Advanced Introduction to Machine Learning

Eric Xing
Lecture 2, September 10, 2014

Reading:

Machine learning for apartment hunting

- Now you've moved to Pittsburgh!!
And you want to find the most reasonably priced apartment satisfying your needs:

square-ft., \# of bedroom, distance to campus ...

Living area (ft²)	\# bedroom	Rent (\$)
230	1	600
506	2	1000
433	2	1100
109	1	500
\ldots	1	
150	1.5	$?$
270	$?$	
© Eric Xing @ CMU, 2014		$?$

The learning problem

- Features:
- Living area, distance to campus, \# bedroom ...
- Denote as $\mathbf{x}=\left[x^{l}, x^{2}, \ldots x^{k}\right]$
- Target:
- Rent
- Denoted as y

- Training set:

Linear Regression

- Assume that Y (target) is a linear function of X (features):
- e.g.:

$$
\hat{y}=\theta_{0}+\theta_{1} x^{1}+\theta_{2} x^{2}
$$

- let's assume a vacuous "feature" $X^{0}=1$ (this is the intercept term, why?), and define the feature vector to be:
- then we have the following general representation of the linear function:
- Our goal is to pick the optimal θ. How!
- We seek θ that minimize the following cost function:

$$
J(\theta)=\frac{1}{2} \sum_{i=1}^{n}\left(\hat{y}_{i}\left(\vec{x}_{i}\right)-y_{i}\right)^{2}
$$

The Least-Mean-Square (LMS) method

- The Cost Function:

$$
J(\theta)=\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{x}_{i}^{T} \theta-y_{i}\right)^{2}
$$

- Consider a gradient descent algorithm:

$$
\theta_{j}^{t+1}=\theta_{j}^{t}-\left.\alpha \frac{\partial}{\partial \theta_{j}} J(\theta)\right|_{t}
$$

The Least-Mean-Square (LMS) method

- Now we have the following descent rule:

$$
\theta_{j}^{t+1}=\theta_{j}^{t}+\alpha \sum_{i=1}^{n}\left(y_{i}-\overrightarrow{\mathbf{x}}_{i}^{T} \theta^{t}\right) x_{i}^{j}
$$

- For a single training point, we have:
- This is known as the LMS update rule, or the Widrow-Hoff learning rule
- This is actually a "stochastic", "coordinate" descent algorithm
- This can be used as a on-line algorithm

Geometry and Convergence of LMS

$\theta^{t+1}=\theta^{t}+\alpha\left(y_{i}-\overrightarrow{\mathbf{x}}_{i}^{T} \theta^{t}\right) \overrightarrow{\mathbf{x}}_{i}$
Claim: when the step size α satisfies certain condition, and when certain other technical conditions are satisfied, LMS will converge to an "optimal region".

Steepest Descent and LMS

- Steepest descent
- Note that:

$$
\begin{aligned}
& \nabla_{\theta} J=\left[\frac{\partial}{\partial \theta_{1}} J, \ldots, \frac{\partial}{\partial \theta_{k}} J\right]^{T}=-\sum_{i=1}^{n}\left(y_{n}-\mathbf{x}_{n}{ }^{T} \theta\right) \mathbf{x}_{n} \\
& \theta^{t+1}=\theta^{t}+\alpha \sum_{i=1}^{n}\left(y_{n}-\mathbf{x}_{n}{ }^{T} \theta^{t}\right) \mathbf{x}_{n}
\end{aligned}
$$

- This is as a batch gradient descent algorithm

The normal equations

- Write the cost function in matrix form:

$$
\begin{aligned}
J(\theta) & =\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{x}_{i}^{T} \theta-y_{i}\right)^{2} \\
& =\frac{1}{2}(X \theta-\bar{y})^{T}(X \theta-\bar{y}) \\
& =\frac{1}{2}\left(\theta^{T} X^{T} X \theta-\theta^{T} X^{T} \bar{y}-\bar{y}^{T} X \theta+\bar{y}^{T} \bar{y}\right)
\end{aligned}
$$

- To minimize $J(\theta)$, take derivative and set to zero:

$$
\begin{aligned}
\nabla_{\theta} J & =\frac{1}{2} \nabla_{\theta} \operatorname{tr}\left(\theta^{T} X^{T} X \theta-\theta^{T} X^{T} \vec{y}-\vec{y}^{T} X \theta+\vec{y}^{T} \vec{y}\right) \\
& =\frac{1}{2}\left(\nabla_{\theta} \operatorname{tr} \theta^{T} X^{T} X \theta-2 \nabla_{\theta} \operatorname{tr} \bar{y}^{T} X \theta+\nabla_{\theta} \operatorname{tr} \bar{y}^{T} \vec{y}\right) \\
& =\frac{1}{2}\left(X^{T} X \theta+X^{T} X \theta-2 X^{T} \vec{y}\right) \\
& =X^{T} X \theta-X^{T} \vec{y}=0
\end{aligned}
$$

$$
\begin{array}{r}
\Rightarrow \begin{array}{c}
X^{T} X \theta=X^{T} \bar{y} \\
\text { The normal equations }
\end{array} \\
\downarrow \\
\theta^{*}=\left(X^{T} X\right)^{-1} X^{T} \bar{y}
\end{array}
$$

