Advanced Introduction to Machine Learning

10715, Fall 2014

Linear Regression and Sparsity

Eric Xing

Lecture 2, September 10, 2014

Reading:

Machine learning for apartment hunting

Now you've moved to Pittsburgh!!

And you want to find the **most** reasonably priced apartment satisfying your needs:

square-ft., # of bedroom, distance to campus ...

Living area (ft²)	# bedroom	Rent (\$)
230	1	600
506	2	1000
433	2	1100
109	1	500
150	1	?
270	1.5	?

The learning problem

Features:

- Living area, distance to campus, # bedroom ...
- Denote as $\mathbf{x} = [x^1, x^2, \dots x^k]$
- Target:
 - Rent
 - Denoted as y
- Training set:

$$\mathbf{X} = \begin{bmatrix} -- & \mathbf{x}_1 & -- \\ -- & \mathbf{x}_2 & -- \\ \vdots & \vdots & \vdots \\ -- & \mathbf{x}_n & -- \end{bmatrix} = \begin{bmatrix} x_1^1 & x_1^2 & \dots & x_1^k \\ x_2^1 & x_2^2 & \dots & x_2^k \\ \vdots & \vdots & \vdots & \vdots \\ x_n^1 & x_n^2 & \dots & x_n^k \end{bmatrix}$$

$$\mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} - & \mathbf{y}_1 & - \\ - & \mathbf{y}_2 & - \\ \vdots & \vdots & \vdots \\ - & \mathbf{y}_n & - \end{bmatrix}$$
© Eric Xing @ CMU, 2014

Linear Regression

- Assume that Y (target) is a linear function of X (features):
 - e.g.:

$$\hat{y} = \theta_0 + \theta_1 x^1 + \theta_2 x^2$$

- let's assume a vacuous "feature" $X^0=1$ (this is the intercept term, why?), and define the feature vector to be:
- then we have the following general representation of the linear function:

- Our goal is to pick the optimal θ . How!
 - We seek heta that minimize the following cost function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\hat{y}_{i}(\bar{x}_{i}) - y_{i})^{2}$$

The Least-Mean-Square (LMS) method

The Cost Function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2}$$

• Consider a gradient descent algorithm:

$$\theta_{j}^{t+1} = \theta_{j}^{t} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$$

© Eric Xing @ CMU, 2014

The Least-Mean-Square (LMS) method

Now we have the following descent rule:

$$\theta_j^{t+1} = \theta_j^t + \alpha \sum_{i=1}^n (y_i - \overline{\mathbf{x}}_i^T \theta^t) x_i^j$$

For a single training point, we have:

- This is known as the LMS update rule, or the Widrow-Hoff learning rule
- This is actually a "stochastic", "coordinate" descent algorithm
- This can be used as a on-line algorithm

7

Geometry and Convergence of LMS

$$\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^t + \alpha (\boldsymbol{y}_i - \vec{\boldsymbol{x}}_i^T \boldsymbol{\theta}^t) \vec{\boldsymbol{x}}_i$$

Claim: when the step size α satisfies certain condition, and when certain other technical conditions are satisfied, LMS will converge to an "optimal region".

Steepest Descent and LMS

- Steepest descent
 - Note that:

$$\nabla_{\theta} J = \left[\frac{\partial}{\partial \theta_{1}} J, \dots, \frac{\partial}{\partial \theta_{k}} J \right]^{T} = -\sum_{i=1}^{n} (y_{n} - \mathbf{x}_{n}^{T} \theta) \mathbf{x}_{n}$$

$$\theta^{t+1} = \theta^t + \alpha \sum_{i=1}^n (y_n - \mathbf{x}_n^T \theta^t) \mathbf{x}_n$$

This is as a batch gradient descent algorithm

The normal equations

Write the cost function in matrix form:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2}$$

$$= \frac{1}{2} (X\theta - \vec{y})^{T} (X\theta - \vec{y})$$

$$= \frac{1}{2} (\theta^{T} X^{T} X \theta - \theta^{T} X^{T} \vec{y} - \vec{y}^{T} X \theta + \vec{y}^{T} \vec{y})$$

$$\mathbf{X} = \begin{bmatrix} -- & \mathbf{x}_1 & -- \\ -- & \mathbf{x}_2 & -- \\ \vdots & \vdots & \vdots \\ -- & \mathbf{x}_n & -- \end{bmatrix}$$

$$\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \end{bmatrix}$$

• To minimize $J(\theta)$, take derivative and set to zero:

