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1 Two Types of Graphical Models

1.1 Directed Graphical Models

In directed graphical models, nodes that represent random variables are connected by directed edges, which
represent causality relationships between nodes. This type of directed GM is called Bayesian Network or
Directed Graphical Model.

Figure 1: Directed Graph

For example, in the Directed GM above, the underlying joint probability can be written as:

P(X1, X2, X3, X4, X5, X6, X7, Xg) = P(X1)P(X2)P(X3]|X1)P(X4| X2) P(X5|X2) P(X¢| X3, X4) P(X7|X6)P(Xs]| X5, X6)

1.2 Undirected Graphical Models

In undirected graphical models, nodes are connected by undirected edges, which represents correlations
between nodes/variables. This type of GM is called Markov Random Field or Undirected Graphical model.

For example, in the undirected graphical models below, the underlying joint probability can be written as
P(Xl,XQ, ...,X7,X8) = 1/Z€£Ep{E(X1) + E(Xz) + E(Xg, Xl) + E(X4,X2) + E(X5,X2) + E(X67X37X4) +
E(X7,X6) + E(Xs, X5, X6)}
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Figure 2: Undirected Graph

2 Examples

2.1 Expert Systems

Expert systems are good example of the application of directed graphical models, where the expert knowledge
will be encoded as directed edges between nodes. For example, according to the ALARM network, a patient
monitoring system, representing causal relationships presented by Beinlich et al. 1989, expert medical
knowledge was encoded as directed edges between nodes that represent random variables (e.g. measurements
(blood pressure, heart rate, respiratory rate, etc) and queries (presence of a disease)). In this case, inference
is easier with such directed graphical model (e.g. P(kinked tube = true — measurements)).

LV failure
Hypovolemia Anaphylaxis Pulm. Embolus
n ) Anest/Analgesia

kinked
IntubationTybe Disconnection

Vent Machine

HR BP HR HR SAT
EKG

Figure 3: The ALARM network representing causal relationships, Beinlich et al. 1989

2.2 Dishonest Casino

Domain knowledge and knowledge engineering: Let discrete random variable & be the outcome of dice-
rolling taking values from [1,2,3,4,5,6] and categorical random variable y be the choice of the dice taking
values from [fair, loaded]. In this case, = is an observed discrete variable, y is a hidden categorical variable.
There exists some causal relationships between z; and y;, as well as between different y;. For example,

P(xilys = fair) and P(y;1]y:)

Two dices were used in a casino. The fair one has equal probability for each number (P(z = i) = &,i € [1,6]),
and the loaded/unfair one has the following probability distribution: P(z = i) = & if i # 6, else 0.5.

Given a sequence of 50 observed rolls (e.g. 1245.....666...2344), 3 types of question could be asked:
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1. Evaluation: how likely is this sequence, given our knowledge/model of how the casino works? (e.g.
P(observed sequence | domain knowledge))

2. Decoding: what portion of the sequence was generated with the fair die, and what portion with the loaded
die? (e.g. P(choice of dice | observed sequence))

3. Learning: how ’loaded’ is the loaded die? How ’fair’ is the fair die? How often does the casino player
change from fair to loaded, and back? (e.g. P(choice of dice))

A Hidden Markov Model can be used to model this casino problem, where the sequence is x = x1, zo, ..., T

and the parse y = y1,¥2, ..., yr.

Y1 Y2 Y3 yr
() ()

X1 X2 X3 XT

Figure 4: Hidden Markov Model for Casino

The probability of this parse can be answered as:

Joint probability p(x,y) = p(z1, 22, ..., 7, Y1, Y2, ---» Y1) = (Y1) H?ﬂp(yt\yt_l) H?:l p(xt|ye)
=p(y1,Y2s o0y y7)P(T1, T2y ooy T |Y1, Y2y ooy YT)

Marginal probability p(x) = -, p(x,y) =3, >, -2, T Hf:z Ay, 14 Hz;l p(xt|ye))
Posterior probability p(y|x) = p(x,y)/p(x)

In the case of calculating marginal probability, £ summation operations are needed, where k represents the
number of possible value of the categorical variable y. This could be improved to polynomial time.

3 Bayesian Networks

e A BN is a directed graph model whose nodes represent the random variables and whose edges represent
directed influence among or between random variables.

e It is a data structure that provides the skeleton for representing a joint distribution compactly in a
systematic factorized way.

e It offers a compact representation for a set of conditional independence assumptions about a
distribution.

e We can view the graph as encoding a generative sampling process executed by nature, where the
value for each variable is selected by the nature using a distribution that depends only on its parents.
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In other words, each variable is a stochastic function of its parents.

