Vo
" PETUUM

g Carnegie Mellon University

Probabilistic Graphical Models

Elements of Meta-Learning

Maruan Al-Shedivat
Lecture 27, April:27, 2020

Reading: see class homepage

7 Goals for the lecture:
4 Outline Introduction & overview
of the key methods and

developments.
e Part 1: Intro to Meta-Learning

o Motivation and some examples

o General formulation and probabilistic view

o @Gradient-based and other types of meta-learning

o Neural processes and relation of meta-learning to GPs

[Good starting point for
you to start reading and
understanding papers!]

e Part 2: Elements of Meta-RL
o What is meta-RL and why does it make sense?
o On-policy and off-policy meta-RL
o Continuous adaptation

g Carnegie Mellon University

/4
" PETUUM

Introduction to Meta-Learning

« Motivation and some examples

« General formulation and probabilistic view

« Gradient-based and other types of meta-learning

* Neural processes and relation of meta-learning to GPs

Much of machine learning can be characterized as the search
for a solution that, once found, no longer need be changed.

[...] Machine learning has been more concerned with the
results of learning than the ongoing process of learning.

— Rich Sutton, Anna Koop, David Silver (2007)

4 When is standard machine learning not enough?

Standard ML finally works for But how about...

well-defined, stationary tasks
Complex dynamic world?

. Heterogeneous
= — ! datafrom people?

W Google DeepMind
Challenge Match

e® o

| a8 Interactive robotic
00:28:28——_ ~ . i Systems’? | %

% What is meta-learning?

e Standard learning: Given a distribution over examples (single task), learn
a function that minimizes the loss

¢ = arg minE.p [[(fo(2))

e Learning-to-learn: Given a distribution over tasks, output an adaptation
rule that can be used at test time to generalize from a task description

distribution over
tasks/datasets

distribution over
examples for task T

0 = arg min Er~p {Lr[ge(T)]}, where
Lr(ge(T)] := Eznpy [1(fo(2)], ¢ = go(T)

adaptation rule takes

a task description as input

and outputs a model

3

% A Toy Example: Few-shot Image Classification

Eo

% A Toy Example: Few-shot Image Classification

Training sets Test sets

% A Toy Example: Few-shot Image Classification

adaptation

-

-
N

-]
=

Training sets Test sets

% A Toy Example: Few-shot Image Classification

adaptation
distribution over
tasks/datasets T4
0 = argmin B, 35 [L1 [g0(T)]], where
v T,
Lrlgo(T)] = E.op, [L (fo(2))] s ¢ = go(T)
Th

Training sets Test sets

% A Toy Example: Few-shot Image Classification

adaptation
distribution over adaptation rule takes a task I
tasks/datasets description and outputs a model T,
0 = argmin B, 35 [L1 [g0(T)]], where
0 T,
Lr9o(T)] =Bz, [L (f5(2))], ¢ = go(T)

-]
=

Training sets Test sets

% A Toy Example: Few-shot Image Classification

adaptation
distribution over adaptation rule takes a task I
tasks/datasets description and outputs a model T,
0 = argmin B, 35 [L1 [g0(T)]], where
0 T,
Lr9o(T)) = Eeup, [L (f5(2))] ¢ = 9o(T)

distribution over
examples for task T°

-]
=

Training sets Test sets

% A Toy Example: Few-shot Image Classification

adaptation

distribution over adaptation rule takes a task
tasks/datasets description and outputs a model T,

0 = argmin B, 35 [L1 [g0(T)]], where
0 LP

Lr90(T)] = Eeopy [L (f6(2))], & = 90(T)

distribution over
examples for task T’ T,

Training sets Test sets
Meta-learning + * Recurrent nets (Santoro et al., '16, Duan et al., ‘17, 9

adaptation methods: Wang et al., ‘17, Mishra et al., ‘17, ...)
Learned optimizers (Schmidhuber, ‘87, Bengio et al.,
‘90, Li & Malik, ‘16, Andrychowitcz et al., 16, ...) Lg

13

/
/ Other (practical) Examples of Few-shot Learning

User 1 User 2
{H) 0 Ol 7]
eliglo o| g
”>} o (®) o) Ro . Ro Ro i
positive class —/ N - —/ - = . -~ "{
positive class > s Es \‘_1 ______ > Es
R (O 0 0)#t) (O O 0O) R e IR
O O W - W o=, ot Lv -~ -
HF ()|
{ } g |O O
F(ts) O O
nogutve cass = " eantive aiss (a) Transfer Learning (b) Multilingual Transfer Learning (c) Meta Learning
Few-shot learning for cold-start problem in Low-resource translation (Gu*, Wang* et al., EMNLP 2018)

recommendation (Vartak et al., NIPS 2017)

