
10-708: Probabilistic Graphical Models, Spring 2020

24: Indian Buffet Process

Lecturer: Eric P. Xing Scribes: Stefan Andjelkovic, David Bick, Prithvi Gudapati

1 Recap

1.1 Motivating Examples

To understand why we would be interested in these techniques, it is best to start with a motivating example.
We see concretely how we could apply the method, and can keep it in mind when observing the technical
details.

Imagine we have four ground truth features that we can combine in images, shown below

Figure 1: Ground truth features

and we observe combinations of these features that have been corrupted with noise, as shown below

Figure 2: Noisy Combinations of Features

where the 1’s and 0’s above the image show which of the four latent features are present. In reality, we
would observe the corrupted images and not have any idea what the ground truth features are. We would
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not even know how many features to expect that there would be. This is the motivation behind the Indian
Buffet Process. We would start with the second set of images, and produce the following

Figure 3: IBP Outputs

where the first set of images is the posterior mean for the latent features that our images are comprised of,
and the second set of images is the set of estimates of which features the observed data are composed of.
Thus the IBP learned both how many latent features there are in the data, and what these features look like.
It also gives an estimate of which features are present in a given observation, the vector above the second
set of images.

The images and much of the information in these notes is taken from Griffith and Ghahramani [1].

1.2 General Bayesian Nonparametrics

The general motivation for Bayesian Nonparametrics is to allow an arbitrary number of elements for a desired
quantity. In the above example, the finite version is a fixed latent feature model, which was developed before
the infinite version. Another classical example is mixture model clustering, where before the Dirichlet process
mixture model was developed, one had to specify a number of clusters and iterate over different quantities
for this value to see a metric showed diminishing returns.

The bayesian nonparametrics key contribution is allowed the model to add clusters (in the Dirichlet mixture
model) or latent variables (IBP) as needed according to the data. To do this, you must specify an unbounded
prior distribution on clusters or latent variables. This is generally referred to as an infinite distribution,
however once you have finite observed data, which is always the case, it reduces the infinite distribution is
limited to a finite instantiation.
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2 Latent variable models

We assume that we have a collection of features F = [fT1 f
T
2 . . . fTN ]T [1]. We are concerned then with both

P (X|F ) and P(F), where P (X|F ) is the likelihood for each observation given its set of features, and P(F) is
the prior over different matrices of features. The difference between finite and infinite latent variable models
comes from P(F), and whether it places a bound on the number of variables.

We decompose F = Z⊗V , where Z is a binary matrix where zik = 1 if object i has feature k, and 0 otherwise
[1]. We use ⊗ to represent element-wise product, also called Hadamard product. V represents the values that
the feature takes if present, and Z determines the presence in F. We can thus decompose p(F) = p(F)p(V).

We break F into the Z ⊗ V because it simplifies the problem to finding a infinite prior on binary matrices.
Then we can worry about the other values of the features, V, separately. The binary matrices are useful
in many applications and so reducing the scope to Z does not reduce the relevance of the study. Also, and
most importantly, (finite) binary matrices can be specified by a Beta-Bernoulli process, which has closed
form due to the conjugacy of the Beta prior with the Bernoulli likelihood. This allows us to take the limit
of the closed form integral, which is not generally possible for any combination of likelihood and prior.

2.1 Finite Variant

We can define the probability of a binary matrix as follows:

P (Z|π) = ΠK
k=1ΠN

i=1P (zik|πk) (1)

= ΠK
k=1π

mk

k (1− πk)N−mk (2)

where πk is the probability of an object containing the i-th feature, and mk is the number of objects that
contain feature k.

The conjugate prior for this likelihood is the beta distribution as a prior on each πk. We can isolate P (Z),
rather than P (Z|π), by multiplying by the prior to get the joint P (Z, π) and integrating out π. This is
shown below, with a Beta( αK , 1) prior (see [1] for details on the parameters of this prior):

P (Z) = ΠK
k=1

∫
(ΠN

i=1P (zik|πk))p(πk)dπk (3)

= ΠK
k=1

B(mk + α
K , N −mk + 1)

B( αK , 1)
(4)

= ΠK
k=1

α
KΓ(mk + α

K )Γ(N −mk + 1)

Γ(N + 1 + α
K )

(5)

2.2 Infinite Limit

To define the infinite limit of eq (5), we must note briefly that we actually consider the equivalence class of
binary matrices, not individual binary matrices. The essence of the idea is that if we reorder the columns,
we have not actually changed anything about the matrix because the columns are independent. We denote
the equivalence class of matrices as [Z] (see [1] for more details).

