

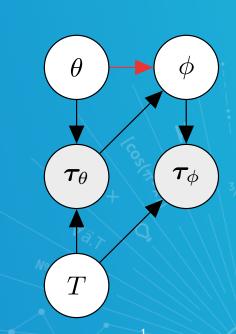
Probabilistic Graphical Models

01010001 Ω

Elements of Meta-Learning

Maruan Al-Shedivat Lecture 27, April 27, 2020

Reading: see class homepage



- Part 1: Intro to Meta-Learning
 - Motivation and some examples
 - General formulation and probabilistic view
 - Gradient-based and other types of meta-learning
 - Neural processes and relation of meta-learning to GPs
- Part 2: Elements of Meta-RL
 - What is meta-RL and why does it make sense?
 - On-policy and off-policy meta-RL
 - Continuous adaptation

Goals for the lecture:

Introduction & overview of the key methods and developments.

[Good starting point for you to start reading and understanding papers!]

Introduction to Meta-Learning

- Motivation and some examples
- General formulation and probabilistic view
- Gradient-based and other types of meta-learning
- Neural processes and relation of meta-learning to GPs

Much of machine learning can be characterized as the search for a solution that, once found, no longer need be changed.

[...] Machine learning has been more concerned with the results of learning than the ongoing process of learning.

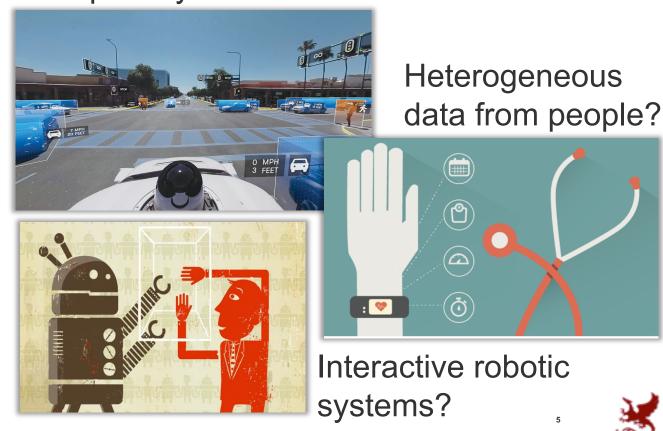
Rich Sutton, Anna Koop, David Silver (2007)

When is standard machine learning not enough?

Standard ML finally works for well-defined, stationary tasks

But how about...

Complex dynamic world?



What is meta-learning?

 Standard learning: Given a distribution over examples (single task), learn a function that minimizes the loss

$$\hat{\phi} = \arg\min_{\phi} \mathbb{E}_{z \sim \mathcal{D}} \left[l(f_{\phi}(z)) \right]$$

 Learning-to-learn: Given a distribution over tasks, output an adaptation rule that can be used at test time to generalize from a task description

distribution over tasks/datasets

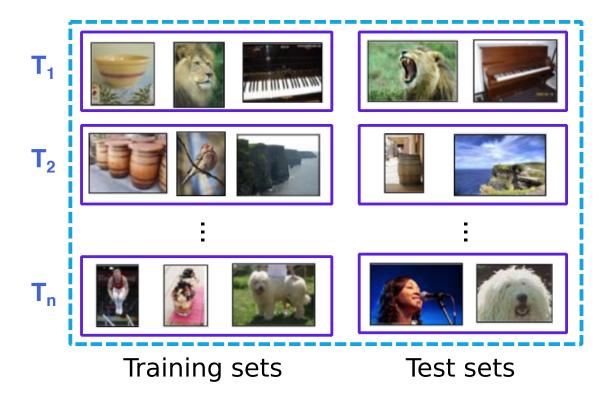
adaptation rule takes a task description as input and outputs a model

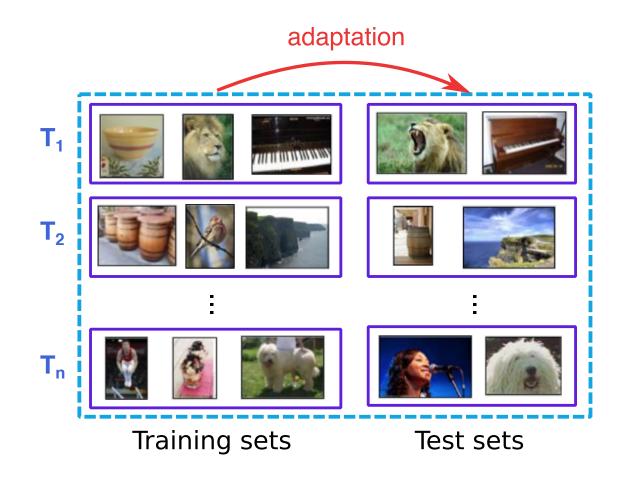
$$\hat{\theta} = \arg\min_{\theta} \mathbb{E}_{T \sim \mathcal{P}} \left\{ \mathcal{L}_T[g_{\theta}(T)] \right\}, \text{ where}$$

$$\mathcal{L}_T[g_{\theta}(T)] := \mathbb{E}_{z \sim \mathcal{D}_T}[l(f_{\phi}(z))], \ \phi := g_{\theta}(T)$$

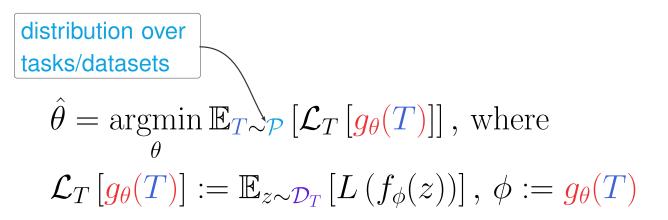
distribution over examples for task T

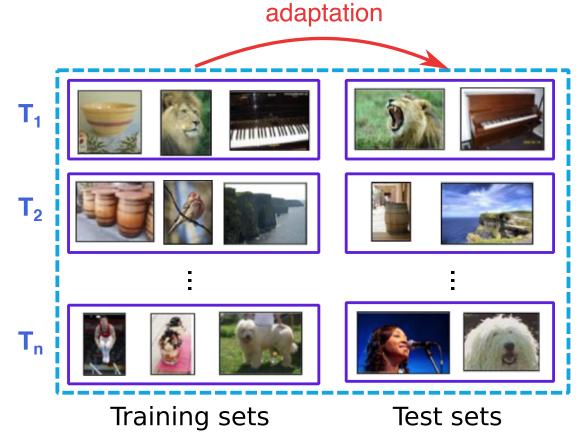
T.