(1) Algorithm Download Painting Examp|es
uy u; Up R
® (JI0)= AR K2
b r;_"‘ f ! 4 ’
(4) Algorithm Update (2) Model Training J " - — B
Exampl;image g\“y' ' i “ " e ti.
e - f“ V‘ : . v ‘V. R
. o e L ’v s "oy |
= % TR e,

\ /) Av]

Input videos Synthesized results Input videos Synthesized results

(3) Test Feedback Upload

Federated recommender systems
(Chen*, Luo* et al., 2018) Few-shot video-to-video (Wang et al., 2019) * g

4 One More Example: One-shot Imitation Learning

Policy for task F

Demonstration

Single demonstration
Many demonstrations for task F

for task A * \

Meta Learning - One-Shot Imitator
ﬁ .
Algorithm (Neural Network)
: Attention over demonstration Attention over current state
Ma'ny demonStratlonS ‘ ot6 0: 02 028 om0 03 0% Bok A BCDEFGH I J
for task B action Y obs -
Head #2
.o . e Head #3
more demonstrations for Environment XE
more tasks

o

% Back to Our Few-shot Classification Example

adaptation
distribution over adaptation rule takes a task I
tasks/datasets description and outputs a model T,
0 = argmin B, 35 [L1 [g0(T)]], where
0 T,
Lr9o(T)) = Eeup, [L (f5(2))] ¢ = 9o(T)

distribution over
examples for task T°

-]
=

Training sets Test sets

% Model-agnostic Meta-learning (MANML)

e Start with a common model initialization 6

adaptation

* Given a new task 1}, adapt the model T,
using a gradient step:

-
N

¢i = go(13) := 0 — VLT, (fo)

* Meta-training is learning a shared
initialization for all tasks:

-]
=

. tost . Training sets
meln E ‘CT,; (f@—aVeEP_,f?'m(fe))

T;~P

Test sets

A -
) —

-
3

K

/
(/ Model-agnostic Meta-learning (MANML)

e Start with a common model initialization 6

* Given a new task 1}, adapt the model Intuition:
- : : — meta-learning
using a gradient step: 9 ---- learning/adaptation
¢i = go(1;) :== 0 — aVeLr,(fo) VL
VLQ ¢
* Meta-training is learning a shared VLI \ " 3
initialization for all tasks: N
¢1' '¢2

. test
meln Z 'CZ%S (f@—aVeﬁ%iain(fe))
T;~P

/
(/ Does MAML Work?

5-way Accuracy 20-way Accuracy
Omniglot (Lake et al., 2011) 1-shot 5-shot 1-shot 5-shot
MANN, no conv (Santoro et al., 2016) 82.8% 94.9% - -
MAML, no conv (ours) 89.7+1.1% | 97.5+0.6% — —
Siamese nets (Koch, 2015) 97.3% 98.4% 88.2% 97.0%
matching nets (Vinyals et al., 2016) 98.1% 98.9% 93.8% 98.5%
neural statistician (Edwards & Storkey, 2017) 98.1% 99.5% 93.2% 98.1%
memory mod. (Kaiser et al., 2017) 98.4% 99.6% 95.0% 98.6%
MAML (ours) 98.7+0.4% | 99.9+0.1% | 95.8+0.3% | 98.9+0.2%

5-way Accuracy
1-shot S-shot
28.86 + 0.54% 49.79 £ 0.79%
41.08 £0.70% 51.04 £+ 0.65%
43.56 + 0.84% 55.31 £ 0.73%
43.44 +0.77% 60.60 + 0.71%

Minilmagenet (Ravi & Larochelle, 2017)
fine-tuning baseline
nearest neighbor baseline

matching nets (Vinyals et al., 2016)
meta-learner LSTM (Ravi & Larochelle, 2017)

MAML, first order approx. (ours)

48.07 £ 1.75%

63.15 + 0.91%

MAML (ours)

48.70 + 1.84%

63.11 + 0.92%

21

/
{/ MAML from a Probabilistic Standpoint

e Training points: X;,, - -, X5, ~ p7(X), testing points: X, -« Xjy ., ~ P (X)
e MAML with log-likelihood loss:
1 1 1
L£(0) = = Z [H Z —logp(xj,,,. | 0 —aVg ~ Z —logp(x; [0))
J m < n P
P;

V ¢j Y

0/> \ P | X

0 _.{; logp(x;_| 0)}[; logp(x;,,.. | &;)}* —logp(X | 6) 0 —*Q_’O
LL\% «/\/JJ

po(T) Hierarchical Bayes = g

% Prototype-based Meta-learning

/
4 Prototype-based Meta-learning

Prototypes:
1
Cr = E , f¢(xz)
Skl
(xiayi)esk

Predictive distribution:
sy - (A (fs(%), i)
Poly =F1X) = S exp(—d(fs(x), cx))

/
(/ Does Prototype-based Meta-learning Work?

