further, by the modal restrictions, only terms enclosed by box constructors are ever substituted
into other box constructors. As a result, the parts of the original program F not enclosed by any
box constructor can be designated eliminable (static) since they will not appear in the residual
code E'.

Further, the body of a box constructor can be considered persistent (dynamic) in the sense that
we do not evaluate underneath the box constructor. The only way for evaluation to proceed to the
body of the box constructor is by using the variable bound by a let box elimination construct to
indicate where the delayed computation should be performed.

3.4 Example: The Power Function in Explicit Form

We now define the power function in Mini-ML_' in such a way that it has type nat — O(nat — nat),
assuming a closed term times:nat — nat — nat (definable in the Mini-ML fragment in the standard

way).

power = fix p:nat — O(nat — nat).
An:nat. case n
of z = box (Az:nat. s z)
| sm=let box g=pmin
box (Az:nat. times x (q x))

The type nat — O(nat — nat) expresses that power evaluates everything that depends on the
first argument of type nat (the exponent) and returns residual code of type O(nat — nat). Indeed,
we calculate with our operational semantics:

power z — box (Az:nat. s z)
power (s z) — box (Az:nat. times x ((Az:nat. s z)z))
power (s (s z)) < box (Az:nat. times x
((Az:nat. times x ((Az:nat. s z)x))z))

Modulo some trivial redices of variables for variables, this is the result we would expect from the
partial evaluation of the power function.
3.5 Implementation Issues

The operational semantics of Mini—MLeD may be implemented by a translation into pure Mini-ML,
by the mapping:

04 — 1—- A
box E — Ax:1. E (where z not free in E)
let box u = E; in By — (Ax:1 — A. [z ()/u]Es) B4y (where z not in free Fs)

It may then appear that the modal fragment of Mini-MLY is redundant. Note, however, that
the type 1 — A does not express any binding-time properties, while OA does. It is precisely this

17

distinction which makes Mini-ML_ interesting: The type checker will reject programs which may
execute correctly, but for which the desired binding-time separation is violated. Without the modal
operator, this property cannot be expressed and consequently not checked.

A more efficient implementation method would be to interpret OA as a datatype representing
code that calculates a value of type A. The representation must support substitution of one
code fragment into another, as required by the ev_let_box rule. If the code is machine code, this
naturally leads to the idea of templates, as used in run-time code generation (see [KEH93]). For
many applications this code would instead be source expressions or some intermediate language,
thus allowing optimization after code substitution, as in partial evaluation [JGS93]. In our own
experiments in run-time code generation [WLPD98, WLP98|, following ideas in [LL94, LL96],
expressions of type OA are compiled into generating extensions which emit machine code at run-
time and then jump to it to effect evaluation. References to free code variables then represent calls
from one generator to another.

4 A Kripke-Style Modal A-Calculus

The modal logic in Section 2 was motivated by the goal to capture validity. A valid proposition is
one with a closed proof term, and closed proof terms correspond to code which can be explicitly
manipulated and safely evaluated.

In this section we construct a modal logic based on Kripke’s multiple-world interpretation of
modal logic [Kri63]. A world corresponds to a stage of computation during evaluation. A value
computed at a given stage of computation is available in all accessible stages, according to the
accessibility relation between worlds of the Kripke semantics. Subtly different modal logics arise,
depending on the properties of the accessibility relation between worlds. They are captured by
structural rules built into the elimination rule for necessity (OE). In its most general form, we
exactly capture validity and thereby the intuitionistic modal logic S4 presented in Section 2.

Our rules constitute a simplification of the system A" in [PW95] and [DP96]. In particular we
have replaced the structural rule pop by a more general form of elimination which can be motivated
from the perspective of pure natural deduction.

We prove the correctness of our system by relating it to the natural deduction system for S4
presented in Section 2 via two translations between proof terms. In Section 5 we extend this
formulation of modal logic to Mini-ML", which leads to a staged programming style akin to Lisp’s
quasiquote, unquote, and eval. Instead of giving a direct operational semantics for this language
we present a type preserving compilation to the explicit language from Section 3. We give an
embedding of a two-level language [NN92| into our language in Section 6.

4.1 A Kripke-Style Natural Deduction System

In Kripke’s interpretation of modal logic, the truth of a proposition is relativized to a world. Modal
operators allow us to reason about the truth of a proposition in all worlds accessible from the current
world. Imposing laws on the accessibility relation between worlds (such as reflexivity, transitivity,
or symmetry) leads to different modal logics. A world in the sense of Kripke is represented by
a context of hypotheses containing propositions we know to be true in this world. Based on this
intuition, our main judgment has the form

Iy;0y;...;T,HA

18

which expresses that A is true in the current world I';,. Furthermore, I'; represents hypotheses true
in some initial world, I's represents the hypotheses true in an arbitrary world reachable from I'y,
and so on.

From the functional point of view, I'; binds variables available at stage ¢ of the computation,
where the proof term assigned to A may be executed at stage n. We refer to I'y;...; ', as the
world stack or context stack since worlds are related to contexts by the Curry-Howard isomorphism.
Note that there will always be at least one context in the context stack: the current world. We
abbreviate (a possibly empty) context stack by W.

As in Section 2 we now systematically develop a system of natural deduction for this judgment
which includes proof terms. First, only the hypotheses in the current world are available to derive
the conclusion.

z:Ain T

— wvar
U, I'Hz:A
The substitution principle applies to arbitrary worlds, as long as we establish truth in the

appropriate world.

Substitution Principle ‘ ‘
If O, TH M : A and U; (T, z: A, T); W' H My : C then ¥; (I, T7); O/ [M;/x]Ms : C.

In the special case that ¥’ is empty, the current worlds in both given derivations coincide. We
will formally demonstrate this property of the system later.

There are two kinds of structural properties. First, we have exchange, weakening and contraction
within each world in the world stack. We will not formally restate this. Second, depending on the
properties of the accessibility relation, we might have some structural properties on the world stack.
In K we have none. If we add reflexivity of the accessibility relation, we reason as follows: If we
have a jugdment

U0 EM:C

then I contains hypotheses assumed to be true in an arbitrary world accessible from I". But T’
itself is accessible from I' (by reflexivity), so C' should still be true if we join I' and I".

U (0, T); ' H M :C

Whether M’ is different from M depends on how much information is present in the term itself, as
we shall see later. We refer to this as modal fusion.
For example, omitting proof terms, we read the judgment

O(A— B);AE B
as

If O(A — B) is true in some world w1 and A is true in an arbitrary world wy reachable
from wy, then B is true in wo.

If we assume reflexivity of the accessibility relation, we know that w; is accessible from w1, so we
can infer from the above by replacing wy with wy:

IfO(A — B) is true in w1 and A is true in wy then B is true in w;.

19

In symbolic form, we write this as

O(A— B),AE B

which is exactly the result of fusion applied to the first judgment.
Next we add transitivity. Consider once again

U0 HM:C

Then if we add an arbitrary world accessible from I' from which I” can be reached, the judgment
should continue to hold, because I" is still accessible from I' by transitivity.

\I/;F;-;F/;\I//}—iM/:C’

Again, M’ may be identical to M or it can be directly created from M, depending how much
information we represent in proof terms. We refer to this property as modal weakening. Note that
by ordinary weakening, the new interposed world may also contain arbitrary assumptions without
invalidating the judgment.

Now we define the connectives via their introduction and elimination rules. Implication only
affects the current world and is similar to what we have presented in Section 2.

U; (T, z:A)H M : B
U H A A M:A— B

— |

U I'HM:A—B U:IHN:A
U, THMN:B

— E

Local soundness and completeness also works as before. The corresponding operations on proof
terms are the familiar g-reduction and n-expansion.

Recall that O A should be true in the current world if A is true in every reachable world. Since
we have no information about the reachable worlds, we have no hypotheses about the truth of
propositions in this world. Hence the introduction rule reads

‘I/;F;-I—iM:A
ol

U:I'Hbox M:0OA

The corresponding elimination rule states that if JA is true in the current world, A must be
true in every reachable world. Which worlds are reachable depends, of course, on the accessibility
relation for the modal logic under consideration. In its most general form (S4), the elimination rule

reads)
U.I'H M:0A
OE

U I;Ty;...; T, H unbox, M : A

Note that I'y is always accessible from I', so in K we only have unbox;. The worlds I'y,..., ',
are accessible from I' only because of transitivity, so in modal logic with transitivity we also have
unbox,, for n > 1. I' is accessible from itself in a modal logic whose accessibility relation is reflexive,
so there we also have unboxg.

