
10-708: Probabilistic Graphical Models, Spring 2020

12:Deep generative models: overview of the theoretical basis and connection

Lecturer: Eric P. Xing Scribe: Shangbang Long Ankit Shrivastava, Prakhar Gupta

1 Deep generative models

Deep generative models (DGMs) are probably the most popular research topic nowadays (CVPR, ICML,
NeurIPS, etc.). This lecture is about a unifying theoretical perspective of DGMs.

DGMs can perform: style transfer/fusion, music/image generations, and etc..

DGMs are probabilistic distributions of a set of variables. Deep means having multiple layers of hidden
variables.

1.1 Early forms of deep generative models

1.1.1 Sigmoid belief nets

One example is the Sigmoid Belief Networks in which lower layers connect to upper layers via sigmoid
functions:

p(Xn,k = 1|θn,k, Xn−1) = σ(θTn,kXn−1)

where Xn is a vector representing the hidden variables of the n−th layer, θn,k is a vector that represents
how the k−th unit of layer n is connected to the lower layer.

These are authentic and genuine PGMs, based on the Bayesian rules.

1.1.2 Helmholtz machines

Helmholtz machines express a dual, alternative process that unifies inference and generative process:

Xn = Gθ(Xn−1)

and

Xn−1 = Fφ(Xn)

1

2 12:Deep generative models: overview of the theoretical basis and connection

1.1.3 Predictability minimization

PM defines a training procedure. The encoding models represent the input data as latent variables. There
is an extra predictability layer on top of the latent variables that learns to predict the latent variables. At
the same time, PM learns with a constraint that minimizes the predictability of the latent variables.

1.1.4 Learning procedure

The training of such models follows an EM style framework, vias sampling and inference alternatively.

Another option is to optimize a variational lower bound:

log(p(x)) ≥ Eqφ(z|x)[log(pθ(x, z))]−KL(qφ(z|x)||p(z)) := L(θ, φ;x)

and optimization target:

maxθ,φL(θ, φ;x)

1.2 Resurgence of deep generative models

Variational autoencoders (VAEs) is the first modern, actively used deep generative models. VAEs consist of
a generative model and an inference model that are trained in a variational way. Nearly at the same period,
Generative adversarial networks (GANs) are proposed. GANs consist of a generator that transforms latent
variables into data domain and a discriminator that learns to distinguish real data and generated (fake)
data.

2 Theoretical basis of deep generative models

2.1 Recap: Variational Inference

Consider a generative model pθ(x|z) and prior p(z). The joint distribution is computed as: pθ(x, z) =
pθ(x|z)p(z). Assume variational distribution qφ(zx). Then the objective is to maximize lower bound for log
likelihood:

log p(x)

= KL (qφ(z|x)‖pθ(z|x)) +
∫
z
qφ(z|x) log pθ(x,z)

qφ(z|x)

≥
∫
z
qφ(z|x) log pθ(x,z)

qφ(z|x)
:= L(θ, φ, x)

which is equivalently to minimize free energy:

F (θ, φ;x) = − log p(x) +KL (qφ(z|x)‖pθ(z|x))

During training, the following two EM steps are taken alternatively:

12:Deep generative models: overview of the theoretical basis and connection 3

•E − step : maximize L(θ,φ;x) wrt. φ , with θ fixed .

If closed form solutions exist, then q∗φ(z|x) ∝ exp [log pθ(x, z)].

•M − step : maximize L(θ,φ;x) wrt. θ , with φ fixed

2.2 Wake sleep algorithm

Wake sleep algorithm maximizes data log-likelihood with two steps of loss relaxation:

2.2.1 Wake phase

Maximize the variational lower bound of log-likelihood, or equivalently, minimize the free energy: F (θ,φ;x) =
− log p(x) +KL (qφ(z|x)‖pθ(z|x))

In the wake phase, the algorithm gets samples from qφ(z|x) through inference on hidden variables, and
then use the samples as targets for updating the generative model pθ(Z|x). This phase corresponds to the
variational M step, i.e.:

max
θ

Eqφ(z|x) [log pθ(x, z)]

2.2.2 Sleep phase

Minimize a different objective (reversed KLD) wrt) to ease the optimization: F ′(θ,φ;x) = − log p(x) +
KL (pθ(z|x)‖qφ(z|x)).