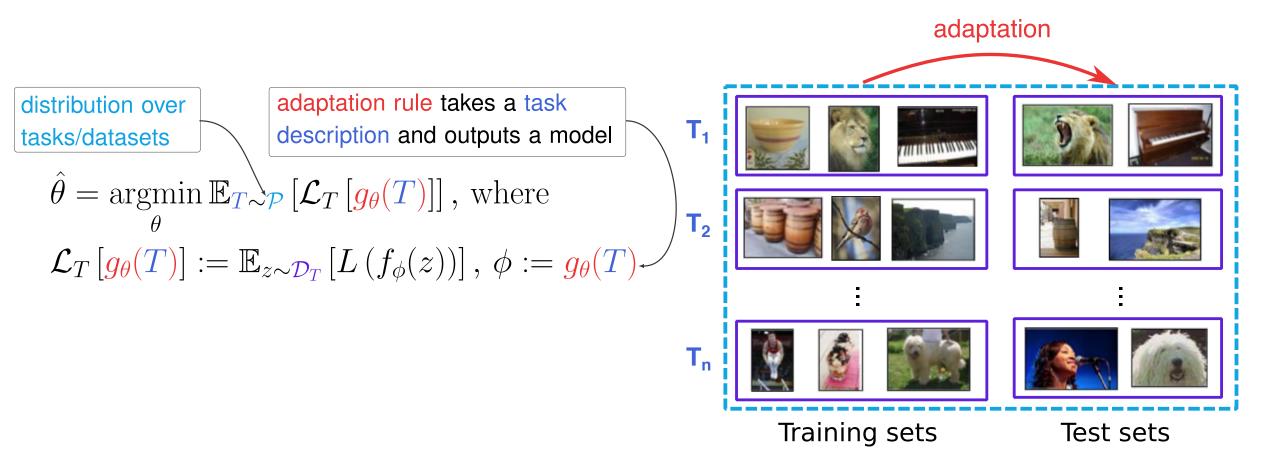


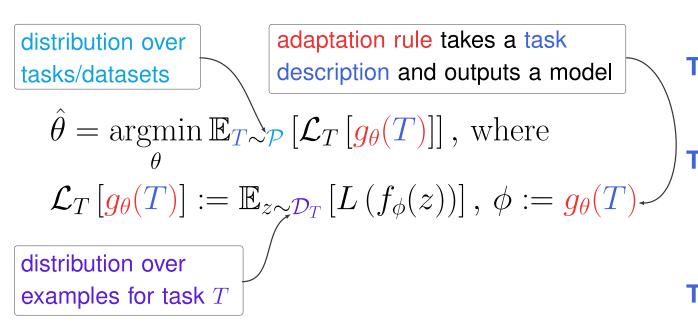


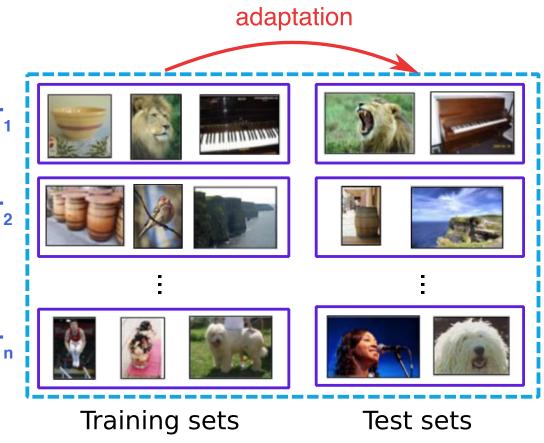
9











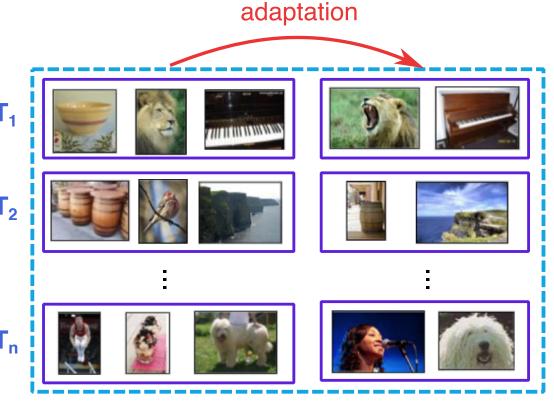
distribution over tasks/datasets

adaptation rule takes a task description and outputs a model

$$\hat{\theta} = \operatorname*{argmin}_{\theta} \mathbb{E}_{T} \nearrow_{\mathcal{P}} [\mathcal{L}_{T} [g_{\theta}(T)]], \text{ where}$$

$$\mathcal{L}_T\left[oldsymbol{g_{ heta}}(T)
ight] := \mathbb{E}_{z\sim\mathcal{D}_T}\left[L\left(f_{\phi}(z)
ight)
ight], \ \phi := oldsymbol{g_{ heta}}(T)$$

distribution over examples for task T



Training sets

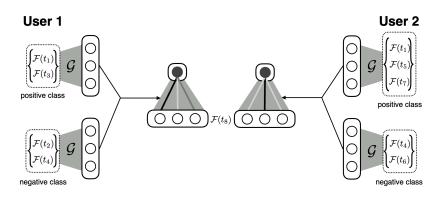
Test sets

Meta-learning + adaptation methods:

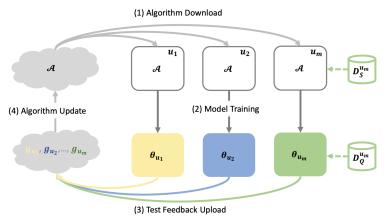
- Recurrent nets (Santoro et al., '16, Duan et al., '17, Wang et al., '17, Mishra et al., '17, ...)
- Learned optimizers (Schmidhuber, '87, Bengio et al., '90, Li & Malik, '16, Andrychowitcz et al., '16, ...)

•

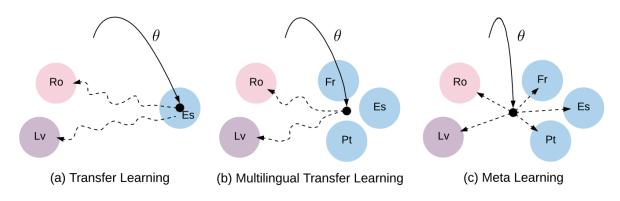
Other (practical) Examples of Few-shot Learning



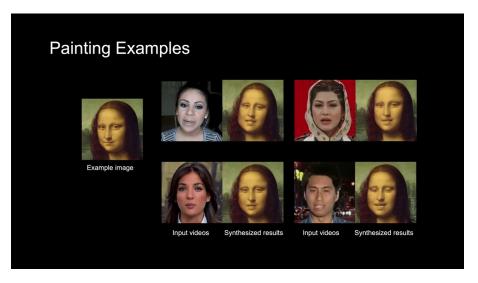
Few-shot learning for cold-start problem in recommendation (Vartak et al., NIPS 2017)



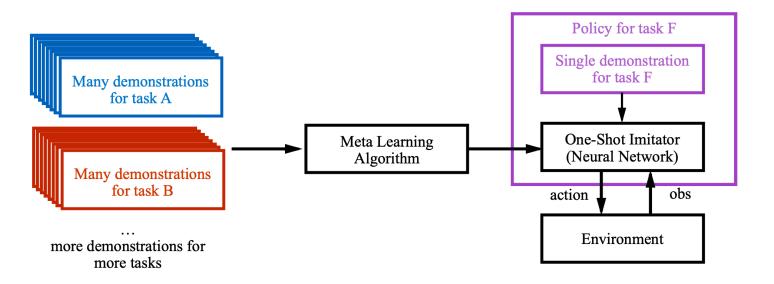
Federated recommender systems (Chen*, Luo* et al., 2018)

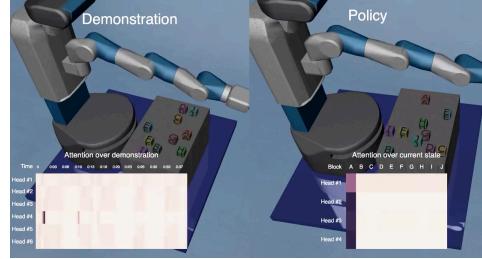


Low-resource translation (Gu*, Wang* et al., EMNLP 2018)