Some matrix derivatives

- For $f: \mathbb{R}^{m \times n} \mapsto \mathbb{R}$, define:

$$
\nabla_{A} f(A)=\left[\begin{array}{ccc}
\frac{\partial}{\partial A_{11}} f & \cdots & \frac{\partial}{\partial A_{1 n}} f \\
\vdots & \ddots & \vdots \\
\frac{\partial}{\partial A_{1 m}} f & \cdots & \frac{\partial}{\partial A_{m n}} f
\end{array}\right]
$$

- Trace:

$$
\operatorname{tr} A=\sum_{i=1}^{n} A_{i i}, \quad \operatorname{tr} a=a, \quad \operatorname{tr} A B C=\operatorname{tr} C A B=\operatorname{tr} B C A
$$

- Some fact of matrix derivatives (without proof)

$$
\nabla_{A} \operatorname{tr} A B=B^{T}, \quad \nabla_{A} \operatorname{tr} A B A^{T} C=C A B+C^{T} A B^{T}, \quad \nabla_{A}|A|=|A|\left(A^{-1}\right)^{T}
$$

Comments on the normal equation

- In most situations of practical interest, the number of data points N is larger than the dimensionality k of the input space and the matrix \mathbf{X} is of full column rank. If this condition holds, then it is easy to verify that $X^{T} X$ is necessarily invertible.
- The assumption that $X^{T} X$ is invertible implies that it is positive definite, thus at the critical point we have found is a minimum.
- What if \mathbf{X} has less than full column rank? \rightarrow regularization (later).

Direct and Iterative methods

- Direct methods: we can achieve the solution in a single step by solving the normal equation
- Using Gaussian elimination or QR decomposition, we converge in a finite number of steps
- It can be infeasible when data are streaming in in real time, or of very large amount
- Iterative methods: stochastic or steepest gradient
- Converging in a limiting sense
- But more attractive in large practical problems
- Caution is needed for deciding the learning rate α

Convergence rate

- Theorem: the steepest descent equation algorithm converge to the minimum of the cost characterized by normal equation:

$$
\theta^{(\infty)}=\left(X^{T} X\right)^{-1} X^{T} y
$$

If

$$
0<\alpha<2 / \lambda_{\max }\left[X^{T} X\right]
$$

- A formal analysis of LMS need more math-mussels; in practice, one can use a small α, or gradually decrease α.

A Summary:

- LMS update rule

$$
\theta_{j}^{t+1}=\theta_{j}^{t}+\alpha\left(y_{n}-\mathbf{x}_{n}^{T} \theta^{t}\right) x_{n, i}
$$

- Pros: on-line, low per-step cost, fast convergence and perhaps less prone to local optimum
- Cons: convergence to optimum not always guaranteed
- Steepest descent

$$
\theta^{t+1}=\theta^{t}+\alpha \sum_{i=1}^{n}\left(y_{n}-\mathbf{x}_{n}{ }^{T} \theta^{t}\right) \mathbf{x}_{n}
$$

- Pros: easy to implement, conceptually clean, guaranteed convergence
- Cons: batch, often slow converging
- Normal equations

$$
\theta^{*}=\left(X^{T} X\right)^{-1} X^{T} \vec{y}
$$

- Pros: a single-shot algorithm! Easiest to implement.
- Cons: need to compute pseudo-inverse $\left(\mathrm{X}^{\mathrm{T}} \mathrm{X}\right)^{-1}$, expensive, numerical issues (e.g., matrix is singular ..), although there are ways to get around this ...

Geometric Interpretation of LMS

- The predictions on the training data are:

$$
\hat{\vec{y}}=X \theta^{*}=X\left(X^{T} X\right)^{-1} X^{T} \vec{y}
$$

- Note that

$$
\hat{\bar{y}}-\vec{y}=\left(X\left(X^{T} X\right)^{-1} X^{T}-I\right) \hat{y}
$$

$$
\vec{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

$$
\mathbf{X}=\left[\begin{array}{ccc}
-- & \mathbf{x}_{1} & -- \\
-- & \mathbf{x}_{2} & -- \\
\vdots & \vdots & \vdots \\
-- & \mathbf{x}_{n} & --
\end{array}\right]
$$

and

$$
\begin{aligned}
X^{T}(\hat{\bar{y}}-\bar{y}) & =X^{T}\left(X\left(X^{T} X\right)^{-1} X^{T}-I\right) \stackrel{\rightharpoonup}{y} \\
& =\left(X^{T} X\left(X^{T} X\right)^{-1} X^{T}-X^{T}\right) \stackrel{\rightharpoonup}{y} \\
& =0 \quad!!
\end{aligned}
$$

