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Quantitative Trait Locus 
(QTL) Mapping 

10-810, CMB lecture 9---Eric Xing

Backcross experiment
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F2 intercross experiment

Trait distributions: a classical view



3

Another representation of a trait 
distribution

Note the equivalent of dominance in our trait distributions.

A second example

Note the approximate additivity in our trait distributions here.



4

QTL mapping

Data
Phenotypes:  yi = trait value for mouse i
Genotype:      xij = 1/0 (i.e., A/H) of mouse i at marker j (backcross);

need two dummy variables for intercross
Genetic map: Locations of markers

Goals
• Identify the (or at least one) genomic region, called 

quantitative trait locus = QTL,  that contributes to variation 
in the trait

• Form confidence intervals for the QTL location 
• Estimate QTL effects

QTL mapping (BC)
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QTL mapping (F2)

Models: Recombination

We assume no chromatid or crossover interference.

⇒ points of exchange (crossovers) along 
chromosomes are distributed as a Poisson 
process, rate 1 in genetic distance

⇒ the marker genotypes {xij} form a Markov chain 
along the chromosome for a backcross; what do 
they form in an F2 intercross?
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Models: Genotype→Phenotype

Let   y = phenotype,                                        
g = whole genome genotype

Imagine a small number of QTL with genotypes 
g1,…., gp (2p or 3p distinct genotypes for BC, IC 
resp, why?).                      

We assume

E(y|g) =   µ(g1,…gp ), var(y|g) =  σ2(g1,…gp)

Models: Genotype→Phenotype, ctd

Homoscedacity (constant variance)
 σ2(g1,…gp)  = σ2  (constant)

Normality of residual variation
y|g  ~ N(µg  ,σ2  )

Additivity: 
µ(g1,…gp ) = µ + ?∆j gj (gj = 0/1 for BC)

Epistasis : Any deviations from additivity.

µ(g1,…gp ) = µ + ?∆j gj +?ωij gi gj
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Additivity, or non-additivity (BC)

The effect of QTL 1 is 
the same, irrespective 
of the genotype of QTL 
2, and vice versa.1∆2∆

Epistatic QTLs

)|(~ ji gp∆

Additivity or non-additivity: F2



8

The simplest method: ANOVA

• Split subjects into 
groups according to 
genotype at a marker

• Do a t-test/ANOVA
• Repeat for each marker

LOD score = log10 likelihood ratio, comparing single-QTL 
model to the “no QTL anywhere” model.

t-test/ANOVA will tell whether 
there is sufficient evidence to 
say that measurements from 
one condition (i.e., genotype) 
different significantly from 
another 

ANOVA at marker loci

Advantages

• Simple

• Easily incorporate covariates (sex, env, treatment ...)

• Easily extended to more complex models

Disadvantages

• Must exclude individuals with missing genotype data

• Imperfect information about QTL location

• Suffers in low density scans

• Only considers one QTL at a time
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Interval mapping (IM)

• Consider any one position in the genome as the location for a putative 
QTL

• For a particular mouse, let z = 1/0 if  (unobserved) genotype at QTL is 
AB/AA

• Calculate Pr(z = 1 | marker data)
– Assume no meiotic interference
– Need only consider flanking typed markers
– May allow for the presence of 

• genotyping errors

• Given genotype at the QTL, phenotype is distributed as N(µ + ?z, s2 )

• Given marker data, phenotype follows a mixture of normal 
distributions

IM: the mixture model

AA AB AB
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IM: estimation and LOD scores

• Use a version of the EM algorithm to obtain estimates 
of µAA, µAB, and s (an iterative algorithm)

• Calculate the LOD score

• Repeat for all other genomic positions (in practice, at 
0.5 cM steps along genome)

{ })QTL no|data(
)ˆ,ˆ|data(

10log=LOD P
P ABAA µµ

LOD score curves
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LOD thresholds

To account for the genome-wide search, compare the 
observed LOD scores to the distribution of the maximum 
LOD score, genome-wide, that would be obtained if there 
were no QTL anywhere.

LOD threshold = 95th %ile of the distribution of genome-wide   
maxLOD, when there are no QTL anywhere

Derivations:

• Analytical calculations (Lander & Botstein, 1989)
• Simulations 

• Permutation tests (Churchill & Doerge, 1994).

Permutation distribution for trait4
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Interval mapping

Advantages

• Make proper account of missing data

• Can allow for the presence of genotyping errors

• Pretty pictures

• Higher power in low-density scans

• Improved estimate of QTL location

Disadvantages

• Greater computational effort

• Requires specialized software

• More difficult to include covariates?

• Only considers one QTL at a time

Multiple QTL methods

Why consider multiple QTL at once?

• To separate linked QTL. If two QTL are close together on the same 
chromosome, our one-at-a-time strategy may have problems finding 
either (e.g. if they work in opposite directions, or interact). Our LOD 
scores won’t make sense either.

• To permit the investigation of interactions. It may be that interactions 
greatly strengthen our ability to find QTL, though this is not clear. 

• To reduce residual variation. If  QTL exist at loci other than the one 
we are currently considering, they should be in our model. For if they 
are not, they will be in the error, and hence reduce our ability to 
detect the current one. See below.
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The problem

n backcross subjects; M markers in all, with at 
most a handful expected to be near QTL

xij = genotype (0/1) of mouse i at marker j
yi = phenotype (trait value) of mouse i

Yi = µ + ? j=1
M ∆jxij + εj                 Which ∆j ≠ 0 ?

⇒Variable selection in linear models (regression)

Finding QTL as model selection

Select class of models
• Additive models
• Additive plus pairwise

interactions
• Regression trees

Compare models (γ)
• BICδ(γ) = logRSS(γ)+ γ(δ log 

n/n)
• Sequential permutation tests

Search model space
• Forward selection (FS)
• Backward elimination (BE)
• FS followed by BE
• MCMC

Assess performance
• Maximize no QTL found;
• control false positive rate
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