Next we consider local soundness and completeness of the rules for the modal operator. Recall
that soundness requires that an introduction rule followed by an elimination rule can be reduced
to a direct derivation of the judgment.

20

D
U;T:;-HM: A ,
, al . D
U:I'H box M :0A Oy, T, HM A
OE

U:T;T'y;...;T, H unbox, (box M) : A

where D’ and M’ exist by the structural properties of world stacks (modal fusion in the case that
n = 0, ordinary weakening in the case the n = 1, and ordinary weakening and n — 1 applications
of modal weakening in the case that n > 1).

Local completeness is a bit simpler. We have the following n-expansion:

D
U, TH M:0A
D _— - OE
U:I'E M:0A U:I';- H unbox; M : A

; ol
U:T'H box (unbox; M) : OA

We postpone a more formal discussion of the rules for g-reduction and n-expansion on terms to
Section 4.4.

There are two simple and consistent variations on this system.

The first arises from an analysis of local completeness: one can see that only unbox; is nec-
essary. The others (which are locally sound!) have been incorporated so that we need no explicit
structural rules. However, unbox; plus explicit rules for modal fusion and weakening also make a
sensible system with the same derivable judgments. For our purposes, a formulation without explicit
structural rules is preferable, since it allows more compact programs and a simpler meta-theory.

In the second variant we replace the constructor unbox, simply by unbox. This would mean
that M’ = M in the local reduction for O, and terms remain invariant under structural transfor-
mation of contexts. This more streamlined presentation of the calculus is not appropriate for our
application, since the the index n in a term unbox, M constructor determines the stage at which
M is to be evaluated. Without the index, this would be ambiguous and depend on the typing
derivation. In other words, the system would not be coherent.

4.2 Syntax

We summarize the syntax of the pure fragment.

Types A == A — Ay |0OA

Terms M = z|Xz:A. M | My M, |box M | unbox,, M
Contexts r == - |Ix:A

Context Stacks ¥ == - |U;T

4.3 Natural Deduction Judgment

We summarize the rules defining the main judgment, ¥;T'H M : A as motivated and developed in
Section 4.1.

21

z:Ain T U (I,z:A) ¥ M : B

— wvar : =
U, I'Hax: A U, I'HAx:A.M: A— B
U I'HM:A—B U:IHN:A
A —E
v:I'HMN:B
U HM:A U;TH M:O0A

; al : OE

U:I'H box M:0OA . Ty .5 P unbox, M : A

4.4 Properties of the Kripke-style \-calculus

Structural transformations change the nature of the proof term by relabelling indices to the unbox
constructor. Such a relabelling is also necessary to write out the rules 8-reduction and n-expansion
We define {n/m}M inductively on the structure of M.

{n/m}zx = =z
{n/mixx:A. M = Xz:A. {n/m}M
{n/miMy My = ({n/m}M) ({n/m}My)
{n/m}box M = box {n/m+1}M
{n/m}unbox,M = wunbox, {n/m —p}M forp<m
= unbox,, 1 M for p>m

This operation now allows us to state the substitution and structural transformation properties.

Lemma 9 (Modal Structural Transformation) A
IfU;To; Ags -5 Ay B M 2 A then U D05 -5 (Tpy Av)s -5 A B {n/m}M : A.

Proof: By induction over the structure of the given derivation D of W;I'g; A1;...; Ay In each
case except for OE we immediately apply the induction hypothesis and reconstruct an appropriate
derivation from the results. In the case of OE we distinguish two subcases.

Case:

Dy
p= YTgA;.. ;A P M :0OA

.]
U;o; Aq;...; Ay Funbox, My - A

for p < m. Then

U;To; .. .5 (Dpy Av); e A H {n/m —p}M; : OA by ind. hyp.
UiTo;. .5 (Tny A1) oo Ay F unboxp{n/m — p}M; : A by rule OE
U To;. .. (Tny A1); . o5 Ay H {n/m}unbox,M; : A by definition of {n/m}

22

Case:

D,
D = \I//; @p—m H M1 :0A
, OE
U5 Op_m;...;00; Ay;. .. Ay H unbox, M : A
for p > m where ¥ = ¥’;...;0; and ©y9 = I'y. Then
U Op—m;...;00; 5. 5 (Fn? Ay Ay H unbox,,_1M; : A by rule OE applied to Dy
U To;. .. (Tny A1); .5 Ay H {n/m}unbox,M; : A by definition of ¥, ©¢ and {n/m}.

|

The system also satisfies the usual structural properties of exchange, weakening and contraction
in each of the contexts in the context stack. We only state the substitution property formally.

Lemma 10 (Substitution) ‘ ‘
If O;TH M : A and O; (T, z: A, TV); W' B My : C then U; (T, T7); O/ H [M; /2] M; : C.

Proof: By induction over the structure of the derivation of ; (I', z:4,I"); &' H M, : C. O

Then we have the rules of B-reduction and 7n-expansion, corresponding to local reduction and
expansion in natural deduction.

(A\z:A. MYN -5 [N/2]M

M:A — Ay v Ax:Ap Ma
unbox,, (box M) N {n/1}M

M:0A % box (unbox; M)

Theorem 11 (Subject Reduction and Expansion)

1 IfU:TH M: A and M 25 M then O;TH M’ : A.

2. IfU;THM:Aand M : A" M then O;TH M’ : A
Proof: In each case we apply inversion to the given typing derivation. For subject reduction
we then either use modal structural transformation (Lemma 9) or substitution (Lemma 10). For
subject expansion we directly construct a derivation of the conclusion, using weakening if necessary.
O
4.5 Environments and Environment Stacks

In order to prove that the explicit and implicit formulations of S4 correspond, we need to de-
velop some properties of environments and environment stacks. Roughly, an environment provides
definitions for the modal variables available at a particular stage of the computation, while an
environment stack extends this to all stages of a computation.

We define environments and stacks which bind patterns of the form box u to explicit terms F.

Environments p u= -|p,boxu=F
Environment Stacks R == O |R;p

23

The translations between the A-calculi based on validity and multiple worlds require us to
relate context pairs A;I' to context stacks V. This is achieved by the following typing judgments
for environments and environment stacks. The latter ties in the context stacks of the implicit
system. We use © to range over modal contexts.

A;T'F p: 0O Environment p matches © in contexts A and I’
U R: A Environment stack R matches A in context stack ¥

—— tpv_empty
AT HE

A;THFp:0 (A,0);T'F E:0OA
AT H (p,boxu=E): (0,uA)

tpv_bind

—— tpr_empty
VEO:-

UVER:A A;THFp:0
;T E (Rp): (A, 0)

tpr_env

We will tacitly use weakening for typing of environment stacks, which directly follows from
weakening on the typing judgment for the explicit modal A-calculus. We also need to use the
following property.

Lemma 12 (Environment Extension)

If ;T E (R;p): A and A;T F E: OA then U;T £ (R; p,boxu = E) : (A, u:A).

Proof: By inversion on the derivation for (R; p) followed by a straightforward application of the
typing rules for environments and environment stacks. |

4.6 Translation from Explicit System

In this section we show that if A is true in the explicit system then A is also true in the implicit
system. We show this by giving a translation on proof terms. The difficulty in defining and proving
the correctness of this translation lies in the relation between the modal and ordinary contexts on
the explicit side and the context stack on the implicit side. This relationship can be maintained
via the environment stacks defined in the preceding section.

R;p> E— M Expression E translates to M in environment stack R;p

This judgment is defined by the following rules.

24

Rip> E— M
— tx_ovar tx_lam
Rippx—x Ripo A:A. E— Ax:A. M

R;pDElHMl R;pDEQHMQ
R;pDElEQHM1M2

tx_app

R;p;-> E— M
R;pr box E — box M

tx_box

R;p,boxu=FE > FEy— M
R;p>letboxu=F;in Ey — M

tx_letbox

R;p,, > E— M
tx_mvar

R; (p),,boxu=E, pl);--;po > u— unbox, M

Theorem 13 (Translation from Explicit System)
Given U;T' £ (R; p) : A and A; T H E @ A.

1. There is a unique M such that R;pt> E — M.
2. Whenever R;p> E — M then U;T H M : A.

Proof: Proposition 1 is proven by induction on the multiset extension of the subterm ordering of
expressions in R; p and E. For the case of a modal variable u we need to use the typing assumption
to guarantee that tx_mvar applies, that is, that the environment stack contains an appropriate
definition of u.

