10-708: Probabilistic Graphical Models, Spring 2020
18: Causality II

Lecturer: Kun Zhang Scribe: Xueying Ding, Naveen Shankar, Koyoshi Shindo, Zeyu Tang, Yilin Yang

1 Introduction

In this lecture, we will first continue the discussion about causal inference; then we will be talking about
causal discovery.

2 Identifying a Causal Effect

A sufficient condition for identifying the causal effect P(y|do(x)) from a graph is that there exists no bi-directed
path (a path composed entirely of bi-directed arcs) between X and any of its children (Tian and Pearl [2002]).

For example, this condition holds in the following graphs:
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However, if you assume the system is linear, you can often recover the causal effect even if the condition does
not hold. For example, in the following graph:

B = rxz (the regression coefficient of regressing X on Z) and a8 = ryz. As such, you can recover the true
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3 Propensity Scores

Assuming the back-door criterion (or conditional ignorability) condition holds, the average causal effect (ACE)
can be calculated as

ACE = E[Y|do(z)] — E[Y|do(z")]
Where e.g. x is the treatment condition, z’ is the baseline, and P(Y|do(x)) = > P(Y|z,c)P(c), for some
confounding covariate(s) ¢

When you have randomized controlled experiments, P(c) is the same across the treatment and baseline
conditions, so the ACE is simple to calculate. However, without randomized controlled experiments, there is
no such guarantee. Instead, you have to do something like match P(C|z) to P(C|z"). Unfortunately, C is
usually high-dimensional, which makes such a matching problem difficult. One alternative is to use propensity
scores.

Let the propensity score h(C) = P(X = 1|C), then X 1L C|h(C), and we call h(C) and C confounding-
equivalent because:

ACE = ZP Y|z, c)P ZZP Y|z, e)p(h)p(c|h) = ZZP(Y|$,C, h)p(h)p(clh,x)
c h
—ZZPYC|.Th ZPY|mh (h)

In other words, the ACE can be calculated using P(h) instead of P(c). This is extremely useful, since
regardless of how high-dimensional C is, h(C) is always a scalar. Thus, the task of matching P(h) across
different groups is feasible even when C' is high-dimensional, leading to more accurate estimations of the
ACE.

4 Counterfactual Reasoning

Consider a simple three variable graph, where each variable is binary:
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There are three types of questions we might want to answer about the graph:
e Prediction: Would George cough if we find he has yellow fingers? This is P(X3|Xs = 1)
e Intervention: Would George cough if we make sure that he has yellow fingers? This is P(X3|do(X2 = 1))

e Counterfactual: Would George cough had he had yellow fingers, given that he does not have yellow
fingers and coughs? This is P(X3y,_,|X2 =0, X3 =1)
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In general, statements about counterfactual reasoning are more powerful than statements about intervention,
which are more powerful than statements about prediction.

For example, consider the situation where you have two variables X and Y, where Y = log(X + E + 3); F is
some exogenous error, and X causes Y. Furthermore, say we observe for George x = —1 and y = 0.4, and we
are interested in what Y would have been had X been 0 instead. With prediction, the "best” answer we can
give is E[Y|X = 0], or log(0 + 3) = 1.10.

However, with counterfactual inference, we can make claims specific to George, rather than general claims
about people with X = 0. We do this by following three steps of counterfactual inference to calculate
P(Yx—o|X=-1,Y =04,F=e¢):

e Abduction: Find P(E|evidence) = P(E|X =z,Y = y)
e Action: Replace the equation for X by X = 2’
e Prediction: Use the modified model to predict Y
Here, the process is:
e Abduction: e =exp(y) —z —3 =exp(0.4) +1 -3 =—0.51
e Action: Set X =2’ =0 (instead of X =z = —1)
e Prediction: Y =log(z’ + e+ 3) =log(0 — 0.51 + 3) = 0.91

As a result, we provide the counterfactual inference value of Y = 0.91 instead of the prediction value Y = 1.10.
Counterfactual inference allows us to make a claim about a specific person, and gives an answer that is both
more informative and notably different from the best answer given by prediction. In this case, we can make
such a claim by leveraging the fact that once observed, the exogenous error F is specific to George, and
would have remained the same in counterfactual scenarios.