$$\nabla_{\theta} J = \frac{1}{2} \nabla_{\theta} \operatorname{tr} \left(\theta^{T} X^{T} X \theta - \theta^{T} X^{T} \vec{y} - \vec{y}^{T} X \theta + \vec{y}^{T} \vec{y} \right)$$

$$= \frac{1}{2} \left(\nabla_{\theta} \operatorname{tr} \theta^{T} X^{T} X \theta - 2 \nabla_{\theta} \operatorname{tr} \vec{y}^{T} X \theta + \nabla_{\theta} \operatorname{tr} \vec{y}^{T} \vec{y} \right)$$

$$= \frac{1}{2} \left(X^{T} X \theta + X^{T} X \theta - 2 X^{T} \vec{y} \right)$$

$$= X^{T} X \theta - X^{T} \vec{y} = \mathbf{0}$$

$$\Rightarrow X^T X \theta = X^T \vec{y}$$
The normal equations

$$\boldsymbol{\theta}^* = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{\bar{y}}$$

Some matrix derivatives

• For $f: \mathbb{R}^{m \times n} \mapsto \mathbb{R}$, define:

$$\nabla_{A} f(A) = \begin{bmatrix} \frac{\partial}{\partial A_{11}} f & \cdots & \frac{\partial}{\partial A_{1n}} f \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial A_{1m}} f & \cdots & \frac{\partial}{\partial A_{mn}} f \end{bmatrix}$$

Trace:

$$\operatorname{tr} A = \sum_{i=1}^{n} A_{ii}$$
, $\operatorname{tr} A = a$, $\operatorname{tr} A B C = \operatorname{tr} C A B = \operatorname{tr} B C A$

Some fact of matrix derivatives (without proof)

$$\nabla_A \operatorname{tr} AB = B^T$$
, $\nabla_A \operatorname{tr} ABA^T C = CAB + C^T AB^T$, $\nabla_A |A| = |A| (A^{-1})^T$

Comments on the normal equation

- In most situations of practical interest, the number of data points N is larger than the dimensionality k of the input space and the matrix \mathbf{X} is of full column rank. If this condition holds, then it is easy to verify that X^TX is necessarily invertible.
- The assumption that X^TX is invertible implies that it is positive definite, thus at the critical point we have found is a minimum.
- What if X has less than full column rank? → regularization (later).

Direct and Iterative methods

- Direct methods: we can achieve the solution in a single step by solving the normal equation
 - Using Gaussian elimination or QR decomposition, we converge in a finite number of steps
 - It can be infeasible when data are streaming in in real time, or of very large amount
- Iterative methods: stochastic or steepest gradient
 - Converging in a limiting sense
 - But more attractive in large practical problems
 - Caution is needed for deciding the learning rate α

Convergence rate

 Theorem: the steepest descent equation algorithm converge to the minimum of the cost characterized by normal equation:

$$\theta^{(\infty)} = (X^T X)^{-1} X^T y$$

If

$$0 < \alpha < 2/\lambda_{\max}[X^T X]$$

• A formal analysis of LMS need more math-mussels; in practice, one can use a small α , or gradually decrease α .

A Summary:

LMS update rule

$$\theta_j^{t+1} = \theta_j^t + \alpha (y_n - \mathbf{x}_n^T \theta^t) x_{n,i}$$

- Pros: on-line, low per-step cost, fast convergence and perhaps less prone to local optimum
- Cons: convergence to optimum not always guaranteed

Steepest descent

$$\theta^{t+1} = \theta^t + \alpha \sum_{i=1}^n (y_i - \mathbf{x}_n^T \theta^t) \mathbf{x}_n$$

- Pros: easy to implement, conceptually clean, guaranteed convergence
- Cons: batch, often slow converging

Normal equations

$$\boldsymbol{\theta}^* = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \vec{\boldsymbol{y}}$$

- Pros: a single-shot algorithm! Easiest to implement.
- Cons: need to compute pseudo-inverse (X^TX)⁻¹, expensive, numerical issues (e.g., matrix is singular ..), although there are ways to get around this ...

