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1 Generative Adversarial Networks (GANs)

1.1 Vanilla GAN [GPAM+14]

The goal of Vanilla GAN in general is to generate new images via learning from the original image data. The
model primarily consists of two parts, i.e. a generator which produces image from noise z and a discriminator
which tries to distinguish between z and the true images x. The Vanilla GAN is performing an minimax
game between a generator G and a discriminator D. G tries to generate samples as close to the true data
as possible whereas D tries to distinguish them apart. The loss objective is therefore formulated as:

min
G

max
D

V (D,G) = Ex∼px(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

where z ∼ pz(z) is a random noise (usually standard Gaussian) and x ∼ px(x) is the true data distribution.
Images generated from GAN are pretty good without any traditional feature engineering.

1.2 Wasserstein GAN [GAA+17]

Vanilla GAN relies on KL-divergence which causes instability during training. For instance, if the data and
model’s manifolds are different, there may exist x such that Pg(x) = 0 but Pd(x) > 0, in which the KL
divergence is infinite.

In order to solve this problem, Wasserstein GAN (WGAN) is proposed. WGAN relies on Wasserstein distance
from the optimal transport literature. It measures the minimum transportation cost for transforming one
distribution into another distribution.

For WGAN to work, the Lipschitz continuity property |D|L ≤ K need to be ensured. The loss term is
therefore formulated as:

W (pd, pg) =
1

K
sup

||D||L≤K
Ex∼pd [D(x)]− Ex∼pg [D(x)]

Compared to vanilla GAN, WGAN provides more stable gradients at the place where vanilla GAN has
vanishing gradients (Fig.1).
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Figure 1: WGAN vs. Vanilla GAN on Gaussian data [GAA+17]

1.3 Progressive GAN [KALL18]

Figure 2: Progressive GAN for generating facial images [KALL18]

The classic GAN-based methods can only generate images with low resolution. Therefore, the progressive
GAN is proposed to enhance the quality of training and generating large images.

Intuitively, progressive GAN works to first extract structure of the image using lower layers and then attend
to details on the image. Therefore during training, low resolution images are first generated, and then their
resolutions are increased by adding additional layers.

Progressive GAN is shown to generate high resolution facial images (Fig.2).

1.4 Big GAN [BDS19]

The authors of BigGAN finds that by up-scaling the Vanilla GAN, significantly better learning results could
be achieved. In the paper, 2x− 4x more parameters as well as 8x larger batch size are experimented. Also,
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model collapse is avoided by utilizing a strong discriminator at the initial training stage, and then gradually
relax it. High quality images are generated by Big GAN (Fig.3)

Figure 3: Images generated by Big GAN [BDS19]

2 Normalizing Flow (NF)

2.1 Overview

Normalizing Flows can transform a simple distribution into a complex one by applying sequence of invertible
transformation functions. Through a chain of transformation, we replaced the current variable by the new
one and eventually obtain a probability distribution for the target variable. Figure 4 shows the whole chain
of the normalizing flow.

Figure 4: The process of a normalizing flow, transforming a simple distribution p0(z0) to a complex distri-
bution pK(zK). Figure courtesy: Lilian Weng

Figure 5: Effect of normalizing flow on two distributions.

Figure 5 shows the effect of the normalizing flows. We can see that a spherical Gaussian distribution can be
transformed into a bimodal distribution through two successive transformations [RM15].

Now given a random variable z from a simple distribution p(z), we apply a invertible transformation function
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f to obtain a new variable x from a more complex distribution.

z ∼ p(z)

x = f(z)

z = f−1(x)

According to Change of Variable Theorem, we have:

p(x) = p(z)

∣∣∣∣det
dz

dx

∣∣∣∣
= p(f−1(x))

∣∣∣∣det
df−1

dx

∣∣∣∣
where

∣∣∣det df−1

dx

∣∣∣ is the Jacobian determinant of the function f−1.

Now considering the normalizing flow in the figure 4, we need to obtain zK through chain of transformations
f1, f2, ..., fK . That is,

z0 ∼ p(z0)

x = zK = fK · fK−1 . . . f0(z0)

zi = f−1
i (zi−1)

p(zi) = p(zi−1)

∣∣∣∣det
dzi−1
dzi

∣∣∣∣
Then the training objective is to maximize the data log-likelihood:

logp(x) = logp(z0) +

K∑
i=1

log

∣∣∣∣det
dzi−1
dzi

∣∣∣∣
2.2 Case Study: GLOW

GLOW is a flow based generative model, consisting of a series of steps of flow and combined in a multi-
scale architecture [KD18], as shown in figure 6. Each step of flow consists of actnorm, an invertible 1 × 1
convolution and a coupling layer.