The sleep phase corresponds to the E step, i.e.:

max
φ

Eqφ(z|x) [log pθ(x, z)]

However, one major difficulty is that the gradient for the distribution qφ is difficult to compute. Instead, we
use the log-derivative trick:

∇φEqφ [log pθ] =

∫
∇φqφ log pθ =

∫
qφ log pθ∇φ log qφ = Eqφ [log pθ∇φ log qφ]

Then we can use Monte Carlo to estimate the gradients.

2.3 Variational autoencoders

Variational lower bound:

L(θ,φ;x) = Eqφ(Z|x) [log pθ(x, z)]−KL (qφ(z|x)‖p(z))

Similar to Wake-Sleep algorithm, the procedure optimizes L(θ,φ;x) w.r.t. θ and φ alternatively. VAEs also
use reparametrization trick to reduce variance.

4 12:Deep generative models: overview of the theoretical basis and connection

Recall:

∇φEqφ [log pθ] = Eqφ [log pθ∇φ log qφ]

The scale factor log pθ has high variance.

Instead of sampling with z ∼ qφ(z|x), we parametrize z as a noise added to a function, z = gφ(ε,x), ε ∼
p(ε).

Then the estimated gradients then become: ∇φEqφ(Z|x) [log pθ(x, z)] = Eε∼p(ε) [∇φ log pθ (x, zφ(ε))]. Empir-
ically, it has lower variance.

2.4 Variational autoencoders Algorithm

One of the Variational Autoencoder algorithm is a minibath Auto-encoding variational Bayes proposed by
[1]

Algorithm 1: Minibatch version of the Auto-encoding VB (AEVB) algorithm.

Result: Write here the result
(θ, φ)← initialize parameters;
while repeat until convergence of parameters (θ, φ) do

XM ← Random minibatch of M datapoints (drawn from full dataset) ;
ε← Random samples from noise distribution p(ε);

g← L̃M (θ,φ;XM , ε) (Gradient of minibatch estimator);
(θ, φ)← Update parameters using gradients g (e.g. SGD or Adagrad)

end

3 Generative adversarial networks

Generative adversarial networks are another type of model complementary to variational autoencoders. It
does not have any particular inference model but consist to two main components a Generative model and
a Discriminator. The generative model map latent variable z coming from some prior i.e. z ∼ p(z) to data
space x using a transformation function Gθ, that is x = Gθ(x). The discriminator component Dφ(x) outputs
the probability that x came from data rather than the generator.

Figure 1: General architecture of GANS

12:Deep generative models: overview of the theoretical basis and connection 5

Figure 1 shows a general GANS model. The model is trained by competing generator and discriminator
against each other.

• It trains Discriminator to maximize the probability of correctly classifying real training examples and
fake generated examples by

max
D
LD = Ex∼pdata(x)

[logD(x)] + Ex∼G(z),z∼p(z)[log 1−D(x)]

• At the same time train Generator to beat the discriminator by

min
G
LG = Ex∼G(z),z∼p(z)[log 1−D(x)]

Since the original loss suffers from vanishing gradient when Discriminator is too strong, in practice the
Generator is trained by

max
G
LG = Ex∼G(z),z∼p(z)[logD(x)]

The goal while training GANs is to achieve optimal state when generator and discriminator are competing
among each other i.e.