Omniglot

mini-lmageNet

S-way Acc. 20-way Acc.
Model Dist. Fine Tune 1-shot 5-shot 1-shot 5-shot
MATCHING NETWORKS [32] Cosine N 98.1% 989% 93.8% 98.5%
MATCHING NETWORKS [32] Cosine Y 979% 98.7% 93.5% 98.7%
NEURAL STATISTICIAN [7] - N 98.1% 99.5% 93.2% 98.1%
MAML [9]* - N 98.7% 99.9% 95.8% 98.9%
PROTOTYPICAL NETWORKS (OURS) Euclid. N 988% 99.7% 96.0% 98.9%
S5-way Acc.

Model Dist. Fine Tune 1-shot 5-shot

BASELINE NEAREST NEIGHBORS™ Cosine N 28.86 £ 0.54% 49.79 4+ 0.79%
MATCHING NETWORKS [32]* Cosine N 4340+ 0.78% 51.09 +0.71%
MATCHING NETWORKS FCE [32]* Cosine N 43.56 £ 0.84% 55.31 £0.73%
META-LEARNER LSTM [24]* - N 4344 +0.77% 60.60 4+ 0.71%
MAML [9] - N 48.70 + 1.84% 63.15 +0.91%
PROTOTYPICAL NETWORKS (OURS) Euclid. N 4942 + 0.78% 68.20 £ 0.66 %

25

/
{/ “Rapid Learning or Feature Reuse?”

Published as a conference paper at ICLR 2020

RAPID LEARNING OR FEATURE REUSE? TOWARDS
UNDERSTANDING THE EFFECTIVENESS OF MAML

Aniruddh Raghu * Maithra Raghu * Samy Bengio
MIT Cornell University & Google Brain Google Brain
araghu@mit.edu maithrar@gmail.com

Oriol Vinyals

DeepMind

Rapid Learning
T

A
, Task 1
0
‘\

| RN
N
| ~

Task 3;' Task_ 2
03
o

Adaptation is the main
contributor to the performance

% “Rapid Learning or Feature Reuse?”

Feature Reuse

Task 1

—p Outer loop

- — = —p» Inner loop

Good representations is the main
contributor to the performance

27

MAML
>

(} OIJT,‘ (0) \
—
: 96,
OLT,(0)
0> — :
27 Y50,
, OLT,(0)
0’1('1“1 — Q=
()()ht'(ul/
9*
N o TC
Tasky

% “Rapid Learning or Feature Reuse?”

ANIL
s

* —
Or, =

A
Taska] dLt,(0)
' oh('ad - OW

0 4 N J

0 = (01,05, Onead) s
— 1, Y2, Vhead \

™ o
| - Tc
I

. 4
TaskT 3 0 }
d

28

4

No visible difference in
performance between
MAML and ANIL

MAML
/fﬁl L7, (0)
69;}5 - a0,

\ S~ *
: T o o P OTC
U
Taskr, 0,{ Tasky,
T4

“Rapid Learning or Feature Reuse?”

ANIL

or = | =
Ly 02
Taskp, | 9Lz, (0)
,[head — O 00’:1 ad
9 \‘/
= (01.02-9114'1111) \I \\\\\ 9*
| - TC
U
. 4)
Taskr, o Taskr

MinilmageNet-5way-5shot

Loss curves

—— MAML train loss
MAML val loss

—— ANIL train loss

—— ANIL val loss

0 5000 10000 15000 20000 25000 30000
Training iteration

Accuracy

0.751

0.70

o
o))
o

o
o)
o

e
u
I3,

Accuracy curves

—— MAML train acc
MAML val acc

—— ANIL train acc

—— ANIL val acc

0

5000 10000 15000 20000 25000 30000
Training iteration

More detailed analysis
of the representations
learned by MAML vs
ANIL at different levels
is in the paper

o

% Drawing parallels between meta-learning and GPs

e |n few-shot learning:
e |Learn to identify functions that generated the data from just a few examples.
e The function class and the adaptation rule encapsulate our prior knowledge.
e Recall Gaussian Processes (GPs):

e Given afew (X, y) pairs, we can compute the predictive mean and variance.
e Our prior knowledge is encapsulated in the kernel function.