For the actnorm layer, it is similar to batch normalization [IS15]. Any channel after the actnorm activation
layer will have zero mean and unit variance. The key difference between actnorm layer and batch normal-
ization layer is that actnorm can work reasonably well when batch size is only 1. 1 × 1 convolutional layer is
used to perform permutation operation. And LU Decomposition is applied to reduce the computational cost
of calculating the determinant of weight matrix det(W ). The affine Coupling Layer is a powerful reversible
transformation.

GLOW demonstrates a significant improvement performance in terms of log-likelihood on standard image
modeling benchmarks.

3 Integrating Domain Knowledge into Deep Learning

Deep learning has been proven very successful in lots of areas. However, deep learning still suffers from
several limitations. It heavily rely on massive labeled data which is really expensive. Also, deep network can
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Figure 6: The architecture of GLOW

be regarded as a black-box, trained end-to-end, which is uninterpretable. Furthermore, it is hard to encode
human intention and domain knowledge into the deep neural network. For human, we not only learn from
concrete examples as deep neural networks, but also learn from abstract knowledge such as logic rules.

Now we hope to integrate domain knowledge into deep neural network. Consider a statistical model pθ(x)
and a constraint function fφ(x):

x ∼ pθ(x)

fφ(x) ∈ R

where higher fφ(x) value means our generated x is better with regard to the prior knowledge.

Let’s consider a image generation problem, as shown in Figure 7. Here we hope to generate images which
has the consistent pose with the input pose template. We first use pθ as our generative model, which has
two inputs, one is the source image, and the other is the target pose template. Then we apply a constraint
function fφ to ensure the generated image having the consistent structure with the true target. Here fφ can
be regarded as a human part parser, able to extract poses from an image. By this way, we can generate new
images with desired structures.

4 Learning with Constraints

Just like what we do with GAN training, we fold the constraint function fφ(x) under expectation of the
generation distribution pθ.

4.1 Objective

min
θ
L(θ)− αEpθ [fφ(x)]

Where the L(θ) is the regular objective, such as the cross-entropy loss, etc. and αEpθ [fφ(x)] is the regu-
larization, i.e. the imposed constraints, which is difficult to compute because when taking the derivative of
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Figure 7: Pose guided person image generation

the expectation, we use the log probability trick. However, in this case, the magnitude of the log term will
explode as explained in the weak-sleep algorithm.

Due to the difficulty of computing the regularization, we introduce a variational approximation q to the true
distribution. We have a minimax situation: on the one hand, we would love to maximize the loss under
the approximating distribution; on the other hand, we want to minimize the discrepancy between the true
distribution and the approximation. As a result, we compute the KL divergence term minus the expected
loss instead:

L(θ, q) = KL(q(x)‖pθ(x))− λEq[fφ(x)]

This method is addressed as the posterior regularization method [GGT+10].

We then introduce a scaling term α to control the relative contribution of the two parts, our revised objective
is:

min
θ,q
L(θ) + αL(θ, q)

4.2 Learning

An EM-like approach is applied.

E-step:

q?(x) = pθ(x)exp{λfφ(x)}/Z

M-step:

min
θ
L(θ)− Eq? [log pθ(x)]
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4.3 Logical Rule Constraints

Putting everything together, the set up now is we consider a supervised learning pθ(y|x), our input-targe
space is (X,Y ), and our first-order logic rules (r, λ).

Given l rules, we can train the model by alternatively training for the variational distribution q?(y|x) and
the true generative model:

1. E-step

q?(y|x) = pθ(y|x)exp

{∑
l

λlrl(y, x)

}
/Z

2. M-step

min
θ
L(θ)− Eq? [log pθ(y|x)]

Note in the M-step we are using the variational which is easier to compute.

4.4 Rule Knowledge Distillation

Instead of learning a difficult target pθ(y|x)one-shot, we iterate with an auxiliary q(y|x), which is called the
”teacher” and it is often an ensemble. The target pθ(y|x) is called the student. We match the soft predictions
of the teacher network and the student network. This interaction between the teacher(s) and the student
will ultimately get the student closer to the teachers.

With our setup, at each iteration t, we update the θ(t+1) with:

arg min
θ∈Θ

1

N

N∑
n=1

(1− π)`(yn, σθ(xn)) + π`(s(t)
n , σθ(xn))

where π is the balancing parameter, yn is the true hard label, σθ(xn) is the soft prediction of pθ(y|x) and

s
(t)
n is the soft prediction of the teacher network.

Figure 8: Graphical illustration of knowledge distillation.
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There are a few catches with this approach:

1. The rule function f required a few properties: many occasions required the functions to be differen-
tiable.

2. How to expand the input space beyond the logical rules is interesting. For example, if we phrase
the reward function in reinforcement learning as a teacher model, then reinforcement learning is an
instance of our approach as well.

3. The architecture could be modified and this approach could be extended to different domains of tasks
as well. For instance, we could involve LSTM and solve language problems.
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