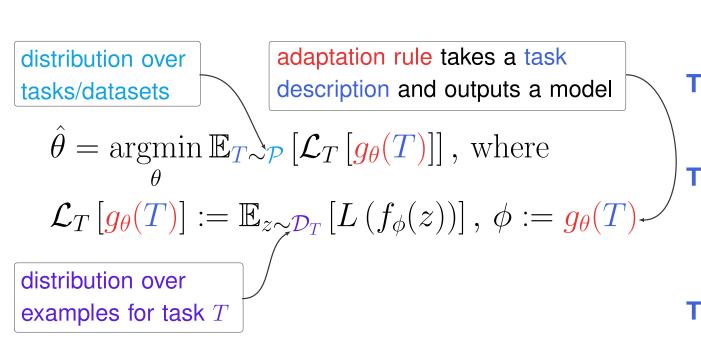
One More Example: One-shot Imitation Learning

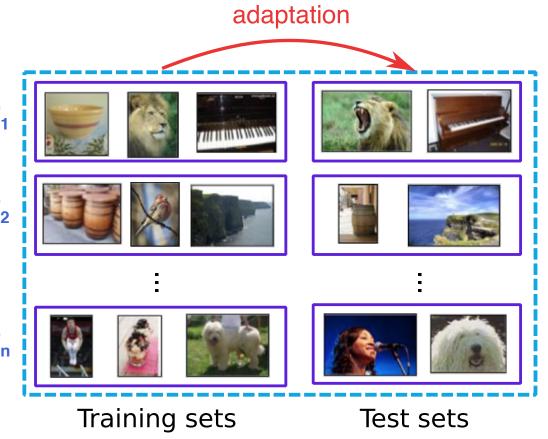




Duan et al., NIPS 2017

Back to Our Few-shot Classification Example





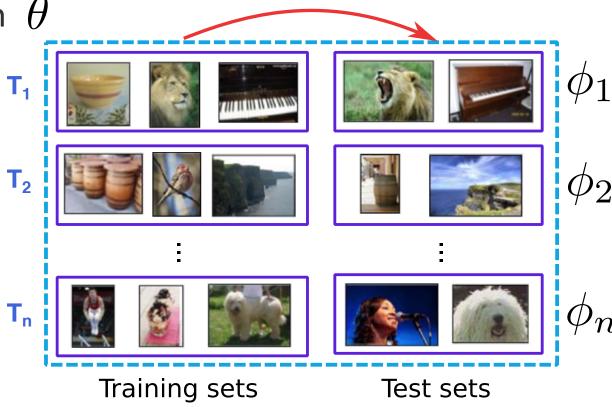
Model-agnostic Meta-learning (MAML)

- Start with a common model initialization $\, heta$
- Given a new task T_i , adapt the model using a gradient step:

$$\phi_i = g_{\theta}(T_i) := \theta - \alpha \nabla_{\theta} \mathcal{L}_{T_i}(f_{\theta})$$

 Meta-training is learning a shared initialization for all tasks:

$$\min_{\theta} \sum_{T_i \sim \mathcal{P}} \mathcal{L}_{T_i}^{\text{test}}(f_{\theta - \alpha \nabla_{\theta} \mathcal{L}_{T_i}^{\text{train}}(f_{\theta})})$$



adaptation

X

Model-agnostic Meta-learning (MAML)

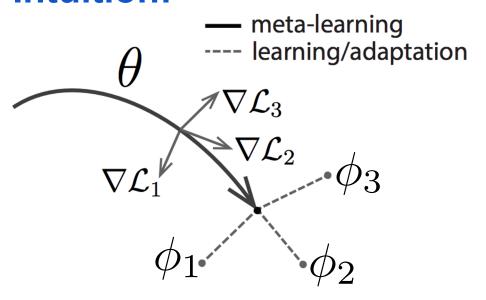
- Start with a common model initialization $\, heta$
- Given a new task T_i , adapt the model using a gradient step:

$$\phi_i = g_{\theta}(T_i) := \theta - \alpha \nabla_{\theta} \mathcal{L}_{T_i}(f_{\theta})$$

 Meta-training is learning a shared initialization for all tasks:

$$\min_{\theta} \sum_{T_i \sim \mathcal{P}} \mathcal{L}_{T_i}^{\text{test}}(f_{\theta - \alpha \nabla_{\theta} \mathcal{L}_{T_i}^{\text{train}}(f_{\theta})})$$

Intuition:



Does MAML Work?

	5-way A	ccuracy	20-way Accuracy		
Omniglot (Lake et al., 2011)	1-shot	5-shot	1-shot	5-shot	
MANN, no conv (Santoro et al., 2016)	82.8%	94.9%	_	_	
MAML, no conv (ours)	$89.7 \pm 1.1\%$	$97.5 \pm 0.6\%$	_	_	
Siamese nets (Koch, 2015)	97.3%	98.4%	88.2%	97.0%	
matching nets (Vinyals et al., 2016)	98.1%	98.9%	93.8%	98.5%	
neural statistician (Edwards & Storkey, 2017)	98.1%	99.5%	93.2%	98.1%	
memory mod. (Kaiser et al., 2017)	98.4%	99.6%	95.0%	98.6%	
MAML (ours)	$98.7 \pm 0.4\%$	$99.9 \pm 0.1\%$	$95.8 \pm 0.3\%$	$98.9 \pm 0.2\%$	

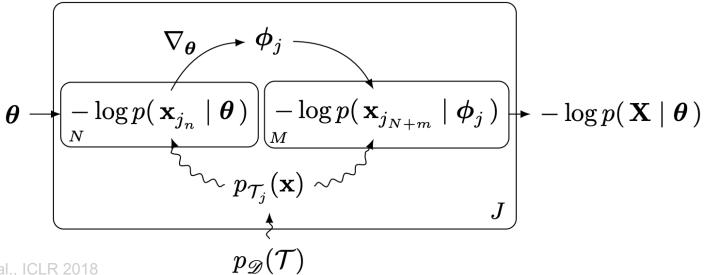
	5-way Accuracy		
MiniImagenet (Ravi & Larochelle, 2017)	1-shot	5-shot	
fine-tuning baseline	$28.86 \pm 0.54\%$	$49.79 \pm 0.79\%$	
nearest neighbor baseline	$41.08 \pm 0.70\%$	$51.04 \pm 0.65\%$	
matching nets (Vinyals et al., 2016)	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$	
meta-learner LSTM (Ravi & Larochelle, 2017)	$43.44 \pm 0.77\%$	$60.60 \pm 0.71\%$	
MAML, first order approx. (ours)	$48.07 \pm 1.75\%$	$\textbf{63.15} \pm \textbf{0.91}\%$	
MAML (ours)	$m{48.70 \pm 1.84\%}$	${\bf 63.11 \pm 0.92\%}$	

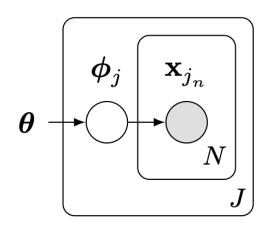
1

MAML from a Probabilistic Standpoint

- Training points: $\mathbf{x}_{j_1}, \dots, \mathbf{x}_{j_N} \sim p_{\mathcal{T}_j}(\mathbf{x})$, testing points: $\mathbf{x}_{j_{N+1}}, \dots, \mathbf{x}_{j_{N+M}} \sim p_{\mathcal{T}_j}(\mathbf{x})$
- MAML with log-likelihood loss:

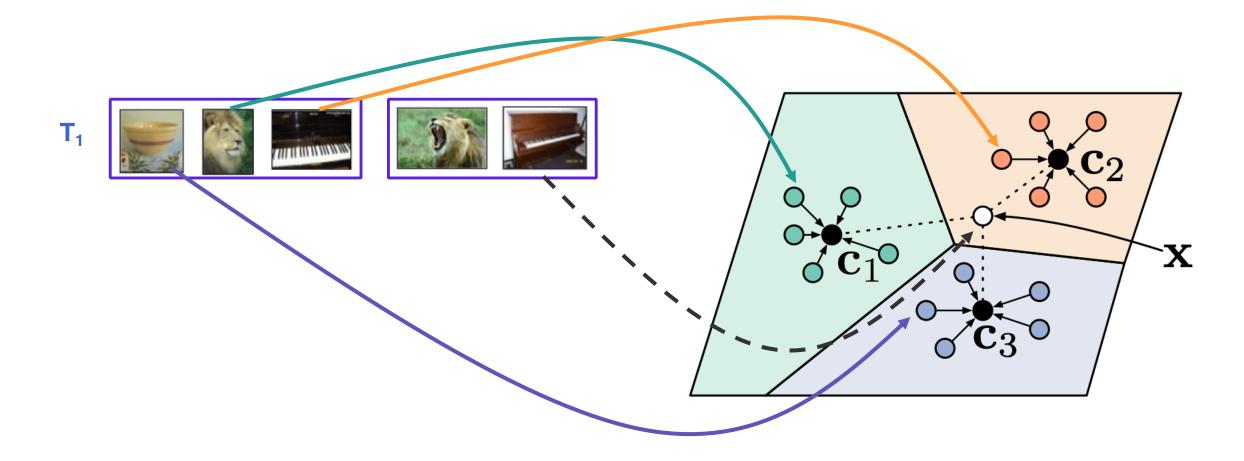
$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{J} \sum_{j} \left[\frac{1}{M} \sum_{m} -\log p(\mathbf{x}_{j_{N+m}} \mid \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} \frac{1}{N} \sum_{n} -\log p(\mathbf{x}_{j_{n}} \mid \boldsymbol{\theta})) \right]$$





×

Prototype-based Meta-learning



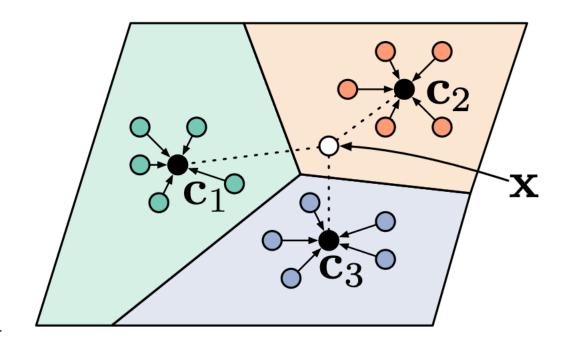
Prototype-based Meta-learning

Prototypes:

$$\mathbf{c}_k = \frac{1}{|S_k|} \sum_{(\mathbf{x}_i, y_i) \in S_k} f_{\phi}(\mathbf{x}_i)$$

Predictive distribution:

$$p_{\phi}(y = k \mid \mathbf{x}) = \frac{\exp(-d(f_{\phi}(\mathbf{x}), \mathbf{c}_k))}{\sum_{k'} \exp(-d(f_{\phi}(\mathbf{x}), \mathbf{c}_{k'}))}$$



Does Prototype-based Meta-learning Work?

Omniglot

			5-way Acc.		20-way Acc.	
Model	Dist.	Fine Tune	1-shot	5-shot	1-shot	5-shot
MATCHING NETWORKS [32]	Cosine	N	98.1%	98.9%	93.8%	98.5%
MATCHING NETWORKS [32]	Cosine	Y	97.9%	98.7%	93.5%	98.7%
NEURAL STATISTICIAN [7]	-	N	98.1%	99.5%	93.2%	98.1%
MAML [9]*	-	N	98.7%	99.9%	95.8%	98.9%
PROTOTYPICAL NETWORKS (OURS)	Euclid.	N	98.8%	99.7%	96.0%	98.9%

mini-ImageNet

			5-way Acc.		
Model	Dist.	Fine Tune	1-shot	5-shot	
BASELINE NEAREST NEIGHBORS*	Cosine	N	$28.86 \pm 0.54\%$	$49.79 \pm 0.79\%$	
MATCHING NETWORKS [32]*	Cosine	N	$43.40 \pm 0.78\%$	$51.09 \pm 0.71\%$	
MATCHING NETWORKS FCE [32]*	Cosine	N	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$	
META-LEARNER LSTM [24]*	-	N	$43.44 \pm 0.77\%$	$60.60 \pm 0.71\%$	
MAML [9]	-	N	$\textbf{48.70} \pm \textbf{1.84\%}$	$63.15 \pm 0.91\%$	
PROTOTYPICAL NETWORKS (OURS)	Euclid.	N	$\textbf{49.42} \pm \textbf{0.78}\%$	$\textbf{68.20} \pm \textbf{0.66}\%$	

×

25

Published as a conference paper at ICLR 2020

RAPID LEARNING OR FEATURE REUSE? TOWARDS UNDERSTANDING THE EFFECTIVENESS OF MAML

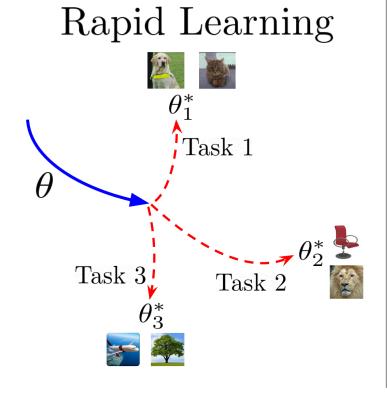
Aniruddh Raghu * MIT

araghu@mit.edu

Maithra Raghu *
Cornell University & Google Brain
maithrar@gmail.com

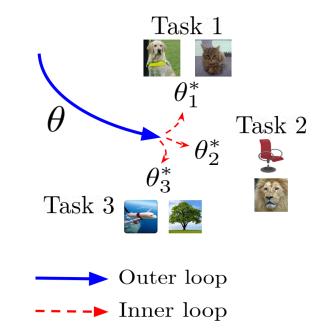
Samy BengioGoogle Brain

Oriol Vinyals
DeepMind

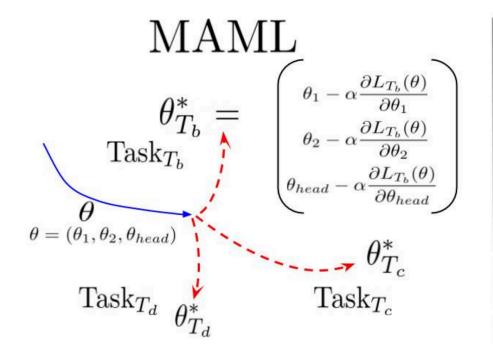


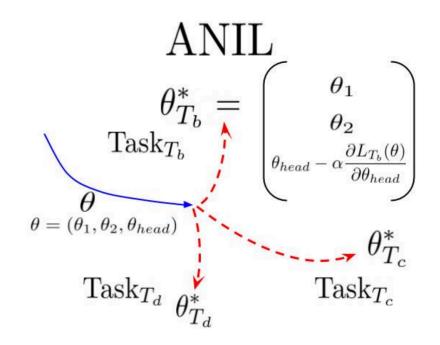
Adaptation is the main contributor to the performance