Geometric Interpretation of LMS

The predictions on the training data are:

$$\hat{\vec{y}} = X\theta^* = X(X^TX)^{-1}X^T\vec{y}$$

$$\hat{\vec{y}} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} -- & \mathbf{x}_1 & -- \\ -- & \mathbf{x}_2 & -- \\ \vdots & \vdots & \vdots \\ -- & \mathbf{x}_n & -- \end{bmatrix}$$

Note that

$$\hat{\vec{y}} - \vec{y} = \left(X \left(X^T X \right)^{-1} X^T - I \right) \vec{y}$$

and

$$X^{T} \left(\hat{\vec{y}} - \vec{y} \right) = X^{T} \left(X \left(X^{T} X \right)^{-1} X^{T} - I \right) \vec{y}$$

$$= \left(X^{T} X \left(X^{T} X \right)^{-1} X^{T} - X^{T} \right) \vec{y}$$

$$= \mathbf{0} \quad \mathbf{1} \mathbf{1}$$

 $\hat{\vec{v}}$ is the orthogonal projection of $\hat{\vec{y}}$ into the space spanned by the column of X

$$\mathbf{X} = \begin{bmatrix} -- & \mathbf{x}_1 & -- \\ -- & \mathbf{x}_2 & -- \\ \vdots & \vdots & \vdots \\ -- & \mathbf{x}_n & -- \end{bmatrix}$$

Probabilistic Interpretation of LMS

 Let us assume that the target variable and the inputs are related by the equation:

$$y_i = \boldsymbol{\theta}^T \mathbf{x}_i + \boldsymbol{\varepsilon}_i$$

where ε is an error term of unmodeled effects or random noise

• Now assume that ε follows a Gaussian $N(0,\sigma)$, then we have:

$$p(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y_i - \theta^T \mathbf{x}_i)^2}{2\sigma^2}\right)$$

By independence assumption:

$$L(\theta) = \prod_{i=1}^{n} p(y_i \mid x_i; \theta) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left(-\frac{\sum_{i=1}^{n} (y_i - \theta^T \mathbf{x}_i)^2}{2\sigma^2}\right)$$

Probabilistic Interpretation of LMS, cont.

Hence the log-likelihood is:

$$l(\theta) = n \log \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{\sigma^2} \frac{1}{2} \sum_{i=1}^n (y_i - \theta^T \mathbf{x}_i)^2$$

Do you recognize the last term?

Yes it is:
$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_i^T \theta - y_i)^2$$

 Thus under independence assumption, LMS is equivalent to MLE of θ!

Case study: predicting gene expression

The genetic picture

causal SNPs

a univariate phenotype:

i.e., the expression intensity of a gene

Association Mapping as Regression

	Phenotype (BMI)	Genotype	
Individual 1	2.5		
Individual 2 :	4.8	GT <mark>G</mark> T	
Individual N	4.7		

Association Mapping as Regression

	Phenotype (BMI)	Genotype
Individual 1	2.5	0100
Individual 2 :	4.8	1111
Individual N	4.7	2210

$$\forall_{i}$$

$$\sum_{j=1}^{J} x_{ij} \beta_j$$
 SNPs with large $|\beta_j|$ are relevant

Experimental setup

Asthama dataset

- 543 individuals, genotyped at 34 SNPs
- Diploid data was transformed into 0/1 (for homozygotes) or 2 (for heterozygotes)
- X=543x34 matrix
- Y=Phenotype variable (continuous)
- A single phenotype was used for regression

Implementation details

- Iterative methods: Batch update and online update implemented.
- For both methods, step size α is chosen to be a small fixed value (10⁻⁶). This choice is based on the data used for experiments.
- Both methods are only run to a maximum of 2000 epochs or until the change in training MSE is less than 10⁻⁴

Log-log plot of training MSE versus epochs

- For the batch method, the training MSE is initially large due to uninformed initialization
- In the online update, N updates for every epoch reduces MSE to a much smaller value.

The Learned Coefficients

Multivariate Regression for Trait Association Analysis

Trait		Genotype		Association Strength
2.1		TGAACCATGAAGTA	X	?
y	=	X	X	β

Multivariate Regression for Trait Association Analysis

$$\beta^* = \arg\min_{\beta} (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$$

Many non-zero associations: Which SNPs are truly significant?

Sparsity

- One common assumption to make sparsity.
- Makes biological sense: each phenotype is likely to be associated with a small number of SNPs, rather than all the SNPs.
- Makes statistical sense: Learning is now feasible in high dimensions with small sample size

- Consider least squares linear regression problem:
- Sparsity means most of the beta's are zero.

$$\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{\beta}} ||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||^2$$
 subject to:

$$\sum_{j=1}^{p} \mathbb{I}[|\beta_j| > 0] \le C$$

But this is not convex!!! Many local optima, computationally intractable.

L1 Regularization (LASSO)

(Tibshirani, 1996)

A convex relaxation.