Proposition 2 is proven by induction on the structure of the derivation of R;p> F — M,
applying inversion to the given typing derivations. In the case of modal variables u we have an
auxiliary induction on the world index n.

We now show the proof of Proposition 2 in more detail. We assume we are given derivations

V & T
BT (Rp):A P Arer.a ™ pooEoMm
We proceed by induction on the structure of 7, applying inversion to the typing derivations as
needed in order to construct a derivation

D
U, THM:A
Case:
—— tx_ovar
T= Rippx—x

ATz A by assumption
z:Ain T by inversion
U;THz: A by rule var

25

Case:

T2
T = R;pl>E2*—>M2

R; p > Ax:A1. By — Ax:Aq. My

tx_lam

A;THF Az:Ap. Byt A

A;F,.’l}:Al }‘BEQZAQ andA:A1—>A2
U: Tz A B (Ryp): A

\I/;F,.CL‘ZAl }_Z M2 . A2

‘I/;F H)\.’L‘ZAl. M2 : A1 — A2

by assumption

by inversion

by assumption and weakening
by ind. hyp.

by rule — |

Case: tx_app is straightforward.

Case:
Ti
T = R;p;-> By — M
tx_box
R; pr> box Fi — box M;
A;THFbox Ei: A by assumption
A;-F Eqp: A and A =0A4, by inversion
U;I'E (Ryp): A by assumption
A;-F by tpv_empty
U, T |:E (R;p;-): A by tpr_env
v T -AI—Z My : Ay by ind. hyp.
U, T'H box M; : OA; by Ol
Case:
Ti
T = R;p,boxu = FE; > Ey+— M
tx_letbox

R;p>let box u = Fy in Ey — My

A;THFletboxu=FiinFEy: A
A;F}‘EEl : \:‘Al and

(A u:Ay);TH Ey: A

U T (Rip) : A

v, T |:E (R;p,boxu = Eq): Ayu:A;

U:I'HE M : A

Case:

Ti
Ry pl, > E'— M’

by assumption

by inversion
by assumption
by Lemma 12
by ind. hyp.

Ry; (p;w box u = Ela pg)a

26

tx_mvar

-+ -1 po > u — unbox, M’

A;THFu: A by assumption
u:Ain A by inversion
U:To £ Ry; (p), boxu=¢,pl);--5p0: A for g =T and pg = p by assumption
U=V, In;.. 510,

A=A7Au11,0,,...,0,

U, E R, : Apt1, and

Apy1;Tn F (pl,, box u=FE', pl"): O, by inversion
Api1; T e (pl,,boxu=FE"): 0, uwA and ©,, = O, u:A", O,

Apy1;Tn F pl, 2 O] and

(Apt1,0); T, E - OA by further inversion
A=A since u : A in A is unique
U, T B (R ph) + Ay, O, by rule tpr_env
U,;T, e M :0A by ind. hyp.
U,:Ty;...; T ¥ unbox, M’ : A by rule OE

E[

4.7 Translation to Explicit System

To show that every proposition judged true in the implicit system is also true in the explicit
system, we give another type-preserving translation on proof terms. This translation is the core of
the compilation function we consider in Section 5.4. Again, the difficulty lies mainly in relating the
context stack of the implicit system to the modal and ordinary contexts of the explicit systems.

The translation recursively extracts terms inside unbox,, constructors and binds their transla-
tion to new variables, bound with a let box outside the n*" enclosing box constructor. Variables
thus bound occur exactly once.

We abstract over an environment by means of nested let box expressions.

Let(-)(E)=F
Let(p, box u = E')(E) = Let(p)(let box u = E' in F)

We require a few straightforward properties of environments, but we explicitly state only the derived
typing rule for environment abstractions.

A;THFp:0 (A,0);TFE:B

tpi_env
A;T H Let(p)(E) : B

The merge operation R; | Re on environment stacks appends corresponding environments. We
assume that the domains of the environments in R; and Ro are disjoint so that the resulting
environment stack is valid.

©|R: = Ry
Ri|® = R
(R1;p1) | (R2;02) = (R1] Ra);(p1,p2)

The translation is defined by the judgment

Mw— Rr> FE M compiles to term E under stack R

27

It is defined by the following rules.

M—Rp>FE
——trvar tr_lam
T—O> Ae:A. M — R \r:A. B
My — Ri> Eq My — Ry > Fo
tr_app
My My — (R1 ‘ Rg) > Fy Es
M—o>E M— (Ryp)> E
tr_box0 tr_box1
box M — ® > box E box M +— R > Let(p)(box E)
M—Rp>FE
tr_unbox0

unboxg M — R>let boxu = Finu

M—R>FE

unbox, 1 M — R; (boxu=E);-;...;-Du
——
n

tr_unbox1

The tr_app rule is restricted to context stacks R; and Ro with disjoint domains. This can always
be achieved by renaming of variables in the derivations of the two premisses.

Theorem 14 (Translation to Explicit System)
1. For any M there exist unique R and E such that M — R1> E.

2. If M — R>FE and U;T H M : A then for some A we have ¥ £ R: A and A;TF E : A.

Proof: Proposition 1 is straightforward, since the translation is defined structurally on M with
unique results (modulo renaming of bound variables, of course), except in the case of box M, where
exactly one of tr_box0 and tr_box1 apply.

Proposition 2 follows by induction on the structure of the derivation 7 of M — R E. The
proof requires a few simple lemmas such as weakening for F¥ and some immediate properties of
R; | Ry and Let(p)(E) which we do not state here explicitly. We omit the cases for the non-modal
constructors, which are straightforward.

Case:
Ti
T = M — O> E;
tr_box0
box M; — ® > box F;

U;T'Hbox M, : A by assumption
U;T;-H M : A and A =04, by inversion
U: ' ©: A and

Aq;-F Eq . Aq for some Aq by ind. hyp.
A= by inversion
UVEO:- by tpr_empty
< THF box Fy : OA; by Ol

The last two lines are the desired conclusions for A = -.

28

Case:

T
T = MlH(R;p)DEl
tr_box1
box M; — R > Let(p)(box Ej)

U;T'Hbox M; : A by assumption
U:T;-H M : A and A =04, by inversion
U; T (R; p): Ay and
Aq;-F Eq . Aq for some Aq by ind. hyp.
U R: Al and

LTHE p:©and Ay =A,0 by inversion
(A],0); T box E; : OA; by rule Ol
AT F Let(p)(box Eq) : OA; by rule tpi_env

Now we have the desired conclusions with A = Al.

Case:
Ti
T = My — R > E;
tr_unbox0
unboxy M; — R let box u = F; inu

U; T H unboxg M; : A by assumption
;T H M :OA by inversion
U E R:A; and

Aq;TF Ep: 0OA for some Aq by ind. hyp.
(A, w:A);;THFu: A by rule tpe_mvar
Ap;THFletboxu=FE{inu: A by rule OE

Now we have the desired conclusions with A = Aj.

Case:
T1
M1 — R E1
T = tr_unbox1
unbox, 1 M1 — R;(boxu=Ej);-;...; >u
——
n

U, T H unboxn+1 M, : OA by assumption
U:T"H M;:0A4and ¥ =91 T;...;T, by inversion
U = R:A; and

A1; IV Ey - OA for some Ay by ind. hyp.
ATV (boxu=FE): (u: A) by rule tpv_bind
VST (R;boxu = Ey) : (Ar,u:A) by rule tpr_env
U T Ty 0 B (Ryboxu=Es+ ..o ;0) (A, wA) by n applications of tpr_env
(A, w:A);;THFu: A by tpe_mvar
Now we have the desired conclusions for A = Ay, u:A. O

29

5 Modal Mini-ML: Implicit Formulation

We now define Mini-ML", an “implicit” formulation of modal Mini-ML generalizing the A-calculus
core from the preceding section. The main advantage of this system over the explicit language is
that altering the staging of a computation in a given program often only requires the insertion or
deletion of modal constructors. In contrast, Mini—MLE requires that the structure of the program
exactly mirror the staging, since the only way to refer to results from a previous stage is via code
variables. Using let (a derived form in our fragment) to bind code variables we can still express
staging more explicitly in Mini-ML" if we prefer; it is now a matter of style rather than a property
enforced in the language.