$\hat{\vec{y}}$ is the orthogonal projection of \vec{y}
into the space spanned by the column of X

Probabilistic Interpretation of LMS

- Let us assume that the target variable and the inputs are related by the equation:

$$
y_{i}=\theta^{T} \mathbf{x}_{i}+\varepsilon_{i}
$$

where ε is an error term of unmodeled effects or random noise

- Now assume that ε follows a Gaussian $N(0, \sigma)$, then we have:

$$
p\left(y_{i} \mid x_{i} ; \theta\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y_{i}-\theta^{T} \mathbf{x}_{i}\right)^{2}}{2 \sigma^{2}}\right)
$$

- By independence assumption:

$$
\begin{aligned}
L(\theta)=\prod_{i=1}^{n} p\left(y_{i} \mid x_{i} ; \theta\right)= & \left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{n} \exp \left(-\frac{\sum_{i=1}^{n}\left(y_{i}-\theta^{T} \mathbf{x}_{i}\right)^{2}}{2 \sigma^{2}}\right) \\
& \text { © Eric Xing @ CMu, 2014 }
\end{aligned}
$$

Probabilistic Interpretation of LMS, cont.

- Hence the log-likelihood is:

$$
l(\theta)=n \log \frac{1}{\sqrt{2 \pi} \sigma}-\frac{1}{\sigma^{2}} \frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\theta^{T} \mathbf{x}_{i}\right)^{2}
$$

- Do you recognize the last term?

$$
\text { Yes it is: } \quad J(\theta)=\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{x}_{i}^{T} \theta-y_{i}\right)^{2}
$$

- Thus under independence assumption, LMS is equivalent to MLE of θ !

Case study: predicting gene expression

The genetic picture

causal SNPs

a univariate phenotype:
i.e., the expression intensity of
a gene

Association Mapping as Regression

	Phenotype (BMI)	Genotype
Individual 1	2.5	
Individual 2	4.8	
Individual N	4.7	

Association Mapping as Regression

Experimental setup

- Asthama dataset
- 543 individuals, genotyped at 34 SNPs
- Diploid data was transformed into 0/1 (for homozygotes) or 2 (for heterozygotes)
- X=543x34 matrix
- $\mathrm{Y}=$ Phenotype variable (continuous)
- A single phenotype was used for regression
- Implementation details
- Iterative methods: Batch update and online update implemented.
- For both methods, step size α is chosen to be a small fixed value $\left(10^{-6}\right)$. This choice is based on the data used for experiments.
- Both methods are only run to a maximum of 2000 epochs or until the change in training MSE is less than 10-4

Convergence Curves

- For the batch method, the training MSE is initially large due to uninformed initialization
- In the online update, N updates for every epoch reduces MSE to a much smaller value.

The Learned Coefficients

Stem plot of regression coefficents β 's

Multivariate Regression for Trait Association Analysis

Trait
Genotype
Association Strength

2.1	=		X	
y	$=$	\boldsymbol{X}	X	β

Multivariate Regression for Trait Association Analysis

Trait

Genotype
Association Strength
2.1

Sparsity

- One common assumption to make sparsity.
- Makes biological sense: each phenotype is likely to be associated with a small number of SNPs, rather than all the SNPs.
- Makes statistical sense: Learning is now feasible in high dimensions with small sample size

Sparsity: In a mathematical sense

- Consider least squares linear regression problem:
- Sparsity means most of the beta's are zero.

$$
\begin{aligned}
& \hat{\boldsymbol{\beta}}=\operatorname{argmin}_{\beta}\|\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}\|^{2} \\
& \text { subject to: }
\end{aligned}
$$

$$
\sum_{j=1}^{p} \mathbb{I}\left[\left|\beta_{j}\right|>0\right] \leq C
$$

- But this is not convex!!! Many local optima, computationally intractable.

L1 Regularization (LASSO)

(Tibshirani, 1996)

- A convex relaxation.

$$
\begin{aligned}
& \text { Constrained Form } \\
& \hat{\boldsymbol{\beta}}=\operatorname{argmin}_{\beta}\|\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}\|^{2} \\
& \text { subject to: } \\
& \sum_{j=1}^{p}\left|\beta_{j}\right| \leq C
\end{aligned}
$$

Lagrangian Form
$\hat{\boldsymbol{\beta}}=\operatorname{argmin}_{\beta}\|\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}\|^{2}+\lambda\|\boldsymbol{\beta}\|_{1}$

- Still enforces sparsity!

Theoretical Guarantees

- Assumptions
- Dependency Condition: Relevant Covariates are not overly dependent
- Incoherence Condition: Large number of irrelevant covariates cannot be too correlated with relevant covariates
- Strong concentration bounds: Sample quantities converge to expected values quickly

If these are assumptions are met, LASSO will asymptotically recover correct subset of covariates that relevant.