We break equation (5) into two components, where we denote K0 as the number of features with mk = 0,
and K+ as the number of features with mk > 0. The result of the decomposition is (7), where (5) is repeated
for convenience,
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ΠK
k=1

α
KΓ(mk + α

K )Γ(N −mk + 1)

Γ(N + 1 + α
K )

(6)

= (
N !

ΠN
j=1(j + α

K

)K(
α

K
)K+(ΠK

k=1

(N −mk)!Πmk−1
j=1 (j + α

K )

N !
) (7)

We then take the limit of equation (7) to get the infinite latent variable model

lim
K→∞

(
N !

ΠN
j=1(j + α

K

)K(
α

K
)K+(ΠK

k=1

(N −mk)!Πmk−1
j=1 (j + α

K )

N !
) (8)

= (
αK+

Π2N−1
h=1 Kh!

) exp(−αHN )Π
K+

k=1

(N −mk)!(mk − 1)!

N !
(9)

The main takeaway is that we have used the closed form of the Beta-Bernoulli model that was facilitated by
conjugacy, and taken the limit as number of columns goes to infinity, which was also facilitated by the the
equivalence classes to simplify the number of binary matrices. We end with a result that only depends on
K+, so our infinite model depends only on what we observed in our finite dataset, although we allowed an
infinite number of features a priori. There is an added term that we get by taking P ([Z]) rather than P (Z),
which counts the number of matrices per equivalence class, see [1] for further details.

3 Predictive distribution: Indian Buffet Process

3.1 The Indian Buffet Process

We can describe a model using an analogy to an Indian restaurant with an infinitely large buffet. In this
process, each customer besides the first customer chooses dishes partially based on the customers who came
before them. It begins with the first customer helping himself to Poisson(α) dishes. Each subsequent
customer helps himself to each of the previously chosen dishes with a probability of mk

n , where mk is the
number of customers before him who took kth dish and n is the number of customers so far including him.
Once he has taken dishes that have already been taken by other customers, he proceeds to try Poisson(αn )
new dishes. Figure 4 is an illustration of what this process would look like with the columns representing
the different dishes and the rows representing the customers.

4 Properties of the Indian Buffet Process

The Indian Buffet Process has a rich getting richer property as popular dishes become more popular. This
is due to the fact that the probability that a dish gets picked goes up when it is popular. We can see this
effect in Figure 5. Once the first few customers pick dishes on the left side, those dishes continue to get
picked. However, there continues to be some exploration.

In addition, the number of nonzero entries for each row is distributed according to Poisson(α) due to
exchangeability, which means that changing the ordering of the rows and columns in the matrix does not
change the joint probability. This allows any row or column to be treated as the last row or column in the
matrix.
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Figure 4: IBP Example

Furthermore, given that if x1 ∼ Poisson(α1) and x2 ∼ Poisson(α2) then (x1 + x2) ∼ Poisson(α1 + α2), the
number of nonzero entries for the whole matrix is distributed according to Poisson(Nα). Furthermore, the
number of non-empty columns is distributed according to Poisson(αHN)

4.1 Relation to Infinite Beta-Bernoulli Model

Now the goal is to show that the Indian Buffet Process is lof-equivalent to the infinite beta Bernoulli model
described earlier.

The probability of a matrix Z generated using this process can be computed to be

p(Z) =

N∏
n=1

p(zn|z1:(n−1)) (10)

=

N∏
n=1

Poisson
(
K

(n)
1

) K+∏
n−1

(∑n−1
i=1 zik
n

)znk
(
n−

∑n−1
i=1 zik
n

)1−znk

(11)

=
αK+∏N

n=1K
(n)
1 !

exp{−αHN}
K+∏
k=1

(N −mk)!(mk − 1)!

N !
(12)

If we include the cardinality of Z, we can see that this is the same as Equation (9). Thus, we can see that
that matrix can be sampled using the Indian Buffet Process.
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Figure 5: Indian Buffet Process Left Ordering Bias

5 Building latent feature models using the IBP

Now the goal is to use the Indian Buffet Process to build latent feature models.

A simple model that can be developed using the Indian Buffet Process is the linear Gaussian model.

The general form of any latent factor model is

X = WAT + ε, (13)

where W = Z�V. For a linear Gaussian model, W = Z, so W is just a binary matrix. Z is sampled using
the Indian Buffet Process, meanwhile ak ∼ N (0, σ2

aI) and εnk ∼ N (0, σ2
ε )

The linear Gaussian model is quite constrained as it is an all-or-nothing model due to the binary ”loading
matrix” W.

As a result, it is better to not set W = Z, and instead, make W a weight matrix. This can be done by
making V a weight matrix that is created using some distribution, for example a Gaussian.