Another motivation for Mini-ML" is that it can be directly related to the two-level A-calculus
(see Section 6) which would be much more difficult for Mini-ML_ due to the different syntactic
structuring required. Further, Mini-ML" is very similar to the quasi-quoting and eval mechanisms
in LISP, which are relatively intuitive in practice. We believe that with some syntactic sugar along
the lines of Scheme’s backquote and comma notation (as in the regular expression example in Section
7.3), Mini-ML" is a practical and theoretically well-founded basis for an extension of Standard ML.
Indeed, experience with the two languages PML [WLP98] and Meta-ML [T'S97, TBS98, MTBS99]
indicates that such languages are indeed practical.

It may be helpful to consider the modal fragment of the implicit language to be a statically typed
analog to the quasiquote mechanism in Scheme. Then box corresponds to quasiquote (‘) and
unbox; to unquote (,). unboxg corresponds to eval. More generally, unbox,, corresponds to a
generalized unquote which splices a quoted expression into a context with n levels of quasi-quoting.
Note however that this analogy can also sometimes be misleading, and the actual behavior of code
is closer to the quotations of a “semantically rationalized dialect” of Lisp called 2-Lisp [Smi84].

The operational semantics of the new system is given in terms of a type-preserving compilation
to Mini-ML_ which is a straightforward extension of the translation in Section 4.7.

For some applications, such as emulating the two-level A-calculus, weaker modal logics such as
K are sufficient, as described in Section 6.4.

5.1 Syntax

We extend the logic to the core of a programming language as in Section 3.

Types A = nat\A1—>A2\A1><A2\1\DA
Terms M == x| Ax:A. M| M; M,

| box M | unbox,, M

| (M1, My) | fst M | snd M

| ()

|z|s M| (case My of z= M, | sz = Ms)

| fix z:A. M
Contexts r == -|I'z:A
Context Stacks ¥ == -|¥;T

5.2 Typing Rules

In this section we present typing rules for Mini-ML" using context stacks. The typing judgment
has the form:

30

U;TH M:A Term M has type A in local context ' under stack W.

Intuitively, each element I' of the context stack ¥ corresponds to a computation stage. The
variables declared in I are the ones whose values will be available during the corresponding eval-
uation phase. When we encounter a term box M during typing we enter a new evaluation stage,
since M will be frozen during evaluation of the current stage. In this new phase, we are not allowed
to refer to variables of the prior phases, since they may not be available when box M is unfrozen
using unbox,,. Thus, variables may only be looked up in the current context I' (rule tpi_var) which
is initialized as empty when we enter the body of a box (rule tpi_box). However, code generated in
the current or earlier stages may be used, which is represented by the rule tpi_unbox.

Functions
z:Ain T . U (T, z:4) HM:B
———— tpivar A tpi_lam
U I'Hzx: A v I'HAz:AM:A— B
U ITHM:A—B U THEN:A
; tpi-app
v.I'HMN:B
Code
U HM:A _ U;THM:O0A _
. tpi_box . tpi_unbox
U:I'F box M:0OA . Iy .30, Hunbox, M : A
Products
U;TH M : A UTHM:A
- tpi_pair
\I/;F H <M1,M2> : A1 X A2
U THM: A x Ay U:THM:A x Ay
A tpi_fst A tpi_snd
U, T Hfst M: A U, T'Hsnd M : A
———— tpi_unit
U;IH():1

Natural Numbers

_ U;TH M : nat
———tpiz A tpi_s
WU:T'H z : nat U, T'H sM : nat

T H M inat W, THM: A U;(T,znat) H Mz : A
tpi_case

U:TH (case My of z = My | sz = M) : A

31

Recursion
U (D, A)EM: A
\I/;F}—iﬁxw:A. M:A

tpi_fix

The reductions and expansions from Section 4 remain valid in this extended setting, as do the
structural rules.

5.3 Examples in Implicit Form

We now show how we can define the power function in Mini-ML" with a different syntactic structure
than in Mini-ML_', though still with type nat — O(nat — nat).

power = fix p:nat — O(nat — nat).
An:nat. case n
of z = box (Az:nat. s z)
| s m = box (A\z:nat. times = (unbox; (p m) x))

As another example, we show how to define a function of type nat — Onat that returns a box’ed
copy of its argument:

liftnat = fixf:nat — Onat.
Az:nat. case z
of z = boxz
| s 2’ = box (s (unbox; (f z')))

A similar term of type A — OA that returns a box’ed copy of its argument exists exactly when
every — in A is enclosed by a 0. This justifies the inclusion of the lift primitive for base types in
two-level languages such as in [GJ91], and it seems natural to include such a primitive in a realistic
extension of our language, as in [WLP98].

5.4 Compilation to Explicit Language

We do not define an operational semantics for Mini-ML" directly; instead we depend upon a
translation to Mini-ML_. This extends the translation given in Section 4.7 in a straightforward
way. We prefer this to a direct operational semantics on the implicit language since the translation
should be identical to what a compiler would perform. We omit the obvious rules.

As an example of the compilation, it maps the definition of power from Section 5.3 to the
one in Section 3.4. Note that the restructuring achieved by the compiler is similar to a staging
transformation [JS86].

The operational semantics induced by the translation is different from some obvious ones defined
directly on Mini-ML"”. In [MM94], for example, a simple reduction semantics is introduced for a
system similar to the pure fragment of our implicit system. It does not reflect staging, and is instead
used to prove a Church-Rosser theorem and strong normalization for a pure modal A-calculus. Sim-
ilarly, in [PW95] an algorithm for converting pure modal A-terms in implicit form to long normal
form is given and proven correct. This algorithm bears no resemblance to the staged computation
achieved via Mini-ML(. We also have constructed a direct operational semantics for Mini-ML"
generalizing [Hat95] that does capture staging, but prefer the compilation because it makes op-
erational properties more evident. In particular, proving staging theorems for Mini-ML" directly
would be much harder than taking advantage of the type-preserving compilation and proving the
properties for Mini—MLE.

32

6 A Two-level Language

In this section we define Mini-MLs, a two-level functional language very close to the one described
in [NN92]. We then define a simple translation into Mini-ML" and prove that binding-time cor-
rectness in Mini-MLs is equivalent to modal correctness of the translation in Mini-ML".

A two-level language captures staging by explicitly annotating each occurrence of a term con-
structor as compile-time (often called static) or run-time (often called dynamic). Traditionally,
expression constructors which can be evaluated at compile-time are overlined, those which cannot
be evaluated until run-time are underlined. The process of annotating each term constructor in an
expression is called binding-time analysis. Of course, not every possible annotation is valid. For
example, the expression

Ax:nat.case zof z=2z | ST=52

is not binding-time correct, since z is not available until run-time, while the case statement is
annotated to be executed at compile time, which is not possible.

We will not discuss binding-time analysis in this paper, only show how the resulting two-level
terms are related to modal Mini-ML in its multiple-world formulation from Section 5.

Our language differs slightly from [NN92] in that we inject all run-time types into compile-time
types, instead of just function types. This follows [GJ91], where there is no such restriction. Also,
we find it convenient to divide the variables and contexts into run-time and compile-time. All other
differences to [NN92] are due to minor differences between their underlying language and Mini-ML.
Note that modal Mini-ML can accommodate arbitrary levels (not just two) and additional term
operations (such as evaluation), so the two-level language we introduce in this section will be
embedded into a relatively modest fragment of modal Mini-ML.

6.1 Syntax
Run-time Types Tuo=nat|m =2l xn|l
Compile-time Types o = nat|o; o3| o1 X o | 1|7
Terms e u= z|dlzT.e|le Qe
| fix z:7. e
| (e1,e2) |fste|snde
lz|se
| (casee; of z=es | sz = e3)
1O _ _
|7 | AG:o. e | e1 Qe
| fix yio. e
| {e1,e2) |fste|snde
| O)
|z[se
| (asee;of Z= ey | 5y = e3)
Run-time Contexts ' == | o7
Compile-time Contexts A = | A, g0

As a simple example we consider the two-level version of the power function.