5 Causal Discovery (Overview)

Life abounds with examples when causal reasoning could be quite helpful: finding the causal relationship
between agriculture, culture, and climate; investigating how certain variables would influence the shape of
human skeleton in the long run; distinguishing causes from effects by analysing distribution information;
reasoning about the latent variable when we do not have access to such variables; and so on.

Traditional causal discovery methods fall into two categories: constraint-based and score-based methods.
Before we look at various causal discovery algorithms, let’s first consider the connection between causal
structure and statistical properties of data, and suitable assumptions are needed.

5.1 Modularity

Within a causal system, the whole causal process can be divided into small modules based on the modularity
property.
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Figure 1: Modularity property
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As illustrated in fig. 1, we can see that, if there is no confounder between X and Y, the data generating
process of the cause (here is X) and the data generating process of effect from cause (here is generating YV
from X) are independent.

5.2 Causal Sufficiency

We say a set of random variable V is causally sufficient, if V contains every direct cause (with respect to V)
of any pair of variables in V.
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Figure 2: Causal sufficiency illustration

As illustrated in fig. 2, Z is the unobserved common cause (hidden confounder) of X and Y, according to our
definition of causal sufficiency, Vi = {X,Y, Z} is causally sufficient, while Vo = {X,Y} is not.

5.3 Causal Markov Condition vs. Faithfulness

In the previous lectures, we have learnt the d-separation, namely, “read” the conditional independence
relation from the graph. We know that if X and Y are d-separated by Z in graph G, then the conditional
independence X 1L Y | Z holds true.

Notice that the contrapositive of this proposition, namely, conditional dependence implies d-connection, does
not tell us what would happen to the underlying graph if we actually found some conditional independence
relations in the data. Therefore, beyond (global) Markov condition, we need something else to connect the
conditional independence in data back to the property in the causal graph, that is, faithfulness.
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Figure 3: Caption

In the figure above, Causal Markov Condition is saying that, each variable is conditional independent with
its non-descendants (non-effect variables) conditional on its parents (direct causes); Faithfulness is saying
that, all observed (conditional) independencies are entailed by Markov condition in the graph. Notice that
faithfulness is a rather strong assumption, and not every causal discovery algorithm makes this assumption,
as will see later when we discuss causal discovery algorithms.

With Causal Markov Condition and faithfulness assumption, we can recover the skeleton (only edges) of
the causal graph. After orienting the derived skeleton, we can get the causal graph using the following PC
algorithm.

6 PC Algorithm

An example of the constraint-based causal discovery methods is the PC algorithm (Spirtes and Glymour
[1991]). This contains two steps:
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Stepl: X and Y are adjacent iff they are dependent conditional on every subset of the remaining variables.
Step2: Orientation propogation.

More details can be found in Algorithm 1.

Algorithm 1 PC Algorithm

A.) Form the complete undirected graph C on the vertex set V.
B.) n=0.
repeat
repeat
select an ordered pair of variables X and Y that are adjacent in C such that Adjacenies(C,X)\{Y}
has cardinality greater than or equal to n, and a subset S of Adjacenies(C,X)\{Y?} of cardinality
n, and if X and Y are d-separated given S delete edge X-Y from C and record S in Sepset(X,
Y) and Sepset (Y, X);
until all ordered pairs of adjacent variables X and Y such that Adjacenies(C,X)\{Y} has cardinality
greater than or equal to n and all subset S of Adjacenies(C,X)\{Y} of cardinality n have been
tested or d-separated;
n = n+l1.
until for each ordered pair of adjacent vertices X, Y, Adjacenies(C,X)\{Y} is of cardinality less than
n.
C.) For each triple of vertices X, Y, Z such that the pair X, Y and the pair Y, Z are each adjacent in C but
the pair X, Z are not adjacent in C, orient X-Y-Z as X—Y+Z if and only if Y is not in Sepset(X, Z).
D.) repeat
If A—B, B and C are adjacent, A and C are not adjacent, and there is no arrowhead at B, then
orient B-C as B — C.
If there is a directed path from A to B, and an edge between A and B, then orient A-B as A — B.
until no more edges can be oriented.