6 Inference in the IBP

Exchangeability, which was mentioned previously as an important property for the Indian Buffet Process,
plays an important role in inference.

With K+ being the total number of used features, excluding the current data point, and Θ being the set of
parameters associated with the likelihood, the prior probability of choosing one of these features if mk

N . This
is because we can treat the current data point as the last one using exchangeability.

In addition, the posterior probability is proportional to
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p(znk = 1|xn,Z−nk,Θ) ∝ mkf(xn|znk = 1,Z−nk,Θ) (14)

p(znk = 0|xn,Z−nk,Θ) ∝ (N −mk)f(xn|znk = 0,Z−nk,Θ), (15)

where f is the likelihood of the sample given how the features are chosen.

Now, new features must be added as well. This can be done using the Metropolis Hastings method.

1. Propose K∗new ∼ Poisson( αN ), and let Z∗ be the matrix with K∗new features appearing only in the
current data point.

2. Accept the proposed matrix with probability

min

(
1,
f(xn|Z∗,Θ)

f(xn|Z,Θ)

)

7 Beta processes and the IBP

In the finite Beta-Bernoulli process, we had πk ∼ Beta
(
α
K , 1

)
and znk ∼ Bernoulli (πk). Integrating πk out

leaves exchangeable znk. We defined Indian Buffet Process as infinite limit of the beta random variables,
when K →∞.

Beta process was defined by Hjort [2], and more on its extension for IBP can be found here [3]. In the
scope of this topic, and for the sake of simplicity, we can define beta process as a process characterized by
distribution over discrete measures, like the one shown above.

Posterior distribution of the column probabilities can be obtained in the closed form. Beta process atoms
(πk) are drawn from beta distribution, and their counts from Binomial(πk, N). Because beta distribution is
conjugate to binomial, the posterior for each k is Beta

(
α
K +mk, N + 1−mk

)
.

To combine all the samples into joint posterior, we can use the beta process stick-breaking construction, as
presented in [4].

7.1 Stick-breaking construction

The stick-breaking construction for the beta process is as follows:

• Start with a unit length stick and define π0 = 1.

• For each k, sample µk ∼ Beta(α, 1).

• Break off a stick part of length µk and throw away the rest.

• Store the value πk = πk−1µk.

This process is shown in Fig. (6)

Unlike Dirichlet process, in beta process atom values do not necessarily sum up to 1.

Inference in beta process can be performed by sampling distributions Z | π,Θ and π | Z. Posteriors for atoms
with mk > 0 are beta distributed and posteriors for atoms with mk = 0 can be sampled with stick-breaking
procedure.
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Figure 6: Stick-breaking construction for beta processes, adapted from [4]. Note that red dotted lines
correspond to Dirichlet process πk values, while blue solid lines correspond to beta process µk values

7.2 Two-parameter extension

In the previous examples, parameter α determines both the number of non-empty columns and the number
of features per data point. These wouldn’t necessarily be equal, so they could be decoupled. The proposed
solution is to, instead of sampling πk ∼ Beta

(
α
K , 1

)
, sample weights from:

πk ∼ B
(
αβ

K
, β

)
In this extension restaurant scheme is as follows:

• A customer walks into the restaurant and orders Poisson(α) dishes.

• The n-th customer walks into the restaurant and orders previous dishes, each with probability mk

β+n−1
of being ordered.

• Then, he orders Poisson( αβ
β+n−1 ) new dishes.

This procedure guarantees that marginal number of features follows Nfeatures ∼ Poisson(α), and number of
non-empty columns:

Nnon-empty columns ∼ Poisson

(
α

N∑
n=1

β

β + n− 1

)

When β = 1, we recover Indian Buffet Process.

8 The infinite gamma-Poisson process

In analogy to the IBP as infinitesimal limit of beta-Bernoulli process, we can define gamma process as
infinitesimal limit of gamma random variables, drawn from Poisson distribution. If D is Dirichlet process,
drawn from D ∼ DP(α,H), and γ from gamma distribution D ∼ Gamma(α, 1), then gamma process G = γD
is distributed according to the G ∼ GaP(α,H).

Gamma distribution is conjugate to the Poisson distribution, so for each atom vk of gamma process we can
sample znk ∼ Poisson(vk)

Alternatively, to construct matrix Z, row by row, we can modify IBP. For each row n:
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• For each of the previous features sample a count znk ∼ NegBinom
(
mk,

n
n+1

)
.

• Sample total count of new features K∗n ∼ NegBinom
(
α, n

n+1

)
.

• Partition K∗n according to the Chinese Restaurant Process, and assign these counts to the new features.

More on the infinite gamma-Poisson process and how it applies to computer vision can be found in [5].
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