Consistent Structure Recovery

[Zhao and Yu 2006]

Theorem 4 (Gaussian Noise). Assume ε_{i}^{n} are i.i.d. Gaussian random variables. Under conditions (5), (6), (7) and (8), if there exists $0 \leq c_{3}<c_{2}-c_{1}$ for which $p_{n}=O\left(e^{n^{c_{3}}}\right)$ then strong Irrepresentable Condition implies that Lasso has strong sign consistency. In particular, for $\lambda_{n} \propto n^{\frac{1+c_{4}}{2}}$ with $c_{3}<c_{4}<$ $c_{2}-c_{1}$,

$$
P\left(\hat{\beta}^{n}\left(\lambda_{n}\right)=_{s} \beta^{n}\right) \geq 1-o\left(e^{-n^{c} 3}\right) \rightarrow 1 \text { as } n \rightarrow \infty .
$$

Lasso for Reducing False Positives

Trait
Genotype
Association Strength

Ridge Regression vs Lasso

$$
\min _{\beta}(\mathbf{X} \cdot \beta-\mathbf{Y})^{T}(\mathbf{X} \beta-\mathbf{Y})+\lambda \operatorname{pen}(\beta)=\min _{\beta} J(\beta)+\lambda \operatorname{pen}(\beta)
$$

Ridge Regression:
$\operatorname{pen}(\beta)=\|\beta\|_{2}^{2}$

Lasso:
$\operatorname{pen}(\beta)=\|\beta\|_{1}$

Lasso (I1 penalty) results in sparse solutions - vector with more zero coordinates Good for high-dimensional problems - don't have to store all coordinates!

Bayesian Interpretation

- Treat the distribution parameters θ also as a random variable
- The a posteriori distribution of θ after seem the data is:

$$
p(\theta \mid D)=\frac{p(D \mid \theta) p(\theta)}{p(D)}=\frac{p(D \mid \theta) p(\theta)}{\int p(D \mid \theta) p(\theta) d \theta}
$$

This is Bayes Rule

$$
\text { posterior }=\frac{\text { likelihood } \times \text { prior }}{\text { marginal likelihood }}
$$

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53:370-418

The prior $\mathrm{p}($.$) encodes our prior knowledge about the domain$

Regularized Least Squares and MAP

What if $\left(X^{\top} X\right)$ is not invertible ?
$\widehat{\beta}_{\mathrm{MAP}}=\arg \max _{\beta} \times \underbrace{\log p\left(\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n} \mid \beta, \sigma^{2}\right)}_{\text {log likelihood }}+\underbrace{\log p(\beta)}_{\text {log prior }}$
I) Gaussian Prior

$$
\begin{aligned}
& \quad \beta \sim \mathcal{N}\left(0, \tau^{2} \mathbf{I}\right) \quad p(\beta) \propto e^{-\beta^{T} \beta / 2 \tau^{2}} \\
& \widehat{\beta}_{\text {MAP }}=\arg \min _{\beta} \sum_{i=1}^{n}\left(Y_{i}-X_{i} \beta\right)^{2}+\underset{\substack{\downarrow \\
\operatorname{constant}\left(\sigma^{2}, \tau^{2}\right)}}{\lambda\|\beta\|_{2}^{2} \quad \text { Ridge Regression }} \text { Closed form: HW }
\end{aligned}
$$

Prior belief that $\boldsymbol{\beta}$ is Gaussian with zero-mean biases solution to "small" $\boldsymbol{\beta}$

Regularized Least Squares and MAP

What if $\left(X^{\top} X\right)$ is not invertible ?
$\widehat{\beta}_{\mathrm{MAP}}=\arg \max _{\beta} \times \underbrace{\log p\left(\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n} \mid \beta, \sigma^{2}\right)}_{\text {log likelihood }}+\underbrace{\log p(\beta)}_{\text {log prior }}$
II) Laplace Prior

$$
\begin{aligned}
& \beta_{i} \stackrel{i i d}{\sim} \operatorname{Laplace}(0, t) \quad p\left(\beta_{i}\right) \propto e^{-\left|\beta_{i}\right| / t} \\
& \widehat{\beta}_{\text {MAP }}=\arg \min _{\beta} \sum_{i=1}^{n}\left(Y_{i}-X_{i} \beta\right)^{2}+\underset{\substack{\downarrow \\
\operatorname{constant}\left(\sigma^{2}, t\right)}}{\lambda\|\beta\|_{1} \quad \text { Lasso }} \\
& \text { Closed form: HW }
\end{aligned}
$$

[^0]
Take home message

- Gradient descent
- On-line
- Batch
- Normal equations
- Geometric interpretation of LMS
- Probabilistic interpretation of LMS, and equivalence of LMS and MLE under certain assumption (what?)
- Sparsity:
- Approach: ridge vs. lasso regression
- Interpretation: regularized regression versus Bayesian regression
- Algorithm: convex optimization (we did not discuss this)
- LR does not mean fitting linear relations, but linear combination or basis functions (that can be non-linear)
- Weighting points by importance versus by fitness

After class material ...