Constrained Form

$$\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\beta} ||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||^2$$

subject to:

$$\sum_{j=1}^{p} |\beta_j| \le C$$

Lagrangian Form

$$\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\beta} \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2$$
 $\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\beta} \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|_1$

© Eric Xing @ CMU, 2014

Theoretical Guarantees

Assumptions

- Dependency Condition: Relevant Covariates are not overly dependent
- Incoherence Condition: Large number of irrelevant covariates cannot be too correlated with relevant covariates
- Strong concentration bounds: Sample quantities converge to expected values quickly

If these are assumptions are met, LASSO will asymptotically recover correct subset of covariates that relevant.

Consistent Structure Recovery

[Zhao and Yu 2006]

Theorem 4 (Gaussian Noise). Assume ε_i^n are i.i.d. Gaussian random variables. Under conditions (5), (6), (7) and (8), if there exists $0 \le c_3 < c_2 - c_1$ for which $p_n = O(e^{n^{c_3}})$ then strong Irrepresentable Condition implies that Lasso has strong sign consistency. In particular, for $\lambda_n \propto n^{\frac{1+c_4}{2}}$ with $c_3 < c_4 < c_2 - c_1$,

$$P(\hat{\beta}^n(\lambda_n) =_s \beta^n) \ge 1 - o(e^{-n^{c_3}}) \to 1 \text{ as } n \to \infty.$$

Lasso for Reducing False Positives

Many zero associations (sparse results), but what if there are multiple related traits?

$$\min_{\beta} (\mathbf{X} \cdot \beta - \mathbf{Y})^T (\mathbf{X} \cdot \beta - \mathbf{Y}) + \lambda \operatorname{pen}(\beta) = \min_{\beta} J(\beta) + \lambda \operatorname{pen}(\beta)$$

Ridge Regression:

$$pen(\beta) = \|\beta\|_2^2$$

Lasso:

$$pen(\beta) = \|\beta\|_1$$

Lasso (11 penalty) results in sparse solutions – vector with more zero coordinates Good for high-dimensional problems – don't have to store all coordinates!

Bayesian Interpretation

- Treat the distribution parameters θ also as a random variable
- The a posteriori distribution of θ after seem the data is:

$$p(\theta \mid D) = \frac{p(D \mid \theta)p(\theta)}{p(D)} = \frac{p(D \mid \theta)p(\theta)}{\int p(D \mid \theta)p(\theta)d\theta}$$

This is Bayes Rule

 $posterior = \frac{likelihood \times prior}{marginal \ likelihood}$

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, 53:370-418

The prior p(.) encodes our prior knowledge about the domain

Regularized Least Squares and MAP

What if (X^TX) is not invertible?

$$\widehat{\beta}_{\text{MAP}} = \arg\max_{\beta} \log p(\{(X_i, Y_i)\}_{i=1}^n | \beta, \sigma^2) + \log p(\beta)$$

$$\log \text{ likelihood} \qquad \log \text{ prior}$$

I) Gaussian Prior

$$eta \sim \mathcal{N}(0, au^2 \mathbf{I})$$

ussian Prior
$$eta \sim \mathcal{N}(0, au^2\mathbf{I})$$
 $p(eta) \propto e^{-eta^Teta/2 au^2}$,

$$\widehat{eta}_{\mathsf{MAP}} = \arg\min_{eta} \sum_{i=1}^n (Y_i - X_i eta)^2 + \lambda \|eta\|_2^2$$
 Ridge Regression Closed form: HW constant (σ^2, τ^2)

Prior belief that β is Gaussian with zero-mean biases solution to "small" β

Regularized Least Squares and MAP

What if (X^TX) is not invertible?

$$\widehat{\beta}_{\text{MAP}} = \arg\max_{\beta} \log p(\{(X_i, Y_i)\}_{i=1}^n | \beta, \sigma^2) + \log p(\beta)$$

$$\log \text{ likelihood} \qquad \log \text{ prior}$$

II) Laplace Prior

$$eta_i \stackrel{iid}{\sim} \mathsf{Laplace}(\mathsf{0},t) \qquad \qquad p(eta_i) \propto e^{-|eta_i|/t}$$

$$p(\beta_i) \propto e^{-|\beta_i|/t}$$

$$\widehat{eta}_{\mathsf{MAP}} = \arg\min_{eta} \sum_{i=1}^n (Y_i - X_i eta)^2 + \lambda \|eta\|_1$$
 Lasso Closed form: HW constant (σ^2, t)

Prior belief that β is Laplace with zero-mean biases solution to "small" β

Take home message

- Gradient descent
 - On-line
 - Batch
- Normal equations
- Geometric interpretation of LMS
- Probabilistic interpretation of LMS, and equivalence of LMS and MLE under certain assumption (what?)
- Sparsity:
 - Approach: ridge vs. lasso regression
 - Interpretation: regularized regression versus Bayesian regression
 - Algorithm: convex optimization (we did not discuss this)
- LR does not mean fitting linear relations, but linear combination or basis functions (that can be non-linear)
- Weighting points by importance versus by fitness