• Generator produces the data using the distribution which is same as of the data distribution

pG(x) = pdata(x)

• And, discriminator assigning the probability randomly with probability of .5

D(x) =
pdata(x)

pdata(x) + pG(x)
=

1

2

3.1 GANs objective in variational-EM format

Since the first GANs model has been proposed there has been multiple proposed GANs to improve desired
results but the practice of designing of models are often compared to alchemy as it is difficult to explain why
certain model is working. Hence, it is needed to view these models in different way. One of the ways to view
GANs is using variational format and try to connect them with other deep generative models such as VAE
and its variant

To understand GANs in terms of variational inference format, we first redefine the model such that the goal
is to find implicit distribution over x ∼ pθ(x|y) where,

pθ(x|y) =

{
pgθ (x) y = 0 (distribution of generated images)
pdata(x) y = 1 (distribution of data)

Also, x ∼ pgθ (x)⇔ x = Gθ(z), z ∼ p(z|y = 0).

Now recall the conventional GANs formualtion as

max
φ
Lφ = Ex∼pdata(x)

[logDφ(x)] + Ex=Gθ(z),z∼p(z|y=0)[log 1−Dφ(x)]

max
θ
Lθ = Ex=Gθ(z),z∼p(z|y=0)[logDφ(x)]

By rewriting formulation of GANs, it can be reviewed as

6 12:Deep generative models: overview of the theoretical basis and connection

Figure 2: General architecture of GANS

• Introduce implicit distribution over x ∼ pθ(x|y), where

x = Gθ(z),z∼p(z|y)

We can call it as generative model since the data is generated based on hidden variable z

• And Discriminator distribution qφ(y|x) and qrφ(y|x) = qφ(1 − y|x) The discriminator model does not
exist in variational inference literature, hence it should not be confused with inference model used in
earlir vm

• the objective functions of GANs then becomes
Learn parameters of discriminator model

max
φ
Lφ = Epθ(x|y)p(y)[log qφ(y|x)]

this kind of look like a posterior inference of hidden states because y is always observed as we need to
determine whether it is true or false label. Now next task is to learn generative model parameters but
with the loss function is reversed

max
θ
Lθ = Epθ(x|y)p(y)[log qrφ(y|x)]

Hence the formulation look similar to wake sleep. This is further discussed n section 3.3 and section
3.4

Figure 3: GANS viewed in form of Variational format

3.2 GANs: Minimizing KLD

Recall that in variational EM we minimize − log p(x) + KL(qφ)(z|x)||pθ(z|x)), that is, we minimize the KLD
from the inference model to the posterior. We can similarly rewrite the objective of GAN in the form of
minimizing KLD.

12:Deep generative models: overview of the theoretical basis and connection 7

For each optimization step of pθ(x|y) starting from an initial point (θ0,φ0), let p(y) be a uniform prior
distribution, and

pθ=θ0
(x) = Ep(y)[pθ=θ0

(x|y)]

qr(x|y) ∝ qr(y|x)pθ=θ0
(x)

The update rule for θ is in Lemma 1:

Lemma 1:

∇θ(−Epθ(x|y)p(y)[log qrφ=φ0
(y|x)]) |θ=θ0=

∇θ(Ep(y)[KL(pθ(x|y) ‖ qr(x|y))]− JSD(pθ(x|y = 0) ‖ pθ(x|y = 1))) |θ=θ0 .

Here the generative model pθ(x|y) is equivalent to the variational distribution for the posterior qr(x|y).
pθ=θ0

(x) is the prior.

Now, minimizing the KLD drives the generator pgθ(x) to the true data distribution pdata(x). For a uniform
y (being equally real or generated), by definition,

pθ=θ0
(x) = Ep(y)[pθ=θ0

(x|y)] =
pgθ=θ0

(x) + pdata(x)

2
,

and thus we could break the KLD into two terms:

KL(pθ(x|y = 1) ‖ qr(x|y = 1)) = KL(pdata(x) ‖ qr(x|y = 1)) = const.,

and

KL(pθ(x|y = 0) ‖ qr(x|y = 0)) = KL(pgθ (x) ‖ qr(x|y = 0)),

where
qr(x|y = 0) ∝ qr(y = 0|x)pθ=θ0

(x)

This can be seen as a mixture of pgθ(x) and pdata(x) weighted by qr(y = 0|x). During the update we drive
the generator pgθ(x) towards qr(x|y = 0) by minimizing the KLD, and drive it towards the true distribution
pdata(x), as shown in Figure 4.