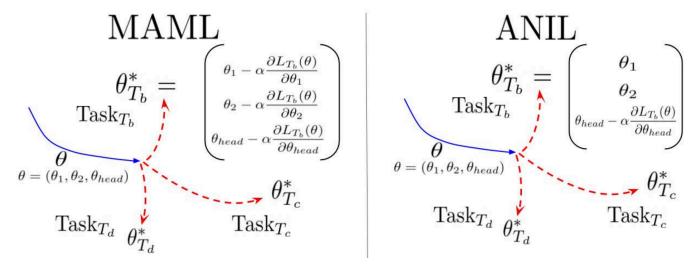
Feature Reuse



Good representations is the main contributor to the performance

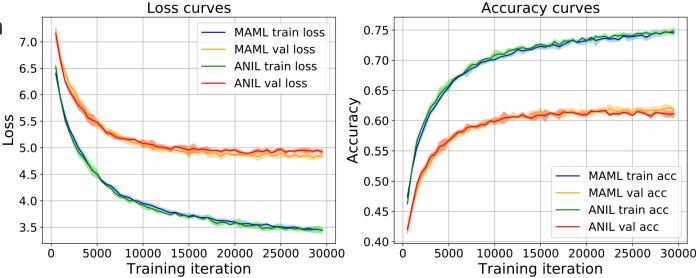






MiniImageNet-5way-5shot

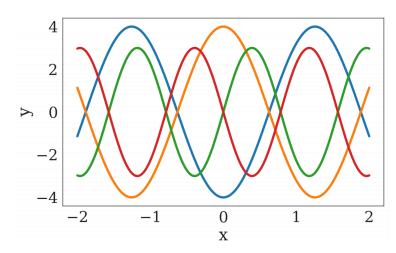
No visible difference in performance between MAML and ANIL

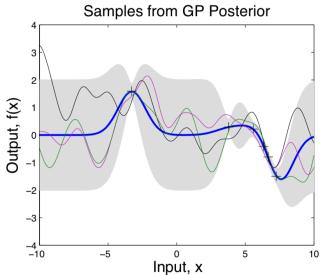


More detailed analysis of the representations learned by MAML vs ANIL at different levels is in the paper

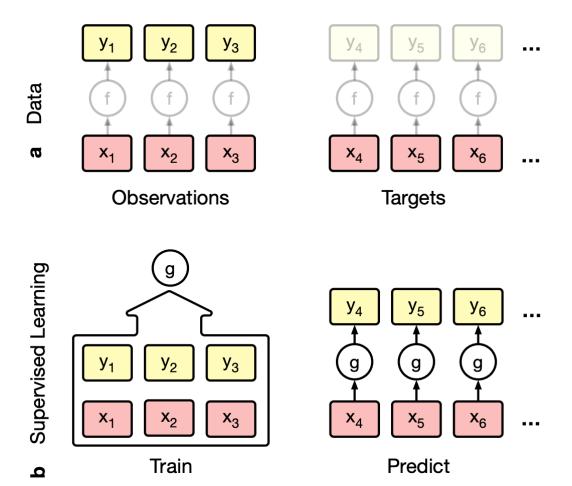
Drawing parallels between meta-learning and GPs

- In few-shot learning:
 - Learn to identify functions that generated the data from just a few examples.
 - The function class and the adaptation rule encapsulate our prior knowledge.
- Recall Gaussian Processes (GPs):
 - Given a few (x, y) pairs, we can compute the predictive mean and variance.
 - Our prior knowledge is encapsulated in the kernel function.

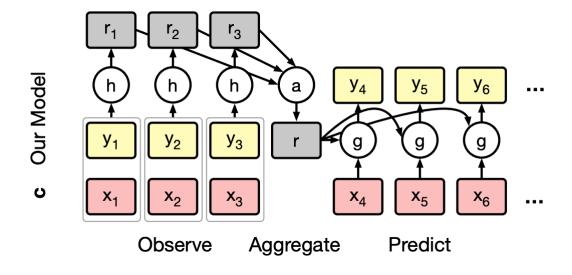




Conditional Neural Processes

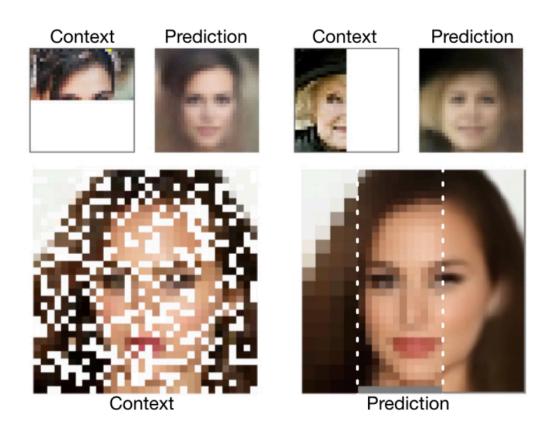


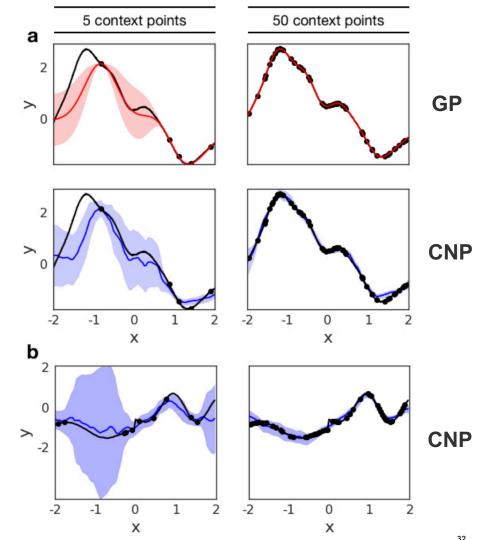
CNP architecture:



31

Conditional Neural Processes





On software packages for meta-learning

- A lot of research code releases (code is fragile and sometimes broken)
- A few notable libraries that implement a few specific methods:
 - Torchmeta (https://github.com/tristandeleu/pytorch-meta)
 - Learn2learn (https://github.com/learnables/learn2learn)
 - Higher (https://github.com/facebookresearch/higher)
- New!



A Modular Toolbox for Accelerating Meta-Learning Research # https://github.com/alshedivat/meta-blocks

- ✓ Library is actively developed
- √ Very modular and FAST
- ✓ Planned support for many algorithms and meta-RL

Running a tutorial next week! (drop me an email if interested)

Takeaways

- Many real-world scenarios require building adaptive systems and cannot be solved using "learn-once" standard ML approach.
- Learning-to-learn (or meta-learning) attempts extend ML to rich multitask scenarios—instead of learning a function, <u>learn a learning algorithm</u>.
- Two families of widely popular methods:
 - Gradient-based meta-learning (MAML and such)
 - Prototype-based meta-learning (Protonets, Neural Processes, ...)
 - Many hybrids, extensions, improvements (CAIVA, MetaSGD, ...)
- Is it about adaptation or learning good representations? Still unclear and depends on the task; having good representations might be enough.
- Meta-learning can be used as a mechanism for causal discovery.
 (See <u>Bengio et al., 2019</u>.)