Advanced Material: Beyond basic LR

LR with non-linear basis functions

Locally weighted linear regression

Regression trees and Multilinear Interpolation

We will discuss this in next class after we set the state right! (if we've got time ©)

LR with non-linear basis functions

- LR does not mean we can only deal with linear relationships
- We are free to design (non-linear) features under LR

$$y = \theta_0 + \sum_{j=1}^m \theta_j \phi(x) = \theta^T \phi(x)$$

where the $\phi_i(x)$ are fixed basis functions (and we define $\phi_0(x) = 1$).

• Example: polynomial regression:

$$\phi(x) := [1, x, x^2, x^3]$$

• We will be concerned with estimating (distributions over) the weights θ and choosing the model order M.

Basis functions

- There are many basis functions, e.g.:
 - Polynomial $\phi_i(x) = x^{j-1}$
 - Radial basis functions $\phi_j(x) = \exp\left(-\frac{(x-\mu_j)^2}{2s^2}\right)$
 - Sigmoidal $\phi_j(x) = \sigma\left(\frac{x \mu_j}{s}\right)$
 - Splines, Fourier, Wavelets, etc

1D and 2D RBFs

• 1D RBF

$$y^{est} = \beta_1 \phi_1(x) + \beta_2 \phi_2(x) + \beta_3 \phi_3(x)$$

• After fit:

$$y^{est} = 2\phi_1(x) + \frac{0.05\phi_2(x)}{0.05\phi_3(x)} + 0.5\phi_3(x)$$

Good and Bad RBFs

A good 2D RBF

Two bad 2D RBFs

Overfitting and underfitting

Bias and variance

- We define the bias of a model to be the expected generalization error even if we were to fit it to a very (say, infinitely) large training set.
- By fitting "spurious" patterns in the training set, we might again obtain a model with large generalization error. In this case, we say the model has large variance.

Locally weighted linear regression

• The algorithm:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2}$$

now we fit
$$\theta$$
 to minimize

now we fit
$$\theta$$
 to minimize $J(\theta) = \frac{1}{2} \sum_{i=1}^{n} w_i (\mathbf{x}_i^T \theta - y_i)^2$

Where do
$$w_i$$
's come from? $w_i = \exp\left(-\frac{(\mathbf{x}_i - \mathbf{x})^2}{2\tau^2}\right)$

- where x is the guery point for which we'd like to know its corresponding y
- → Essentially we put higher weights on (errors on) training examples that are close to the query point (than those that are further away from the query)

Parametric vs. non-parametric

- Locally weighted linear regression is the second example we are running into of a non-parametric algorithm. (what is the first?)
- The (unweighted) linear regression algorithm that we saw earlier is known as a parametric learning algorithm
 - because it has a fixed, finite number of parameters (the θ), which are fit to the data;
 - Once we've fit the θ and stored them away, we no longer need to keep the training data around to make future predictions.
 - In contrast, to make predictions using locally weighted linear regression, we need to keep the entire training set around.
- The term "non-parametric" (roughly) refers to the fact that the amount of stuff we need to keep in order to represent the hypothesis grows linearly with the size of the training set.

- The best fit from a quadratic regression
- But this is probably better ...

How can we do this?

- Remember what we do in "locally weighted linear regression"?
 - → we "score" each point for its impotence
- Now we score each point according to its "fitness"

(Courtesy to Andrew Moor)

Robust regression

- For k = 1 to R...
 - Let (x_k, y_k) be the kth datapoint
 - Let y^{est}_k be predicted value of y_k
 - Let w_k be a weight for data point k that is large if the data point fits well and small if it fits badly:

$$w_k = \phi \Big((y_k - y_k^{\text{est}})^2 \Big)$$

- Then redo the regression using weighted data points.
- Repeat whole thing until converged!

Robust regression—probabilistic interpretation

What regular regression does:

Assume y_k was originally generated using the following recipe:

$$y_k = \theta^T \mathbf{x}_k + \mathcal{N}(\mathbf{0}, \sigma^2)$$

Computational task is to find the Maximum Likelihood estimation of θ

Robust regression—probabilistic interpretation

What LOESS robust regression does:

Assume y_k was originally generated using the following recipe:

with probability
$$p$$
: $y_k = \theta^T \mathbf{x}_k + \mathcal{N}(\mathbf{0}, \sigma^2)$

but otherwise
$$y_k \sim \mathcal{N}(\mu, \sigma_{\text{huge}}^2)$$

Computational task is to find the Maximum Likelihood estimates of θ , p, μ and σ_{huge} .