3.1 Bayesian Network: Factorization Theorem

Theorem: Given a DAG, the most general form of the probability distribution that is consistent with
the graph factors according to "node givens its parents”:

d
P(X) = Hi:l P(Xi|Xx,)
where X, is the set of parents of X;, d is the number of nodes (variables) in the graph.

Example:

Receptor A X,

Kinase C

Figure 5: Directed Graph

The joint probability of the above directed graph can be written as:

P(X17 X27 X3) X47 X57 X67 X77 XS) =
P(X1)P(X2)P(X3|X1)P(X4|X2)P(X5|X2) P(Xs| X3, X4) P(X7]|X6) P(Xs| X5, X6)

3.2 Specification of a directed GM

There are two components to any GM:
e the qualitative specification

e the quantitative specification

3.2.1 Qualitative Specification
Where does the qualitative specification come from?

e Prior knowledge of causal relationships

e Prior knowledge of modular relationships



3: Directed Graphical Models (Bayesian Networks)

e Assessment from experts

Learning from data

We simply like a certain architecture (e.g. a layered graph)

Is there a concise, unambiguous, and rigorous meaning/interpretation?

e Conditional independence between variables!

3.3 Local Structures and Independence

e Common parents

— Fixing B decouples A and C
— ”Given the level of gene B, the levels of A and C are independent”
— Expression: P(A,C|B) = P(A|B)P(C|B)

<>
d>S o

Figure 6: Common Parent Example

e Cascade

— Knowing B decouples A and C

— ”Given the level of gene B, the levels of A provides no extra prediction value for the level of gene

C’?
— Expression: P(A, B,C) = P(A)P(B|A)P(C|B)

W . A

Figure 7: Cascade Example

e V-structure

— Knowing C decouples couples A and B because A can ”explain away” B w.r.t C

— "If A correlates to C, then chance for B to also correlate to B will decrease”

— Expression: P(A, B) = P(A)P(B)P(A, B|C)

e The language is compact, the concept are rich!
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Figure 8: V-structure Example

3.4 A simple justification

B8
d>S &

Equation:
P(A,B,C P(B)P(A|B)P(C|B
P(AaC‘B) = (p(B) L = 2B) (p(|B§ LA P(AlB)P<C|B)

4 I-Maps

We use I-maps to establish the relationship between graph and distribution. A distribution P satisfies the
local independencies associated with a graph G, if and only if P is representable as a set of Conditional
Probability Distributions (CPDs) associated with the graph G.

Independencies associated with a distribution P

Definition: Let P be a distribution over X. We define Z(P) to be the set of independence assertions of the
form (X 1 Y|Z) that hold in P.

I-Map

Definition: Let K be any graph object associated with a set of independencies Z(K). We say K is an I-map
for a set of independencies Z if Z(K) C 7.

Corollary: G is an I-map for P if G is an I-map for Z(P), where we use Z(G) as set of independencies
associated

4.1 Facts about I-maps

For G to be I-map of P, it is necessary that G does not mislead us regarding independencies in P:

any independence that G asserts must also hold in P. Conversely, P may have additional independencies
that are not reflected in G
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Example

Figure 10: I-map example

X and Y are independent in graph Gy only.

X Y | PX.)Y) X Y | PIX.Y)
¥ oY 0.05 T 0.4

P, A TE 0.32 P, TS 0.3
zb 0 | 012 al Y 0.2
xl oyl 0.48 TS 0.1

In Py : P(X,Y) = P(X)P(Y), ic. 0.6 x 0.8 = 0.48. Hence, I(P,) = X LY and is shown by graph Gy

In Py: P(X,Y) # P(X)P(Y). Hence, I(P;) = { and is shown by both graphs Gx_,y and Gy_, x

4.2 What is Z(G)

4.2.1 Local Markovian Assumptions of Bayesian Network

A Bayesian Network structure G is a directed acyclic graph (DAG) whose nodes represent random variables
X1, X0, ..., XN

Definition:

Let Pax, denote the parents of X; in G, and NonDescendantsx, denote the variable in the graph that
are non-descendants of X;. Then G encodes the following set of local conditional independence assumptions

Li(G) :
I,(G) : {X; L NonDescendantsx,|Pax, : Vi},

Each node X; is independent of its non-descendants given its parents.
Graph Separation Criterion
Directed edges separation (D-separation) criterion for Bayesian networks:

Definition:
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Variables x and y are D-separated (conditionally independent) given z if they are separated in the moralized
ancestral graph.

X
. X X
z
= z y =

original graph ancestral moral ancestral

Example

Z

Figure 11: D-separation criterion example

Construct the ancestral graph by removing all nodes except the random variables of interest and their
ancestors. Then perform moralization on ancestral graph by removing all directions on edges and connecting
nodes that are originally unconnected and have a common child node.