Figure 4: Minimizing KLD in GAN

The KL formulation tends to be large in the regions of x space where qr(x|y = 0) is small unless pgθ(x) is also
small. Thus, pgθ(x) tends to be small where qr(x|y = 0) is small to avoid the penalization. Therefore, this
KLD formulation allows GAN to recover the major modes, but also leads GAN to miss some minor modes
of pdata(x), where pgθ(x) and qr(x|y = 0) are small and already give a small KLD. This phenomenon where
some modes are missed but other captured well is what leads GAN to create sharp images.

8 12:Deep generative models: overview of the theoretical basis and connection

Figure 5: GAN vs VAE

3.3 GAN vs VAE

Lets recap the VAE objective

max
θ,η
Lvae
θ,η = Epdata(x)

[
Eq̃η(z|x) [log p̃θ(x|z)]−KL (q̃η(z|x)‖p̃(z))

]
We now assume a perfect discriminator q?(y|x) telling whether x is real or generated, and qr?(y|x) = q?(1−
y|x). Notice that q∗ is degenerate since we are always generating fake x. We can write Lvae

θ,η as

Lemma 2:

Lvae
θ,η = 2 · Epθ0 (x)

[
Eqη(z|x,y)qr∗(y|x) [log pθ(x|z, y)]−KL (qη(z|x, y)qr∗(y|x)‖p(z|y)p(y))

]
= 2 · Epθ0 (x) [−KL (qη(z|x, y)qr∗(y|x)‖pθ(z, y|x))]

where the posterior is given as
pθ(z|x, y) ∝ pθ(x|z, y)p(z|y)p(y)

and is determined by the generative model pθ(z|x,y) and the other two terms are fixed priors. In this way,
VAE has the generative model on the right side of KLD, different to GAN.

Therefore, GAN while provides a “sharp” distribution of covering major modes while missing minor modes
of the true distribution pdata, VAE provides a blurred or approximate distribution to cover all the modes
while less sharp approximation of modes where pdata is small.

The Figure 5 summarizes the comparison between GAN and VAE’s new formulation.

3.4 Linking GAN and VAE to Wake-sleep

Lets look back at the wake-sleep algorithm:

12:Deep generative models: overview of the theoretical basis and connection 9

Wake : max
θ
Eqλ(h|x)pdata(x)[log pθ(x|h)],

Sleep : max
θ
Epθ(x|h)p(h)[log qλ(h|x)].

We now discuss how VAE and GAN relate to the wake-sleep procedure.

VAE only deals with the wake phase and also learns the inference model η, That is, the KLD term in the
original variational free energy:

max
θ,η
LVAE
θ,η = Eqη(z|x)pdata(x)[log pθ(x|z)]− Epdata(x)[KL(qη(z|x) ‖ p(z))]

It does not involve the sleep-phase objective.

GAN only deals with the sleep phase and extends it by learning the generative parameter θ:

max
φ
Lφ = Epθ(x|y)p(y)[log qφ(y|x)],

max
φ
Lθ = Epθ(x|y)p(y)[log qrφ(y|x)].

It does not involve the wake-phase objective.

3.5 Conclusion

• GANs and VAEs are essentially minimizing KLD in opposite directions and extend two phases of classic
wake sleep algorithm, respectively

• This lecture discussed a general formulation useful for analyzing a broad class of existing DGM modelsm
and can inspire new models and algorithms.

References

[1] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

	Deep generative models
	Early forms of deep generative models
	Sigmoid belief nets
	Helmholtz machines
	Predictability minimization
	Learning procedure

	Resurgence of deep generative models

	Theoretical basis of deep generative models
	Recap: Variational Inference
	Wake sleep algorithm
	Wake phase
	Sleep phase

	Variational autoencoders
	Variational autoencoders Algorithm

	Generative adversarial networks
	GANs objective in variational-EM format
	GANs: Minimizing KLD
	GAN vs VAE
	Linking GAN and VAE to Wake-sleep
	Conclusion