Advanced Material: Beyond basic LR

- LR with non-linear basis functions
- Locally weighted linear regression
- Regression trees and Multilinear Interpolation

We will discuss this in next class after we set the state right! (if we've got time ©)

LR with non-linear basis functions

- LR does not mean we can only deal with linear relationships
- We are free to design (non-linear) features under LR

$$
y=\theta_{0}+\sum_{j=1}^{m} \theta_{j} \phi(x)=\theta^{T} \phi(x)
$$

where the $\phi_{j}(x)$ are fixed basis functions (and we define $\phi_{0}(x)=1$).

- Example: polynomial regression:

$$
\phi(x):=\left[1, x, x^{2}, x^{3}\right]
$$

- We will be concerned with estimating (distributions over) the weights θ and choosing the model order M.

Basis functions

- There are many basis functions, e.g.:
- Polynomial $\phi_{j}(x)=x^{j-1}$
- Radial basis functions $\phi_{j}(x)=\exp \left(-\frac{\left(x-\mu_{j}\right)^{2}}{2 s^{2}}\right)$
- Sigmoidal $\phi_{j}(x)=\sigma\left(\frac{x-\mu_{j}}{s}\right)$
- Splines, Fourier, Wavelets, etc

1D and 2D RBFs

- 1D RBF

$$
y^{\text {est }}=\beta_{1} \phi_{1}(x)+\beta_{2} \phi_{2}(x)+\beta_{3} \phi_{3}(x)
$$

- After fit:

$$
y^{e s t}=2 \phi_{1}(x)+0.05 \phi_{2}(x)+0.5 \phi_{3}(x)
$$

Good and Bad RBFs

- A good 2D RBF
- Two bad 2D RBFs

Overfitting and underfitting

Bias and variance

- We define the bias of a model to be the expected generalization error even if we were to fit it to a very (say, infinitely) large training set.
- By fitting "spurious" patterns in the training set, we might again obtain a model with large generalization error. In this case, we say the model has large variance.

Locally weighted linear regression

- The algorithm:

Instead of minimizing

$$
J(\theta)=\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{x}_{i}^{T} \theta-y_{i}\right)^{2}
$$

now we fit θ to minimize $\quad J(\theta)=\frac{1}{2} \sum_{i=1}^{n} w_{i}\left(\mathbf{x}_{i}^{T} \theta-y_{i}\right)^{2}$
Where do w_{i} 's come from? $\quad w_{i}=\exp \left(-\frac{\left(\mathbf{x}_{i}-\mathbf{x}\right)^{2}}{2 \tau^{2}}\right)$

- where \mathbf{x} is the query point for which we'd like to know its corresponding \mathbf{y}
\rightarrow Essentially we put higher weights on (errors on) training examples that are close to the query point (than those that are further away from the query)

Parametric vs. non-parametric

- Locally weighted linear regression is the second example we are running into of a non-parametric algorithm. (what is the first?)
- The (unweighted) linear regression algorithm that we saw earlier is known as a parametric learning algorithm
- because it has a fixed, finite number of parameters (the θ), which are fit to the data;
- Once we've fit the θ and stored them away, we no longer need to keep the training data around to make future predictions.
- In contrast, to make predictions using locally weighted linear regression, we need to keep the entire training set around.
- The term "non-parametric" (roughly) refers to the fact that the amount of stuff we need to keep in order to represent the hypothesis grows linearly with the size of the training set.

Robust Regression

- The best fit from a quadratic regression

- But this is probably better ...

How can we do this?

LOESS-based Robust Regression

- Remember what we do in "locally weighted linear regression"?
\rightarrow we "score" each point for its impotence
- Now we score each point according to its "fitness"

Robust regression

- For $\mathrm{k}=1$ to R...
- Let $\left(x_{k}, y_{k}\right)$ be the kth datapoint
- Let $y^{\text {est }}{ }_{k}$ be predicted value of y_{k}
- Let w_{k} be a weight for data point k that is large if the data point fits well and small if it fits badly:

$$
w_{k}=\phi\left(\left(y_{k}-y_{k}^{\mathrm{est}}\right)^{2}\right)
$$

- Then redo the regression using weighted data points.
- Repeat whole thing until converged!

Robust regression—probabilistic interpretation

- What regular regression does:

Assume y_{k} was originally generated using the following recipe:

$$
y_{k}=\theta^{T} \mathbf{x}_{k}+\mathcal{N}\left(0, \sigma^{2}\right)
$$

Computational task is to find the Maximum Likelihood estimation of θ

Robust regression—probabilistic interpretation

- What LOESS robust regression does:

Assume y_{k} was originally generated using the following recipe:
with probability $p: \quad y_{k}=\theta^{T} \mathbf{x}_{k}+\mathcal{N}\left(0, \sigma^{2}\right)$
but otherwise

$$
y_{k} \sim \mathcal{N}\left(\mu, \sigma_{\text {huge }}^{2}\right)
$$

Computational task is to find the Maximum Likelihood estimates of θ, p, μ and $\sigma_{\text {huge }}$.