33

Recall that times is a curried function for multiplication represented as a closed term for sim-
plicity. The type indicates that power takes a natural number as a compile-time argument and
computes a residual run-time function from nat to nat. Otherwise the structure is very similar to
the power function in its implicit formulation from Section 5.3. As we will see in Section 6.3 we can
translate this to Mini-ML" by inserting a box constructor when an immediate subexpression of
a compile-time term (overlined) is a run-time term (underlined). Conversely, when a compile-time
term appears as an immediate subexpression of a run-time term we insert an unbox; constructor.
It is easy to see that in this example we obtain the power function in implicit form, exactly as in
Section 5.3:

power = fix p:nat — O(nat — nat).
An:nat. case n
of z = box (Az:nat. s z)
| s m = box (A\z:nat. times = (unbox; (p m) x))

6.2 Typing Rules

The typing rules of the two-level A-calculus simultaneously verify staging and standard type-
correctness, just as our explicit and implicit systems. We have two judgments:

A;TH e: 7 expression e has run-time type 7
AFe:o expression e has compile-time type o

A compile-time expression can never depend on a run-time variable. Therefore, compile-time typing
depends only on a compile-time context. A run-time expression may have embedded compile-time
subexpressions and therefore carries compile-time variables (in A) as well as run-time variables in

r.

Functions
z:7in T A; (Do) He:r
—tprar tpr_lam
A;TH 7 A;TH A M. e:mo = 7T
ATHe :mm—=T A;T'H ey i1
tpr_app

A;TH e Qey: 7

34

Products

A;TH e :m

A;TH ey :my

tpr_pair

A;TH (ep,e9): T X T

A;TH e X T

A;TH e:m X T

tpr_fst tpr_snd
A;TH fste:ny A;T'H snd e : 1
—— tpr_unit
A;TH ()01
Natural Numbers
A;TH e:nat
tprz tpr_s
A;T'H z:nat A;T'H se: nat
A;THoep:nat A;TH ey A;(T,z:nat)Hez:r
tpr_case
A;TH (caseeiof z= e | sz =e3): 7
Recursion
A;(Tymr)He:r _
tpr_fix
A;TH fixar.e: 1
Phase Transitions
A K A;-He:r
€T down ——up
A;THe: T AFe:r
Functions
70 in A A goste:o
~—tpc.var — tpc_lam
AF7g:o A A\gog.e:00= 0
AFe :00=o0o AFey: oo
— tpc_app
AFe Qey:0o

35

Products

AFe:o AFey:o9

tpc_pair

A (er,er): 01 X 09

AFe:o; X oy AFe:o1 X o9
— tpc_fst tpc_snd
AFfste: o AFsnde: oy
E— tpC_unit
AR ():1
Natural Numbers
A Fe:nat
———tpcz ——— —tpcs
A F Z:nat A Se:nat

AFei:nat AFey:0 Ag:nattes:o
tpc_case

At (caseeiof Z=e3 | SY=e3):0

Recursion

Agote:o

— tpc_fix
At fixgio.e: o

Note that we remove run-time assumptions at the down rule, while in [NN92] this is done later
at the up rule. This change is justified since, by the structure of their rules, such assumptions can
never be used in the compile-time deduction in between.

6.3 Translation to Implicit Language

The translation to Mini-ML" is now very simple. We translate both run-time and compile-time
Mini-ML fragments directly, and insert O, box and unbox; to represent the changes between
phases. We define two mutually recursive functions to do this: || || is the run-time translation and
| - | is the compile-time translation. We overload this notation by using it for types, terms, and
contexts. We write e and € to match any term whose top constructor matches the phase annotation.

Type Translation

|nat|| = nat [nat| = nat
|1 =7l = |Inll = Il lon= 02| = |o1] = [o2]
|71 X 72l = |7l X |72l lo1 X o2 = o] x |o2]
1] =1 1] =1
|| = o7

36

Term Translation

|z == =y
[Az:T. €| = Az:||7|[. [|e]] |AG:0. e = Ay:|o]. |e]
le1 @ ea| = [lea]] [le2| _le1 @ ea] = |ex] |eg]
fix z:7. e|| = fix z:||7||. ||e]] \ﬁ_x y:a.f\ = fix y:|o]. |e]
1{ex, e2)[| = (llexll; lle2l]) (e, e2)] = (lexl, |ea])
||fst e|| = fst ||e]| Ifst e| = fst |e]
|snd e|| = snd |e] snd e| = snd |e|
1OI =€) 1Ol = ()
2| =z z| ==z
s ell =s e [Sel=s el

|lcase e; of z = ez | sz = e3]| =
case |le1| of z = |le2|| | sz = |les]|

|casee;of Z=ex | 57 = e3| =
case |e1| of z = |es| | sy = |es]

[e]l = unbox; [e] le] = box | ¢

Context Translation

-1l =- |-|=-
1T, zor|| = TN, 2l [A, g0l = [Al yilo]
6.4 Equivalence of Binding Time Correctness and Modal Correctness

In this section we show that binding-time correctness is equivalent to modal correctness of the
translation to Mini-ML". Note that even though we use A and I' to denote contexts, the implicit
language Mini-ML"™ employs context stacks, where -;T'1;...; T, is abbreviated as I'y;...;T,.

Theorem 15 (Conservative Embedding)
1. If |le|| = M then:
(a) if A;TH e: 1 then |Al;|T|| F M - |7||;
(b) if |Al; IT| F M : A then |A|; |T||F e : 7 with ||| = A.
2. If le| = M then:
(a) if A¥e:o then |A|H M : |o|;
(b) if |A|H M : A then A¥ e : o with |o| = A.
Proof: By simultaneous induction on the definitions of ||e|| and |e|. Note that we can take advan-
tage of strong inversion properties, since we have exactly one typing rule for each term constructor

in Mini-ML" and Mini-MLs, plus the up and down rules to connect the F and H judgments.
We only show the two cases involving the up and down rules since all others are easy.

37

Case: |[e| = unbox; |e|, part la.

A;TH e:r

AFe:r

|AlF Jel - O 7|

|A[; [|IT|| unbox [e] : [|7|

Case: |€| = unbox; |e|, part 1b.

|Al; [T H unbox; |g] : |||
|AlF [e] - O 7|

AFe:r

A;THe:r

Case: |e| = box e, part 2a.

AFe:T
A;-H’Q:T
|Afs - H le]] = [|]|

Al H box [|e]| : O|7]

Case: |e| = box |¢e||, part 2b.
A box || : 7|

|Afs - le]] = [
A;-He:r
AFe:r

assumption

by inversion (rule down)
by i.h. 2a

by rule tpi_unbox

assumption

by inversion (rule tpi_unbox)
by i.h. 2b

by rule down

assumption

by inversion (rule up)
by i.h. 1a

by rule tpi_box

assumption

by inversion (rule tpi_box)
by i.h. 1b

by rule up

|

The translation and proof can be easily generalized from a two-level language to a B-level
language [NN92] with an infinite linear ordering. In this case the image of the translation on
well-typed terms is exactly the fragment Mini-ML%, where unbox,, is restricted to n = 1. This
fragment corresponds to a weaker modal logic, K, in which we drop the assumption in S4 that the
accessibility relation is reflexive and transitive [MM94], and which we discussed briefly in Section 2.
Thus a corollary of the generalized theorem is that Mini-ML% is equivalent to an infinite linear
B-level language, since the translation is then a bijection which preserves correctness of typing.

7 Examples

We now present some standard examples from partial evaluation to illustrate the expressiveness
of our language Mini-ML”. We use let x = F; in F5 to introduce (non-polymorphic) top-level

definitions; it may be considered syntactic sugar for (Az:A. E3) Ej.

38

7.1 Ackermann’s Function

We now present a program for calculating Ackermann’s function that specializes to the first argu-
ment. It is based on the following program:

fix acker:nat — nat — nat.
Am:nat. case m
of z = An:nat. sn
| s m/= An:nat. case n
of z = acker m’ (s z)
| s n'= acker m' (acker m n’)

Now, if we attempt to directly insert the modal constructors to divide this program into two

stages, we get the following:

fix acker:nat — O(nat — nat).
Am:nat. case m
of z = box (An:nat. sn)
| s m'= box (An:nat. case n
of z = (unbox; (acker m')) (s z)
| sn'= (unbox; (acker m'))((unbox;(acker m))n'))

Unfortunately, when applied to the first argument, this function generally will not terminate.
This is a common problem in partial evaluation, and the usual solution is to employ memoization
during specialization, which works for many programs. Here we will simply note that the problem
in this case is a recursive call to acker m while calculating acker m, which can be removed by

adding an additional fixpoint as follows.

fix acker:nat — O(nat — nat).
Am:nat. case m
of z = box (An:nat.sn)
| s m'= box (fix ackm. An:nat.
case n
of z = (unbox; (acker m')) (s z)
| s n’= (unbox; (acker m')) (ackm n'))

This function will always terminate. The recursive applications appearing inside unbox; con-
structors are evaluated when the first argument is given. The compilation of this function to
Mini-ML. makes this more explicit:

fix acker:nat — O(nat — nat).
Am:nat. case m
of z = box (An:nat. s n)
| sm/= let box f = acker m’ in
let box g = acker m’ in
box (fix ackm. An:nat.
casenofz = f (sz)
| sn'= g (ackmn'))

Notice that acker m’ is unnecessarily calculated twice. This would be avoided if memoization
was employed during the compilation or if we had explicitly bound a variable to the result of this
computation.