 The algorithm you saw with iterative reweighting/refitting does this computation for us. Later you will find that it is an instance of the famous E.M. algorithm

Regression Tree

• Decision tree for regression

Gender	Rich?	Num. Children	# travel per yr.	Age
F	No	2	5	38
M	No	0	2	25
М	Yes	1	0	72
:	:	:	:	:

• Assuming regular regression trees, can you sketch a graph of the fitted function y*(x) over this diagram?

Multilinear Interpolation

 We wanted to create a continuous and piecewise linear fit to the data

Take home message

- Gradient descent
 - On-line
 - Batch
- Normal equations
- Geometric interpretation of LMS
- Probabilistic interpretation of LMS, and equivalence of LMS and MLE under certain assumption (what?)
- Sparsity:
 - Approach: ridge vs. lasso regression
 - Interpretation: regularized regression versus Bayesian regression
 - Algorithm: convex optimization (we did not discuss this)
- LR does not mean fitting linear relations, but linear combination or basis functions (that can be non-linear)
- Weighting points by importance versus by fitness

Appendix

Parameter Learning from iid Data

Goal: estimate distribution parameters θ from a dataset of N independent, identically distributed (iid), fully observed, training cases

$$D = \{x_1, \ldots, x_N\}$$

- Maximum likelihood estimation (MLE)
 - 1. One of the most common estimators
 - 2. With iid and full-observability assumption, write $L(\theta)$ as the likelihood of the data:

$$L(\theta) = P(x_{1,}x_{2},...,x_{N};\theta)$$

$$= P(x;\theta)P(x_{2};\theta),...,P(x_{N};\theta)$$

$$= \prod_{i=1}^{N} P(x_{i};\theta)$$

3. pick the setting of parameters most likely to have generated the data we saw:

$$\theta^* = \underset{\text{@ Erfc Xing @ CMU, 2014}}{\operatorname{max}} L(\theta) = \underset{\theta}{\operatorname{arg max}} \log L(\theta)$$

Example: Bernoulli model

- Data:
 - We observed N iid coin tossing: D={1, 0, 1, ..., 0}
- Representation:

$$x_n = \{0,1\}$$

$$P(x) = \begin{cases} \mathbf{1} - \theta & \text{for } x = \mathbf{0} \\ \theta & \text{for } x = \mathbf{1} \end{cases} \Rightarrow P(x) = \theta^{x} (\mathbf{1} - \theta)^{1-x}$$

• How to write the likelihood of a single observation x_i ?

$$P(x_i) = \theta^{x_i} (\mathbf{1} - \theta)^{1 - x_i}$$

• The likelihood of dataset $D = \{x_1, ..., x_N\}$:

$$P(x_1, x_2, ..., x_N \mid \theta) = \prod_{i=1}^{N} P(x_i \mid \theta) = \prod_{i=1}^{N} \left(\theta^{x_i} (1 - \theta)^{1 - x_i} \right) = \theta^{\sum_{i=1}^{N} x_i} (1 - \theta)^{\sum_{i=1}^{N} 1 - x_i} = \theta^{\text{\#head}} (1 - \theta)^{\text{\#tails}}$$

Maximum Likelihood Estimation

Objective function:

$$\ell(\theta; D) = \log P(D \mid \theta) = \log \theta^{n_h} (\mathbf{1} - \theta)^{n_t} = n_h \log \theta + (N - n_h) \log(\mathbf{1} - \theta)$$

- We need to maximize this w.r.t. θ
- Take derivatives wrt θ

$$\frac{\partial \ell}{\partial \theta} = \frac{n_h}{\theta} - \frac{N - n_h}{1 - \theta} = 0$$

$$\widehat{\theta}_{MLE} = \frac{n_h}{N}$$
or $\widehat{\theta}_{MLE} = \frac{1}{N} \sum_{i} x_i$
Frequency as sample mean

- Sufficient statistics
 - The counts, n_h , where $n_k = \sum_i x_i$, are sufficient statistics of data D

Overfitting

Recall that for Bernoulli Distribution, we have

$$\widehat{\theta}_{ML}^{head} = \frac{n^{head}}{n^{head} + n^{tail}}$$

- What if we tossed too few times so that we saw zero head? We have $\hat{\theta}_{ML}^{head} = 0$, and we will predict that the probability of seeing a head next is zero!!!
- The rescue: "smoothing"
 - Where n' is know as the pseudo- (imaginary) count

$$\widehat{\theta}_{ML}^{head} = \frac{n^{head} + n'}{n^{head} + n^{tail} + n'}$$