- The algorithm you saw with iterative reweighting/refitting does this computation for us. Later you will find that it is an instance of the famous E.M. algorithm

Regression Tree

- Decision tree for regression

Gender	Rich?	Num. Children	\# travel per yr.	Age
F	No	2	5	38
M	No	0	2	25
M	Yes	1	0	72
$:$	$:$	$:$	$:$	$:$

A conceptual picture

- Assuming regular regression trees, can you sketch a graph of the fitted function $y^{*}(x)$ over this diagram?

How about this one?

- Multilinear Interpolation

- We wanted to create a continuous and piecewise linear fit to the data

Take home message

- Gradient descent
- On-line
- Batch
- Normal equations
- Geometric interpretation of LMS
- Probabilistic interpretation of LMS, and equivalence of LMS and MLE under certain assumption (what?)
- Sparsity:
- Approach: ridge vs. lasso regression
- Interpretation: regularized regression versus Bayesian regression
- Algorithm: convex optimization (we did not discuss this)
- LR does not mean fitting linear relations, but linear combination or basis functions (that can be non-linear)
- Weighting points by importance versus by fitness

Appendix

Appendix

Parameter Learning from iid Data

- Goal: estimate distribution parameters θ from a dataset of N independent, identically distributed (iid), fully observed, training cases

$$
D=\left\{x_{1}, \ldots, x_{N}\right\}
$$

- Maximum likelihood estimation (MLE)

1. One of the most common estimators
2. With iid and full-observability assumption, write $L(\theta)$ as the likelihood of the data:

$$
\begin{aligned}
L(\theta) & =P\left(x_{1}, x_{2}, \ldots, x_{N} ; \theta\right) \\
& =P(x ; \theta) P\left(x_{2} ; \theta\right), \ldots, P\left(x_{N} ; \theta\right) \\
& =\prod_{i=1}^{N} P\left(x_{i} ; \theta\right)
\end{aligned}
$$

3. pick the setting of parameters most likely to have generated the data we saw:

Example: Bernoulli model

- Data:
- We observed N iid coin tossing: $D=\{1,0,1, \ldots, 0\}$
- Representation:

Binary r.v:

$$
x_{n}=\{0,1\}
$$

- Model:

$$
P(x)=\left\{\begin{array}{ll}
1-\theta & \text { for } x=0 \\
\theta & \text { for } x=1
\end{array} \quad \Rightarrow \quad P(x)=\theta^{x}(1-\theta)^{1-x}\right.
$$

- How to write the likelihood of a single observation x_{i} ?

$$
P\left(x_{i}\right)=\theta^{x_{i}}(1-\theta)^{1-x_{i}}
$$

- The likelihood of dataset $D=\left\{x_{1}, \ldots, x_{N}\right\}$:

$$
P\left(x_{1}, x_{2}, \ldots, x_{N} \mid \theta\right)=\prod_{i=1}^{N} P\left(x_{i} \mid \theta\right)=\prod_{\substack{i=1 \\ \\ \\ \text { OEric Xing @ CMU, 2014 }}}^{N}\left(\theta^{x_{i}}(1-\theta)^{1-x_{i}}\right)=\theta^{\sum_{i=1}^{N} x_{i}}(1-\theta)^{\sum_{i=1}^{N} 1-x_{i}}=\theta^{\# \text { head }}(1-\theta)^{\# \text { tails }}
$$

Maximum Likelihood Estimation

- Objective function:

$$
\ell(\theta ; D)=\log P(D \mid \theta)=\log \theta^{n_{h}}(1-\theta)^{n_{t}}=n_{h} \log \theta+\left(N-n_{h}\right) \log (1-\theta)
$$

- We need to maximize this w.r.t. θ
- Take derivatives wrt θ

$$
\frac{\partial \ell}{\partial \theta}=\frac{n_{h}}{\theta}-\frac{N-n_{h}}{1-\theta}=0 \quad \longleftrightarrow \hat{\theta}_{M L E}=\frac{n_{h}}{N} \quad \text { or } \underset{\substack{\text { Frequency as } \\ \text { sample mean }}}{\hat{\theta}_{M L E}}=\frac{1}{N} \sum_{i} x_{i}
$$

- Sufficient statistics
- The counts, n_{h}, where $n_{k}=\sum_{i} x_{i}$, are sufficient statistics of data D

Overfitting

- Recall that for Bernoulli Distribution, we have

$$
\hat{\theta}_{M L}^{\text {head }}=\frac{n^{\text {head }}}{n^{\text {head }}+n^{\text {tail }}}
$$

- What if we tossed too few times so that we saw zero head?

We have $\bar{\theta}_{M L}^{\text {head }}=0$, and we will predict that the probability of seeing a head next is zero!!!