The example shows conditional independence. If there is a way to travel from one node to another node
using any path (not through the given), then those two nodes are not conditionally independent.

If X L Y|Z, then we say Z D-separates X and Y.

4.2.2 Global Markovian Assumptions of Bayesian Network

Practical definition of Z(G)

X is D-separated from Z given Y if we can’t send a ball from any node in X to any node in Z using the
”Bayes-ball” algorithm illustrated by the following examples (plus some boundary conditions):

Example

Causal Trail: X —Z — Y, active <= Z is not observed.

blocked Active
X Y V4 X Y 7z
) . Y i .
C/ — Jo— I\._/II C _\' i_/

Figure 12: Causal Trail

Common cause: X <~ Z — Y, active <= Z is not observed.
Common effect: X — Z <+ Y, active <= either Z or one of Z’s descendents is observed.
Definition:

All independence properties that correspond to d-separation:

T(G) ={X L Z|Y : dsepg(X; Z|Y)}
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Figure 13: Common Cause
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Figure 14: Common Effect

Example

To find I(G) for the graph below, we try all possible trails and see what conditional independence we can
draw from the trail.

For example, for trail X, < X; — X3, the trail is not active only if X7 is observed based on the common
cause structure. So we get Xy 1 X3|X1, Xy L X3|{X1, Xo2}.

Similarly, we can find {X; L X5, X7 1 X5| Xy} from trail X7 — X3 < X5 and {Xs 1 X4, X5 L {X1, X4},
X2 1 X4|{X1,X2}, X2 1 X4|{X1,X3}} from trail X4 — X1 — X3 «— XQ

Thus,
I(G) ={X4 L X5|X1, Xy L X3/{X1, X2}, X1 L X0, X L Xo|Xy,

Xo L Xy, Xo L {X1, X4}, X L Xy| X1, X0 L Xy|{X1,X3}}
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o Complete the I(G) of this graph:

Xy

X3

Figure 15: I(G) example

4.3 Equivalence Theorem

Separation properties in the graph imply independence properties about the associated variables.
Formally, for any graph G

let Dy denote the family of all distributions that satisfy I(G), Dy denote the family of all distributions that
factor according to G.

Then we have Dy = D5. The two families are the same.

In other words, when building the distribution, we can directly use the factorization law to assemble a
distribution mechanically by P(X) = [[,_;., P(Xi| Xx,).

4.4 Conditional probability tables (CPTs)

To build the joint distribution for the graph with discrete random variables below, we can use conditional
probability tables.

a’ [0.75 b® [0.33 P(a,b,c.d)=
2 |02 ol |067 P(a)P(b)P(c|a,b)P(d|c)
a%° | a%! a'b? a'b!
c? 0.45 1 0.9 0.7
c! 0.55 0 0.1 0.3
l CO C1
‘ d° 0.3 |05
d’ 07 0.5

Figure 16: CPT example



3: Directed Graphical Models (Bayesian Networks) 11

4.5 Conditional probability density (CPDs)

To build the joint distribution for the graph with continuous random variables below, we can use conditional
probability density functions. Here is an example of defining a continuous random variable dependent on
other continuous random variables.

P(a,b,c.d) =
A~N(p,, Z;) B~N(uy, 2,) P(a)P(b)P(c|a,b)P(d|c)

,.~v

‘ \
~~~~~~~ ¢¢¢¢0
““‘s‘s ; ‘\W
N “ wm o‘
‘Mm w

A\ s\' i
W ‘\\‘

C~N(A+B, %)

POD| ©)

l
‘ D~N(uq*C, Z,)

Figure 17: CPD example

b

4.6 Summary of BN semantics

e Conditional independencies imply factorization

e Factorization according to G implies the associated conditional independencies.

5 Soundness and completeness

e Soundness
Theorem: If a distribution P factorizes according to G, then I(G) C I(P) (guaranteed)

e Completeness
Claim: For any distribution P that factorizes over G, if (X L Y|Z) € I(P) then d — sepa(X;Y|2)
(not guaranteed)

e Contrapositive of the completeness statement

If and Y are not d-separated given Z in G, are X and Y guaranteed to be dependent in all
distributions P that factorize over G?

No. Even if a distribution factorizes over G, it can still contain additional independencies that
are not reflected in the structure.

Example: Consider graph A — B, which indicates that A and B are dependent. However, the con-
ditional distribution of B—A could be arbitrarily picked so that A and B are actually independent.
(The independence can be captured by some subtle way of pasteurization)

Theorem: Let G be a BN graph. If X and Y are not d-separated given Z in G, then X and Y
are dependent in some distribution P that factorizes over G.
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e Theorem: For almost all distributions P that factorize over G, i.e., for all distributions except for a
set of 'measure zero’ in the space of CPD parameterizations, we have that I(P) = I(G)