7 Equivalent Classes: Patterns

We can define the equivalanet classes: Two DAGs are (independence) equivalent if and only if they have
the same skeletons and the same v-structures (Pearl and Verma [1991]). We can only recover such class
based on the data using the conditional independent relations. Such (independence) equivalent classes can
be represented by pattern, which is defined by: Patterns or CPDAG(Completed Partially Directed Acyclic
Graph): graphical representation of (conditional) independence equivalence among models with no latent
common causes (i.e., causally sufficient models).

8 FCI

FCI (Fast Causal Inference) can validly infer causal relationships from conditional independence statements
even when there are confounders. FCI is quite complex so the detail of the algorithm was not covered in
the lecture, but some rules from FCI are covered in the lecture to showcase examples of when we can be
certain that there must be no confounders between two variables, and we can be certain that there must be
confounders between two variables.

8.1 Example 1. Y-structure implies no confounder

The three conditional independence statements: X; L Xo; X7 1 Xy|X3; Xo L X4|X3 imply that
X1, X5, X3, X, follow the so-called Y-structure shown in the figure below.
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Then it is impossible for X3 and X4 to have a confounder. Suppose for contradiction that there is a confounder
C that directly causes X3 and X4. Then the path X; — X3 — C — X will cause X; and X, to be d-connected
given X3, and the condition X; L X4| X3 no longer holds, hence a contradiction.

X1\ /Xz
X3
|

X4

8.2 Example 2. If A | C|B and B does not cause A, then there is no confounder
between B and C.

Since B does not cause A, then it must hold that either A causes B or A and B have a confounder. In both
cases, B causes C' must holds and there must be no confounder between B and C. Otherwise, B would be a
collider and A and C cannot be conditionally independent given B.

A real life example would be A = raining, B = slippery, C = falling down. Since raining and falling down
are conditionally independent given slippery, and slippery does not cause raining, we can be certain that
slippery causes falling down and there is no confounder between slippery and falling down. Another
example would be A = geographical background, B = economic conditions, C = emergence of science.

8.3 Example 3. If X; 1L X35, X; L XX, L X3, then X, and X; must have a
confounder.

This is illustrated in the figure below. Suppose for contradiction that there are no counfounder between
X5 and X4. Then applying PC rule, X, X5 and X, should follow v-structure which implies X, causes Xo.
Similarly, X5, X5 and X4 should follow v-structure which implies X5 causes X4, then we have a contradction,
so there must be a confounder (denoted as L in the figure below) between X and Xj.

N
X1 — X> X4<—X3

8.4 PAG

The above three examples showcase some rules that are integrated in the FCI algorithm. As can be seen
from the example 3, result provided by FCI would make graph over observed variables not necessarily a DAG
without the help of latent variables, so FCI returns output called PAG instead of DAG. There are 5 kinds of
relationships between two variables in PAG shown in the figure below. A circle denotes that it could be an
arrow head or arrow tail.

9 GES

PC algorithm and FCI are constraint-based causal discovery algorithms. Another branch of causal discovery
algorithms is score-based. GES (Greedy Equivalence Search) is one kind of score-based causal discovery.
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The score function satisfies 3 properties: score equivalent (assigning the same score to equivalent DAGs),
locally consistent (score of a DAG increases when adding any edge that eliminates a false independence
constraint and vice versa), and decomposable (score of a DAG can be written as summation over a function
of node and its parents in the DAG). An example of a score function that satifies above three properties are

BIC: Sp(G, D) = logp(D|0,G") — Llogm.

The GES algorithm consists of Forward Greedy Search and Backward Greedy Search through the sapce of
DAG equivalence classes, and the detailed algorithms are shown below:

Algorithm 2 GES

1. Forward Greedy Search (FGS)
Start from some (sparse) pattern (usually the empty graph)
Evaluate all possible patterns with one more adjacency that entail strictly fewer CI statements than
the current pattern
Move to the one that increases the score most
Iterate until a local maximum
2. Backward Greedy Search (BGS) Start from the output of the Forward stage
Evaluate all possible patterns with one fewer adjacency that entail strictly more CI statements than
the current pattern
Move to the one that increases the score most
Iterate until a local maximum

For example, if the data was generated by the DAG shown below, then it is likely that FGS will add an edge
between X and Y since they are highly correlated. However, BGS will likely remove this edge between X and

Y for a higher score.