Elements of Meta-RL

- What is meta-RL and why does it make sense?
- On-policy and off-policy meta-RL
- Continuous adaptation

Recall the definition of learning-to-learn

 Standard learning: Given a distribution over examples (single task), learn a function that minimizes the loss

$$\hat{\phi} = \arg\min_{\phi} \mathbb{E}_{z \sim \mathcal{D}} \left[l(f_{\phi}(z)) \right]$$

 Learning-to-learn: Given a distribution over tasks, output an adaptation rule that can be used at test time to generalize from a task description

distribution over tasks/datasets

adaptation rule takes a task description as input and outputs a model

$$\hat{\theta} = \arg\min_{\theta} \mathbb{E}_{T \sim \mathcal{P}} \left\{ \mathcal{L}_T[g_{\theta}(T)] \right\}, \quad \text{where}$$

$$\mathcal{L}_T[g_{\theta}(T)] := \mathbb{E}_{z \sim \mathcal{D}_T}[l(f_{\phi}(z))], \ \phi := g_{\theta}(T)$$

distribution over examples for task T

Recall the definition of learning-to-learn

 Standard learning: Given a distribution over examples (single task), learn a function that minimizes the loss

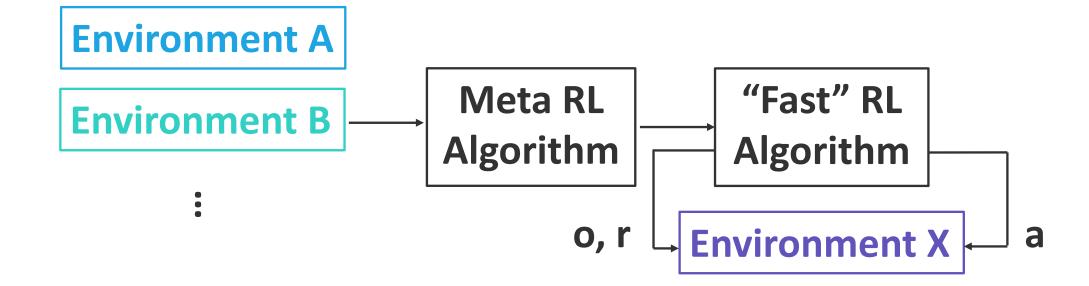
$$\hat{\phi} = \arg\min_{\phi} \mathbb{E}_{z \sim \mathcal{D}} \left[l(f_{\phi}(z)) \right]$$

 Learning-to-learn: Given a distribution over tasks, output an adaptation rule that can be used at test time to generalize from a task description

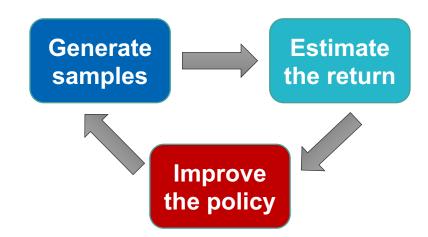
$$\hat{\theta} = \arg\min_{\theta} \mathbb{E}_{T \sim \mathcal{P}} \left\{ \mathcal{L}_T[g_{\theta}(T)] \right\}, \text{ where } \mathcal{L}_T[g_{\theta}(T)] := \mathbb{E}_{z \sim \mathcal{D}_T} \left[l(f_{\phi}(z)) \right], \ \phi := g_{\theta}(T)$$

 Meta reinforcement learning (RL): Given a distribution over environments, train a policy update rule that can solve new environments given only limited or no initial experience.

Meta-learning for RL



On-policy RL: Quick Recap



REINFORCE algorithm:

1. sample $\{\tau_i\}_{i=1}^N$ under $\pi_{\theta}(a_t \mid s_t)$

2.
$$\hat{J}(\theta) = \sum_{i} \left(\sum_{t} \log \pi_{\theta}(a_{i,t} \mid s_{i,t}) \right) \left(\sum_{t} r(s_{i,t}, a_{i,t}) \right)$$

3.
$$\theta \leftarrow \theta + \alpha \nabla_{\theta} \hat{J}(\theta)$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{i,t} \mid s_{i,t}) \right) \left(\sum_{t=1}^{T} r(s_{i,t}, a_{i,t}) \right) \right]$$

On-policy Meta-RL: MAML (again!)

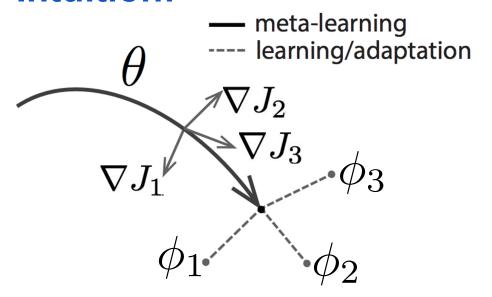
- Start with a common **policy** initialization $\, heta$
- Given a new task T_i , collect data using initial policy, then adapt using a gradient step:

$$\phi_i = g_{\theta}(T_i) := \theta - \alpha \nabla_{\theta} J_{T_i}(\theta)$$

 Meta-training is learning a shared initialization for all tasks:

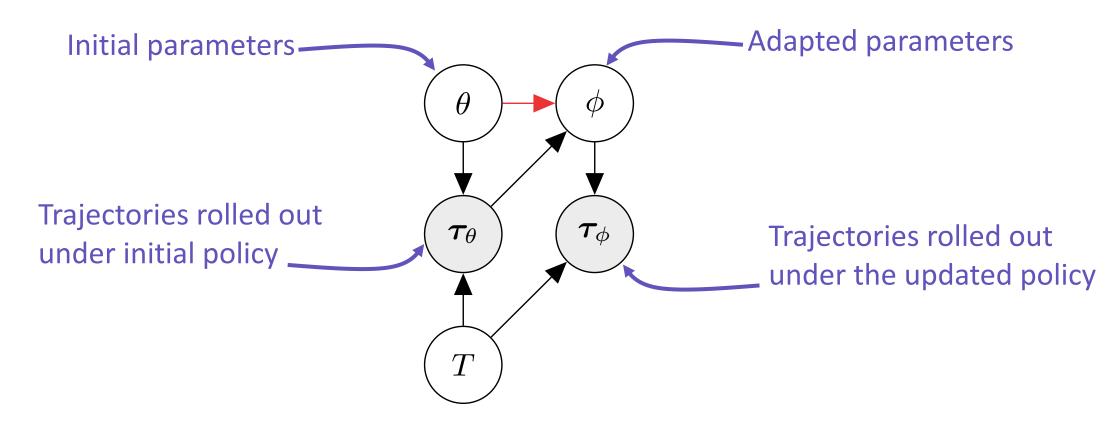
$$\min_{\theta} \sum_{T_i \sim \mathcal{P}} J_{T_i}^{\text{test}} \left(\theta - \alpha \nabla_{\theta} J_{T_i}^{\text{train}}(\theta) \right)$$

Intuition:



Adaptation as Inference

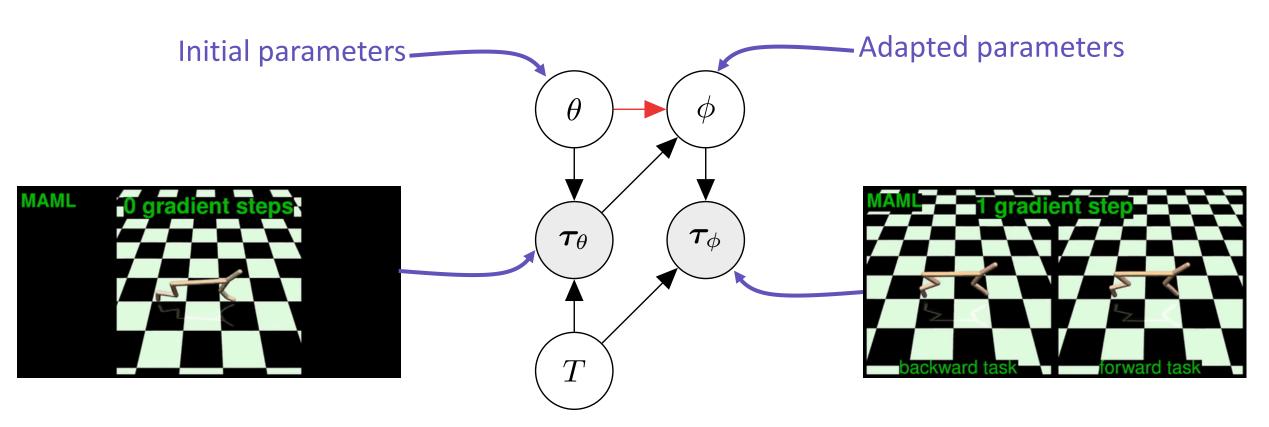
Treat policy parameters, tasks, and all trajectories as random variables