But can we make this more formal?
 © Eric Xing @ CMU, 2014

Bayesian Parameter Estimation

- Treat the distribution parameters θ also as a random variable
- The a posteriori distribution of θ after seem the data is:

$$p(\theta \mid D) = \frac{p(D \mid \theta)p(\theta)}{p(D)} = \frac{p(D \mid \theta)p(\theta)}{\int p(D \mid \theta)p(\theta)d\theta}$$

This is Bayes Rule

 $posterior = \frac{likelihood \times prior}{marginal\ likelihood}$

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, 53:370-418

The prior p(.) encodes our prior knowledge about the domain

Frequentist Parameter Estimation

Two people with different priors $p(\theta)$ will end up with different estimates $p(\theta|D)$.

- Frequentists dislike this "subjectivity".
- Frequentists think of the parameter as a fixed, unknown constant, not a random variable.
- Hence they have to come up with different "objective"
 estimators (ways of computing from data), instead of using
 Bayes' rule.
 - These estimators have different properties, such as being "unbiased", "minimum variance", etc.
 - The maximum likelihood estimator, is one such estimator.

 θ or $p(\theta)$, this is the problem!

Beta distribution:

$$P(\theta; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (\mathbf{1} - \theta)^{\beta - 1} = B(\alpha, \beta) \theta^{\alpha - 1} (\mathbf{1} - \theta)^{\beta - 1}$$

• Posterior distribution of θ :

$$P(\theta \mid x_1,...,x_N) = \frac{p(x_1,...,x_N \mid \theta) p(\theta)}{p(x_1,...,x_N)} \propto \theta^{n_h} (\mathbf{1} - \theta)^{n_t} \times \theta^{\alpha-1} (\mathbf{1} - \theta)^{\beta-1} = \theta^{n_h + \alpha - 1} (\mathbf{1} - \theta)^{n_t + \beta - 1}$$

- Notice the isomorphism of the posterior to the prior,
- such a prior is called a conjugate prior
- α and β are hyperparameters (parameters of the prior) and correspond to the number of "virtual" heads/tails (pseudo counts)

Bayesian estimation for Bernoulli, con'd

• Posterior distribution of θ :

$$P(\theta \mid x_1,...,x_N) = \frac{p(x_1,...,x_N \mid \theta) p(\theta)}{p(x_1,...,x_N)} \propto \theta^{n_h} (\mathbf{1} - \theta)^{n_t} \times \theta^{\alpha-1} (\mathbf{1} - \theta)^{\beta-1} = \theta^{n_h + \alpha - 1} (\mathbf{1} - \theta)^{n_t + \beta - 1}$$

Maximum a posteriori (MAP) estimation:

$$\theta_{MAP} = \arg\max_{\theta} \log P(\theta \mid x_1, ..., x_N)$$

Posterior mean estimation:

$$\theta_{Bayes} = \int \theta p(\theta \mid D) d\theta = C \int \theta \times \theta^{n_h + \alpha - 1} (\mathbf{1} - \theta)^{n_t + \beta - 1} d\theta = \frac{n_h + \alpha}{N + \alpha + \beta}$$

- Prior strength: $A = \alpha + \beta$
 - A can be interoperated as the size of an imaginary data set from which we obtain the pseudo-counts

Effect of Prior Strength

- Suppose we have a uniform prior ($\alpha = \beta = 1/2$), and we observe $\vec{n} = (n_h = 2, n_t = 8)$
- Weak prior A = 2. Posterior prediction:

$$p(x = h \mid n_h = 2, n_t = 8, \vec{\alpha} = \vec{\alpha}' \times 2) = \frac{1+2}{2+10} = 0.25$$

• Strong prior A = 20. Posterior prediction:

$$p(x = h \mid n_h = 2, n_t = 8, \vec{\alpha} = \vec{\alpha} \times 20) = \frac{10 + 2}{20 + 10} = 0.40$$

• However, if we have enough data, it washes away the prior. e.g., $\vec{n} = (n_h = 200, n_t = 800)$. Then the estimates under weak and strong prior are $\frac{1+200}{2+1000}$ and $\frac{10+200}{20+1000}$, respectively, both of which are close to 0.2