- The rescue: "smoothing"
- Where n ' is know as the pseudo- (imaginary) count

$$
\bar{\theta}_{M L}^{\text {head }}=\frac{n^{\text {head }}+n^{\prime}}{n^{\text {head }}+n^{\text {tail }}+n^{\prime}}
$$

Bayesian Parameter Estimation

- Treat the distribution parameters θ also as a random variable
- The a posteriori distribution of θ after seem the data is:

$$
p(\theta \mid D)=\frac{p(D \mid \theta) p(\theta)}{p(D)}=\frac{p(D \mid \theta) p(\theta)}{\int p(D \mid \theta) p(\theta) d \theta}
$$

This is Bayes Rule

$$
\text { posterior }=\frac{\text { likelihood } \times \text { prior }}{\text { marginal likelihood }}
$$

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53:370-418

The prior $\mathrm{p}($.$) encodes our prior knowledge about the domain$

Frequentist Parameter Estimation

Two people with different priors $p(\theta)$ will end up with different estimates $p(\theta D)$.

- Frequentists dislike this "subjectivity".
- Frequentists think of the parameter as a fixed, unknown constant, not a random variable.
- Hence they have to come up with different "objective" estimators (ways of computing from data), instead of using Bayes' rule.
- These estimators have different properties, such as being "unbiased", "minimum variance", etc.
- The maximum likelihood estimator, is one such estimator.

Discussion

θ or $p(\theta)$, this is the problem!

Bayesian estimation for Bernoulli

- Beta distribution:

$$
P(\theta ; \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1}=B(\alpha, \beta) \theta^{\alpha-1}(1-\theta)^{\beta-1}
$$

- When x is discrete

$$
\Gamma(x+1)=x \Gamma(x)=x!
$$

- Posterior distribution of θ :

$$
P\left(\theta \mid x_{1}, \ldots, x_{N}\right)=\frac{p\left(x_{1}, \ldots, x_{N} \mid \theta\right) p(\theta)}{p\left(x_{1}, \ldots, x_{N}\right)} \propto \theta^{n_{n}}(1-\theta)^{n_{t}} \times \theta^{\alpha-1}(1-\theta)^{\beta-1}=\theta^{n_{n}+\alpha-1}(1-\theta)^{n_{t}+\beta-1}
$$

- Notice the isomorphism of the posterior to the prior,
- such a prior is called a conjugate prior
- α and β are hyperparameters (parameters of the prior) and correspond to the number of "virtual" heads/tails (pseudo counts)

Bayesian estimation for Bernoulli, con'd

- Posterior distribution of θ :

$$
P\left(\theta \mid x_{1}, \ldots, x_{N}\right)=\frac{p\left(x_{1}, \ldots, x_{N} \mid \theta\right) p(\theta)}{p\left(x_{1}, \ldots, x_{N}\right)} \propto \theta^{n_{n}}(1-\theta)^{n_{t}} \times \theta^{\alpha-1}(1-\theta)^{\beta-1}=\theta^{n_{n}+\alpha-1}(1-\theta)^{n_{t}+\beta-1}
$$

- Maximum a posteriori (MAP) estimation:

$$
\theta_{M A P}=\arg \max _{\theta} \log P\left(\theta \mid x_{1}, \ldots, x_{N}\right)
$$

- Posterior mean estimation:

Bata parameters

$$
\theta_{\text {Bayes }}=\int \theta p(\theta \mid D) d \theta=C \int \theta \times \theta^{n_{h}+\alpha-1}(1-\theta)^{n_{t}+\beta-1} d \theta=\frac{n_{h}+\alpha}{N+\alpha+\beta}
$$

- Prior strength: $\mathrm{A}=\alpha+\beta$
- A can be interoperated as the size of an imaginary data set from which we obtain the pseudo-counts

Effect of Prior Strength

- Suppose we have a uniform prior ($\alpha=\beta=1 / 2$), and we observe $\vec{n}=\left(n_{h}=2, n_{t}=8\right)$
- Weak prior $\mathrm{A}=2$. Posterior prediction:

$$
p\left(x=h \mid n_{h}=2, n_{t}=8, \vec{\alpha}=\vec{\alpha}^{\prime} \times 2\right)=\frac{1+2}{2+10}=0.25
$$

- Strong prior $\mathrm{A}=20$. Posterior prediction:

$$
p\left(x=h \mid n_{h}=2, n_{t}=8, \vec{\alpha}=\vec{\alpha}^{\prime} \times 20\right)=\frac{10+2}{20+10}=0.40
$$

- However, if we have enough data, it washes away the prior. e.g., $\vec{n}=\left(n_{h}=200, n_{t}=800\right)$. Then the estimates under weak and strong prior are $\frac{1+200}{2+1000}$ and $\frac{10+200}{20+1000}$, respectively, both of which are close to 0.2

Example 2: Gaussian density

- Data:
- We observed N iid real samples:

$$
D=\{-0.1,10,1,-5.2, \ldots, 3\}
$$

- Model:

$$
P(x)=\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left\{-(x-\mu)^{2} / 2 \sigma^{2}\right\}
$$

- Log likelihood:

$$
\ell(\theta ; D)=\log P(D \mid \theta)=-\frac{N}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2} \sum_{n=1}^{N} \frac{\left(x_{n}-\mu\right)^{2}}{\sigma^{2}}
$$