meta-learning = learning a prior and adaptation = inference

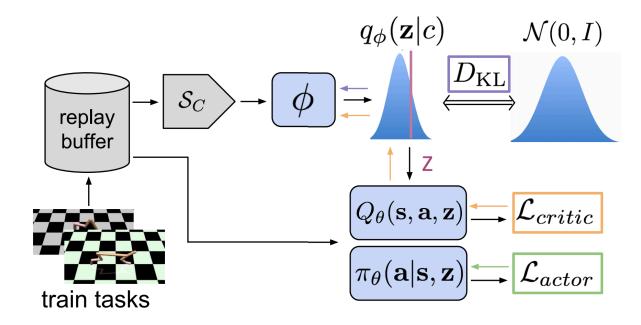
Adaptation as Inference

Treat policy parameters, tasks, and all trajectories as random variables



meta-learning = learning a prior and adaptation = inference

Off-policy meta-RL: PEARL



$$\mathbb{E}_{\mathcal{T}}[\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{c}^{\mathcal{T}})}[R(\mathcal{T}, \mathbf{z}) + \beta D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{c}^{\mathcal{T}})||p(\mathbf{z}))]]$$

$$\mathcal{L}_{critic} = \mathbb{E}_{\substack{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}') \sim \mathcal{B} \\ \mathbf{z} \sim q_{\phi}(\mathbf{z} | \mathbf{c})}} [Q_{\theta}(\mathbf{s}, \mathbf{a}, \mathbf{z}) - (r + \bar{V}(\mathbf{s}', \bar{\mathbf{z}}))]^{2}$$

$$\mathcal{L}_{actor} = \mathbb{E}_{\substack{\mathbf{s} \sim \mathcal{B}, \mathbf{a} \sim \pi_{\theta} \\ \mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{c})}} \left[D_{KL} \left(\pi_{\theta}(\mathbf{a}|\mathbf{s}, \bar{\mathbf{z}}) \middle\| \frac{\exp(Q_{\theta}(\mathbf{s}, \mathbf{a}, \bar{\mathbf{z}}))}{\mathcal{Z}_{\theta}(\mathbf{s})} \right) \right]$$

$$(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)_{1} \longrightarrow \phi \longrightarrow \Psi_{\phi}(\mathbf{z}|\mathbf{c}_{1})_{\uparrow} \qquad q_{\phi}(\mathbf{z}|\mathbf{c})$$

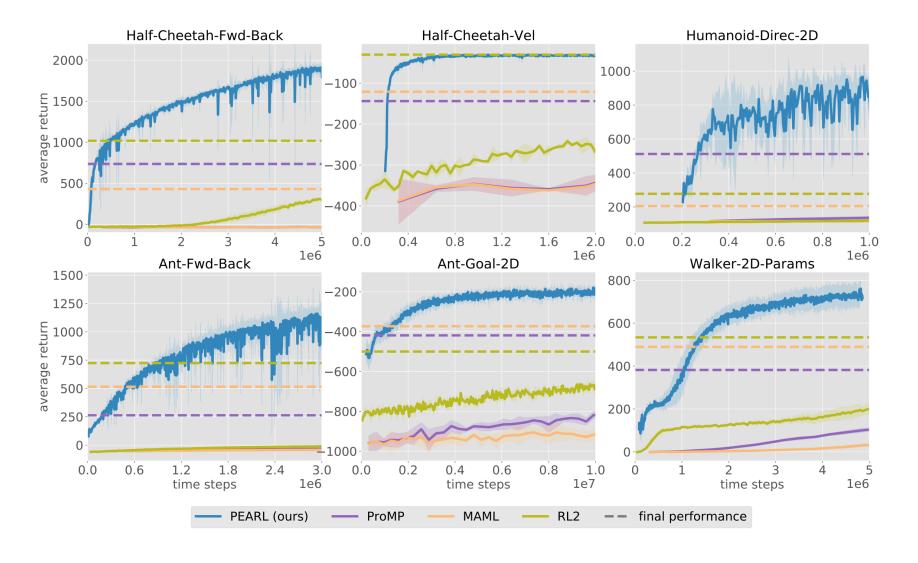
$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)_{N} \longrightarrow \phi \longrightarrow \Psi_{\phi}(\mathbf{z}|\mathbf{c}_{N})^{\perp}$$

Key points:

- Infer latent representations z of each task from the trajectory data.
- The inference network q is decoupled from the policy, which enables offpolicy learning.
- All objectives involve the inference and policy networks.

Off-policy meta-RL: PEARL



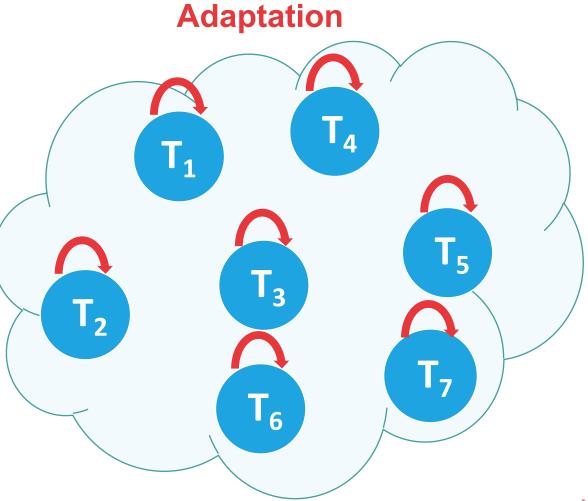
Adaptation in nonstationary environments

Classical few-shot learning setup:

 The tasks are i.i.d. samples from some underlying distribution.

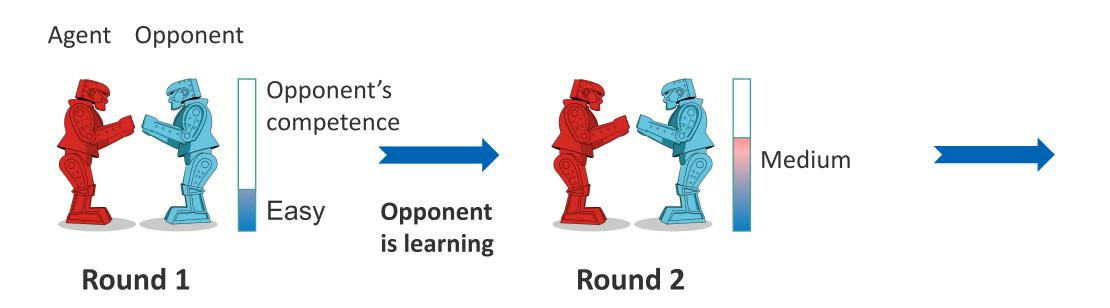
 Given a new task, we get to interact with it before adapting.

 What if we are in a nonstationary environment (i.e. changing over time)?
 Can we still use meta-learning?