Samples from GP Posterior

Output, f(x)
LA b S L o - S w IS

0
Input, x

/
(/ Conditional Neural Processes

Y1 Yo Y3
m]] .
g CNP architecture:
® X4 X5 X3 X4 Xs Xg
Observations Targets

O,

¢ Our Model

j E Y4 Y5 Y6

- X4 X5 X3 X4 X5 Xg
y y y
1 2 2 @ @ @ Observe Aggregate Predict

X4 X, X3 X4 X5 Xg

b Supervised Learning

Train Predict

Conditional Neural Processes

5 context points 50 context points
a
Context Prediction Context Prediction J
> GP
0
2
= CNP

» 0 MN \/v
Context Prediction > CNP

32

On software packages for meta-learning

e A lot of research code releases (code is fragile and sometimes broken)

e A few notable libraries that implement a few specific methods:
e Torchmeta (https://github.com/tristandeleu/pytorch-meta)

e Learn2learn (https://github.com/learnables/learn2learn)

e Higher (https://github.com/facebookresearch/higher)

e New! e\ (——\ (—)
MDA
==l

[(B}J O L ¥, COU CCO CKQ [{S]J

A Modular Toolbox for Accelerating Meta-Learning Research s/

https://github.com/alshedivat/meta-blocks

v' Library is actively developed

v" Very modular and FAST

v" Planned support for many
algorithms and meta-RL

Running a tutorial next week!
(drop me an email if interested)

https://github.com/tristandeleu/pytorch-meta
https://github.com/learnables/learn2learn
https://github.com/facebookresearch/higher
https://github.com/alshedivat/meta-blocks

Takeaways

e Many real-world scenarios require building adaptive systems and cannot
be solved using “learn-once” standard ML approach.

e | earning-to-learn (or meta-learning) attempts extend ML to rich multitask
scenarios—instead of learning a function, learn a learning algorithm.

e Two families of widely popular methods:

o @Gradient-based meta-learning (MAML and such)
o Prototype-based meta-learning (Protonets, Neural Processes, ...)
o Many hybrids, extensions, improvements (CAIVA, MetaSGD, ...)

e |s it about adaptation or learning good representations? Still unclear and
depends on the task; having good representations might be enough.

e Meta-learning can be used as a mechanism for causal discovery.
(See Bengio et al., 2019.)

https://arxiv.org/abs/1901.10912

g Carnegie Mellon University

4
" PETUUM

Elements of Meta-RL

« What is meta-RLE and why does it make sense?
- On-policy and off-policy meta-RL

« Continuous adaptation

; Recall the definition of learning-to-learn

e Standard learning: Given a distribution over examples (single task), learn
a function that minimizes the loss

A

¢ = argmin . [I(f4(2))]

e Learning-to-learn: Given a distribution over tasks, output an adaptation
rule that can be used at test time to generalize from a task description

distribution over adaptation rule takes
tasks/datasets a task description as input
and outputs a model

f = arg minErp {Lr(ge(T)]}, where

Lrlgo(T)] := Eznpy [I(fe(2))]5 ¢ := 90(T)

distribution over

examples for task T Lg

% Recall the definition of learning-to-learn

e Standard learning: Given a distribution over examples (single task), learn
a function that minimizes the loss

A

¢ = argmin . [I(f4(2))]

e Learning-to-learn: Given a distribution over tasks, output an adaptation
rule that can be used at test time to generalize from a task description

0 = argmin Erp {Lrlgo(T)]}, where Lrgo(T)] := Eznpy [1(£5(2))], ¢ := 0 (T)

e Meta reinforcement learning (RL): Given a distribution over environments,
train a policy update rule that can solve new environments given only
limited or no initial experience.

1
H
!
14
/
[1
1
t
- i
1
1
EI\
1

% Meta-learning for RL

Environment A

Environment B [——

Meta RL
Algorithm

“Fast” RL

Algorithm

J{ Environment X |

% On-policy RL: Quick Recap

Generate - Estimate
the return
\ Improve /

REINFORCE algorithm: the policy

1. sample {7;}7Y, under mg(a; | s¢)

2. j(é’) = S:Z (S:t log We(ai,t \ Si,t)) (Ztr(si,taai,t))

3. 0« 0+aVeJ(H)

(/ On-policy Meta-RL: MAML (again!)