Example 2: Gaussian density

- Data:
 - We observed N iid real samples:
 D={-0.1, 10, 1, -5.2, ..., 3}

• Model:
$$P(x) = (2\pi\sigma^2)^{-1/2} \exp\{-(x-\mu)^2/2\sigma^2\}$$

Log likelihood:

$$\ell(\theta; D) = \log P(D \mid \theta) = -\frac{N}{2} \log(2\pi\sigma^2) - \frac{1}{2} \sum_{n=1}^{N} \frac{(x_n - \mu)^2}{\sigma^2}$$

MLE: take derivative and set to zero:

$$\frac{\partial \ell}{\partial \mu} = (1/\sigma^2) \sum_{n} (x_n - \mu)$$

$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{N}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{n} (x_n - \mu)^2$$

$$\sigma_{MLE}^2 = \frac{1}{N} \sum_{n} (x_n)$$

$$\sigma_{MLE}^2 = \frac{1}{N} \sum_{n} (x_n - \mu)^2$$

• It can be shown that the MLE for μ and Σ is

$$\mu_{MLE} = \frac{1}{N} \sum_{n} (x_n)$$

$$\Sigma_{MLE} = \frac{1}{N} \sum_{n} (x_n - \mu_{ML}) (x_n - \mu_{ML})^T = \frac{1}{N} S$$

where the scatter matrix is

$$S = \sum_{n} (x_{n} - \mu_{ML})(x_{n} - \mu_{ML})^{T} = (\sum_{n} x_{n} x_{n}^{T}) - N\mu_{ML} \mu_{ML}^{T}$$

- The sufficient statistics are $\Sigma_n x_n$ and $\Sigma_n x_n x_n^T$.
- Note that $X^TX = \Sigma_n x_n x_n^T$ may not be full rank (eg. if N < D), in which case Σ_{ML} is not invertible

$$x_n = \begin{pmatrix} x_n^1 \\ x_n^2 \\ \vdots \\ x_n^K \end{pmatrix}$$

$$X = \begin{pmatrix} ---x_1^T - --- \\ ---x_2^T - --- \\ \vdots \\ ---x_N^T - --- \end{pmatrix}$$

Bayesian estimation

Normal Prior:

$$P(\mu) = (2\pi\sigma_0^2)^{-1/2} \exp\{-(\mu - \mu_0)^2 / 2\sigma_0^2\}$$

Joint probability:

$$P(x,\mu) = \left(2\pi\sigma^{2}\right)^{-N/2} \exp\left\{-\frac{1}{2\sigma^{2}} \sum_{n=1}^{N} (x_{n} - \mu)^{2}\right\}$$
$$\times \left(2\pi\sigma_{0}^{2}\right)^{-1/2} \exp\left\{-\left(\mu - \mu_{0}\right)^{2} / 2\sigma_{0}^{2}\right\}$$

Posterior:

$$P(\mu \mid \mathbf{X}) = (2\pi\tilde{\sigma}^2)^{-1/2} \exp\left\{-(\mu - \tilde{\mu})^2 / 2\tilde{\sigma}^2\right\}$$
 where $\tilde{\mu} = \frac{N/\sigma^2}{N/\sigma^2 + 1/\sigma_0^2} \bar{x} + \frac{1/\sigma_0^2}{N/\sigma^2 + 1/\sigma_0^2} \mu_0$, and $\tilde{\sigma}^2 = \left(\frac{N}{\sigma^2} + \frac{1}{\sigma_0^2}\right)^{-1}$

Bayesian estimation: unknown μ, known σ

$$\mu_{N} = \frac{N/\sigma^{2}}{N/\sigma^{2} + 1/\sigma_{0}^{2}} \overline{x} + \frac{1/\sigma_{0}^{2}}{N/\sigma^{2} + 1/\sigma_{0}^{2}} \mu_{0}, \qquad \widetilde{\sigma}^{2} = \left(\frac{N}{\sigma^{2}} + \frac{1}{\sigma_{0}^{2}}\right)^{-1}$$

- The posterior mean is a convex combination of the prior and the MLE, with weights proportional to the relative noise levels.
- The precision of the posterior $1/\sigma_N^2$ is the precision of the prior $1/\sigma_0^2$ plus one contribution of data precision $1/\sigma_0^2$ for each observed data point.
- Sequentially updating the mean
 - $\mu * = 0.8$ (unknown), $(\sigma^2) * = 0.1$ (known)
 - Effect of single data point

$$\mu_1 = \mu_0 + (x - \mu_0) \frac{\sigma_0^2}{\sigma^2 + \sigma_0^2} = x - (x - \mu_0) \frac{\sigma_0^2}{\sigma^2 + \sigma_0^2}$$

• Uninformative (vague/ flat) prior, $\sigma_0^2 \to \infty$ $\mu_N \to \mu_0$