- MLE: take derivative and set to zero:

$$
\begin{array}{ll}
\frac{\partial \ell}{\partial \mu}=\left(1 / \sigma^{2}\right) \sum_{n}\left(x_{n}-\mu\right) & \square
\end{array} \begin{aligned}
& \mu_{M L E}=\frac{1}{N} \sum_{n}\left(x_{n}\right) \\
& \frac{\partial \ell}{\partial \sigma^{2}}=-\frac{N}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{n}\left(x_{n}-\mu\right)^{2}
\end{aligned} \quad \begin{aligned}
& \sigma_{M L E}^{2}=\frac{1}{N} \sum_{n}\left(x_{n}-\mu_{M L}\right)^{2}
\end{aligned}
$$

MLE for a multivariate-Gaussian

- It can be shown that the MLE for μ and Σ is

$$
\begin{aligned}
& \mu_{M L E}=\frac{1}{N} \sum_{n}\left(x_{n}\right) \\
& \Sigma_{M L E}=\frac{1}{N} \sum_{n}\left(x_{n}-\mu_{M L}\right)\left(x_{n}-\mu_{M L}\right)^{T}=\frac{1}{N} S
\end{aligned}
$$

where the scatter matrix is

$$
\begin{gathered}
x_{n}=\left(\begin{array}{c}
x_{n}^{1} \\
x_{n}^{2} \\
\vdots \\
x_{n}^{K}
\end{array}\right) \\
X=\left(\begin{array}{c}
---x_{1}^{T}--- \\
--x_{2}^{T}--- \\
\vdots \\
--x_{N}^{T}----
\end{array}\right)
\end{gathered}
$$

$$
S=\sum_{n}\left(x_{n}-\mu_{M L}\right)\left(x_{n}-\mu_{M L}\right)^{T}=\left(\sum_{n} x_{n} x_{n n}^{T}\right)-N \mu_{M L} \mu_{M L}^{T}
$$

- The sufficient statistics are $\Sigma_{n} x_{n}$ and $\Sigma_{n} x_{n} x_{n}{ }^{T}$.
- Note that $X^{T} X=\Sigma_{n} x_{n} x_{n}{ }^{T}$ may not be full rank (eg. if $N<D$), in which case $\Sigma_{M L}$ is not invertible

Bayesian estimation

- Normal Prior:

$$
P(\mu)=\left(2 \pi \sigma_{0}^{2}\right)^{-1 / 2} \exp \left\{-\left(\mu-\mu_{0}\right)^{2} / 2 \sigma_{0}^{2}\right\}
$$

- Joint probability:

$$
\begin{aligned}
P(x, \mu)= & \left(2 \pi \sigma^{2}\right)^{-N / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right\} \\
& \times\left(2 \pi \sigma_{0}^{2}\right)^{-1 / 2} \exp \left\{-\left(\mu-\mu_{0}\right)^{2} / 2 \sigma_{0}^{2}\right\}
\end{aligned}
$$

- Posterior:

$$
\begin{aligned}
& P(\mu \mid x)=\left(2 \pi \tilde{\sigma}^{2}\right)^{-1 / 2} \exp \left\{-(\mu-\tilde{\mu})^{2} / 2 \tilde{\sigma}^{2}\right\}
\end{aligned}
$$

Bayesian estimation: unknown μ, known σ

$$
\mu_{N}=\frac{N / \sigma^{2}}{N / \sigma^{2}+1 / \sigma_{0}^{2}} \bar{x}+\frac{1 / \sigma_{0}^{2}}{N / \sigma^{2}+1 / \sigma_{0}^{2}} \mu_{0}, \quad \tilde{\sigma}^{2}=\left(\frac{N}{\sigma^{2}}+\frac{1}{\sigma_{0}^{2}}\right)^{-1}
$$

- The posterior mean is a convex combination of the prior and the MLE, with weights proportional to the relative noise levels.
- The precision of the posterior $1 / \sigma^{2}{ }_{N}$ is the precision of the prior $1 / \sigma^{2}{ }_{0}$ plus one contribution of data precision $1 / \sigma^{2}$ for each observed data point.
- Sequentially updating the mean
- $\mu *=0.8$ (unknown), $\left(\sigma^{2}\right) *=0.1$ (known)
- Effect of single data point

$$
\mu_{1}=\mu_{0}+\left(x-\mu_{0}\right) \frac{\sigma_{0}^{2}}{\sigma^{2}+\sigma_{0}^{2}}=x-\left(x-\mu_{0}\right) \frac{\sigma_{0}^{2}}{\sigma^{2}+\sigma_{0}^{2}}
$$

- Uninformative (vague/ flat) prior, $\sigma^{2}{ }_{0} \rightarrow \infty$

$$
\mu_{N} \rightarrow \mu_{0}
$$

[^0]: Prior belief that β is Laplace with zero-mean biases solution to "small" β