* Start with a common policy initialization @

e Given a new task 1, collect data using initial Intuition:

o . . . —_— t _I .
policy, then adapt using a gradient step: g - Egrsin?/;néggtation
¢i = go(T3) := 0 — aVoJr,(0) Vs
VJ3
* Meta-training is learning a shared VJI ¢3
initialization for all tasks:
test t ¢1. .¢2
min J70 (0 — aV Jram v,
in 3 J 0oV 0)

% Adaptation as Inference

Treat policy parameters, tasks, and all trajectories as random variables

Initial parameters — ~ Ve Adapted parameters

Trajectories rolled out , ,
. . Trajectories rolled out
under initial policy _ M <

__under the updated policy

meta-learning = learning a prior and adaptation = inference

/
/ Adaptation as Inference

Treat policy parameters, tasks, and all trajectories as random variables

Initial parameters —

o Adapted parameters

meta-learning = learning a prior and adaptation = inference

ﬁ Off-policy meta-RL: PEARL

e O = S R
Eeacy b _

replay c A ‘ A
buffer S a, S ’I“ N—>—>\If¢ |CN

!

| ((S7 a, Z;—> 'Ccm'tz'c
% [mo(als, 2) | Lactor| KV POINtS:

train tasks . * Infer latent representations z of each
task from the trajectory data.
E7(Esmq, @) [R(T,2) + BDxL(qs(zlc”)||p(2))]] « The inference network q is decoupled
) from the policy, which enables off-
Leritic = E(g o rsyoslQo(s,a,2) — (r+ V(s',2)))° policy learning.
2~qs(2c) - All objectives involve the inference and

Loctor =B cry [Drc (mo(als,)| “E G20 policy networks

2~y (z]c) Zy(s) g

Off-policy meta-RL: PEARL

Half-Cheetah-Fwd-Back Half-Cheetah-Vel Humanoid-Direc-2D

2000 TTTOA u
~100-

=
Ul
o
o

average return
’_.I
o
o
o
|

04 08 12 16 20 00 02 04 06 08 1.0
Ant-Goal-2D Walker-2D-Params
1500-

1250-

1000- _:/‘L ________________
750 L ittt |
500 — of

250 = —BOO-W 500-

average return

0 = 1000 :
00 06 1.2 18 24 30 00 02 04 06 08 1.0 0 1 2 3 4 5
time steps le6 time steps le7 time steps leb6
- PEARL (ours) = ProMP MAML ——— RL2 == final performance

o

% Adaptation in nonstationary environments

Adaptation

Classical few-shot learning setup:

e The tasks are i.i.d. samples from some
underlying distribution.

e Given a new task, we get to interact
with it before adapting.

e What if we are in a nonstationary
environment (i.e. changing over time)?
Can we still use meta-learning?

% Adaptation in nonstationary environments

Example: adaptation to a learning opponent

Agent Opponent

Opponent’s
competence

——)

I Easy Opponent
is learning

Medium ——)

Round 2

Each new round is a new task. Nonstationary environment is a sequence of tasks.

3

% Adaptation in nonstationary environments

Adaptation

Classical few-shot learning setup:

e The tasks are i.i.d. samples from some
underlying distribution.

Continuous adaptation setup:

e [he tasks are sequentially
dependent.

= meta-learn to exploit dependencies

% Adaptation as Inference

Treat policy parameters, tasks, and all trajectories as random variables

Initial parameters — ~ Ve Adapted parameters

Trajectories rolled out , ,
. . Trajectories rolled out
under initial policy _ M <

__under the updated policy

meta-learning = learning a prior and adaptation = inference

/
{/ Continuous Adaptation to Nonstationarity

Treat policy parameters, tasks, and all trajectories as random variables

030 O OnOass

Classical few-shot learning Continuous adaptation

/
(/ Continuous Adaptation to Nonstationarity

Treat policy parameters, tasks, and all trajectories as random variables

030 O OnOass

min Ep) ZETZ'(H) meinEP(To),P(TiHITz‘) ZﬁTi,TiH(Q)

% Nonstationary Environments

RoboSumo: a multiagent competitive env
an agent competes vs. an opponent,

the opponent’'s behavior changes

over time

Round 1 Round 2

Agent: H —> H —> H
Episodes: [HI-IH - -
Opponent: n —> n —> /n

version 1 version 2

4
/ Continuous Adaptation Results

Takeaways

e | earning-to-learn (or meta-learning) setup is particularly suitable for multi-
task reinforcement learning

e Both on-policy and off-policy RL can be “upgraded” to meta-RL:
o On-policy meta-RL is directly enabled by MAML
o Decoupling task inference and policy learning enables off-policy methods

e |s it about fast adaptation or learning good multitask representations?
(See discussion in Meta-Q-Learning: https://arxiv.org/abs/1910.00125)

e Probabilistic view of meta-learning allows to use meta-learning ideas
beyond distributions of I.i.d. tasks, e.g., continuous adaptation.

e Very active area of research.

https://arxiv.org/abs/1910.00125

School of Computer Science