39

7.2 Inner Products

In [GJ95] the calculation of inner products is given as an example of a program with more than
two phases. We now show how this example can be coded in Mini-ML”. We assume a data type
vector in the example, along with a function sub:nat — vector — nat to access the elements of a
vector.

Then, the inner product example without staging is expressed in Mini-ML as follows:

fix ip:nat — vector — vector — nat.
An:nat. case n
of z = Av:vector. \w:vector. z
| s n'= lv:vector. Aw:vector.
plus (times (sub n v) (sub n w))
(ipn' v w)

We add in O, box and unbox; to obtain a function with three computation stages which is
shown in Figure 1. We assume a function lift,5¢ as defined earlier and a function sub’:nat — O(vector — nat)
which is a specializing version of sub, that perhaps precomputes some pointer arithmetic based on
the array index. We first define a staged version times’ of times which avoids the multiplication in
the specialization if the first argument is zero. This will speed up application of iprod’ to its third
argument, particularly in the case that the second argument is a sparse vector.

let times’:0(nat — O(nat — nat)) =
box (Am:nat. case m
of z = box (An:nat. z)
| s m'= box (An:nat. times n (unbox; (liftnat m))))
in let iprod’ = fix ip:nat — O(vector — O(vector — nat)).
An:nat. case n
of z = box (Av:vector. box (Aw:vector. z))
| s n'= box (Av:vector. box (Aw:vector.
plus (unbox; (unbox; times’'(unbox; (sub’ n) v))
(unboxy (sub’ n) w))
(unbox; (unbox; (ip n') v) w)))
in let iprod3 : vector — O(vector — nat) = unboxg(iprod’ 3)
in let iprod3a : vector — nat = unboxg (iprod3 [7,0,9])
in let iprod3b : vector — nat = unboxg (iprod3 [7,8,0])
in ...

Figure 1: Staged code for inner product.

The last three lines show how to execute the result of a specialization using unboxg (corre-
sponding to eval in Lisp). Also, the occurrence of unbox; indicates code used at the third stage
but generated at the first. These two aspects could not be expressed within the multi-level language
in [GJ95].

Note the erasure of the unbox; and box constructors in iprod’ leaves the unstaged code, except
that we used a different version of multiplication. The operational semantics of the two programs
is of course quite different.

40

7.3 Regular Expression Matching

We now present a program for regular expression matching that specializes to a particular regular
expression. We use the full Standard ML language, augmented with our modal constructors. Our
program is based on the non-specializing one in Figure 2, which makes use of a continuation function
that is called with the remaining input if the current matching succeeds. We assume the following
datatype declaration:

datatype regexp
= Empty
| Plus of regexp * regexp
| Times of regexp * regexp
| Star of regexp
| Const of string

(* val acc : regexp -> (string list -> bool) -> (string list -> bool) *)
fun acc (Empty) k s = k s
| acc (Plus(rl,r2)) k s = acc rl k s orelse
acc r2 k s
| acc (Times(r1,r2)) k s =
acc rl (fn ss => acc r2 k ss) s
| acc (Star(r)) k s =
k s orelse
acc r (fn ss => if s = ss then false
else acc (Star(r)) k ss) s
| acc (Const(str)) k (x::s) =
(x = str) andalso k s
| acc (Const(str)) k (nil) = false

(* val accept : regexp —-> (string list -> bool) *)
fun accept r s =
acc r (fn nil => true | (x::1) => false) s

Figure 2: Unstaged regular expression matcher

Note that there is a recursive call to acc (Star(r)) in the case for acc (Star(r)) which we can
transform using a local definition, similar to the fix introduced in the Ackermann function example.
This must be done so that specialization with respect to the regular expression terminates. The
resulting code for this case is:

| acc (Star(r)) k s =
let fun accStar k s =
k s orelse
acc r
(fn ss => if s = ss then false
else accStar k ss)

in

accStar k s
end

41

Then, we can add in modal constructors to get the staged program in Figure 3 with the following
types (using [A] here to represent O A, following the syntax of PML [WLP98])

val acc2 : regexp -> [(string list -> bool) -> (string list -> bool)]
val accept2 : regexp -> [string list -> booll

These types indicate that the required staging is achieved by the program. Inserting the modal
constructors requires breaking up the function arguments, but is otherwise relatively straightfor-
ward. We use ¢ for box and ~ for unbox;. More generally, we suggest using “n for unbox,,.

(* val acc2 : regexp -> [(string list -> bool) -> (string list -> bool)] *)
fun acc2 (Empty) = ¢ fn k => fn s => k s
| acc2 (Plus(r1l,r2)) = ¢ fn k => fn s =>
“(acc2 r1) k s orelse
“(acc2 r2) k s

| acc2 (Times(rl,r2)) = ¢ fn k => fn s =>
~(acc2 r1) (fn ss => “(acc2 r2) k ss) s
| acc2 (Star(r)) = ¢ fn k => fn s =>

let fun acc2Star k s =
k s orelse
~(acc2 r)
(fn ss => if s = ss then false
else acc2Star k ss)

in
acc2Star k s
end
| acc2 (Const(str)) = ¢ fn k =>
(fn (x::s8) =>
(x = ~(lift_string str))
andalso k ss
| nil => false)

(* val accept2 : regexp -> [string list -> bool] *)
fun accept2 r = ¢ fn s =>
“(acc2 r) (fn nil => true | (x::1) => false) s

Figure 3: Modally staged regular expression matcher

We can now use our compilation to the explicit language Mini-MLY to get an equivalently staged
program. We can then further translate to a program in pure Standard ML, which is staged in the
same way, but without the modal annotations, as shown in Figure 4. It is unnecessary to replace
[A] by unit -> A in this case, since the code constructor (¢) is only applied to values. We show
this program only to demonstrate the staging described by the the modal annotated program. The
program in Mini—MLeD has the potential to be more efficient, since optimized code can be generated
by a sophisticated implementation.

8 Related Work

Our modal \;""-calculus is originally based on the modal M-calculus presented by Bierman and
de Paiva [BdP92] and used by Pfenning and Wong [PW95], who call it the “explicit system”.

42

(* val acc3 : regexp -> (string list -> bool) -> (string list -> bool) *)
fun acc3 (Empty) = (fn k => fn s => k s)
| acc3 (Plus(ril,r2)) =
let val al = acc3 ril
val a2 = acc3 r2
in
(fn k => fn s => al k s orelse a2 k s)
end
| acc3 (Times(rl,r2)) =
let val al = acc3 ril
val a2 acc3 r2
in

(fn k¥ => fn s => al (fn ss => a2 k ss) s)
end
| acc3 (Star(ril)) =
let val al = acc3 r1
fun acc3Star k s =
k s orelse
al (fn ss => if s = ss then false
else acc3Star k ss)
s
in
(fn k => fn s => acc2 k s)
end
| acc3 (Const(str)) =
(fn k¥ => (fn (x::s) => (x = str) andalso k s
| nil => false))

(* val accept3 : regexp -> (string list -> bool) *)
fun accept3 r =
acc3 r (fn nil => true | (x::1) => false)

Figure 4: Pure SML staged regular expression matcher

Our calculus avoids the use of simultaneous substitution by using both a modal context and an
ordinary one, following the sequent calculi proposed by Andreoli [And92] for linear logic and by
Girard [Gir93] for LU. The result is similar to the linear A-calculus formulated by Wadler [Wad93].