Adaptation in nonstationary environments

Example: adaptation to a learning opponent



Each new round is a new task. Nonstationary environment is a sequence of tasks.

Adaptation in nonstationary environments

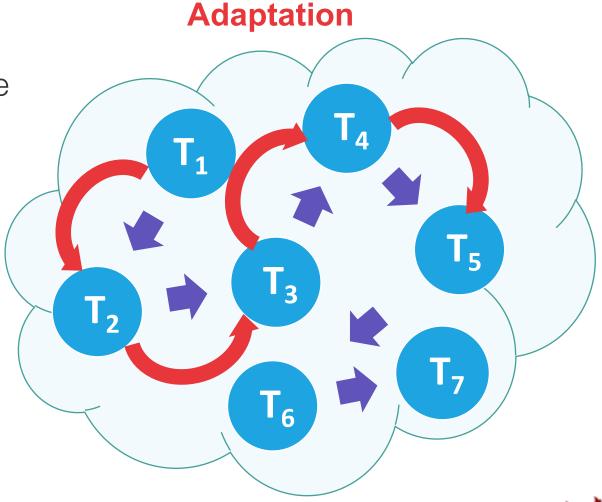
Classical few-shot learning setup:

 The tasks are i.i.d. samples from some underlying distribution.

Continuous adaptation setup:

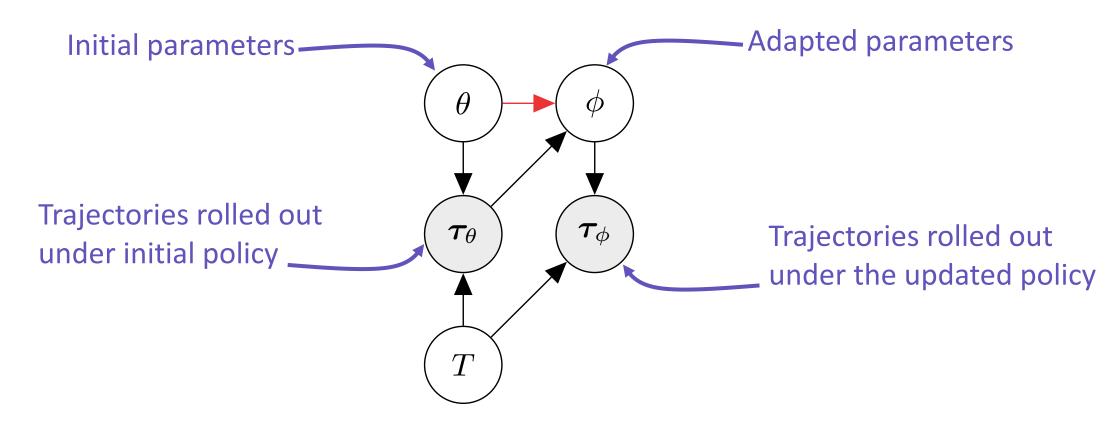
 The tasks are sequentially dependent.

⇒ meta-learn to exploit dependencies



Adaptation as Inference

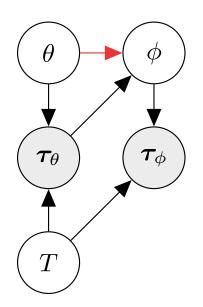
Treat policy parameters, tasks, and all trajectories as random variables

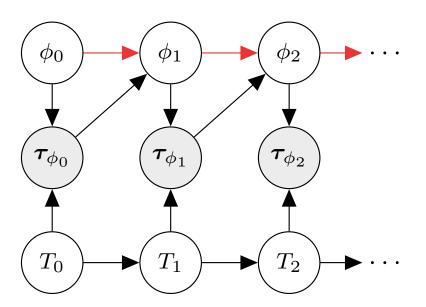


meta-learning = learning a prior and adaptation = inference

Continuous Adaptation to Nonstationarity

Treat policy parameters, tasks, and all trajectories as random variables

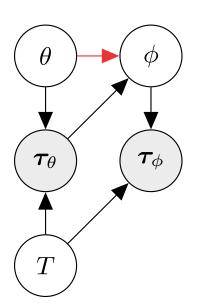




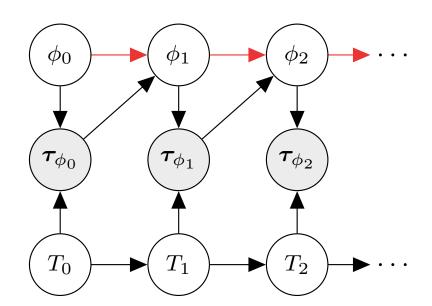
Continuous adaptation

Continuous Adaptation to Nonstationarity

Treat policy parameters, tasks, and all trajectories as random variables



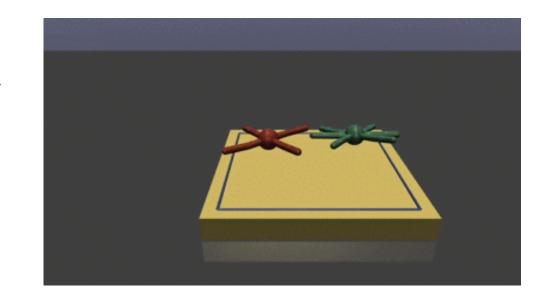
$$\min_{\theta} \mathbb{E}_{\mathcal{P}(T_i)} \left[\sum_{i=1}^{L} \mathcal{L}_{T_i}(\theta) \right]$$

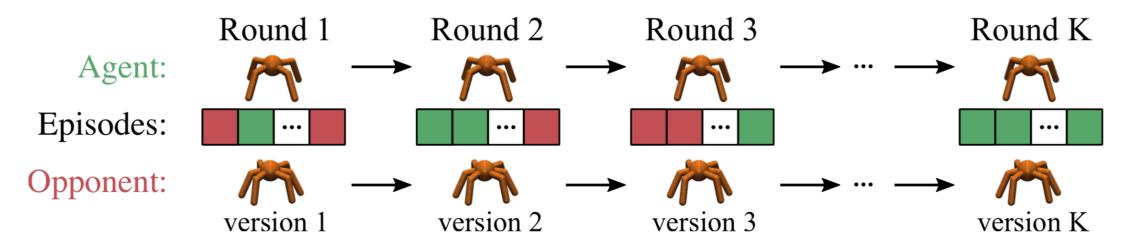


$$\min_{\theta} \mathbb{E}_{\mathcal{P}(T_i)} \left[\sum_{i=1}^{L} \mathcal{L}_{T_i}(\theta) \right] \qquad \min_{\theta} \mathbb{E}_{\mathcal{P}(T_0), \mathcal{P}(T_{i+1}|T_i)} \left[\sum_{i=1}^{L} \mathcal{L}_{T_i, T_{i+1}}(\theta) \right]$$

Nonstationary Environments

RoboSumo: a multiagent competitive env an agent competes vs. an opponent, the opponent's behavior changes over time





5

Continuous Adaptation Results

Takeaways

- Learning-to-learn (or meta-learning) setup is particularly suitable for multitask reinforcement learning
- Both on-policy and off-policy RL can be "upgraded" to meta-RL:
 - On-policy meta-RL is directly enabled by MAML
 - Decoupling task inference and policy learning enables off-policy methods
- Is it about fast adaptation or learning good multitask representations?
 (See discussion in Meta-Q-Learning: https://arxiv.org/abs/1910.00125)
- Probabilistic view of meta-learning allows to use meta-learning ideas beyond distributions of i.i.d. tasks, e.g., continuous adaptation.
- Very active area of research.