NP
o
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10 Linear,Non-Gaussian Models

For classical models, the problem is defined as identifying the casual structures such as X «— Y — 7|
X —Y — Z and X <— Y «— Z, which give rise to the conditional independence between the data
as X 1 Z|Y. However, recovering the causal relations from conditional independences is bounded by the
equivalence class. Since the mapping between causal structures and conditional independence is not one-to-one,
we cannot reconstruct the exact causal relationship. Furthermore, the classical methods cannot directly
characterize and recover the cause-effect relationships for two-variable cases, such as X — Y, X «+— Y and
X «— Z — Y (where Z is an unobserved cause). Additional weak and reasonable assumptions are needed.

10.1 Functional Causal Model

A functional causal model represents the effect as a function of direct causes and noise: Y = f(X, E), with
X L E.The following are some typical casual models for discovering the causal relations(Shimizu et al. [2006],
Hoyer et al. [2008], Zhang and Hyvérinen [2009a], Zhang and Hyvérinen [2009b)]):

e Linear non-Gaussian acyclic causal model: Y =a- X + F.
e Additive noise model: Y = f(X) + E.
e Post-nonlinear causal model: Y = f,(f; (X) + E.

It is noted that even if we do not give any constraints on the function f, given two random variables X and
Y, we can always represent a variable as a function of another variable and an independence noise. However,
it is not the case if we have the constraints on the function.

In the linear case, we can easily go from correlation to asymmetry causal relation if we assumed the noise
is non-Gaussian. An example is for data generated by Y = aX + E i.e, X — Y The upper case explains
regressing Y on X and X on Y when the X and noise E are gaussian. In this case, the error term is
uncorrelated from the predictor, which also implies independence. For the bottom cause, X and the noise is
generated from uniform distribution. We can observe that the noise term is not independent from Y.

Linear regression Y = aX + EY Linear regression X = bY + EX

10.2 LiNGAM Model

In the more general case, we have the linear non-Gaussian acyclic model. The Linear non-Gaussian acyclic
model is defined as the following:
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Xi= > bX;+E
j: parents of i

X=BX+E

with the disturbances(errors) E; are non-Gaussian(or at most one is Gaussian) and mutually independent.
An example is to represent the causal structure of the graph as:

Xo=Es

X3 = 0.5X, + Es
X, = 02Xy +0.3X3 + B

The matrix form for the above LINGAM model is given as the following. Note that the diagonal entries of
the matrix are zero because we assume no self-loops, for simplicity.

0 —02 03] [xy ol
Xol =10 0 0 |X|+ B
0 05 0] ]|X;s E;

Thus, the task is reduced to recover the matrix B given the data. With the above LINGAM model setting,
we can reconstruct a unique solution B by the model and independent component analysis(ICA).

ICA aims to find a rotation transformation Y = WX, and to make each Y; independent, maximum likelihood
and mutual information minimization are used.

Thus, B is achieved from W by permutation and rescaling (make all diagonal entries non-zero, divide the
row by its diagonal entry, and subtract the resulting matrix from the identity matrix).

10.3 Gaussianity or Non-Gaussianity?

The gaussian is widely used in the research area because of its “simplicity” of the form: marginal and
conditionals are also gaussian, the mean and covariance matrix are easily computed, central limit theorem,
and etc.

However, in practice, the non-gaussianity is actually ubiquitous. By Cramer’s theorem, we observe the linear
closure property of Gaussian distribution: if the sum of any finite independent variables is Gaussian, then all
summands must be gaussian. But gaussian is only special in the linear case.

Other issues in causal discovery includes nonlinearities, categorical variables or mixed cases, measurement
error, selection bias, causality in time series, non-stationary and heterogeneous data, and etc. One important
issue is to face the confounding, or find the hidden causes or parents in the graph.
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