The language Mini-MLY is constructed by combining A\;*" and Mini-ML [CDDK86]. The lan-
guage Mini-ML" is based on the “implicit” modal A-calculus presented in [PW95], which uses a
stack of ordinary contexts rather than two contexts. Mini-ML" avoids the pop structural rule
of [PW95], which is difficult to motivate from the point of view of natural deduction, by instead
removing contexts from the stack at the OF rule. The compilation from Mini-ML" to Mini-MLY
is inspired by one direction of the proof of equivalence between the two calculi given in [PW95].
Systems similar to the implicit modal A-calculus of [PW95] have been proposed by Martini and
Masini [MM94], who introduce a simple reduction semantics, and Bourghuis [Bor94], who considers
modal pure type systems. None of the prior work on modal A-calculi has considered the relationship
to computation staging.

Partly motivated by a previous version of the current paper [DP96], Goubault-Larrecq [GL96a,
GL96b, GL96¢, GL97] has proposed a formulation of modal A-calculi using explicit substitutions.
While this system has some interesting properties as a calculus, in particular giving a finer grained

43

analysis of reduction and equality, it is unclear how this is relevant to the design of a programming
language with staging primitives.

Despite some superficial similarities, our code types are quite different from Moggi’s computa-
tional types based on monads [Mog89, Mog91] which only distinguish values from computations
and do not allow expression of stage separation. Moreover, our intended implementation of code
is intensional, since we wish to allow refinements of our semantics to optimize code, while Moggi’s
computations are extensional with evaluation as the only operation. In current work (as yet un-
published) we have been able to explain computational types cleanly in our framework via a com-
bination of the intuitionistic possibility operator <> and necessity. This follows an earlier suggestion
by Kobayashi [Kob97] and a related investigation by Benton, Bierman and de Paiva [BBdP98] who
establish a connection between the computational A-calculus and lax logic [FM97].

We have shown how some standard examples of specialization can be expressed in Mini-ML".
More complicated examples might require more advanced techniques to achieve the desired staging,
such as the binding-time improvements used in partial evaluation. Memoizing when generating code
is another useful technique used in partial evaluation, and [WLP98] shows how this technique can
be programmed in a language with modal types. See [BW93] for a description of a realistic partial
evaluator for Standard ML and [JGS93] for an overview of standard techniques and examples of
partial evaluation.

One possible criticism of our languages is that they only manipulate closed code during ex-
ecution, which restricts the staging that can be expressed compared to the two-level languages
used in partial evaluation such as that proposed by Gomard and Jones [GJ91]. This is solved in
Mini-ML"” by A-abstracting code expressions over their free variables, and then later generating an
application to the actual variables. This results in a number of variable for variable S-redices in
the generated code in our examples. Of course, a lower level implementation could reduce these
redices for efficiency, but this is not reflected in the language semantics. From a practical point of
view, the reason for only treating closed code is that we need to be able to evaluate code without
danger of encountering unbound variables. This is in contrast to the binding-time languages used in
partial evaluation, which allow manipulation of code containing free variables, but do not support
evaluation of code as a construct within the language. Instead, evaluation of the result of partial
evaluation is an external operation applied only to whole programs, the properties of which have
been studied separately by Jones [Jon91]. In other work [Dav96], one of the present authors has
shown that the O (“next”) operator from non-branching temporal logic exactly models the looser
correctness criterion used in partial evaluation. Interestingly, the resulting languages are unsound
when general references or value carrying exceptions are added, since these features allow a code
expression with free variables to escape the binders for those variables.

Taha and Sheard [TS97] have directly constructed a language similar to Mini-ML" which allows
manipulation of code with free variables as well as type-safe evaluation, but their original design
proved to be unsound in that free variables may be encountered during evaluation. This is fixed
in [TBS98], resulting in a language called Meta-ML which is sound in the absence of references and
exceptions, but it seems more operationally, rather than logically motivated. More recent work on
Meta-ML has concentrated on an idealized language [MTBS99] and makes quite direct use of the
results in the previous version of this paper [DP96] as well as [Dav96].

Over the last few years there has been a lot of interest in run-time code generation in high-
level languages. Engler, Hsieh and Kaashoek [EHK96| describe an extension of the progamming
language C called ‘C (pronounced “tick C”) which uses similar mechanisms to Mini-ML" to achieve
computation staging. However, the type system lacks the modal restriction on variables, so it allows
variables to be used when their values are not available, which may result in incorrect results

44

or runtime errors. Consel and Noél [CN96] describe a system called Tempo which allows both
partial evaluation and run-time code generation for the C language. Standard binding-time analysis
techniques are used, along with separate annotations to describe where run-time specialization
should be done. These annotations roughly correspond to the unboxg construct in Mini-ML",
while the annotations resulting from the binding-time analysis roughly correspond to the box
and unbox; constructs, although the restriction of Mini-ML" to closed code means that this
correspondence is not exact. Leone and Lee [L194, LL96| describe a small ML-like language and
a corresponding implementation called Fabius which treats curried functions as run-time code
generators, using a new form of binding-time analysis. The staging achieved is quite different to
that obtained using ordinary binding-time analysis, and one of the original motivations for the
current work was to allow a formal characterization of this staging. Fabius also uses a very fast
form of run-time code generation called deferred compilation.

Deferred compilation has also recently been used by Wickline, Lee and Pfenning [WLP98] as
an implementation technique for a language based on Mini-MLY called PML which includes most
of core SML and performs run-time code generation based on modal types. The extension to core
SML was very smooth even though the language includes polymorphism, datatypes, references
and arrays. A simple compiler for this language has been completed, and work is continuing on
improved implementations.

9 Conclusion and Future Work

In this paper we have proposed a logical interpretation of binding times and staged computation
in terms of the intuitionistic modal logic S4. We first presented the A ’"-calculus, and formally
demonstrated the sense in which it captures staging. We then extended this to the explicit lan-
guage Mini-ML[(including recursion, natural numbers, and products) and presented its natural
operational semantics. We continued by defining an implicit language Mini-ML® which might
serve as the core for an extension of a language with the complexity of Standard ML, and which
is syntactically similar to both Lisp’s backquote and comma notation, as well as the languages
used in partial evaluation. The operational semantics of Mini-ML" is given by a type-preserving
compilation to Mini—MLE. Further, Mini-ML" generalizes Nielson & Nielson’s two-level functional
language [NN92] which is demonstrated by a conservative embedding theorem, an important tech-
nical result of this paper.

Our approach provides a general, logically motivated framework for staged computation that
includes aspects of both partial evaluation and run-time code generation. As such it allows efficient
code to be generated within a declarative style of programming, and provides an automatic check
that the intended staging is achieved.

Our investigation remains at a relatively abstract level, thus providing a general framework in
which various staging mechanisms may be studied from a new point of view. We implemented the
original interpreter for Mini-ML" in the logic programming language Elf [Pfe91], thus allowing us
to perform small experiments at this abstract level. Concrete instances such as partial evaluation,
run-time code generation, or macro expansion will require some additional considerations for their
effective use and efficient implementation. The application to run-time code generation appears
particularly promising and is described in more detail, including an extended example, in work by
the current authors in conjunction with Wickline and Lee [WLPD98]|. We hope that future design
and implementation work will lead to a practical full-scale programming language with computation
staging based on modal types.

45

Acknowledgements

The work described here has benefited from discussions with too many colleagues to acknowledge
them here individually. We would like to particularly thank Olivier Danvy, Peter Lee, and Philip
Wickline for numerous fruitful discussions and suggestions.

46

References

[And92]

[BBAPYS]

[BAP92]

[Bor94]

[BWY3]

[CDDKS6]

[CN96]

[Dav96]

[DP96]

[EHK96]

[FM97]

[Gir93]

[GJ91]

[GJ95]

J.-M. Andreoli. Logic programming with focusing proofs in linear logic. Journal of
Logic and Computation, 2(3):197-347, 1992.

P. N. Benton, G. M. Bierman, and V. C. V. de Paiva. Computational types from a
logical perspective. Journal of Functional Programming, 8(2), March 1998.

Gavin Bierman and Valeria de Paiva. Intuitionistic necessity revisited. In Proceedings
of the Logic at Work Conference, Amsterdam, Holland, December 1992.

Tijn Borghuis. Coming to Term with Modal Logic: On the Interpretation of Modalities
in Typed A-calculus. PhD thesis, Eindhoven University of Technology, 1994.

Lars Birkedal and Morten Welinder. Partial evaluation of Standard ML. Master’s
thesis, University of Copenhagen, Department of Computer Science, 1993. Available
as Technical Report DIKU-report 93/22.

Dominique Clément, Joélle Despeyroux, Thierry Despeyroux, and Gilles Kahn. A
simple applicative language: Mini-ML. In Proceedings of the 1986 Conference on LISP
and Functional Programming, pages 13-27. ACM Press, 1986.

Charles Consel and Frangois Noél. A general approach for run-time specialization and
its application to C. In Conference Record of POPL ’96: The 23'% ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 145-156, January
1996.

Rowan Davies. A temporal-logic approach to binding-time analysis. In E. Clarke,
editor, Proceedings of the Eleventh Annual Symposium on Logic in Computer Science,
pages 184-195, July 1996.

Rowan Davies and Frank Pfenning. A modal analysis of staged computation. In Pro-
ceedings of the 23rd Annual ACM Symposium on Principles of Programming Languages,
pages 258-270, January 1996.

Dawson R. Engler, Wilson C. Hsieh, and M. Frans Kaashoek. ‘C: A language for
high-level, efficient, and machine-independent dynamic code generation. In Conference
Record of POPL ’96: The 23'Y ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 131-144, January 1996.

M. Fairlough and M. Mendler. Propositional lax logic. Information and Computation,
137(1):1-33, August 1997.

Jean-Yves Girard. On the unity of logic. Annals of Pure and Applied Logic, 59:201-217,
1993.

Carsten Gomard and Neil Jones. A partial evaluator for the untyped lambda-calculus.
Journal of Functional Programming, 1(1):21-69, January 1991.

Robert Gliick and Jesper Jgrgensen. Efficient multi-level generating extensions for
program specialization. In S.D. Swierstra and M. Hermenegildo, editors, Program-
ming Languages, Implementations, Logics and Programs (PLILP’95), pages 259-278.
Springer-Verlag LNCS 982, September 1995.

47

[GL96a]

[GLI6b]

[GL96¢]

[GLY7]

[Hat95]

[JGS93]

[Jon91]

[JS86]

[KEH93]

[Kob97]
[Kri63]

[LL94]

[LL96]

Jean Goubault-Larrecq. On computational interpretations of the modal logic S4 -
I. Cut elimination. Technical Report 1996-35, Institut fiir Logik, Komplexitdt und
Deduktionssysteme, Universitat Karlsruhe, Karlsruhe, Germany, 1996.

Jean Goubault-Larrecq. On computational interpretations of the modal logic S4 - II.
The Aev@-Calculus. Technical Report 1996-34, Institut fiir Logik, Komplexitdat und
Deduktionssysteme, Universitat Karlsruhe, Karlsruhe, Germany, 1996.

Jean Goubault-Larrecq. On computational interpretations of the modal logic S4 - III.
termination, confluence, conservativity of Aev@Q and AevQp. Technical Report 1996-
33, Institut fiir Logik, Komplexitdt und Deduktionssysteme, Universitdt Karlsruhe,
Karlsruhe, Germany, 1996.

Jean Goubault-Larrecq. On computational interpretations of the modal logic S4 - IIIb.
confluence, termination of the Aev@ g-calculus. Technical Report 3164, INRIA, France,
May 1997.

John Hatcliff. Mechanically verifying the correctness of an offline partial evaluator. In
S.D. Swierstra and M. Hermenegildo, editors, Programming Languages, Implementa-
tions, Logics and Programs (PLILP’95). Springer-Verlag LNCS 982, September 1995.

Neil D. Jones, Carsten Gomard, and Peter Sestoft. Partial Fvaluation and Automatic
Program Generation. Prentice Hall International, International Series in Computer
Science, June 1993.

Neil D. Jones. Efficient algebraic operations on programs. In T. Rus, editor, AMAST
Preliminary Proceedings, University of Towa, April 1991. A version appears as a chapter
in [JGS93].

Ulrik Jgrring and William L. Scherlis. Compilers and staging transformations. In
Conference Record of the Thirteenth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 86—96, St. Petersburg Beach, Florida, January 1986.

David Keppel, Susan J. Eggers, and Robert R. Henry. A case for runtime code genera-
tion. Technical Report TR 93-11-02, Department of Computer Science and Engineering,
University of Washington, November 1993.

Satoshi Kobayashi. Monad as modality. Theoretical Computer Science, 175:29-74,1997.

Saul A. Kripke. Semantic analysis of modal logic. I: Normal propositional calculi.
Zeitschrift fir Mathematische Logik und Grundlagen der Mathematik, 9:67-96, 1963.

Mark Leone and Peter Lee. Lightweight run-time code generation. In Proceedings
of the Workshop on Partial Evaluation and Semantics-based Program Manipulation
(PEPM’94), Orlando, Florida, June 1994. An earlier version appears as Carnegie Mellon
School of Computer Science Technical Report CMU-CS-93-225, November 1993.

Peter Lee and Mark Leone. Optimizing ML with run-time code generation. In Pro-
ceedings of the ACM SIGPLAN ’96 Conference on Programming Language Design and
Implementation, pages 137—-148, Philadelphia, Pennsylvania, May 1996.

48

[ML85a]

[ML85b]

[MMO94]

[Mog89]

[Mog91]

[MTBS99)

[NN92]

[Pal93]

[Pfe9l]

[Pra65]
[PW95]

[Smis4]

[TBS98]

[TS97]

[Wad93]

Per Martin-Lo6f. On the meanings of the logical constants and the justifications of
the logical laws. Technical Report 2, Scuola di Specializzazione in Logica Matematica,
Dipartimento di Matematica, Universita di Siena, 1985.

Per Martin-Lo6f. Truth of a proposition, evidence of a judgement, validity of a proof.
Notes to a talk given at the workshop Theory of Meaning, Centro Fiorentino di Storia
e Filosofia della Scienza, June 1985.

Simone Martini and Andrea Masini. A computational interpretation of modal proofs. In
H. Wansing, editor, Proof theory of Modal Logics. Kluwer, 1994. Workshop proceedings.

Eugenio Moggi. Computational lambda calculus and monads. In Proceedings of the
Fourth Symposium on Logic in Computer Science, pages 14-23, Asilomar, California,
June 1989. IEEE Computer Society Press.

Eugenio Moggi. Notions of computation and monads. Information and Computation,
93(1):55-92, 1991.

Eugenio Moggi, Walid Taha, Zine-El-Abidine Benaissa, and Tim Sheard. An idealized
MetaML: Simpler, and more expressive. In Proceedings of the Furopean Symposium on
Programming, pages 193-207, Amsterdam, March 1999.

Flemming Nielson and Hanne Riis Nielson. Two-Level Functional Languages. Cam-
bridge University Press, 1992.

Jens Palsberg. Correctness of binding time analysis. Journal of Functional Program-
ming, 3(3):347-363, July 1993.

Frank Pfenning. Logic programming in the LF logical framework. In Gérard Huet and
Gordon Plotkin, editors, Logical Frameworks, pages 149-181. Cambridge University
Press, 1991.

Dag Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm, 1965.

Frank Pfenning and Hao-Chi Wong. On a modal A-calculus for S4. In S. Brookes and
M. Main, editors, Proceedings of the Eleventh Conference on Mathematical Foundations
of Programming Sematics, New Orleans, Louisiana, March 1995. Available as FElectronic
Notes in Theoretical Computer Science, Volume 1, Elsevier.

Brian Cantwell Smith. Reflection and semantics in Lisp. In Proceedings of the Eleventh
Annual ACM Symposium on Principles of Programming Languages, pages 23-35, Salt
Lake City, Utah, January 1984. ACM Press.

Walid Taha, Zine-El-Abidine Benaissa, and Tim Sheard. Multi-stage programming:
Axiomatization and type safety. In Proceedings of the International Colloguium on
Automata, Languages, and Programming, pages 918-929, July 1998.

Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations. In
Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics
Based Program Manipulation, pages 203217, June 1997.

Philip Wadler. A taste of linear logic. In Mathematical Foundations of Computing
Science, Gdansk, August 1993. Springer-Verlag LNCS 711. Invited Talk.

49

[WLP98]

[WLPDYS]

Philip Wickline, Peter Lee, and Frank Pfenning. Run-time code generation and modal-
ML. In Keith D. Cooper, editor, Proceedings of the Conference on Programming Lan-
guage Design and Implementation (PLDI’98), pages 224-235, Montreal, Canada, June
1998. ACM Press.

Philip Wickline, Peter Lee, Frank Pfenning, and Rowan Davies. Modal types as stag-
ing specifications for run-time code generation. ACM Computing Surveys, 30(3es),
September 1998.

50

